binutils-gdb/sim/m68hc11/m68hc11_sim.c
Stephane Carrez 2990a9f484 * sim-main.h: Define cycle_to_string.
* dv-m68hc11tim.c (cycle_to_string): New function to translate
	the cpu cycle into some formatted time string.
	(m68hc11tim_print_timer): Use it.
	* dv-m68hc11sio.c (m68hc11sio_info): Use cycle_to_string.
	* dv-m68hc11spi.c (m68hc11spi_info): Likewise.
	* interrupts.c (interrupts_info): Likewise.
	* m68hc11_sim.c (cpu_info): Likewise.
2000-09-09 21:00:39 +00:00

641 lines
14 KiB
C

/* m6811_cpu.c -- 68HC11 CPU Emulation
Copyright 1999, 2000 Free Software Foundation, Inc.
Written by Stephane Carrez (stcarrez@worldnet.fr)
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "sim-main.h"
#include "sim-assert.h"
#include "sim-module.h"
#include "sim-options.h"
void cpu_free_frame (sim_cpu* cpu, struct cpu_frame *frame);
enum {
OPTION_CPU_RESET = OPTION_START,
OPTION_EMUL_OS,
OPTION_CPU_CONFIG,
OPTION_CPU_MODE
};
static DECLARE_OPTION_HANDLER (cpu_option_handler);
static const OPTION cpu_options[] =
{
{ {"cpu-reset", no_argument, NULL, OPTION_CPU_RESET },
'\0', NULL, "Reset the CPU",
cpu_option_handler },
{ {"emulos", no_argument, NULL, OPTION_EMUL_OS },
'\0', NULL, "Emulate some OS system calls (read, write, ...)",
cpu_option_handler },
{ {"cpu-config", required_argument, NULL, OPTION_CPU_CONFIG },
'\0', NULL, "Specify the initial CPU configuration register",
cpu_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};
static SIM_RC
cpu_option_handler (SIM_DESC sd, sim_cpu *cpu,
int opt, char *arg, int is_command)
{
sim_cpu *cpu;
int val;
cpu = STATE_CPU (sd, 0);
switch (opt)
{
case OPTION_CPU_RESET:
sim_board_reset (sd);
break;
case OPTION_EMUL_OS:
cpu->cpu_emul_syscall = 1;
break;
case OPTION_CPU_CONFIG:
if (sscanf(arg, "0x%x", &val) == 1
|| sscanf(arg, "%d", &val) == 1)
{
cpu->cpu_config = val;
cpu->cpu_use_local_config = 1;
}
else
cpu->cpu_use_local_config = 0;
break;
case OPTION_CPU_MODE:
break;
}
return SIM_RC_OK;
}
/* Tentative to keep track of the cpu frame. */
struct cpu_frame*
cpu_find_frame (sim_cpu *cpu, uint16 sp)
{
struct cpu_frame_list *flist;
flist = cpu->cpu_frames;
while (flist)
{
struct cpu_frame *frame;
frame = flist->frame;
while (frame)
{
if (frame->sp_low <= sp && frame->sp_high >= sp)
{
cpu->cpu_current_frame = flist;
return frame;
}
frame = frame->up;
}
flist = flist->next;
}
return 0;
}
struct cpu_frame_list*
cpu_create_frame_list (sim_cpu *cpu)
{
struct cpu_frame_list *flist;
flist = (struct cpu_frame_list*) malloc (sizeof (struct cpu_frame_list));
flist->frame = 0;
flist->next = cpu->cpu_frames;
flist->prev = 0;
if (flist->next)
flist->next->prev = flist;
cpu->cpu_frames = flist;
cpu->cpu_current_frame = flist;
return flist;
}
void
cpu_remove_frame_list (sim_cpu *cpu, struct cpu_frame_list *flist)
{
struct cpu_frame *frame;
if (flist->prev == 0)
cpu->cpu_frames = flist->next;
else
flist->prev->next = flist->next;
if (flist->next)
flist->next->prev = flist->prev;
frame = flist->frame;
while (frame)
{
struct cpu_frame* up = frame->up;
cpu_free_frame (cpu, frame);
frame = up;
}
free (flist);
}
struct cpu_frame*
cpu_create_frame (sim_cpu *cpu, uint16 pc, uint16 sp)
{
struct cpu_frame *frame;
frame = (struct cpu_frame*) malloc (sizeof(struct cpu_frame));
frame->up = 0;
frame->pc = pc;
frame->sp_low = sp;
frame->sp_high = sp;
