0743fc83c0
Currently there are many prefix commands that do nothing but call either help_list or cmd_show_list. I happened to notice that one such call, for "set print type", used the wrong command list parameter, causing incorrect output. Rather than fix this bug in isolation, I decided to eliminate this possibility by adding two new ways to add prefix commands, which simply route the call to help_list or cmd_show_list, as appropriate. This makes it impossible for a mismatch to occur. In some cases, a bit of output was removed; however, I don't think this output in general was very useful. It seemed redundant with what's already printed by help_list. A representative example is this hunk, removed from ada-lang.c: - printf_unfiltered (_(\ -"\"set ada\" must be followed by the name of a setting.\n")); This simplified the CLI style set/show commands quite a bit, and allowed the deletion of a macro. This also cleans up some unusual code in windows-tdep.c. Tested on x86-64 Fedora 30. Note that I have no way to build the go32-nat.c change. gdb/ChangeLog 2020-04-17 Tom Tromey <tromey@adacore.com> * auto-load.c (show_auto_load_cmd): Remove. (auto_load_show_cmdlist_get): Use add_show_prefix_cmd. * arc-tdep.c (_initialize_arc_tdep): Use add_show_prefix_cmd. (maintenance_print_arc_command): Remove. * tui/tui-win.c (tui_command): Remove. (tui_get_cmd_list): Use add_basic_prefix_cmd. * tui/tui-layout.c (tui_layout_command): Remove. (_initialize_tui_layout): Use add_basic_prefix_cmd. * python/python.c (user_set_python, user_show_python): Remove. (_initialize_python): Use add_basic_prefix_cmd, add_show_prefix_cmd. * guile/guile.c (set_guile_command, show_guile_command): Remove. (install_gdb_commands): Use add_basic_prefix_cmd, add_show_prefix_cmd. (info_guile_command): Remove. * dwarf2/read.c (set_dwarf_cmd, show_dwarf_cmd): Remove. (_initialize_dwarf2_read): Use add_basic_prefix_cmd, add_show_prefix_cmd. * cli/cli-style.h (class cli_style_option) <add_setshow_commands>: Remove do_set and do_show parameters. * cli/cli-style.c (set_style, show_style): Remove. (_initialize_cli_style): Use add_basic_prefix_cmd, add_show_prefix_cmd. (cli_style_option::add_setshow_commands): Remove do_set and do_show parameters. (cli_style_option::add_setshow_commands): Use add_basic_prefix_cmd, add_show_prefix_cmd. (STYLE_ADD_SETSHOW_COMMANDS): Remove macro. (set_style_name): Remove. * cli/cli-dump.c (dump_command, append_command): Remove. (srec_dump_command, ihex_dump_command, verilog_dump_command) (tekhex_dump_command, binary_dump_command) (binary_append_command): Remove. (_initialize_cli_dump): Use add_basic_prefix_cmd. * windows-tdep.c (w32_prefix_command_valid): Remove global. (init_w32_command_list): Remove; move into ... (_initialize_windows_tdep): ... here. Use add_basic_prefix_cmd. * valprint.c (set_print, show_print, set_print_raw) (show_print_raw): Remove. (_initialize_valprint): Use add_basic_prefix_cmd, add_show_prefix_cmd. * typeprint.c (set_print_type, show_print_type): Remove. (_initialize_typeprint): Use add_basic_prefix_cmd, add_show_prefix_cmd. * record.c (set_record_command, show_record_command): Remove. (_initialize_record): Use add_basic_prefix_cmd, add_show_prefix_cmd. * cli/cli-cmds.c (_initialize_cli_cmds): Use add_basic_prefix_cmd, add_show_prefix_cmd. (info_command, show_command, set_debug, show_debug): Remove. * top.h (set_history, show_history): Don't declare. * top.c (set_history, show_history): Remove. * target-descriptions.c (set_tdesc_cmd, show_tdesc_cmd) (unset_tdesc_cmd): Remove. (_initialize_target_descriptions): Use add_basic_prefix_cmd, add_show_prefix_cmd. * symtab.c (info_module_command): Remove. (_initialize_symtab): Use add_basic_prefix_cmd. * symfile.c (overlay_command): Remove. (_initialize_symfile): Use add_basic_prefix_cmd. * sparc64-tdep.c (info_adi_command): Remove. (_initialize_sparc64_adi_tdep): Use add_basic_prefix_cmd. * sh-tdep.c (show_sh_command, set_sh_command): Remove. (_initialize_sh_tdep): Use add_basic_prefix_cmd, add_show_prefix_cmd. * serial.c (serial_set_cmd, serial_show_cmd): Remove. (_initialize_serial): Use add_basic_prefix_cmd, add_show_prefix_cmd. * ser-tcp.c (set_tcp_cmd, show_tcp_cmd): Remove. (_initialize_ser_tcp): Use add_basic_prefix_cmd, add_show_prefix_cmd. * rs6000-tdep.c (set_powerpc_command, show_powerpc_command) (_initialize_rs6000_tdep): Use add_basic_prefix_cmd, add_show_prefix_cmd. * riscv-tdep.c (show_riscv_command, set_riscv_command) (show_debug_riscv_command, set_debug_riscv_command): Remove. (_initialize_riscv_tdep): Use add_basic_prefix_cmd, add_show_prefix_cmd. * remote.c (remote_command, set_remote_cmd): Remove. (_initialize_remote): Use add_basic_prefix_cmd. * record-full.c (set_record_full_command) (show_record_full_command): Remove. (_initialize_record_full): Use add_basic_prefix_cmd, add_show_prefix_cmd. * record-btrace.c (cmd_set_record_btrace) (cmd_show_record_btrace, cmd_set_record_btrace_bts) (cmd_show_record_btrace_bts, cmd_set_record_btrace_pt) (cmd_show_record_btrace_pt): Remove. (_initialize_record_btrace): Use add_basic_prefix_cmd, add_show_prefix_cmd. * ravenscar-thread.c (set_ravenscar_command) (show_ravenscar_command): Remove. (_initialize_ravenscar): Use add_basic_prefix_cmd, add_show_prefix_cmd. * mips-tdep.c (show_mips_command, set_mips_command) (_initialize_mips_tdep): Use add_basic_prefix_cmd, add_show_prefix_cmd. * maint.c (maintenance_command, maintenance_info_command) (maintenance_check_command, maintenance_print_command) (maintenance_set_cmd, maintenance_show_cmd): Remove. (_initialize_maint_cmds): Use add_basic_prefix_cmd, add_show_prefix_cmd. (show_per_command_cmd): Remove. * maint-test-settings.c (maintenance_set_test_settings_cmd): Remove. (maintenance_show_test_settings_cmd): Remove. (_initialize_maint_test_settings): Use add_basic_prefix_cmd, add_show_prefix_cmd. * maint-test-options.c (maintenance_test_options_command): Remove. (_initialize_maint_test_options): Use add_basic_prefix_cmd. * macrocmd.c (macro_command): Remove (_initialize_macrocmd): Use add_basic_prefix_cmd. * language.c (set_check, show_check): Remove. (_initialize_language): Use add_basic_prefix_cmd, add_show_prefix_cmd. * infcmd.c (unset_command): Remove. (_initialize_infcmd): Use add_basic_prefix_cmd. * i386-tdep.c (set_mpx_cmd, show_mpx_cmd): Remove. (_initialize_i386_tdep): Use add_basic_prefix_cmd, add_show_prefix_cmd. * go32-nat.c (go32_info_dos_command): Remove. (_initialize_go32_nat): Use add_basic_prefix_cmd. * cli/cli-decode.c (do_prefix_cmd, add_basic_prefix_cmd) (do_show_prefix_cmd, add_show_prefix_cmd): New functions. * frame.c (set_backtrace_cmd, show_backtrace_cmd): Remove. (_initialize_frame): Use add_basic_prefix_cmd, add_show_prefix_cmd. * dcache.c (set_dcache_command, show_dcache_command): Remove. (_initialize_dcache): Use add_basic_prefix_cmd, add_show_prefix_cmd. * cp-support.c (maint_cplus_command): Remove. (_initialize_cp_support): Use add_basic_prefix_cmd. * btrace.c (maint_btrace_cmd, maint_btrace_set_cmd) (maint_btrace_show_cmd, maint_btrace_pt_set_cmd) (maint_btrace_pt_show_cmd, _initialize_btrace): Use add_basic_prefix_cmd, add_show_prefix_cmd. * breakpoint.c (save_command): Remove. (_initialize_breakpoint): Use add_basic_prefix_cmd. * arm-tdep.c (set_arm_command, show_arm_command): Remove. (_initialize_arm_tdep): Use add_basic_prefix_cmd, add_show_prefix_cmd. * ada-lang.c (maint_set_ada_cmd, maint_show_ada_cmd) (set_ada_command, show_ada_command): Remove. (_initialize_ada_language): Use add_basic_prefix_cmd, add_show_prefix_cmd. * command.h (add_basic_prefix_cmd, add_show_prefix_cmd): Declare. gdb/testsuite/ChangeLog 2020-04-17 Tom Tromey <tromey@adacore.com> * gdb.cp/maint.exp (test_help): Simplify multiple_help_body. Update tests. * gdb.btrace/cpu.exp: Update tests. * gdb.base/maint.exp: Update tests. * gdb.base/default.exp: Update tests. * gdb.base/completion.exp: Update tests.
2994 lines
88 KiB
C
2994 lines
88 KiB
C
/* Cache and manage frames for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986-2020 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "target.h"
|
|
#include "value.h"
|
|
#include "inferior.h" /* for inferior_ptid */
|
|
#include "regcache.h"
|
|
#include "user-regs.h"
|
|
#include "gdb_obstack.h"
|
|
#include "dummy-frame.h"
|
|
#include "sentinel-frame.h"
|
|
#include "gdbcore.h"
|
|
#include "annotate.h"
|
|
#include "language.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "command.h"
|
|
#include "gdbcmd.h"
|
|
#include "observable.h"
|
|
#include "objfiles.h"
|
|
#include "gdbthread.h"
|
|
#include "block.h"
|
|
#include "inline-frame.h"
|
|
#include "tracepoint.h"
|
|
#include "hashtab.h"
|
|
#include "valprint.h"
|
|
#include "cli/cli-option.h"
|
|
|
|
/* The sentinel frame terminates the innermost end of the frame chain.
|
|
If unwound, it returns the information needed to construct an
|
|
innermost frame.
|
|
|
|
The current frame, which is the innermost frame, can be found at
|
|
sentinel_frame->prev. */
|
|
|
|
static struct frame_info *sentinel_frame;
|
|
|
|
/* The values behind the global "set backtrace ..." settings. */
|
|
set_backtrace_options user_set_backtrace_options;
|
|
|
|
static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
|
|
static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
|
|
|
|
/* Status of some values cached in the frame_info object. */
|
|
|
|
enum cached_copy_status
|
|
{
|
|
/* Value is unknown. */
|
|
CC_UNKNOWN,
|
|
|
|
/* We have a value. */
|
|
CC_VALUE,
|
|
|
|
/* Value was not saved. */
|
|
CC_NOT_SAVED,
|
|
|
|
/* Value is unavailable. */
|
|
CC_UNAVAILABLE
|
|
};
|
|
|
|
/* We keep a cache of stack frames, each of which is a "struct
|
|
frame_info". The innermost one gets allocated (in
|
|
wait_for_inferior) each time the inferior stops; sentinel_frame
|
|
points to it. Additional frames get allocated (in get_prev_frame)
|
|
as needed, and are chained through the next and prev fields. Any
|
|
time that the frame cache becomes invalid (most notably when we
|
|
execute something, but also if we change how we interpret the
|
|
frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
|
|
which reads new symbols)), we should call reinit_frame_cache. */
|
|
|
|
struct frame_info
|
|
{
|
|
/* Level of this frame. The inner-most (youngest) frame is at level
|
|
0. As you move towards the outer-most (oldest) frame, the level
|
|
increases. This is a cached value. It could just as easily be
|
|
computed by counting back from the selected frame to the inner
|
|
most frame. */
|
|
/* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
|
|
reserved to indicate a bogus frame - one that has been created
|
|
just to keep GDB happy (GDB always needs a frame). For the
|
|
moment leave this as speculation. */
|
|
int level;
|
|
|
|
/* The frame's program space. */
|
|
struct program_space *pspace;
|
|
|
|
/* The frame's address space. */
|
|
const address_space *aspace;
|
|
|
|
/* The frame's low-level unwinder and corresponding cache. The
|
|
low-level unwinder is responsible for unwinding register values
|
|
for the previous frame. The low-level unwind methods are
|
|
selected based on the presence, or otherwise, of register unwind
|
|
information such as CFI. */
|
|
void *prologue_cache;
|
|
const struct frame_unwind *unwind;
|
|
|
|
/* Cached copy of the previous frame's architecture. */
|
|
struct
|
|
{
|
|
int p;
|
|
struct gdbarch *arch;
|
|
} prev_arch;
|
|
|
|
/* Cached copy of the previous frame's resume address. */
|
|
struct {
|
|
enum cached_copy_status status;
|
|
/* Did VALUE require unmasking when being read. */
|
|
bool masked;
|
|
CORE_ADDR value;
|
|
} prev_pc;
|
|
|
|
/* Cached copy of the previous frame's function address. */
|
|
struct
|
|
{
|
|
CORE_ADDR addr;
|
|
int p;
|
|
} prev_func;
|
|
|
|
/* This frame's ID. */
|
|
struct
|
|
{
|
|
int p;
|
|
struct frame_id value;
|
|
} this_id;
|
|
|
|
/* The frame's high-level base methods, and corresponding cache.
|
|
The high level base methods are selected based on the frame's
|
|
debug info. */
|
|
const struct frame_base *base;
|
|
void *base_cache;
|
|
|
|
/* Pointers to the next (down, inner, younger) and previous (up,
|
|
outer, older) frame_info's in the frame cache. */
|
|
struct frame_info *next; /* down, inner, younger */
|
|
int prev_p;
|
|
struct frame_info *prev; /* up, outer, older */
|
|
|
|
/* The reason why we could not set PREV, or UNWIND_NO_REASON if we
|
|
could. Only valid when PREV_P is set. */
|
|
enum unwind_stop_reason stop_reason;
|
|
|
|
/* A frame specific string describing the STOP_REASON in more detail.
|
|
Only valid when PREV_P is set, but even then may still be NULL. */
|
|
const char *stop_string;
|
|
};
|
|
|
|
/* See frame.h. */
|
|
|
|
void
|
|
set_frame_previous_pc_masked (struct frame_info *frame)
|
|
{
|
|
frame->prev_pc.masked = true;
|
|
}
|
|
|
|
/* See frame.h. */
|
|
|
|
bool
|
|
get_frame_pc_masked (const struct frame_info *frame)
|
|
{
|
|
gdb_assert (frame->next != nullptr);
|
|
gdb_assert (frame->next->prev_pc.status == CC_VALUE);
|
|
|
|
return frame->next->prev_pc.masked;
|
|
}
|
|
|
|
/* A frame stash used to speed up frame lookups. Create a hash table
|
|
to stash frames previously accessed from the frame cache for
|
|
quicker subsequent retrieval. The hash table is emptied whenever
|
|
the frame cache is invalidated. */
|
|
|
|
static htab_t frame_stash;
|
|
|
|
/* Internal function to calculate a hash from the frame_id addresses,
|
|
using as many valid addresses as possible. Frames below level 0
|
|
are not stored in the hash table. */
|
|
|
|
static hashval_t
|
|
frame_addr_hash (const void *ap)
|
|
{
|
|
const struct frame_info *frame = (const struct frame_info *) ap;
|
|
const struct frame_id f_id = frame->this_id.value;
|
|
hashval_t hash = 0;
|
|
|
|
gdb_assert (f_id.stack_status != FID_STACK_INVALID
|
|
|| f_id.code_addr_p
|
|
|| f_id.special_addr_p);
|
|
|
|
if (f_id.stack_status == FID_STACK_VALID)
|
|
hash = iterative_hash (&f_id.stack_addr,
|
|
sizeof (f_id.stack_addr), hash);
|
|
if (f_id.code_addr_p)
|
|
hash = iterative_hash (&f_id.code_addr,
|
|
sizeof (f_id.code_addr), hash);
|
|
if (f_id.special_addr_p)
|
|
hash = iterative_hash (&f_id.special_addr,
|
|
sizeof (f_id.special_addr), hash);
|
|
|
|
return hash;
|
|
}
|
|
|
|
/* Internal equality function for the hash table. This function
|
|
defers equality operations to frame_id_eq. */
|
|
|
|
static int
|
|
frame_addr_hash_eq (const void *a, const void *b)
|
|
{
|
|
const struct frame_info *f_entry = (const struct frame_info *) a;
|
|
const struct frame_info *f_element = (const struct frame_info *) b;
|
|
|
|
return frame_id_eq (f_entry->this_id.value,
|
|
f_element->this_id.value);
|
|
}
|
|
|
|
/* Internal function to create the frame_stash hash table. 100 seems
|
|
to be a good compromise to start the hash table at. */
|
|
|
|
static void
|
|
frame_stash_create (void)
|
|
{
|
|
frame_stash = htab_create (100,
|
|
frame_addr_hash,
|
|
frame_addr_hash_eq,
|
|
NULL);
|
|
}
|
|
|
|
/* Internal function to add a frame to the frame_stash hash table.
|
|
Returns false if a frame with the same ID was already stashed, true
|
|
otherwise. */
|
|
|
|
static int
|
|
frame_stash_add (struct frame_info *frame)
|
|
{
|
|
struct frame_info **slot;
|
|
|
|
/* Do not try to stash the sentinel frame. */
|
|
gdb_assert (frame->level >= 0);
|
|
|
|
slot = (struct frame_info **) htab_find_slot (frame_stash,
|
|
frame,
|
|
INSERT);
|
|
|
|
/* If we already have a frame in the stack with the same id, we
|
|
either have a stack cycle (corrupted stack?), or some bug
|
|
elsewhere in GDB. In any case, ignore the duplicate and return
|
|
an indication to the caller. */
|
|
if (*slot != NULL)
|
|
return 0;
|
|
|
|
*slot = frame;
|
|
return 1;
|
|
}
|
|
|
|
/* Internal function to search the frame stash for an entry with the
|
|
given frame ID. If found, return that frame. Otherwise return
|
|
NULL. */
|
|
|
|
static struct frame_info *
|
|
frame_stash_find (struct frame_id id)
|
|
{
|
|
struct frame_info dummy;
|
|
struct frame_info *frame;
|
|
|
|
dummy.this_id.value = id;
|
|
frame = (struct frame_info *) htab_find (frame_stash, &dummy);
|
|
return frame;
|
|
}
|
|
|
|
/* Internal function to invalidate the frame stash by removing all
|
|
entries in it. This only occurs when the frame cache is
|
|
invalidated. */
|
|
|
|
static void
|
|
frame_stash_invalidate (void)
|
|
{
|
|
htab_empty (frame_stash);
|
|
}
|
|
|
|
/* See frame.h */
|
|
scoped_restore_selected_frame::scoped_restore_selected_frame ()
|
|
{
|
|
m_fid = get_frame_id (get_selected_frame (NULL));
|
|
}
|
|
|
|
/* See frame.h */
|
|
scoped_restore_selected_frame::~scoped_restore_selected_frame ()
|
|
{
|
|
frame_info *frame = frame_find_by_id (m_fid);
|
|
if (frame == NULL)
|
|
warning (_("Unable to restore previously selected frame."));
|
|
else
|
|
select_frame (frame);
|
|
}
|
|
|
|
/* Flag to control debugging. */
|
|
|
|
unsigned int frame_debug;
|
|
static void
|
|
show_frame_debug (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
|
|
}
|
|
|
|
/* Implementation of "show backtrace past-main". */
|
|
|
|
static void
|
|
show_backtrace_past_main (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file,
|
|
_("Whether backtraces should "
|
|
"continue past \"main\" is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
/* Implementation of "show backtrace past-entry". */
|
|
|
|
static void
|
|
show_backtrace_past_entry (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Whether backtraces should continue past the "
|
|
"entry point of a program is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
/* Implementation of "show backtrace limit". */
|
|
|
|
static void
|
|
show_backtrace_limit (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file,
|
|
_("An upper bound on the number "
|
|
"of backtrace levels is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
|
|
static void
|
|
fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
|
|
{
|
|
if (p)
|
|
fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
|
|
else
|
|
fprintf_unfiltered (file, "!%s", name);
|
|
}
|
|
|
|
void
|
|
fprint_frame_id (struct ui_file *file, struct frame_id id)
|
|
{
|
|
fprintf_unfiltered (file, "{");
|
|
|
|
if (id.stack_status == FID_STACK_INVALID)
|
|
fprintf_unfiltered (file, "!stack");
|
|
else if (id.stack_status == FID_STACK_UNAVAILABLE)
|
|
fprintf_unfiltered (file, "stack=<unavailable>");
|
|
else if (id.stack_status == FID_STACK_SENTINEL)
|
|
fprintf_unfiltered (file, "stack=<sentinel>");
|
|
else
|
|
fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
|
|
fprintf_unfiltered (file, ",");
|
|
|
|
fprint_field (file, "code", id.code_addr_p, id.code_addr);
|
|
fprintf_unfiltered (file, ",");
|
|
|
|
fprint_field (file, "special", id.special_addr_p, id.special_addr);
|
|
|
|
if (id.artificial_depth)
|
|
fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
|
|
|
|
fprintf_unfiltered (file, "}");
|
|
}
|
|
|
|
static void
|
|
fprint_frame_type (struct ui_file *file, enum frame_type type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case NORMAL_FRAME:
|
|
fprintf_unfiltered (file, "NORMAL_FRAME");
|
|
return;
|
|
case DUMMY_FRAME:
|
|
fprintf_unfiltered (file, "DUMMY_FRAME");
|
|
return;
|
|
case INLINE_FRAME:
|
|
fprintf_unfiltered (file, "INLINE_FRAME");
|
|
return;
|
|
case TAILCALL_FRAME:
|
|
fprintf_unfiltered (file, "TAILCALL_FRAME");
|
|
return;
|
|
case SIGTRAMP_FRAME:
|
|
fprintf_unfiltered (file, "SIGTRAMP_FRAME");
|
|
return;
|
|
case ARCH_FRAME:
|
|
fprintf_unfiltered (file, "ARCH_FRAME");
|
|
return;
|
|
case SENTINEL_FRAME:
|
|
fprintf_unfiltered (file, "SENTINEL_FRAME");
|
|
return;
|
|
default:
|
|
fprintf_unfiltered (file, "<unknown type>");
|
|
return;
|
|
};
|
|
}
|
|
|
|
static void
|
|
fprint_frame (struct ui_file *file, struct frame_info *fi)
|
|
{
|
|
if (fi == NULL)
|
|
{
|
|
fprintf_unfiltered (file, "<NULL frame>");
|
|
return;
|
|
}
|
|
fprintf_unfiltered (file, "{");
|
|
fprintf_unfiltered (file, "level=%d", fi->level);
|
|
fprintf_unfiltered (file, ",");
|
|
fprintf_unfiltered (file, "type=");
|
|
if (fi->unwind != NULL)
|
|
fprint_frame_type (file, fi->unwind->type);
|
|
else
|
|
fprintf_unfiltered (file, "<unknown>");
|
|
fprintf_unfiltered (file, ",");
|
|
fprintf_unfiltered (file, "unwind=");
|
|
if (fi->unwind != NULL)
|
|
gdb_print_host_address (fi->unwind, file);
|
|
else
|
|
fprintf_unfiltered (file, "<unknown>");
|
|
fprintf_unfiltered (file, ",");
|
|
fprintf_unfiltered (file, "pc=");
|
|
if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
|
|
fprintf_unfiltered (file, "<unknown>");
|
|
else if (fi->next->prev_pc.status == CC_VALUE)
|
|
{
|
|
fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
|
|
if (fi->next->prev_pc.masked)
|
|
fprintf_unfiltered (file, "[PAC]");
|
|
}
|
|
else if (fi->next->prev_pc.status == CC_NOT_SAVED)
|
|
val_print_not_saved (file);
|
|
else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
|
|
val_print_unavailable (file);
|
|
fprintf_unfiltered (file, ",");
|
|
fprintf_unfiltered (file, "id=");
|
|
if (fi->this_id.p)
|
|
fprint_frame_id (file, fi->this_id.value);
|
|
else
|
|
fprintf_unfiltered (file, "<unknown>");
|
|
fprintf_unfiltered (file, ",");
|
|
fprintf_unfiltered (file, "func=");
|
|
if (fi->next != NULL && fi->next->prev_func.p)
|
|
fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
|
|
else
|
|
fprintf_unfiltered (file, "<unknown>");
|
|
fprintf_unfiltered (file, "}");
|
|
}
|
|
|
|
/* Given FRAME, return the enclosing frame as found in real frames read-in from
|
|
inferior memory. Skip any previous frames which were made up by GDB.
|
|
Return FRAME if FRAME is a non-artificial frame.
|
|
Return NULL if FRAME is the start of an artificial-only chain. */
|
|
|
|
static struct frame_info *
|
|
skip_artificial_frames (struct frame_info *frame)
|
|
{
|
|
/* Note we use get_prev_frame_always, and not get_prev_frame. The
|
|
latter will truncate the frame chain, leading to this function
|
|
unintentionally returning a null_frame_id (e.g., when the user
|
|
sets a backtrace limit).