return frame;
}
void
cpu_free_frame (sim_cpu *cpu, struct cpu_frame *frame)
{
free (frame);
}
uint16
cpu_frame_reg (sim_cpu *cpu, uint16 rn)
{
struct cpu_frame *frame;
if (cpu->cpu_current_frame == 0)
return 0;
frame = cpu->cpu_current_frame->frame;
while (frame)
{
if (rn == 0)
return frame->sp_high;
frame = frame->up;
rn--;
}
return 0;
}
void
cpu_call (sim_cpu *cpu, uint16 addr)
{
#if HAVE_FRAME
uint16 pc = cpu->cpu_insn_pc;
uint16 sp;
struct cpu_frame_list *flist;
struct cpu_frame* frame;
struct cpu_frame* new_frame;
#endif
cpu_set_pc (cpu, addr);
#if HAVE_FRAME
sp = cpu_get_sp (cpu);
cpu->cpu_need_update_frame = 0;
flist = cpu->cpu_current_frame;
if (flist == 0)
flist = cpu_create_frame_list (cpu);
frame = flist->frame;
if (frame && frame->sp_low > sp)
frame->sp_low = sp;
new_frame = cpu_create_frame (cpu, pc, sp);
new_frame->up = frame;
flist->frame = new_frame;
#endif
}
void
cpu_update_frame (sim_cpu *cpu, int do_create)
{
#if HAVE_FRAME
struct cpu_frame *frame;
frame = cpu_find_frame (cpu, cpu_get_sp (cpu));
if (frame)
{
while (frame != cpu->cpu_current_frame->frame)
{
struct cpu_frame* up;
up = cpu->cpu_current_frame->frame->up;
cpu_free_frame (cpu, cpu->cpu_current_frame->frame);
cpu->cpu_current_frame->frame = up;
}
return;
}
if (do_create)
{
cpu_create_frame_list (cpu);
frame = cpu_create_frame (cpu, cpu_get_pc (cpu), cpu_get_sp (cpu));
cpu->cpu_current_frame->frame = frame;
}
#endif
}
void
cpu_return (sim_cpu *cpu)
{
#if HAVE_FRAME
uint16 sp = cpu_get_sp (cpu);
struct cpu_frame *frame;
struct cpu_frame_list *flist;
cpu->cpu_need_update_frame = 0;
flist = cpu->cpu_current_frame;
if (flist && flist->frame && flist->frame->up)
{
frame = flist->frame->up;
if (frame->sp_low <= sp && frame->sp_high >= sp)
{
cpu_free_frame (cpu, flist->frame);
flist->frame = frame;
return;
}
}
cpu_update_frame (cpu, 1);
#endif
}
void
cpu_print_frame (SIM_DESC sd, sim_cpu *cpu)
{
struct cpu_frame* frame;
int level = 0;
if (cpu->cpu_current_frame == 0 || cpu->cpu_current_frame->frame == 0)
{
sim_io_printf (sd, "No frame.\n");
return;
}
sim_io_printf (sd, " # PC SP-L SP-H\n");
frame = cpu->cpu_current_frame->frame;
while (frame)
{
sim_io_printf (sd, "%3d 0x%04x 0x%04x 0x%04x\n",
level, frame->pc, frame->sp_low, frame->sp_high);
frame = frame->up;
level++;
}
}
/* Set the stack pointer and re-compute the current frame. */
void
cpu_set_sp (sim_cpu *cpu, uint16 val)
{
cpu->cpu_regs.sp = val;
cpu_update_frame (cpu, 0);
}
int
cpu_initialize (SIM_DESC sd, sim_cpu *cpu)
{
int result;
sim_add_option_table (sd, 0, cpu_options);
memset (&cpu->cpu_regs, 0, sizeof(cpu->cpu_regs));
cpu->cpu_absolute_cycle = 0;
cpu->cpu_current_cycle = 0;
cpu->cpu_emul_syscall = 1;
cpu->cpu_running = 1;
cpu->cpu_stop_on_interrupt = 0;
cpu->cpu_frequency = 8 * 1000 * 1000;
cpu->cpu_frames = 0;
cpu->cpu_current_frame = 0;
cpu->cpu_use_elf_start = 0;
cpu->cpu_elf_start = 0;
cpu->cpu_use_local_config = 0;
cpu->cpu_config = M6811_NOSEC | M6811_NOCOP | M6811_ROMON |
M6811_EEON;
result = interrupts_initialize (cpu);
cpu->cpu_is_initialized = 1;
return result;
}
/* Reinitialize the processor after a reset. */
int
cpu_reset (sim_cpu *cpu)
{
cpu->cpu_need_update_frame = 0;
cpu->cpu_current_frame = 0;
while (cpu->cpu_frames)
cpu_remove_frame_list (cpu, cpu->cpu_frames);
/* Initialize the config register.