|
|
|
|
Note that for record targets we may get a frame chain that consists
|
|
of artificial frames only. */
|
|
while (get_frame_type (frame) == INLINE_FRAME
|
|
|| get_frame_type (frame) == TAILCALL_FRAME)
|
|
{
|
|
frame = get_prev_frame_always (frame);
|
|
if (frame == NULL)
|
|
break;
|
|
}
|
|
|
|
return frame;
|
|
}
|
|
|
|
struct frame_info *
|
|
skip_unwritable_frames (struct frame_info *frame)
|
|
{
|
|
while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
|
|
{
|
|
frame = get_prev_frame (frame);
|
|
if (frame == NULL)
|
|
break;
|
|
}
|
|
|
|
return frame;
|
|
}
|
|
|
|
/* See frame.h. */
|
|
|
|
struct frame_info *
|
|
skip_tailcall_frames (struct frame_info *frame)
|
|
{
|
|
while (get_frame_type (frame) == TAILCALL_FRAME)
|
|
{
|
|
/* Note that for record targets we may get a frame chain that consists of
|
|
tailcall frames only. */
|
|
frame = get_prev_frame (frame);
|
|
if (frame == NULL)
|
|
break;
|
|
}
|
|
|
|
return frame;
|
|
}
|
|
|
|
/* Compute the frame's uniq ID that can be used to, later, re-find the
|
|
frame. */
|
|
|
|
static void
|
|
compute_frame_id (struct frame_info *fi)
|
|
{
|
|
gdb_assert (!fi->this_id.p);
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
|
|
fi->level);
|
|
/* Find the unwinder. */
|
|
if (fi->unwind == NULL)
|
|
frame_unwind_find_by_frame (fi, &fi->prologue_cache);
|
|
/* Find THIS frame's ID. */
|
|
/* Default to outermost if no ID is found. */
|
|
fi->this_id.value = outer_frame_id;
|
|
fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
|
|
gdb_assert (frame_id_p (fi->this_id.value));
|
|
fi->this_id.p = 1;
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame_id (gdb_stdlog, fi->this_id.value);
|
|
fprintf_unfiltered (gdb_stdlog, " }\n");
|
|
}
|
|
}
|
|
|
|
/* Return a frame uniq ID that can be used to, later, re-find the
|
|
frame. */
|
|
|
|
struct frame_id
|
|
get_frame_id (struct frame_info *fi)
|
|
{
|
|
if (fi == NULL)
|
|
return null_frame_id;
|
|
|
|
if (!fi->this_id.p)
|
|
{
|
|
int stashed;
|
|
|
|
/* If we haven't computed the frame id yet, then it must be that
|
|
this is the current frame. Compute it now, and stash the
|
|
result. The IDs of other frames are computed as soon as
|
|
they're created, in order to detect cycles. See
|
|
get_prev_frame_if_no_cycle. */
|
|
gdb_assert (fi->level == 0);
|
|
|
|
/* Compute. */
|
|
compute_frame_id (fi);
|
|
|
|
/* Since this is the first frame in the chain, this should
|
|
always succeed. */
|
|
stashed = frame_stash_add (fi);
|
|
gdb_assert (stashed);
|
|
}
|
|
|
|
return fi->this_id.value;
|
|
}
|
|
|
|
struct frame_id
|
|
get_stack_frame_id (struct frame_info *next_frame)
|
|
{
|
|
return get_frame_id (skip_artificial_frames (next_frame));
|
|
}
|
|
|
|
struct frame_id
|
|
frame_unwind_caller_id (struct frame_info *next_frame)
|
|
{
|
|
struct frame_info *this_frame;
|
|
|
|
/* Use get_prev_frame_always, and not get_prev_frame. The latter
|
|
will truncate the frame chain, leading to this function
|
|
unintentionally returning a null_frame_id (e.g., when a caller
|
|
requests the frame ID of "main()"s caller. */
|
|
|
|
next_frame = skip_artificial_frames (next_frame);
|
|
if (next_frame == NULL)
|
|
return null_frame_id;
|
|
|
|
this_frame = get_prev_frame_always (next_frame);
|
|
if (this_frame)
|
|
return get_frame_id (skip_artificial_frames (this_frame));
|
|
else
|
|
return null_frame_id;
|
|
}
|
|
|
|
const struct frame_id null_frame_id = { 0 }; /* All zeros. */
|
|
const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
|
|
const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
|
|
|
|
struct frame_id
|
|
frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
|
|
CORE_ADDR special_addr)
|
|
{
|
|
struct frame_id id = null_frame_id;
|
|
|
|
id.stack_addr = stack_addr;
|
|
id.stack_status = FID_STACK_VALID;
|
|
id.code_addr = code_addr;
|
|
id.code_addr_p = 1;
|
|
id.special_addr = special_addr;
|
|
id.special_addr_p = 1;
|
|
return id;
|
|
}
|
|
|
|
/* See frame.h. */
|
|
|
|
struct frame_id
|
|
frame_id_build_unavailable_stack (CORE_ADDR code_addr)
|
|
{
|
|
struct frame_id id = null_frame_id;
|
|
|
|
id.stack_status = FID_STACK_UNAVAILABLE;
|
|
id.code_addr = code_addr;
|
|
id.code_addr_p = 1;
|
|
return id;
|
|
}
|
|
|
|
/* See frame.h. */
|
|
|
|
struct frame_id
|
|
frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
|
|
CORE_ADDR special_addr)
|
|
{
|
|
struct frame_id id = null_frame_id;
|
|
|
|
id.stack_status = FID_STACK_UNAVAILABLE;
|
|
id.code_addr = code_addr;
|
|
id.code_addr_p = 1;
|
|
id.special_addr = special_addr;
|
|
id.special_addr_p = 1;
|
|
return id;
|
|
}
|
|
|
|
struct frame_id
|
|
frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
|
|
{
|
|
struct frame_id id = null_frame_id;
|
|
|
|
id.stack_addr = stack_addr;
|
|
id.stack_status = FID_STACK_VALID;
|
|
id.code_addr = code_addr;
|
|
id.code_addr_p = 1;
|
|
return id;
|
|
}
|
|
|
|
struct frame_id
|
|
frame_id_build_wild (CORE_ADDR stack_addr)
|
|
{
|
|
struct frame_id id = null_frame_id;
|
|
|
|
id.stack_addr = stack_addr;
|
|
id.stack_status = FID_STACK_VALID;
|
|
return id;
|
|
}
|
|
|
|
int
|
|
frame_id_p (struct frame_id l)
|
|
{
|
|
int p;
|
|
|
|
/* The frame is valid iff it has a valid stack address. */
|
|
p = l.stack_status != FID_STACK_INVALID;
|
|
/* outer_frame_id is also valid. */
|
|
if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
|
|
p = 1;
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
|
|
fprint_frame_id (gdb_stdlog, l);
|
|
fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
int
|
|
frame_id_artificial_p (struct frame_id l)
|
|
{
|
|
if (!frame_id_p (l))
|
|
return 0;
|
|
|
|
return (l.artificial_depth != 0);
|
|
}
|
|
|
|
int
|
|
frame_id_eq (struct frame_id l, struct frame_id r)
|
|
{
|
|
int eq;
|
|
|
|
if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
|
|
&& r.stack_status == FID_STACK_INVALID && r.special_addr_p)
|
|
/* The outermost frame marker is equal to itself. This is the
|
|
dodgy thing about outer_frame_id, since between execution steps
|
|
we might step into another function - from which we can't
|
|
unwind either. More thought required to get rid of
|
|
outer_frame_id. */
|
|
eq = 1;
|
|
else if (l.stack_status == FID_STACK_INVALID
|
|
|| r.stack_status == FID_STACK_INVALID)
|
|
/* Like a NaN, if either ID is invalid, the result is false.
|
|
Note that a frame ID is invalid iff it is the null frame ID. */
|
|
eq = 0;
|
|
else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
|
|
/* If .stack addresses are different, the frames are different. */
|
|
eq = 0;
|
|
else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
|
|
/* An invalid code addr is a wild card. If .code addresses are
|
|
different, the frames are different. */
|
|
eq = 0;
|
|
else if (l.special_addr_p && r.special_addr_p
|
|
&& l.special_addr != r.special_addr)
|
|
/* An invalid special addr is a wild card (or unused). Otherwise
|
|
if special addresses are different, the frames are different. */
|
|
eq = 0;
|
|
else if (l.artificial_depth != r.artificial_depth)
|
|
/* If artificial depths are different, the frames must be different. */
|
|
eq = 0;
|
|
else
|
|
/* Frames are equal. */
|
|
eq = 1;
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
|
|
fprint_frame_id (gdb_stdlog, l);
|
|
fprintf_unfiltered (gdb_stdlog, ",r=");
|
|
fprint_frame_id (gdb_stdlog, r);
|
|
fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
|
|
}
|
|
return eq;
|
|
}
|
|
|
|
/* Safety net to check whether frame ID L should be inner to
|
|
frame ID R, according to their stack addresses.
|
|
|
|
This method cannot be used to compare arbitrary frames, as the
|
|
ranges of valid stack addresses may be discontiguous (e.g. due
|
|
to sigaltstack).
|
|
|
|
However, it can be used as safety net to discover invalid frame
|
|
IDs in certain circumstances. Assuming that NEXT is the immediate
|
|
inner frame to THIS and that NEXT and THIS are both NORMAL frames:
|
|
|
|
* The stack address of NEXT must be inner-than-or-equal to the stack
|
|
address of THIS.
|
|
|
|
Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
|
|
error has occurred.
|
|
|
|
* If NEXT and THIS have different stack addresses, no other frame
|
|
in the frame chain may have a stack address in between.
|
|
|
|
Therefore, if frame_id_inner (TEST, THIS) holds, but
|
|
frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
|
|
to a valid frame in the frame chain.
|
|
|
|
The sanity checks above cannot be performed when a SIGTRAMP frame
|
|
is involved, because signal handlers might be executed on a different
|
|
stack than the stack used by the routine that caused the signal
|
|
to be raised. This can happen for instance when a thread exceeds
|
|
its maximum stack size. In this case, certain compilers implement
|
|
a stack overflow strategy that cause the handler to be run on a
|
|
different stack. */
|
|
|
|
static int
|
|
frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
|
|
{
|
|
int inner;
|
|
|
|
if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
|
|
/* Like NaN, any operation involving an invalid ID always fails.
|
|
Likewise if either ID has an unavailable stack address. */
|
|
inner = 0;
|
|
else if (l.artificial_depth > r.artificial_depth
|
|
&& l.stack_addr == r.stack_addr
|
|
&& l.code_addr_p == r.code_addr_p
|
|
&& l.special_addr_p == r.special_addr_p
|
|
&& l.special_addr == r.special_addr)
|
|
{
|
|
/* Same function, different inlined functions. */
|
|
const struct block *lb, *rb;
|
|
|
|
gdb_assert (l.code_addr_p && r.code_addr_p);
|
|
|
|
lb = block_for_pc (l.code_addr);
|
|
rb = block_for_pc (r.code_addr);
|
|
|
|
if (lb == NULL || rb == NULL)
|
|
/* Something's gone wrong. */
|
|
inner = 0;
|
|
else
|
|
/* This will return true if LB and RB are the same block, or
|
|
if the block with the smaller depth lexically encloses the
|
|
block with the greater depth. */
|
|
inner = contained_in (lb, rb);
|
|
}
|
|
else
|
|
/* Only return non-zero when strictly inner than. Note that, per
|
|
comment in "frame.h", there is some fuzz here. Frameless
|
|
functions are not strictly inner than (same .stack but
|
|
different .code and/or .special address). */
|
|
inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
|
|
fprint_frame_id (gdb_stdlog, l);
|
|
fprintf_unfiltered (gdb_stdlog, ",r=");
|
|
fprint_frame_id (gdb_stdlog, r);
|
|
fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
|
|
}
|
|
return inner;
|
|
}
|
|
|
|
struct frame_info *
|
|
frame_find_by_id (struct frame_id id)
|
|
{
|
|
struct frame_info *frame, *prev_frame;
|
|
|
|
/* ZERO denotes the null frame, let the caller decide what to do
|
|
about it. Should it instead return get_current_frame()? */
|
|
if (!frame_id_p (id))
|
|
return NULL;
|
|
|
|
/* Check for the sentinel frame. */
|
|
if (frame_id_eq (id, sentinel_frame_id))
|
|
return sentinel_frame;
|
|
|
|
/* Try using the frame stash first. Finding it there removes the need
|
|
to perform the search by looping over all frames, which can be very
|
|
CPU-intensive if the number of frames is very high (the loop is O(n)
|
|
and get_prev_frame performs a series of checks that are relatively
|
|
expensive). This optimization is particularly useful when this function
|
|
is called from another function (such as value_fetch_lazy, case
|
|
VALUE_LVAL (val) == lval_register) which already loops over all frames,
|
|
making the overall behavior O(n^2). */
|
|
frame = frame_stash_find (id);
|
|
if (frame)
|
|
return frame;
|
|
|
|
for (frame = get_current_frame (); ; frame = prev_frame)
|
|
{
|
|
struct frame_id self = get_frame_id (frame);
|
|
|
|
if (frame_id_eq (id, self))
|
|
/* An exact match. */
|
|
return frame;
|
|
|
|
prev_frame = get_prev_frame (frame);
|
|
if (!prev_frame)
|
|
return NULL;
|
|
|
|
/* As a safety net to avoid unnecessary backtracing while trying
|
|
to find an invalid ID, we check for a common situation where
|
|
we can detect from comparing stack addresses that no other
|
|
frame in the current frame chain can have this ID. See the
|
|
comment at frame_id_inner for details. */
|
|
if (get_frame_type (frame) == NORMAL_FRAME
|
|
&& !frame_id_inner (get_frame_arch (frame), id, self)
|
|
&& frame_id_inner (get_frame_arch (prev_frame), id,
|
|
get_frame_id (prev_frame)))
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
frame_unwind_pc (struct frame_info *this_frame)
|
|
{
|
|
if (this_frame->prev_pc.status == CC_UNKNOWN)
|
|
{
|
|
struct gdbarch *prev_gdbarch;
|
|
CORE_ADDR pc = 0;
|
|
int pc_p = 0;
|
|
|
|
/* The right way. The `pure' way. The one true way. This
|
|
method depends solely on the register-unwind code to
|
|
determine the value of registers in THIS frame, and hence
|
|
the value of this frame's PC (resume address). A typical
|
|
implementation is no more than:
|
|
|
|
frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
|
|
return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
|
|
|
|
Note: this method is very heavily dependent on a correct
|
|
register-unwind implementation, it pays to fix that
|
|
method first; this method is frame type agnostic, since
|
|
it only deals with register values, it works with any
|
|
frame. This is all in stark contrast to the old
|
|
FRAME_SAVED_PC which would try to directly handle all the
|
|
different ways that a PC could be unwound. */
|
|
prev_gdbarch = frame_unwind_arch (this_frame);
|
|
|
|
try
|
|
{
|
|
pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
|
|
pc_p = 1;
|
|
}
|
|
catch (const gdb_exception_error &ex)
|
|
{
|
|
if (ex.error == NOT_AVAILABLE_ERROR)
|
|
{
|
|
this_frame->prev_pc.status = CC_UNAVAILABLE;
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ frame_unwind_pc (this_frame=%d)"
|
|
" -> <unavailable> }\n",
|
|
this_frame->level);
|
|
}
|
|
else if (ex.error == OPTIMIZED_OUT_ERROR)
|
|
{
|
|
this_frame->prev_pc.status = CC_NOT_SAVED;
|
|
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ frame_unwind_pc (this_frame=%d)"
|
|
" -> <not saved> }\n",
|
|
this_frame->level);
|
|
}
|
|
else
|
|
throw;
|
|
}
|
|
|
|
if (pc_p)
|
|
{
|
|
this_frame->prev_pc.value = pc;
|
|
this_frame->prev_pc.status = CC_VALUE;
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ frame_unwind_pc (this_frame=%d) "
|
|
"-> %s }\n",
|
|
this_frame->level,
|
|
hex_string (this_frame->prev_pc.value));
|
|
}
|
|
}
|
|
|
|
if (this_frame->prev_pc.status == CC_VALUE)
|
|
return this_frame->prev_pc.value;
|
|
else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
|
|
throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
|
|
else if (this_frame->prev_pc.status == CC_NOT_SAVED)
|
|
throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
"unexpected prev_pc status: %d",
|
|
(int) this_frame->prev_pc.status);
|
|
}
|
|
|
|
CORE_ADDR
|
|
frame_unwind_caller_pc (struct frame_info *this_frame)
|
|
{
|
|
this_frame = skip_artificial_frames (this_frame);
|
|
|
|
/* We must have a non-artificial frame. The caller is supposed to check
|
|
the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
|
|
in this case. */
|
|
gdb_assert (this_frame != NULL);
|
|
|
|
return frame_unwind_pc (this_frame);
|
|
}
|
|
|
|
int
|
|
get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
|
|
{
|
|
struct frame_info *next_frame = this_frame->next;
|
|
|
|
if (!next_frame->prev_func.p)
|
|
{
|
|
CORE_ADDR addr_in_block;
|
|
|
|
/* Make certain that this, and not the adjacent, function is
|
|
found. */
|
|
if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
|
|
{
|
|
next_frame->prev_func.p = -1;
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ get_frame_func (this_frame=%d)"
|
|
" -> unavailable }\n",
|
|
this_frame->level);
|
|
}
|
|
else
|
|
{
|
|
next_frame->prev_func.p = 1;
|
|
next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ get_frame_func (this_frame=%d) -> %s }\n",
|
|
this_frame->level,
|
|
hex_string (next_frame->prev_func.addr));
|
|
}
|
|
}
|
|
|
|
if (next_frame->prev_func.p < 0)
|
|
{
|
|
*pc = -1;
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
*pc = next_frame->prev_func.addr;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
CORE_ADDR
|
|
get_frame_func (struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR pc;
|
|
|
|
if (!get_frame_func_if_available (this_frame, &pc))
|
|
throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
|
|
|
|
return pc;
|
|
}
|
|
|
|
std::unique_ptr<readonly_detached_regcache>
|
|
frame_save_as_regcache (struct frame_info *this_frame)
|
|
{
|
|
auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
|
|
{
|
|
if (!deprecated_frame_register_read (this_frame, regnum, buf))
|
|
return REG_UNAVAILABLE;
|
|
else
|
|
return REG_VALID;
|
|
};
|
|
|
|
std::unique_ptr<readonly_detached_regcache> regcache
|
|
(new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
|
|
|
|
return regcache;
|
|
}
|
|
|
|
void
|
|
frame_pop (struct frame_info *this_frame)
|
|
{
|
|
struct frame_info *prev_frame;
|
|
|
|
if (get_frame_type (this_frame) == DUMMY_FRAME)
|
|
{
|
|
/* Popping a dummy frame involves restoring more than just registers.
|
|
dummy_frame_pop does all the work. */
|
|
dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
|
|
return;
|
|
}
|
|
|
|
/* Ensure that we have a frame to pop to. */
|
|
prev_frame = get_prev_frame_always (this_frame);
|
|
|
|
if (!prev_frame)
|
|
error (_("Cannot pop the initial frame."));
|
|
|
|
/* Ignore TAILCALL_FRAME type frames, they were executed already before
|
|
entering THISFRAME. */
|
|
prev_frame = skip_tailcall_frames (prev_frame);
|
|
|
|
if (prev_frame == NULL)
|
|
error (_("Cannot find the caller frame."));
|
|
|
|
/* Make a copy of all the register values unwound from this frame.
|
|
Save them in a scratch buffer so that there isn't a race between
|
|
trying to extract the old values from the current regcache while
|
|
at the same time writing new values into that same cache. */
|
|
std::unique_ptr<readonly_detached_regcache> scratch
|
|
= frame_save_as_regcache (prev_frame);
|
|
|
|
/* FIXME: cagney/2003-03-16: It should be possible to tell the
|
|
target's register cache that it is about to be hit with a burst
|
|
register transfer and that the sequence of register writes should
|
|
be batched. The pair target_prepare_to_store() and
|
|
target_store_registers() kind of suggest this functionality.
|
|
Unfortunately, they don't implement it. Their lack of a formal
|
|
definition can lead to targets writing back bogus values
|
|
(arguably a bug in the target code mind). */
|
|
/* Now copy those saved registers into the current regcache. */
|
|
get_current_regcache ()->restore (scratch.get ());
|
|
|
|
/* We've made right mess of GDB's local state, just discard
|
|
everything. */
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
void
|
|
frame_register_unwind (frame_info *next_frame, int regnum,
|
|
int *optimizedp, int *unavailablep,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, gdb_byte *bufferp)
|
|
{
|
|
struct value *value;
|
|
|
|
/* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
|
|
that the value proper does not need to be fetched. */
|
|
gdb_assert (optimizedp != NULL);
|
|
gdb_assert (lvalp != NULL);
|
|
gdb_assert (addrp != NULL);
|
|
gdb_assert (realnump != NULL);
|
|
/* gdb_assert (bufferp != NULL); */
|
|
|
|
value = frame_unwind_register_value (next_frame, regnum);
|
|
|
|
gdb_assert (value != NULL);
|
|
|
|
*optimizedp = value_optimized_out (value);
|
|
*unavailablep = !value_entirely_available (value);
|
|
*lvalp = VALUE_LVAL (value);
|
|
*addrp = value_address (value);
|
|
if (*lvalp == lval_register)
|
|
*realnump = VALUE_REGNUM (value);
|
|
else
|
|
*realnump = -1;
|
|
|
|
if (bufferp)
|
|
{
|
|
if (!*optimizedp && !*unavailablep)
|
|
memcpy (bufferp, value_contents_all (value),
|
|
TYPE_LENGTH (value_type (value)));
|
|
else
|
|
memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
|
|
}
|
|
|
|
/* Dispose of the new value. This prevents watchpoints from
|
|
trying to watch the saved frame pointer. */
|
|
release_value (value);
|
|
}
|
|
|
|
void
|
|
frame_register (struct frame_info *frame, int regnum,
|
|
int *optimizedp, int *unavailablep, enum lval_type *lvalp,
|
|
CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
|
|
{
|
|
/* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
|
|
that the value proper does not need to be fetched. */
|
|
gdb_assert (optimizedp != NULL);
|
|
gdb_assert (lvalp != NULL);
|
|
gdb_assert (addrp != NULL);
|
|
gdb_assert (realnump != NULL);
|
|
/* gdb_assert (bufferp != NULL); */
|
|
|
|
/* Obtain the register value by unwinding the register from the next
|
|
(more inner frame). */
|
|
gdb_assert (frame != NULL && frame->next != NULL);
|
|
frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
|
|
lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
void
|
|
frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
|
|
{
|
|
int optimized;
|
|
int unavailable;
|
|
CORE_ADDR addr;
|
|
int realnum;
|
|
enum lval_type lval;
|
|
|
|
frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
|
|
&lval, &addr, &realnum, buf);
|
|
|
|
if (optimized)
|
|
throw_error (OPTIMIZED_OUT_ERROR,
|
|
_("Register %d was not saved"), regnum);
|
|
if (unavailable)
|
|
throw_error (NOT_AVAILABLE_ERROR,
|
|
_("Register %d is not available"), regnum);
|
|
}
|
|
|
|
void
|
|
get_frame_register (struct frame_info *frame,
|
|
int regnum, gdb_byte *buf)
|
|
{
|
|
frame_unwind_register (frame->next, regnum, buf);
|
|
}
|
|
|
|
struct value *
|
|
frame_unwind_register_value (frame_info *next_frame, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct value *value;
|
|
|
|
gdb_assert (next_frame != NULL);
|
|
gdbarch = frame_unwind_arch (next_frame);
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ frame_unwind_register_value "
|
|
"(frame=%d,regnum=%d(%s),...) ",
|
|
next_frame->level, regnum,
|
|
user_reg_map_regnum_to_name (gdbarch, regnum));
|
|
}
|
|
|
|
/* Find the unwinder. */
|
|
if (next_frame->unwind == NULL)
|
|
frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
|
|
|
|
/* Ask this frame to unwind its register. */
|
|
value = next_frame->unwind->prev_register (next_frame,
|
|
&next_frame->prologue_cache,
|
|
regnum);
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "->");
|
|
if (value_optimized_out (value))
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, " ");
|
|
val_print_optimized_out (value, gdb_stdlog);
|
|
}
|
|
else
|
|
{
|
|
if (VALUE_LVAL (value) == lval_register)
|
|
fprintf_unfiltered (gdb_stdlog, " register=%d",
|
|
VALUE_REGNUM (value));
|
|
else if (VALUE_LVAL (value) == lval_memory)
|
|
fprintf_unfiltered (gdb_stdlog, " address=%s",
|
|
paddress (gdbarch,
|
|
value_address (value)));
|
|
else
|
|
fprintf_unfiltered (gdb_stdlog, " computed");
|
|
|
|
if (value_lazy (value))
|
|
fprintf_unfiltered (gdb_stdlog, " lazy");
|
|
else
|
|
{
|
|
int i;
|
|
const gdb_byte *buf = value_contents (value);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, " bytes=");
|
|
fprintf_unfiltered (gdb_stdlog, "[");
|
|
for (i = 0; i < register_size (gdbarch, regnum); i++)
|
|
fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
|
|
fprintf_unfiltered (gdb_stdlog, "]");
|
|
}
|
|
}
|
|
|
|
fprintf_unfiltered (gdb_stdlog, " }\n");
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
struct value *
|
|
get_frame_register_value (struct frame_info *frame, int regnum)
|
|
{
|
|
return frame_unwind_register_value (frame->next, regnum);
|
|
}
|
|
|
|
LONGEST
|
|
frame_unwind_register_signed (frame_info *next_frame, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int size = register_size (gdbarch, regnum);
|
|
struct value *value = frame_unwind_register_value (next_frame, regnum);
|
|
|
|
gdb_assert (value != NULL);
|
|
|
|
if (value_optimized_out (value))
|
|
{
|
|
throw_error (OPTIMIZED_OUT_ERROR,
|
|
_("Register %d was not saved"), regnum);
|
|
}
|
|
if (!value_entirely_available (value))
|
|
{
|
|
throw_error (NOT_AVAILABLE_ERROR,
|
|
_("Register %d is not available"), regnum);
|
|
}
|
|
|
|
LONGEST r = extract_signed_integer (value_contents_all (value), size,
|
|
byte_order);
|
|
|
|
release_value (value);
|
|
return r;
|
|
}
|
|
|
|
LONGEST
|
|
get_frame_register_signed (struct frame_info *frame, int regnum)
|
|
{
|
|
return frame_unwind_register_signed (frame->next, regnum);
|
|
}
|
|
|
|
ULONGEST
|
|
frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int size = register_size (gdbarch, regnum);
|
|
struct value *value = frame_unwind_register_value (next_frame, regnum);
|
|
|
|
gdb_assert (value != NULL);
|
|
|
|
if (value_optimized_out (value))
|
|
{
|
|
throw_error (OPTIMIZED_OUT_ERROR,
|
|
_("Register %d was not saved"), regnum);
|
|
}
|
|
if (!value_entirely_available (value))
|
|
{
|
|
throw_error (NOT_AVAILABLE_ERROR,
|
|
_("Register %d is not available"), regnum);
|
|
}
|
|
|
|
ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
|
|
byte_order);
|
|
|
|
release_value (value);
|
|
return r;
|
|
}
|
|
|
|
ULONGEST
|
|
get_frame_register_unsigned (struct frame_info *frame, int regnum)
|
|
{
|
|
return frame_unwind_register_unsigned (frame->next, regnum);
|
|
}
|
|
|
|
int
|
|
read_frame_register_unsigned (struct frame_info *frame, int regnum,
|
|
ULONGEST *val)
|
|
{
|
|
struct value *regval = get_frame_register_value (frame, regnum);
|
|
|
|
if (!value_optimized_out (regval)
|
|
&& value_entirely_available (regval))
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int size = register_size (gdbarch, VALUE_REGNUM (regval));
|
|
|
|
*val = extract_unsigned_integer (value_contents (regval), size, byte_order);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
put_frame_register (struct frame_info *frame, int regnum,
|
|
const gdb_byte *buf)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
int realnum;
|
|
int optim;
|
|
int unavail;
|
|
enum lval_type lval;
|
|
CORE_ADDR addr;
|
|
|
|
frame_register (frame, regnum, &optim, &unavail,
|
|
&lval, &addr, &realnum, NULL);
|
|
if (optim)
|
|
error (_("Attempt to assign to a register that was not saved."));
|
|
switch (lval)
|
|
{
|
|
case lval_memory:
|
|
{
|
|
write_memory (addr, buf, register_size (gdbarch, regnum));
|
|
break;
|
|
}
|
|
case lval_register:
|
|
get_current_regcache ()->cooked_write (realnum, buf);
|
|
break;
|
|
default:
|
|
error (_("Attempt to assign to an unmodifiable value."));
|
|
}
|
|
}
|
|
|
|
/* This function is deprecated. Use get_frame_register_value instead,
|
|
which provides more accurate information.
|
|
|
|
Find and return the value of REGNUM for the specified stack frame.
|
|
The number of bytes copied is REGISTER_SIZE (REGNUM).