It is only initialized at reset time. */
memset (cpu->ios, 0, sizeof (cpu->ios));
cpu->ios[M6811_INIT] = 0x1;
/* Output compare registers set to 0xFFFF. */
cpu->ios[M6811_TOC1_H] = 0xFF;
cpu->ios[M6811_TOC1_L] = 0xFF;
cpu->ios[M6811_TOC2_H] = 0xFF;
cpu->ios[M6811_TOC2_L] = 0xFF;
cpu->ios[M6811_TOC3_H] = 0xFF;
cpu->ios[M6811_TOC4_L] = 0xFF;
cpu->ios[M6811_TOC5_H] = 0xFF;
cpu->ios[M6811_TOC5_L] = 0xFF;
/* Setup the processor registers. */
memset (&cpu->cpu_regs, 0, sizeof(cpu->cpu_regs));
cpu->cpu_absolute_cycle = 0;
cpu->cpu_current_cycle = 0;
cpu->cpu_is_initialized = 0;
/* Reinitialize the CPU operating mode. */
cpu->ios[M6811_HPRIO] = cpu->cpu_mode;
return 0;
}
/* Reinitialize the processor after a reset. */
int
cpu_restart (sim_cpu *cpu)
{
uint16 addr;
/* Get CPU starting address depending on the CPU mode. */
if (cpu->cpu_use_elf_start == 0)
{
switch ((cpu->ios[M6811_HPRIO]) & (M6811_SMOD | M6811_MDA))
{
/* Single Chip */
default:
case 0 :
addr = memory_read16 (cpu, 0xFFFE);
break;
/* Expanded Multiplexed */
case M6811_MDA:
addr = memory_read16 (cpu, 0xFFFE);
break;
/* Special Bootstrap */
case M6811_SMOD:
addr = 0;
break;
/* Factory Test */
case M6811_MDA | M6811_SMOD:
addr = memory_read16 (cpu, 0xFFFE);
break;
}
}
else
{
addr = cpu->cpu_elf_start;
}
/* Setup the processor registers. */
cpu->cpu_insn_pc = addr;
cpu->cpu_regs.pc = addr;
cpu->cpu_regs.ccr = M6811_X_BIT | M6811_I_BIT | M6811_S_BIT;
cpu->cpu_absolute_cycle = 0;
cpu->cpu_is_initialized = 1;
cpu->cpu_current_cycle = 0;
cpu_call (cpu, addr);
return 0;
}
void
print_io_reg_desc (SIM_DESC sd, io_reg_desc *desc, int val, int mode)
{
while (desc->mask)
{
if (val & desc->mask)
sim_io_printf (sd, "%s",
mode == 0 ? desc->short_name : desc->long_name);
desc++;
}
}
void
print_io_byte (SIM_DESC sd, const char *name, io_reg_desc *desc,
uint8 val, uint16 addr)
{
sim_io_printf (sd, " %-9.9s @ 0x%04x 0x%02x ", name, addr, val);
if (desc)
print_io_reg_desc (sd, desc, val, 0);
}
void
cpu_ccr_update_tst8 (sim_cpu *proc, uint8 val)
{
cpu_set_ccr_V (proc, 0);
cpu_set_ccr_N (proc, val & 0x80 ? 1 : 0);
cpu_set_ccr_Z (proc, val == 0 ? 1 : 0);
}
uint16
cpu_fetch_relbranch (sim_cpu *cpu)
{
uint16 addr = (uint16) cpu_fetch8 (cpu);
if (addr & 0x0080)
{
addr |= 0xFF00;
}
addr += cpu->cpu_regs.pc;
return addr;
}
/* Push all the CPU registers (when an interruption occurs). */
void
cpu_push_all (sim_cpu *cpu)
{
cpu_push_uint16 (cpu, cpu->cpu_regs.pc);
cpu_push_uint16 (cpu, cpu->cpu_regs.iy);
cpu_push_uint16 (cpu, cpu->cpu_regs.ix);
cpu_push_uint16 (cpu, cpu->cpu_regs.d);
cpu_push_uint8 (cpu, cpu->cpu_regs.ccr);
}
/* Handle special instructions. */
void
cpu_special (sim_cpu *cpu, enum M6811_Special special)
{
switch (special)
{
case M6811_RTI:
{
uint8 ccr;
ccr = cpu_pop_uint8 (cpu);
cpu_set_ccr (cpu, ccr);
cpu_set_d (cpu, cpu_pop_uint16 (cpu));
cpu_set_x (cpu, cpu_pop_uint16 (cpu));
cpu_set_y (cpu, cpu_pop_uint16 (cpu));
cpu_set_pc (cpu, cpu_pop_uint16 (cpu));
cpu_return (cpu);
break;
}
case M6811_WAI:
/* In the ELF-start mode, we are in a special mode where
the WAI corresponds to an exit. */
if (cpu->cpu_use_elf_start)
{
cpu_set_pc (cpu, cpu->cpu_insn_pc);
sim_engine_halt (CPU_STATE (cpu), cpu,
NULL, NULL_CIA, sim_exited,
cpu_get_d (cpu));
return;
}
/* SCz: not correct... */
cpu_push_all (cpu);
break;
case M6811_SWI:
interrupts_raise (&cpu->cpu_interrupts, M6811_INT_SWI);
interrupts_process (&cpu->cpu_interrupts);
break;
case M6811_EMUL_SYSCALL:
case M6811_ILLEGAL:
if (cpu->cpu_emul_syscall)
{
uint8 op = memory_read8 (cpu,
cpu_get_pc (cpu) - 1);
if (op == 0x41)
{
cpu_set_pc (cpu, cpu->cpu_insn_pc);
sim_engine_halt (CPU_STATE (cpu), cpu,
NULL, NULL_CIA, sim_exited,
cpu_get_d (cpu));
return;
}
else
{
emul_os (op, cpu);
}
return;
}
interrupts_raise (&cpu->cpu_interrupts, M6811_INT_ILLEGAL);
interrupts_process (&cpu->cpu_interrupts);
break;
case M6811_TEST:
{
SIM_DESC sd;
sd = CPU_STATE (cpu);
/* Breakpoint instruction if we are under gdb. */
if (STATE_OPEN_KIND (sd) == SIM_OPEN_DEBUG)
{
cpu->cpu_regs.pc --;
sim_engine_halt (CPU_STATE (cpu), cpu,
0, cpu_get_pc (cpu), sim_stopped,
SIM_SIGTRAP);
}
/* else this is a nop but not in test factory mode. */
break;
}
}
}
void
cpu_single_step (sim_cpu *cpu)
{
cpu->cpu_current_cycle = 0;
cpu->cpu_insn_pc = cpu_get_pc (cpu);
/* Handle the pending interrupts. If an interrupt is handled,
treat this as an single step. */
if (interrupts_process (&cpu->cpu_interrupts))
{
cpu->cpu_absolute_cycle += cpu->cpu_current_cycle;
return;
}
/* printf("PC = 0x%04x\n", cpu_get_pc (cpu));*/
cpu_interp (cpu);
cpu->cpu_absolute_cycle += cpu->cpu_current_cycle;
}
/* VARARGS */
void
sim_memory_error (sim_cpu *cpu, SIM_SIGNAL excep,
uint16 addr, const char *message, ...)
{
char buf[1024];
va_list args;
va_start (args, message);
vsprintf (buf, message, args);
va_end (args);
printf("%s\n", buf);
cpu_memory_exception (cpu, excep, addr, buf);
}
void
cpu_memory_exception (sim_cpu *cpu, SIM_SIGNAL excep,
uint16 addr, const char *message)
{
if (cpu->cpu_running == 0)
return;
cpu_set_pc (cpu, cpu->cpu_insn_pc);
sim_engine_halt (CPU_STATE (cpu), cpu, NULL,
cpu_get_pc (cpu), sim_stopped, excep);
#if 0
cpu->mem_exception = excep;
cpu->fault_addr = addr;
cpu->fault_msg = strdup (message);
if (cpu->cpu_use_handler)
{
longjmp (&cpu->cpu_exception_handler, 1);
}
(* cpu->callback->printf_filtered)
(cpu->callback, "Fault at 0x%04x: %s\n", addr, message);
#endif
}
void
cpu_info (SIM_DESC sd, sim_cpu *cpu)
{
sim_io_printf (sd, "CPU info:\n");
sim_io_printf (sd, " Absolute cycle: %s\n",
cycle_to_string (cpu, cpu->cpu_absolute_cycle));
sim_io_printf (sd, " Syscall emulation: %s\n",
cpu->cpu_emul_syscall ? "yes, via 0xcd <n>" : "no");
sim_io_printf (sd, " Memory errors detection: %s\n",
cpu->cpu_check_memory ? "yes" : "no");
sim_io_printf (sd, " Stop on interrupt: %s\n",
cpu->cpu_stop_on_interrupt ? "yes" : "no");
}