|
|
|
|
Returns 0 if the register value could not be found. */
|
|
|
|
int
|
|
deprecated_frame_register_read (struct frame_info *frame, int regnum,
|
|
gdb_byte *myaddr)
|
|
{
|
|
int optimized;
|
|
int unavailable;
|
|
enum lval_type lval;
|
|
CORE_ADDR addr;
|
|
int realnum;
|
|
|
|
frame_register (frame, regnum, &optimized, &unavailable,
|
|
&lval, &addr, &realnum, myaddr);
|
|
|
|
return !optimized && !unavailable;
|
|
}
|
|
|
|
int
|
|
get_frame_register_bytes (struct frame_info *frame, int regnum,
|
|
CORE_ADDR offset, int len, gdb_byte *myaddr,
|
|
int *optimizedp, int *unavailablep)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
int i;
|
|
int maxsize;
|
|
int numregs;
|
|
|
|
/* Skip registers wholly inside of OFFSET. */
|
|
while (offset >= register_size (gdbarch, regnum))
|
|
{
|
|
offset -= register_size (gdbarch, regnum);
|
|
regnum++;
|
|
}
|
|
|
|
/* Ensure that we will not read beyond the end of the register file.
|
|
This can only ever happen if the debug information is bad. */
|
|
maxsize = -offset;
|
|
numregs = gdbarch_num_cooked_regs (gdbarch);
|
|
for (i = regnum; i < numregs; i++)
|
|
{
|
|
int thissize = register_size (gdbarch, i);
|
|
|
|
if (thissize == 0)
|
|
break; /* This register is not available on this architecture. */
|
|
maxsize += thissize;
|
|
}
|
|
if (len > maxsize)
|
|
error (_("Bad debug information detected: "
|
|
"Attempt to read %d bytes from registers."), len);
|
|
|
|
/* Copy the data. */
|
|
while (len > 0)
|
|
{
|
|
int curr_len = register_size (gdbarch, regnum) - offset;
|
|
|
|
if (curr_len > len)
|
|
curr_len = len;
|
|
|
|
if (curr_len == register_size (gdbarch, regnum))
|
|
{
|
|
enum lval_type lval;
|
|
CORE_ADDR addr;
|
|
int realnum;
|
|
|
|
frame_register (frame, regnum, optimizedp, unavailablep,
|
|
&lval, &addr, &realnum, myaddr);
|
|
if (*optimizedp || *unavailablep)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
struct value *value = frame_unwind_register_value (frame->next,
|
|
regnum);
|
|
gdb_assert (value != NULL);
|
|
*optimizedp = value_optimized_out (value);
|
|
*unavailablep = !value_entirely_available (value);
|
|
|
|
if (*optimizedp || *unavailablep)
|
|
{
|
|
release_value (value);
|
|
return 0;
|
|
}
|
|
memcpy (myaddr, value_contents_all (value) + offset, curr_len);
|
|
release_value (value);
|
|
}
|
|
|
|
myaddr += curr_len;
|
|
len -= curr_len;
|
|
offset = 0;
|
|
regnum++;
|
|
}
|
|
|
|
*optimizedp = 0;
|
|
*unavailablep = 0;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
put_frame_register_bytes (struct frame_info *frame, int regnum,
|
|
CORE_ADDR offset, int len, const gdb_byte *myaddr)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
|
|
/* Skip registers wholly inside of OFFSET. */
|
|
while (offset >= register_size (gdbarch, regnum))
|
|
{
|
|
offset -= register_size (gdbarch, regnum);
|
|
regnum++;
|
|
}
|
|
|
|
/* Copy the data. */
|
|
while (len > 0)
|
|
{
|
|
int curr_len = register_size (gdbarch, regnum) - offset;
|
|
|
|
if (curr_len > len)
|
|
curr_len = len;
|
|
|
|
if (curr_len == register_size (gdbarch, regnum))
|
|
{
|
|
put_frame_register (frame, regnum, myaddr);
|
|
}
|
|
else
|
|
{
|
|
struct value *value = frame_unwind_register_value (frame->next,
|
|
regnum);
|
|
gdb_assert (value != NULL);
|
|
|
|
memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
|
|
curr_len);
|
|
put_frame_register (frame, regnum, value_contents_raw (value));
|
|
release_value (value);
|
|
}
|
|
|
|
myaddr += curr_len;
|
|
len -= curr_len;
|
|
offset = 0;
|
|
regnum++;
|
|
}
|
|
}
|
|
|
|
/* Create a sentinel frame. */
|
|
|
|
static struct frame_info *
|
|
create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
|
|
{
|
|
struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
|
|
|
|
frame->level = -1;
|
|
frame->pspace = pspace;
|
|
frame->aspace = regcache->aspace ();
|
|
/* Explicitly initialize the sentinel frame's cache. Provide it
|
|
with the underlying regcache. In the future additional
|
|
information, such as the frame's thread will be added. */
|
|
frame->prologue_cache = sentinel_frame_cache (regcache);
|
|
/* For the moment there is only one sentinel frame implementation. */
|
|
frame->unwind = &sentinel_frame_unwind;
|
|
/* Link this frame back to itself. The frame is self referential
|
|
(the unwound PC is the same as the pc), so make it so. */
|
|
frame->next = frame;
|
|
/* The sentinel frame has a special ID. */
|
|
frame->this_id.p = 1;
|
|
frame->this_id.value = sentinel_frame_id;
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
|
|
fprint_frame (gdb_stdlog, frame);
|
|
fprintf_unfiltered (gdb_stdlog, " }\n");
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
/* Cache for frame addresses already read by gdb. Valid only while
|
|
inferior is stopped. Control variables for the frame cache should
|
|
be local to this module. */
|
|
|
|
static struct obstack frame_cache_obstack;
|
|
|
|
void *
|
|
frame_obstack_zalloc (unsigned long size)
|
|
{
|
|
void *data = obstack_alloc (&frame_cache_obstack, size);
|
|
|
|
memset (data, 0, size);
|
|
return data;
|
|
}
|
|
|
|
static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
|
|
|
|
struct frame_info *
|
|
get_current_frame (void)
|
|
{
|
|
struct frame_info *current_frame;
|
|
|
|
/* First check, and report, the lack of registers. Having GDB
|
|
report "No stack!" or "No memory" when the target doesn't even
|
|
have registers is very confusing. Besides, "printcmd.exp"
|
|
explicitly checks that ``print $pc'' with no registers prints "No
|
|
registers". */
|
|
if (!target_has_registers)
|
|
error (_("No registers."));
|
|
if (!target_has_stack)
|
|
error (_("No stack."));
|
|
if (!target_has_memory)
|
|
error (_("No memory."));
|
|
/* Traceframes are effectively a substitute for the live inferior. */
|
|
if (get_traceframe_number () < 0)
|
|
validate_registers_access ();
|
|
|
|
if (sentinel_frame == NULL)
|
|
sentinel_frame =
|
|
create_sentinel_frame (current_program_space, get_current_regcache ());
|
|
|
|
/* Set the current frame before computing the frame id, to avoid
|
|
recursion inside compute_frame_id, in case the frame's
|
|
unwinder decides to do a symbol lookup (which depends on the
|
|
selected frame's block).
|
|
|
|
This call must always succeed. In particular, nothing inside
|
|
get_prev_frame_always_1 should try to unwind from the
|
|
sentinel frame, because that could fail/throw, and we always
|
|
want to leave with the current frame created and linked in --
|
|
we should never end up with the sentinel frame as outermost
|
|
frame. */
|
|
current_frame = get_prev_frame_always_1 (sentinel_frame);
|
|
gdb_assert (current_frame != NULL);
|
|
|
|
return current_frame;
|
|
}
|
|
|
|
/* The "selected" stack frame is used by default for local and arg
|
|
access. May be zero, for no selected frame. */
|
|
|
|
static struct frame_info *selected_frame;
|
|
|
|
int
|
|
has_stack_frames (void)
|
|
{
|
|
if (!target_has_registers || !target_has_stack || !target_has_memory)
|
|
return 0;
|
|
|
|
/* Traceframes are effectively a substitute for the live inferior. */
|
|
if (get_traceframe_number () < 0)
|
|
{
|
|
/* No current inferior, no frame. */
|
|
if (inferior_ptid == null_ptid)
|
|
return 0;
|
|
|
|
thread_info *tp = inferior_thread ();
|
|
/* Don't try to read from a dead thread. */
|
|
if (tp->state == THREAD_EXITED)
|
|
return 0;
|
|
|
|
/* ... or from a spinning thread. */
|
|
if (tp->executing)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return the selected frame. Always non-NULL (unless there isn't an
|
|
inferior sufficient for creating a frame) in which case an error is
|
|
thrown. */
|
|
|
|
struct frame_info *
|
|
get_selected_frame (const char *message)
|
|
{
|
|
if (selected_frame == NULL)
|
|
{
|
|
if (message != NULL && !has_stack_frames ())
|
|
error (("%s"), message);
|
|
/* Hey! Don't trust this. It should really be re-finding the
|
|
last selected frame of the currently selected thread. This,
|
|
though, is better than nothing. */
|
|
select_frame (get_current_frame ());
|
|
}
|
|
/* There is always a frame. */
|
|
gdb_assert (selected_frame != NULL);
|
|
return selected_frame;
|
|
}
|
|
|
|
/* If there is a selected frame, return it. Otherwise, return NULL. */
|
|
|
|
struct frame_info *
|
|
get_selected_frame_if_set (void)
|
|
{
|
|
return selected_frame;
|
|
}
|
|
|
|
/* This is a variant of get_selected_frame() which can be called when
|
|
the inferior does not have a frame; in that case it will return
|
|
NULL instead of calling error(). */
|
|
|
|
struct frame_info *
|
|
deprecated_safe_get_selected_frame (void)
|
|
{
|
|
if (!has_stack_frames ())
|
|
return NULL;
|
|
return get_selected_frame (NULL);
|
|
}
|
|
|
|
/* Select frame FI (or NULL - to invalidate the current frame). */
|
|
|
|
void
|
|
select_frame (struct frame_info *fi)
|
|
{
|
|
selected_frame = fi;
|
|
/* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
|
|
frame is being invalidated. */
|
|
|
|
/* FIXME: kseitz/2002-08-28: It would be nice to call
|
|
selected_frame_level_changed_event() right here, but due to limitations
|
|
in the current interfaces, we would end up flooding UIs with events
|
|
because select_frame() is used extensively internally.
|
|
|
|
Once we have frame-parameterized frame (and frame-related) commands,
|
|
the event notification can be moved here, since this function will only
|
|
be called when the user's selected frame is being changed. */
|
|
|
|
/* Ensure that symbols for this frame are read in. Also, determine the
|
|
source language of this frame, and switch to it if desired. */
|
|
if (fi)
|
|
{
|
|
CORE_ADDR pc;
|
|
|
|
/* We retrieve the frame's symtab by using the frame PC.
|
|
However we cannot use the frame PC as-is, because it usually
|
|
points to the instruction following the "call", which is
|
|
sometimes the first instruction of another function. So we
|
|
rely on get_frame_address_in_block() which provides us with a
|
|
PC which is guaranteed to be inside the frame's code
|
|
block. */
|
|
if (get_frame_address_in_block_if_available (fi, &pc))
|
|
{
|
|
struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
|
|
|
|
if (cust != NULL
|
|
&& compunit_language (cust) != current_language->la_language
|
|
&& compunit_language (cust) != language_unknown
|
|
&& language_mode == language_mode_auto)
|
|
set_language (compunit_language (cust));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create an arbitrary (i.e. address specified by user) or innermost frame.
|
|
Always returns a non-NULL value. */
|
|
|
|
struct frame_info *
|
|
create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
|
|
{
|
|
struct frame_info *fi;
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ create_new_frame (addr=%s, pc=%s) ",
|
|
hex_string (addr), hex_string (pc));
|
|
}
|
|
|
|
fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
|
|
|
|
fi->next = create_sentinel_frame (current_program_space,
|
|
get_current_regcache ());
|
|
|
|
/* Set/update this frame's cached PC value, found in the next frame.
|
|
Do this before looking for this frame's unwinder. A sniffer is
|
|
very likely to read this, and the corresponding unwinder is
|
|
entitled to rely that the PC doesn't magically change. */
|
|
fi->next->prev_pc.value = pc;
|
|
fi->next->prev_pc.status = CC_VALUE;
|
|
|
|
/* We currently assume that frame chain's can't cross spaces. */
|
|
fi->pspace = fi->next->pspace;
|
|
fi->aspace = fi->next->aspace;
|
|
|
|
/* Select/initialize both the unwind function and the frame's type
|
|
based on the PC. */
|
|
frame_unwind_find_by_frame (fi, &fi->prologue_cache);
|
|
|
|
fi->this_id.p = 1;
|
|
fi->this_id.value = frame_id_build (addr, pc);
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, fi);
|
|
fprintf_unfiltered (gdb_stdlog, " }\n");
|
|
}
|
|
|
|
return fi;
|
|
}
|
|
|
|
/* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
|
|
innermost frame). Be careful to not fall off the bottom of the
|
|
frame chain and onto the sentinel frame. */
|
|
|
|
struct frame_info *
|
|
get_next_frame (struct frame_info *this_frame)
|
|
{
|
|
if (this_frame->level > 0)
|
|
return this_frame->next;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
|
|
innermost (i.e. current) frame, return the sentinel frame. Thus,
|
|
unlike get_next_frame(), NULL will never be returned. */
|
|
|
|
struct frame_info *
|
|
get_next_frame_sentinel_okay (struct frame_info *this_frame)
|
|
{
|
|
gdb_assert (this_frame != NULL);
|
|
|
|
/* Note that, due to the manner in which the sentinel frame is
|
|
constructed, this_frame->next still works even when this_frame
|
|
is the sentinel frame. But we disallow it here anyway because
|
|
calling get_next_frame_sentinel_okay() on the sentinel frame
|
|
is likely a coding error. */
|
|
gdb_assert (this_frame != sentinel_frame);
|
|
|
|
return this_frame->next;
|
|
}
|
|
|
|
/* Observer for the target_changed event. */
|
|
|
|
static void
|
|
frame_observer_target_changed (struct target_ops *target)
|
|
{
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
/* Flush the entire frame cache. */
|
|
|
|
void
|
|
reinit_frame_cache (void)
|
|
{
|
|
struct frame_info *fi;
|
|
|
|
/* Tear down all frame caches. */
|
|
for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
|
|
{
|
|
if (fi->prologue_cache && fi->unwind->dealloc_cache)
|
|
fi->unwind->dealloc_cache (fi, fi->prologue_cache);
|
|
if (fi->base_cache && fi->base->unwind->dealloc_cache)
|
|
fi->base->unwind->dealloc_cache (fi, fi->base_cache);
|
|
}
|
|
|
|
/* Since we can't really be sure what the first object allocated was. */
|
|
obstack_free (&frame_cache_obstack, 0);
|
|
obstack_init (&frame_cache_obstack);
|
|
|
|
if (sentinel_frame != NULL)
|
|
annotate_frames_invalid ();
|
|
|
|
sentinel_frame = NULL; /* Invalidate cache */
|
|
select_frame (NULL);
|
|
frame_stash_invalidate ();
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
|
|
}
|
|
|
|
/* Find where a register is saved (in memory or another register).
|
|
The result of frame_register_unwind is just where it is saved
|
|
relative to this particular frame. */
|
|
|
|
static void
|
|
frame_register_unwind_location (struct frame_info *this_frame, int regnum,
|
|
int *optimizedp, enum lval_type *lvalp,
|
|
CORE_ADDR *addrp, int *realnump)
|
|
{
|
|
gdb_assert (this_frame == NULL || this_frame->level >= 0);
|
|
|
|
while (this_frame != NULL)
|
|
{
|
|
int unavailable;
|
|
|
|
frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
|
|
lvalp, addrp, realnump, NULL);
|
|
|
|
if (*optimizedp)
|
|
break;
|
|
|
|
if (*lvalp != lval_register)
|
|
break;
|
|
|
|
regnum = *realnump;
|
|
this_frame = get_next_frame (this_frame);
|
|
}
|
|
}
|
|
|
|
/* Get the previous raw frame, and check that it is not identical to
|
|
same other frame frame already in the chain. If it is, there is
|
|
most likely a stack cycle, so we discard it, and mark THIS_FRAME as
|
|
outermost, with UNWIND_SAME_ID stop reason. Unlike the other
|
|
validity tests, that compare THIS_FRAME and the next frame, we do
|
|
this right after creating the previous frame, to avoid ever ending
|
|
up with two frames with the same id in the frame chain. */
|
|
|
|
static struct frame_info *
|
|
get_prev_frame_if_no_cycle (struct frame_info *this_frame)
|
|
{
|
|
struct frame_info *prev_frame;
|
|
|
|
prev_frame = get_prev_frame_raw (this_frame);
|
|
|
|
/* Don't compute the frame id of the current frame yet. Unwinding
|
|
the sentinel frame can fail (e.g., if the thread is gone and we
|
|
can't thus read its registers). If we let the cycle detection
|
|
code below try to compute a frame ID, then an error thrown from
|
|
within the frame ID computation would result in the sentinel
|
|
frame as outermost frame, which is bogus. Instead, we'll compute
|
|
the current frame's ID lazily in get_frame_id. Note that there's
|
|
no point in doing cycle detection when there's only one frame, so
|
|
nothing is lost here. */
|
|
if (prev_frame->level == 0)
|
|
return prev_frame;
|
|
|
|
try
|
|
{
|
|
compute_frame_id (prev_frame);
|
|
if (!frame_stash_add (prev_frame))
|
|
{
|
|
/* Another frame with the same id was already in the stash. We just
|
|
detected a cycle. */
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, NULL);
|
|
fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
|
|
}
|
|
this_frame->stop_reason = UNWIND_SAME_ID;
|
|
/* Unlink. */
|
|
prev_frame->next = NULL;
|
|
this_frame->prev = NULL;
|
|
prev_frame = NULL;
|
|
}
|
|
}
|
|
catch (const gdb_exception &ex)
|
|
{
|
|
prev_frame->next = NULL;
|
|
this_frame->prev = NULL;
|
|
|
|
throw;
|
|
}
|
|
|
|
return prev_frame;
|
|
}
|
|
|
|
/* Helper function for get_prev_frame_always, this is called inside a
|
|
TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
|
|
there is no such frame. This may throw an exception. */
|
|
|
|
static struct frame_info *
|
|
get_prev_frame_always_1 (struct frame_info *this_frame)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
|
|
gdb_assert (this_frame != NULL);
|
|
gdbarch = get_frame_arch (this_frame);
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
|
|
if (this_frame != NULL)
|
|
fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
|
|
else
|
|
fprintf_unfiltered (gdb_stdlog, "<NULL>");
|
|
fprintf_unfiltered (gdb_stdlog, ") ");
|
|
}
|
|
|
|
/* Only try to do the unwind once. */
|
|
if (this_frame->prev_p)
|
|
{
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, this_frame->prev);
|
|
fprintf_unfiltered (gdb_stdlog, " // cached \n");
|
|
}
|
|
return this_frame->prev;
|
|
}
|
|
|
|
/* If the frame unwinder hasn't been selected yet, we must do so
|
|
before setting prev_p; otherwise the check for misbehaved
|
|
sniffers will think that this frame's sniffer tried to unwind
|
|
further (see frame_cleanup_after_sniffer). */
|
|
if (this_frame->unwind == NULL)
|
|
frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
|
|
|
|
this_frame->prev_p = 1;
|
|
this_frame->stop_reason = UNWIND_NO_REASON;
|
|
|
|
/* If we are unwinding from an inline frame, all of the below tests
|
|
were already performed when we unwound from the next non-inline
|
|
frame. We must skip them, since we can not get THIS_FRAME's ID
|
|
until we have unwound all the way down to the previous non-inline
|
|
frame. */
|
|
if (get_frame_type (this_frame) == INLINE_FRAME)
|
|
return get_prev_frame_if_no_cycle (this_frame);
|
|
|
|
/* Check that this frame is unwindable. If it isn't, don't try to
|
|
unwind to the prev frame. */
|
|
this_frame->stop_reason
|
|
= this_frame->unwind->stop_reason (this_frame,
|
|
&this_frame->prologue_cache);
|
|
|
|
if (this_frame->stop_reason != UNWIND_NO_REASON)
|
|
{
|
|
if (frame_debug)
|
|
{
|
|
enum unwind_stop_reason reason = this_frame->stop_reason;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, NULL);
|
|
fprintf_unfiltered (gdb_stdlog, " // %s }\n",
|
|
frame_stop_reason_symbol_string (reason));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that this frame's ID isn't inner to (younger, below, next)
|
|
the next frame. This happens when a frame unwind goes backwards.
|
|
This check is valid only if this frame and the next frame are NORMAL.
|
|
See the comment at frame_id_inner for details. */
|
|
if (get_frame_type (this_frame) == NORMAL_FRAME
|
|
&& this_frame->next->unwind->type == NORMAL_FRAME
|
|
&& frame_id_inner (get_frame_arch (this_frame->next),
|
|
get_frame_id (this_frame),
|
|
get_frame_id (this_frame->next)))
|
|
{
|
|
CORE_ADDR this_pc_in_block;
|
|
struct minimal_symbol *morestack_msym;
|
|
const char *morestack_name = NULL;
|
|
|
|
/* gcc -fsplit-stack __morestack can continue the stack anywhere. */
|
|
this_pc_in_block = get_frame_address_in_block (this_frame);
|
|
morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
|
|
if (morestack_msym)
|
|
morestack_name = morestack_msym->linkage_name ();
|
|
if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
|
|
{
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, NULL);
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
" // this frame ID is inner }\n");
|
|
}
|
|
this_frame->stop_reason = UNWIND_INNER_ID;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Check that this and the next frame do not unwind the PC register
|
|
to the same memory location. If they do, then even though they
|
|
have different frame IDs, the new frame will be bogus; two
|
|
functions can't share a register save slot for the PC. This can
|
|
happen when the prologue analyzer finds a stack adjustment, but
|
|
no PC save.
|
|
|
|
This check does assume that the "PC register" is roughly a
|
|
traditional PC, even if the gdbarch_unwind_pc method adjusts
|
|
it (we do not rely on the value, only on the unwound PC being
|
|
dependent on this value). A potential improvement would be
|
|
to have the frame prev_pc method and the gdbarch unwind_pc
|
|
method set the same lval and location information as
|
|
frame_register_unwind. */
|
|
if (this_frame->level > 0
|
|
&& gdbarch_pc_regnum (gdbarch) >= 0
|
|
&& get_frame_type (this_frame) == NORMAL_FRAME
|
|
&& (get_frame_type (this_frame->next) == NORMAL_FRAME
|
|
|| get_frame_type (this_frame->next) == INLINE_FRAME))
|
|
{
|
|
int optimized, realnum, nrealnum;
|
|
enum lval_type lval, nlval;
|
|
CORE_ADDR addr, naddr;
|
|
|
|
frame_register_unwind_location (this_frame,
|
|
gdbarch_pc_regnum (gdbarch),
|
|
&optimized, &lval, &addr, &realnum);
|
|
frame_register_unwind_location (get_next_frame (this_frame),
|
|
gdbarch_pc_regnum (gdbarch),
|
|
&optimized, &nlval, &naddr, &nrealnum);
|
|
|
|
if ((lval == lval_memory && lval == nlval && addr == naddr)
|
|
|| (lval == lval_register && lval == nlval && realnum == nrealnum))
|
|
{
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, NULL);
|
|
fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
|
|
}
|
|
|
|
this_frame->stop_reason = UNWIND_NO_SAVED_PC;
|
|
this_frame->prev = NULL;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return get_prev_frame_if_no_cycle (this_frame);
|
|
}
|
|
|
|
/* Return a "struct frame_info" corresponding to the frame that called
|
|
THIS_FRAME. Returns NULL if there is no such frame.
|
|
|
|
Unlike get_prev_frame, this function always tries to unwind the
|
|
frame. */
|
|
|
|
struct frame_info *
|
|
get_prev_frame_always (struct frame_info *this_frame)
|
|
{
|
|
struct frame_info *prev_frame = NULL;
|
|
|
|
try
|
|
{
|
|
prev_frame = get_prev_frame_always_1 (this_frame);
|
|
}
|
|
catch (const gdb_exception_error &ex)
|
|
{
|
|
if (ex.error == MEMORY_ERROR)
|
|
{
|
|
this_frame->stop_reason = UNWIND_MEMORY_ERROR;
|
|
if (ex.message != NULL)
|
|
{
|
|
char *stop_string;
|
|
size_t size;
|
|
|
|
/* The error needs to live as long as the frame does.
|
|
Allocate using stack local STOP_STRING then assign the
|
|
pointer to the frame, this allows the STOP_STRING on the
|
|
frame to be of type 'const char *'. */
|
|
size = ex.message->size () + 1;
|
|
stop_string = (char *) frame_obstack_zalloc (size);
|
|
memcpy (stop_string, ex.what (), size);
|
|
this_frame->stop_string = stop_string;
|
|
}
|
|
prev_frame = NULL;
|
|
}
|
|
else
|
|
throw;
|
|
}
|
|
|
|
return prev_frame;
|
|
}
|
|
|
|
/* Construct a new "struct frame_info" and link it previous to
|
|
this_frame. */
|
|
|
|
static struct frame_info *
|
|
get_prev_frame_raw (struct frame_info *this_frame)
|
|
{
|
|
struct frame_info *prev_frame;
|
|
|
|
/* Allocate the new frame but do not wire it in to the frame chain.
|
|
Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
|
|
frame->next to pull some fancy tricks (of course such code is, by
|
|
definition, recursive). Try to prevent it.
|
|
|
|
There is no reason to worry about memory leaks, should the
|
|
remainder of the function fail. The allocated memory will be
|
|
quickly reclaimed when the frame cache is flushed, and the `we've
|
|
been here before' check above will stop repeated memory
|
|
allocation calls. */
|
|
prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
|
|
prev_frame->level = this_frame->level + 1;
|
|
|
|
/* For now, assume we don't have frame chains crossing address
|
|
spaces. */
|
|
prev_frame->pspace = this_frame->pspace;
|
|
prev_frame->aspace = this_frame->aspace;
|
|
|
|
/* Don't yet compute ->unwind (and hence ->type). It is computed
|
|
on-demand in get_frame_type, frame_register_unwind, and
|
|
get_frame_id. */
|
|
|
|
/* Don't yet compute the frame's ID. It is computed on-demand by
|
|
get_frame_id(). */
|
|
|
|
/* The unwound frame ID is validate at the start of this function,
|
|
as part of the logic to decide if that frame should be further
|
|
unwound, and not here while the prev frame is being created.
|
|
Doing this makes it possible for the user to examine a frame that
|
|
has an invalid frame ID.
|
|
|
|
Some very old VAX code noted: [...] For the sake of argument,
|
|
suppose that the stack is somewhat trashed (which is one reason
|
|
that "info frame" exists). So, return 0 (indicating we don't
|
|
know the address of the arglist) if we don't know what frame this
|
|
frame calls. */
|
|
|
|
/* Link it in. */
|
|
this_frame->prev = prev_frame;
|
|
prev_frame->next = this_frame;
|
|
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "-> ");
|
|
fprint_frame (gdb_stdlog, prev_frame);
|
|
fprintf_unfiltered (gdb_stdlog, " }\n");
|
|
}
|
|
|
|
return prev_frame;
|
|
}
|
|
|
|
/* Debug routine to print a NULL frame being returned. */
|
|
|
|
static void
|
|
frame_debug_got_null_frame (struct frame_info *this_frame,
|
|
const char *reason)
|
|
{
|
|
if (frame_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
|
|
if (this_frame != NULL)
|
|
fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
|
|
else
|
|
fprintf_unfiltered (gdb_stdlog, "<NULL>");
|
|
fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
|
|
}
|
|
}
|
|
|
|
/* Is this (non-sentinel) frame in the "main"() function? */
|
|
|
|
static int
|
|
inside_main_func (struct frame_info *this_frame)
|
|
{
|
|
struct bound_minimal_symbol msymbol;
|
|
CORE_ADDR maddr;
|
|
|
|
if (symfile_objfile == 0)
|
|
return 0;
|
|
msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
|
|
if (msymbol.minsym == NULL)
|
|
return 0;
|
|
/* Make certain that the code, and not descriptor, address is
|
|
returned. */
|
|
maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
|
|
BMSYMBOL_VALUE_ADDRESS (msymbol),
|
|
current_top_target ());
|
|
return maddr == get_frame_func (this_frame);
|
|
}
|
|
|
|
/* Test whether THIS_FRAME is inside the process entry point function. */
|
|
|
|
static int
|
|
inside_entry_func (struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR entry_point;
|
|
|
|
if (!entry_point_address_query (&entry_point))
|
|
return 0;
|
|
|
|
return get_frame_func (this_frame) == entry_point;
|
|
}
|
|
|
|
/* Return a structure containing various interesting information about
|
|
the frame that called THIS_FRAME. Returns NULL if there is entier
|
|
no such frame or the frame fails any of a set of target-independent
|
|
condition that should terminate the frame chain (e.g., as unwinding
|
|
past main()).
|
|
|
|
This function should not contain target-dependent tests, such as
|
|
checking whether the program-counter is zero. */
|
|
|
|
struct frame_info *
|
|
get_prev_frame (struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR frame_pc;
|
|
int frame_pc_p;
|
|
|
|
/* There is always a frame. If this assertion fails, suspect that
|
|
something should be calling get_selected_frame() or
|
|
get_current_frame(). */
|
|
gdb_assert (this_frame != NULL);
|
|
|
|
/* If this_frame is the current frame, then compute and stash
|
|
its frame id prior to fetching and computing the frame id of the
|
|
previous frame. Otherwise, the cycle detection code in
|
|
get_prev_frame_if_no_cycle() will not work correctly. When
|
|
get_frame_id() is called later on, an assertion error will
|
|
be triggered in the event of a cycle between the current
|
|
frame and its previous frame. */
|
|
if (this_frame->level == 0)
|
|
get_frame_id (this_frame);
|
|
|
|
frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
|
|
|
|
/* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
|
|
sense to stop unwinding at a dummy frame. One place where a dummy
|
|
frame may have an address "inside_main_func" is on HPUX. On HPUX, the
|
|
pcsqh register (space register for the instruction at the head of the
|
|
instruction queue) cannot be written directly; the only way to set it
|
|
is to branch to code that is in the target space. In order to implement
|
|
frame dummies on HPUX, the called function is made to jump back to where
|
|
the inferior was when the user function was called. If gdb was inside
|
|
the main function when we created the dummy frame, the dummy frame will
|
|
point inside the main function. */
|
|
if (this_frame->level >= 0
|
|
&& get_frame_type (this_frame) == NORMAL_FRAME
|
|
&& !user_set_backtrace_options.backtrace_past_main
|
|
&& frame_pc_p
|
|
&& inside_main_func (this_frame))
|
|
/* Don't unwind past main(). Note, this is done _before_ the
|
|
frame has been marked as previously unwound. That way if the
|
|
user later decides to enable unwinds past main(), that will
|
|
automatically happen. */
|
|
{
|
|
frame_debug_got_null_frame (this_frame, "inside main func");
|
|
return NULL;
|
|
}
|
|
|
|
/* If the user's backtrace limit has been exceeded, stop. We must
|
|
add two to the current level; one of those accounts for backtrace_limit
|
|
being 1-based and the level being 0-based, and the other accounts for
|
|
the level of the new frame instead of the level of the current
|
|
frame. */
|
|
if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
|
|
{
|
|
frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
|
|
return NULL;
|
|
}
|
|
|
|
/* If we're already inside the entry function for the main objfile,
|
|
then it isn't valid. Don't apply this test to a dummy frame -
|
|
dummy frame PCs typically land in the entry func. Don't apply
|
|
this test to the sentinel frame. Sentinel frames should always
|
|
be allowed to unwind. */
|
|
/* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
|
|
wasn't checking for "main" in the minimal symbols. With that
|
|
fixed asm-source tests now stop in "main" instead of halting the
|
|
backtrace in weird and wonderful ways somewhere inside the entry
|
|
file. Suspect that tests for inside the entry file/func were
|
|
added to work around that (now fixed) case. */
|
|
/* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
|
|
suggested having the inside_entry_func test use the
|
|
inside_main_func() msymbol trick (along with entry_point_address()
|
|
I guess) to determine the address range of the start function.
|
|
That should provide a far better stopper than the current
|
|
heuristics. */
|
|
/* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
|
|
applied tail-call optimizations to main so that a function called
|
|
from main returns directly to the caller of main. Since we don't
|
|
stop at main, we should at least stop at the entry point of the
|
|
application. */
|
|
if (this_frame->level >= 0
|
|
&& get_frame_type (this_frame) == NORMAL_FRAME
|
|
&& !user_set_backtrace_options.backtrace_past_entry
|
|
&& frame_pc_p
|
|
&& inside_entry_func (this_frame))
|
|
{
|
|
frame_debug_got_null_frame (this_frame, "inside entry func");
|
|
return NULL;
|
|
}
|
|
|
|
/* Assume that the only way to get a zero PC is through something
|
|
like a SIGSEGV or a dummy frame, and hence that NORMAL frames
|
|
will never unwind a zero PC. */
|
|
if (this_frame->level > 0
|
|
&& (get_frame_type (this_frame) == NORMAL_FRAME
|
|
|| get_frame_type (this_frame) == INLINE_FRAME)
|
|
&& get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
|
|
&& frame_pc_p && frame_pc == 0)
|
|
{
|
|
frame_debug_got_null_frame (this_frame, "zero PC");
|
|
return NULL;
|
|
}
|
|
|
|
return get_prev_frame_always (this_frame);
|
|
}
|
|
|
|
struct frame_id
|
|
get_prev_frame_id_by_id (struct frame_id id)
|
|
{
|
|
struct frame_id prev_id;
|
|
struct frame_info *frame;
|
|
|
|
frame = frame_find_by_id (id);
|
|
|
|
if (frame != NULL)
|
|
prev_id = get_frame_id (get_prev_frame (frame));
|
|
else
|
|
prev_id = null_frame_id;
|
|
|
|
return prev_id;
|
|
}
|
|
|
|
CORE_ADDR
|
|
get_frame_pc (struct frame_info *frame)
|
|
{
|
|
gdb_assert (frame->next != NULL);
|
|
return frame_unwind_pc (frame->next);
|
|
}
|
|
|
|
int
|
|
get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
|
|
{
|
|
|
|
gdb_assert (frame->next != NULL);
|
|
|
|
try
|
|
{
|
|
*pc = frame_unwind_pc (frame->next);
|
|
}
|
|
catch (const gdb_exception_error &ex)
|
|
{
|
|
if (ex.error == NOT_AVAILABLE_ERROR)
|
|
return 0;
|
|
else
|
|
throw;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return an address that falls within THIS_FRAME's code block. */
|
|
|
|
CORE_ADDR
|
|
get_frame_address_in_block (struct frame_info *this_frame)
|
|
{
|
|
/* A draft address. */
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
|
|
struct frame_info *next_frame = this_frame->next;
|
|
|
|
/* Calling get_frame_pc returns the resume address for THIS_FRAME.
|
|
Normally the resume address is inside the body of the function
|
|
associated with THIS_FRAME, but there is a special case: when
|
|
calling a function which the compiler knows will never return
|
|
(for instance abort), the call may be the very last instruction
|
|
in the calling function. The resume address will point after the
|
|
call and may be at the beginning of a different function
|
|
entirely.
|
|
|
|
If THIS_FRAME is a signal frame or dummy frame, then we should
|
|
not adjust the unwound PC. For a dummy frame, GDB pushed the
|
|
resume address manually onto the stack. For a signal frame, the
|
|
OS may have pushed the resume address manually and invoked the
|
|
handler (e.g. GNU/Linux), or invoked the trampoline which called
|
|
the signal handler - but in either case the signal handler is
|
|
expected to return to the trampoline. So in both of these
|
|
cases we know that the resume address is executable and
|
|
related. So we only need to adjust the PC if THIS_FRAME
|
|
is a normal function.
|
|
|
|
If the program has been interrupted while THIS_FRAME is current,
|
|
then clearly the resume address is inside the associated
|
|
function. There are three kinds of interruption: debugger stop
|
|
(next frame will be SENTINEL_FRAME), operating system
|
|
signal or exception (next frame will be SIGTRAMP_FRAME),
|
|
or debugger-induced function call (next frame will be
|
|
DUMMY_FRAME). So we only need to adjust the PC if
|
|
NEXT_FRAME is a normal function.
|
|
|
|
We check the type of NEXT_FRAME first, since it is already
|
|
known; frame type is determined by the unwinder, and since
|
|
we have THIS_FRAME we've already selected an unwinder for
|
|
NEXT_FRAME.
|
|
|
|
If the next frame is inlined, we need to keep going until we find
|
|
the real function - for instance, if a signal handler is invoked
|
|
while in an inlined function, then the code address of the
|
|
"calling" normal function should not be adjusted either. */
|
|
|
|
while (get_frame_type (next_frame) == INLINE_FRAME)
|
|
next_frame = next_frame->next;
|
|
|
|
if ((get_frame_type (next_frame) == NORMAL_FRAME
|
|
|| get_frame_type (next_frame) == TAILCALL_FRAME)
|
|
&& (get_frame_type (this_frame) == NORMAL_FRAME
|
|
|| get_frame_type (this_frame) == TAILCALL_FRAME
|
|
|| get_frame_type (this_frame) == INLINE_FRAME))
|
|
return pc - 1;
|
|
|
|
return pc;
|
|
}
|
|
|
|
int
|
|
get_frame_address_in_block_if_available (struct frame_info *this_frame,
|
|
CORE_ADDR *pc)
|
|
{
|
|
|
|
try
|
|
{
|
|
*pc = get_frame_address_in_block (this_frame);
|
|
}
|
|
catch (const gdb_exception_error &ex)
|
|
{
|
|
if (ex.error == NOT_AVAILABLE_ERROR)
|
|
return 0;
|
|
throw;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
symtab_and_line
|
|
find_frame_sal (frame_info *frame)
|
|
{
|
|
struct frame_info *next_frame;
|
|
int notcurrent;
|
|
CORE_ADDR pc;
|
|
|
|
if (frame_inlined_callees (frame) > 0)
|
|
{
|
|
struct symbol *sym;
|
|
|
|
/* If the current frame has some inlined callees, and we have a next
|
|
frame, then that frame must be an inlined frame. In this case
|
|
this frame's sal is the "call site" of the next frame's inlined
|
|
function, which can not be inferred from get_frame_pc. */
|
|
next_frame = get_next_frame (frame);
|
|
if (next_frame)
|
|
sym = get_frame_function (next_frame);
|
|
else
|
|
sym = inline_skipped_symbol (inferior_thread ());
|
|
|
|
/* If frame is inline, it certainly has symbols. */
|
|
gdb_assert (sym);
|
|
|
|
symtab_and_line sal;
|
|
if (SYMBOL_LINE (sym) != 0)
|
|
{
|
|
sal.symtab = symbol_symtab (sym);
|
|
sal.line = SYMBOL_LINE (sym);
|
|
}
|
|
else
|
|
/* If the symbol does not have a location, we don't know where
|
|
the call site is. Do not pretend to. This is jarring, but
|
|
we can't do much better. */
|
|
sal.pc = get_frame_pc (frame);
|
|
|
|
sal.pspace = get_frame_program_space (frame);
|
|
return sal;
|
|
}
|
|
|
|
/* If FRAME is not the innermost frame, that normally means that
|
|
FRAME->pc points at the return instruction (which is *after* the
|
|
call instruction), and we want to get the line containing the
|
|
call (because the call is where the user thinks the program is).
|
|
However, if the next frame is either a SIGTRAMP_FRAME or a
|
|
DUMMY_FRAME, then the next frame will contain a saved interrupt
|
|
PC and such a PC indicates the current (rather than next)
|
|
instruction/line, consequently, for such cases, want to get the
|
|
line containing fi->pc. */
|
|
if (!get_frame_pc_if_available (frame, &pc))
|
|
return {};
|
|
|
|
notcurrent = (pc != get_frame_address_in_block (frame));
|
|
return find_pc_line (pc, notcurrent);
|
|
}
|
|
|
|
/* Per "frame.h", return the ``address'' of the frame. Code should
|
|
really be using get_frame_id(). */
|
|
CORE_ADDR
|
|
get_frame_base (struct frame_info *fi)
|
|
{
|
|
return get_frame_id (fi).stack_addr;
|
|
}
|
|
|
|
/* High-level offsets into the frame. Used by the debug info. */
|
|
|
|
CORE_ADDR
|
|
get_frame_base_address (struct frame_info *fi)
|
|
{
|
|
if (get_frame_type (fi) != NORMAL_FRAME)
|
|
return 0;
|
|
if (fi->base == NULL)
|
|
fi->base = frame_base_find_by_frame (fi);
|
|
/* Sneaky: If the low-level unwind and high-level base code share a
|
|
common unwinder, let them share the prologue cache. */
|
|
if (fi->base->unwind == fi->unwind)
|
|
return fi->base->this_base (fi, &fi->prologue_cache);
|
|
return fi->base->this_base (fi, &fi->base_cache);
|
|
}
|
|
|
|
CORE_ADDR
|
|
get_frame_locals_address (struct frame_info *fi)
|
|
{
|
|
if (get_frame_type (fi) != NORMAL_FRAME)
|
|
return 0;
|
|
/* If there isn't a frame address method, find it. */
|
|
if (fi->base == NULL)
|
|
fi->base = frame_base_find_by_frame (fi);
|
|
/* Sneaky: If the low-level unwind and high-level base code share a
|
|
common unwinder, let them share the prologue cache. */
|
|
if (fi->base->unwind == fi->unwind)
|
|
return fi->base->this_locals (fi, &fi->prologue_cache);
|
|
return fi->base->this_locals (fi, &fi->base_cache);
|
|
}
|
|
|
|
CORE_ADDR
|
|
get_frame_args_address (struct frame_info *fi)
|
|
{
|
|
if (get_frame_type (fi) != NORMAL_FRAME)
|
|
return 0;
|
|
/* If there isn't a frame address method, find it. */
|
|
if (fi->base == NULL)
|
|
fi->base = frame_base_find_by_frame (fi);
|
|
/* Sneaky: If the low-level unwind and high-level base code share a
|
|
common unwinder, let them share the prologue cache. */
|
|
if (fi->base->unwind == fi->unwind)
|
|
return fi->base->this_args (fi, &fi->prologue_cache);
|
|
return fi->base->this_args (fi, &fi->base_cache);
|
|
}
|
|
|
|
/* Return true if the frame unwinder for frame FI is UNWINDER; false
|
|
otherwise. */
|
|
|
|
int
|
|
frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
|
|
{
|
|
if (fi->unwind == NULL)
|
|
frame_unwind_find_by_frame (fi, &fi->prologue_cache);
|
|
return fi->unwind == unwinder;
|
|
}
|
|
|
|
/* Level of the selected frame: 0 for innermost, 1 for its caller, ...
|
|
or -1 for a NULL frame. */
|
|
|
|
int
|
|
frame_relative_level (struct frame_info *fi)
|
|
{
|
|
if (fi == NULL)
|
|
return -1;
|
|
else
|
|
return fi->level;
|
|
}
|
|
|
|
enum frame_type
|
|
get_frame_type (struct frame_info *frame)
|
|
{
|
|
if (frame->unwind == NULL)
|
|
/* Initialize the frame's unwinder because that's what
|
|
provides the frame's type. */
|
|
frame_unwind_find_by_frame (frame, &frame->prologue_cache);
|
|
return frame->unwind->type;
|
|
}
|
|
|
|
struct program_space *
|
|
get_frame_program_space (struct frame_info *frame)
|
|
{
|
|
return frame->pspace;
|
|
}
|
|
|
|
struct program_space *
|
|
frame_unwind_program_space (struct frame_info *this_frame)
|
|
{
|
|
gdb_assert (this_frame);
|
|
|
|
/* This is really a placeholder to keep the API consistent --- we
|
|
assume for now that we don't have frame chains crossing
|
|
spaces. */
|
|
return this_frame->pspace;
|
|
}
|
|
|
|
const address_space *
|
|
get_frame_address_space (struct frame_info *frame)
|
|
{
|
|
return frame->aspace;
|
|
}
|
|
|
|
/* Memory access methods. */
|
|
|
|
void
|
|
get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
|
|
gdb_byte *buf, int len)
|
|
{
|
|
read_memory (addr, buf, len);
|
|
}
|
|
|
|
LONGEST
|
|
get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
|
|
int len)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
return read_memory_integer (addr, len, byte_order);
|
|
}
|
|
|
|
ULONGEST
|
|
get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
|
|
int len)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
return read_memory_unsigned_integer (addr, len, byte_order);
|
|
}
|
|
|
|
int
|
|
safe_frame_unwind_memory (struct frame_info *this_frame,
|
|
CORE_ADDR addr, gdb_byte *buf, int len)
|
|
{
|
|
/* NOTE: target_read_memory returns zero on success! */
|
|
return !target_read_memory (addr, buf, len);
|
|
}
|
|
|
|
/* Architecture methods. */
|
|
|
|
struct gdbarch *
|
|
get_frame_arch (struct frame_info *this_frame)
|
|
{
|
|
return frame_unwind_arch (this_frame->next);
|
|
}
|
|
|
|
struct gdbarch *
|
|
frame_unwind_arch (struct frame_info *next_frame)
|
|
{
|
|
if (!next_frame->prev_arch.p)
|
|
{
|
|
struct gdbarch *arch;
|
|
|
|
if (next_frame->unwind == NULL)
|
|
frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
|
|
|
|
if (next_frame->unwind->prev_arch != NULL)
|
|
arch = next_frame->unwind->prev_arch (next_frame,
|
|
&next_frame->prologue_cache);
|
|
else
|
|
arch = get_frame_arch (next_frame);
|
|
|
|
next_frame->prev_arch.arch = arch;
|
|
next_frame->prev_arch.p = 1;
|
|
if (frame_debug)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"{ frame_unwind_arch (next_frame=%d) -> %s }\n",
|
|
next_frame->level,
|
|
gdbarch_bfd_arch_info (arch)->printable_name);
|
|
}
|
|
|
|
return next_frame->prev_arch.arch;
|
|
}
|
|
|
|
struct gdbarch *
|
|
frame_unwind_caller_arch (struct frame_info *next_frame)
|
|
{
|
|
next_frame = skip_artificial_frames (next_frame);
|
|
|
|
/* We must have a non-artificial frame. The caller is supposed to check
|
|
the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
|
|
in this case. */
|
|
gdb_assert (next_frame != NULL);
|
|
|
|
return frame_unwind_arch (next_frame);
|
|
}
|
|
|
|
/* Gets the language of FRAME. */
|
|
|
|
enum language
|
|
get_frame_language (struct frame_info *frame)
|
|
{
|
|
CORE_ADDR pc = 0;
|
|
int pc_p = 0;
|
|
|
|
gdb_assert (frame!= NULL);
|
|
|
|
/* We determine the current frame language by looking up its
|
|
associated symtab. To retrieve this symtab, we use the frame
|
|
PC. However we cannot use the frame PC as is, because it
|
|
usually points to the instruction following the "call", which
|
|
is sometimes the first instruction of another function. So
|
|
we rely on get_frame_address_in_block(), it provides us with
|
|
a PC that is guaranteed to be inside the frame's code
|
|
block. */
|
|
|
|
try
|
|
{
|
|
pc = get_frame_address_in_block (frame);
|
|
pc_p = 1;
|
|
}
|
|
catch (const gdb_exception_error &ex)
|
|
{
|
|
if (ex.error != NOT_AVAILABLE_ERROR)
|
|
throw;
|
|
}
|
|
|
|
if (pc_p)
|
|
{
|
|
struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
|
|
|
|
if (cust != NULL)
|
|
return compunit_language (cust);
|
|
}
|
|
|
|
return language_unknown;
|
|
}
|
|
|
|
/* Stack pointer methods. */
|
|
|
|
CORE_ADDR
|
|
get_frame_sp (struct frame_info *this_frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
|
|
/* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
|
|
operate on THIS_FRAME now. */
|
|
return gdbarch_unwind_sp (gdbarch, this_frame->next);
|
|
}
|
|
|
|
/* Return the reason why we can't unwind past FRAME. */
|
|
|
|
enum unwind_stop_reason
|
|
get_frame_unwind_stop_reason (struct frame_info *frame)
|
|
{
|
|
/* Fill-in STOP_REASON. */
|
|
get_prev_frame_always (frame);
|
|
gdb_assert (frame->prev_p);
|
|
|
|
return frame->stop_reason;
|
|
}
|
|
|
|
/* Return a string explaining REASON. */
|
|
|
|
const char *
|
|
unwind_stop_reason_to_string (enum unwind_stop_reason reason)
|
|
{
|
|
switch (reason)
|
|
{
|
|
#define SET(name, description) \
|
|
case name: return _(description);
|
|
#include "unwind_stop_reasons.def"
|
|
#undef SET
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
"Invalid frame stop reason");
|
|
}
|
|
}
|
|
|
|
const char *
|
|
frame_stop_reason_string (struct frame_info *fi)
|
|
{
|
|
gdb_assert (fi->prev_p);
|
|
gdb_assert (fi->prev == NULL);
|
|
|
|
/* Return the specific string if we have one. */
|
|
if (fi->stop_string != NULL)
|
|
return fi->stop_string;
|
|
|
|
/* Return the generic string if we have nothing better. */
|
|
return unwind_stop_reason_to_string (fi->stop_reason);
|
|
}
|
|
|
|
/* Return the enum symbol name of REASON as a string, to use in debug
|
|
output. */
|
|
|
|
static const char *
|
|
frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
|
|
{
|
|
switch (reason)
|
|
{
|
|
#define SET(name, description) \
|
|
case name: return #name;
|
|
#include "unwind_stop_reasons.def"
|
|
#undef SET
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
"Invalid frame stop reason");
|
|
}
|
|
}
|
|
|
|
/* Clean up after a failed (wrong unwinder) attempt to unwind past
|
|
FRAME. */
|
|
|
|
void
|
|
frame_cleanup_after_sniffer (struct frame_info *frame)
|
|
{
|
|
/* The sniffer should not allocate a prologue cache if it did not
|
|
match this frame. */
|
|
gdb_assert (frame->prologue_cache == NULL);
|
|
|
|
/* No sniffer should extend the frame chain; sniff based on what is
|
|
already certain. */
|
|
gdb_assert (!frame->prev_p);
|
|
|
|
/* The sniffer should not check the frame's ID; that's circular. */
|
|
gdb_assert (!frame->this_id.p);
|
|
|
|
/* Clear cached fields dependent on the unwinder.
|
|
|
|
The previous PC is independent of the unwinder, but the previous
|
|
function is not (see get_frame_address_in_block). */
|
|
frame->prev_func.p = 0;
|
|
frame->prev_func.addr = 0;
|
|
|
|
/* Discard the unwinder last, so that we can easily find it if an assertion
|
|
in this function triggers. */
|
|
frame->unwind = NULL;
|
|
}
|
|
|
|
/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
|
|
If sniffing fails, the caller should be sure to call
|
|
frame_cleanup_after_sniffer. */
|
|
|
|
void
|
|
frame_prepare_for_sniffer (struct frame_info *frame,
|
|
const struct frame_unwind *unwind)
|
|
{
|
|
gdb_assert (frame->unwind == NULL);
|
|
frame->unwind = unwind;
|
|
}
|
|
|
|
static struct cmd_list_element *set_backtrace_cmdlist;
|
|
static struct cmd_list_element *show_backtrace_cmdlist;
|
|
|
|
/* Definition of the "set backtrace" settings that are exposed as
|
|
"backtrace" command options. */
|
|
|
|
using boolean_option_def
|
|
= gdb::option::boolean_option_def<set_backtrace_options>;
|
|
using uinteger_option_def
|
|
= gdb::option::uinteger_option_def<set_backtrace_options>;
|
|
|
|
const gdb::option::option_def set_backtrace_option_defs[] = {
|
|
|
|
boolean_option_def {
|
|
"past-main",
|
|
[] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
|
|
show_backtrace_past_main, /* show_cmd_cb */
|
|
N_("Set whether backtraces should continue past \"main\"."),
|
|
N_("Show whether backtraces should continue past \"main\"."),
|
|
N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
|
|
the backtrace at \"main\". Set this if you need to see the rest\n\
|
|
of the stack trace."),
|
|
},
|
|
|
|
boolean_option_def {
|
|
"past-entry",
|
|
[] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
|
|
show_backtrace_past_entry, /* show_cmd_cb */
|
|
N_("Set whether backtraces should continue past the entry point of a program."),
|
|
N_("Show whether backtraces should continue past the entry point of a program."),
|
|
N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
|
|
will terminate the backtrace there. Set this if you need to see\n\
|
|
the rest of the stack trace."),
|
|
},
|
|
};
|
|
|
|
void _initialize_frame ();
|
|
void
|
|
_initialize_frame ()
|
|
{
|
|
obstack_init (&frame_cache_obstack);
|
|
|
|
frame_stash_create ();
|
|
|
|
gdb::observers::target_changed.attach (frame_observer_target_changed);
|
|
|
|
add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
|
|
Set backtrace specific variables.\n\
|
|
Configure backtrace variables such as the backtrace limit"),
|
|
&set_backtrace_cmdlist, "set backtrace ",
|
|
0/*allow-unknown*/, &setlist);
|
|
add_show_prefix_cmd ("backtrace", class_maintenance, _("\
|
|
Show backtrace specific variables.\n\
|
|
Show backtrace variables such as the backtrace limit."),
|
|
&show_backtrace_cmdlist, "show backtrace ",
|
|
0/*allow-unknown*/, &showlist);
|
|
|
|
add_setshow_uinteger_cmd ("limit", class_obscure,
|
|
&user_set_backtrace_options.backtrace_limit, _("\
|
|
Set an upper bound on the number of backtrace levels."), _("\
|
|
Show the upper bound on the number of backtrace levels."), _("\
|
|
No more than the specified number of frames can be displayed or examined.\n\
|
|
Literal \"unlimited\" or zero means no limit."),
|
|
NULL,
|
|
show_backtrace_limit,
|
|
&set_backtrace_cmdlist,
|
|
&show_backtrace_cmdlist);
|
|
|
|
gdb::option::add_setshow_cmds_for_options
|
|
(class_stack, &user_set_backtrace_options,
|
|
set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
|
|
|
|
/* Debug this files internals. */
|
|
add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
|
|
Set frame debugging."), _("\
|
|
Show frame debugging."), _("\
|
|
When non-zero, frame specific internal debugging is enabled."),
|
|
NULL,
|
|
show_frame_debug,
|
|
&setdebuglist, &showdebuglist);
|
|
}
|