binutils-gdb/gdb/remote-sim.c
Tom Tromey 18101a3525 Change remote-sim.c to use type-safe registry
This changes remote-sim.c to use the type-safe registry.

2019-07-10  Tom Tromey  <tromey@adacore.com>

	* remote-sim.c (struct sim_inferior_data): Add initializers,
	constructor, and destructor.
	(sim_inferior_data_key): Change type.  Move lower.
	(check_for_duplicate_sim_descriptor): Update.
	(get_sim_inferior_data): Use new.  Update.
	(~sim_inferior_data_cleanup): Rename from
	sim_inferior_data_cleanup.  Simplify.
	(gdbsim_close_inferior, simulator_command)
	(sim_command_completer, _initialize_remote_sim): Update.
	(next_pid, INITIAL_PID): Move earlier.
2019-07-10 12:42:16 -06:00

1310 lines
36 KiB
C

/* Generic remote debugging interface for simulators.
Copyright (C) 1993-2019 Free Software Foundation, Inc.
Contributed by Cygnus Support.
Steve Chamberlain (sac@cygnus.com).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdb_bfd.h"
#include "inferior.h"
#include "infrun.h"
#include "value.h"
#include <ctype.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include "terminal.h"
#include "target.h"
#include "process-stratum-target.h"
#include "gdbcore.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#include "command.h"
#include "regcache.h"
#include "sim-regno.h"
#include "arch-utils.h"
#include "readline/readline.h"
#include "gdbthread.h"
#include "gdbsupport/byte-vector.h"
/* Prototypes */
static void init_callbacks (void);
static void end_callbacks (void);
static int gdb_os_write_stdout (host_callback *, const char *, int);
static void gdb_os_flush_stdout (host_callback *);
static int gdb_os_write_stderr (host_callback *, const char *, int);
static void gdb_os_flush_stderr (host_callback *);
static int gdb_os_poll_quit (host_callback *);
/* printf_filtered is depreciated. */
static void gdb_os_printf_filtered (host_callback *, const char *, ...);
static void gdb_os_vprintf_filtered (host_callback *, const char *, va_list);
static void gdb_os_evprintf_filtered (host_callback *, const char *, va_list);
static void gdb_os_error (host_callback *, const char *, ...)
ATTRIBUTE_NORETURN;
void simulator_command (char *args, int from_tty);
/* Naming convention:
sim_* are the interface to the simulator (see remote-sim.h).
gdbsim_* are stuff which is internal to gdb. */
static const target_info gdbsim_target_info = {
"sim",
N_("simulator"),
N_("Use the compiled-in simulator.")
};
struct gdbsim_target final
: public memory_breakpoint_target<process_stratum_target>
{
gdbsim_target () = default;
const target_info &info () const override
{ return gdbsim_target_info; }
void close () override;
void detach (inferior *inf, int) override;
void resume (ptid_t, int, enum gdb_signal) override;
ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
void fetch_registers (struct regcache *, int) override;
void store_registers (struct regcache *, int) override;
void prepare_to_store (struct regcache *) override;
enum target_xfer_status xfer_partial (enum target_object object,
const char *annex,
gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len) override;
void files_info () override;
void kill () override;
void load (const char *, int) override;
bool can_create_inferior () override { return true; }
void create_inferior (const char *, const std::string &,
char **, int) override;
void mourn_inferior () override;
void interrupt () override;
bool thread_alive (ptid_t ptid) override;
std::string pid_to_str (ptid_t) override;
bool has_all_memory () override;
bool has_memory () override;
};
static struct gdbsim_target gdbsim_ops;
/* Value of the next pid to allocate for an inferior. As indicated
elsewhere, its initial value is somewhat arbitrary; it's critical
though that it's not zero or negative. */
static int next_pid;
#define INITIAL_PID 42000
/* Simulator-specific, per-inferior state. */
struct sim_inferior_data {
explicit sim_inferior_data (SIM_DESC desc)
: gdbsim_desc (desc),
remote_sim_ptid (next_pid, 0, next_pid)
{
++next_pid;
}
~sim_inferior_data ();
/* Flag which indicates whether or not the program has been loaded. */
int program_loaded = 0;
/* Simulator descriptor for this inferior. */
SIM_DESC gdbsim_desc;
/* This is the ptid we use for this particular simulator instance. Its
value is somewhat arbitrary, as the simulator target don't have a
notion of tasks or threads, but we need something non-null to place
in inferior_ptid. For simulators which permit multiple instances,
we also need a unique identifier to use for each inferior. */
ptid_t remote_sim_ptid;
/* Signal with which to resume. */
enum gdb_signal resume_siggnal = GDB_SIGNAL_0;
/* Flag which indicates whether resume should step or not. */
int resume_step = 0;
};
static inferior_key<sim_inferior_data> sim_inferior_data_key;
/* Flag indicating the "open" status of this module. It's set to 1
in gdbsim_open() and 0 in gdbsim_close(). */
static int gdbsim_is_open = 0;
/* Argument list to pass to sim_open(). It is allocated in gdbsim_open()
and deallocated in gdbsim_close(). The lifetime needs to extend beyond
the call to gdbsim_open() due to the fact that other sim instances other
than the first will be allocated after the gdbsim_open() call. */
static char **sim_argv = NULL;
/* OS-level callback functions for write, flush, etc. */
static host_callback gdb_callback;
static int callbacks_initialized = 0;
/* Callback for iterate_over_inferiors. It checks to see if the sim
descriptor passed via ARG is the same as that for the inferior
designated by INF. Return true if so; false otherwise. */
static int
check_for_duplicate_sim_descriptor (struct inferior *inf, void *arg)
{
struct sim_inferior_data *sim_data;
SIM_DESC new_sim_desc = (SIM_DESC) arg;
sim_data = sim_inferior_data_key.get (inf);
return (sim_data != NULL && sim_data->gdbsim_desc == new_sim_desc);
}
/* Flags indicating whether or not a sim instance is needed. One of these
flags should be passed to get_sim_inferior_data(). */
enum {SIM_INSTANCE_NOT_NEEDED = 0, SIM_INSTANCE_NEEDED = 1};
/* Obtain pointer to per-inferior simulator data, allocating it if necessary.
Attempt to open the sim if SIM_INSTANCE_NEEDED is true. */
static struct sim_inferior_data *
get_sim_inferior_data (struct inferior *inf, int sim_instance_needed)
{
SIM_DESC sim_desc = NULL;
struct sim_inferior_data *sim_data = sim_inferior_data_key.get (inf);
/* Try to allocate a new sim instance, if needed. We do this ahead of
a potential allocation of a sim_inferior_data struct in order to
avoid needlessly allocating that struct in the event that the sim
instance allocation fails. */
if (sim_instance_needed == SIM_INSTANCE_NEEDED
&& (sim_data == NULL || sim_data->gdbsim_desc == NULL))
{
struct inferior *idup;
sim_desc = sim_open (SIM_OPEN_DEBUG, &gdb_callback, exec_bfd, sim_argv);
if (sim_desc == NULL)
error (_("Unable to create simulator instance for inferior %d."),
inf->num);
idup = iterate_over_inferiors (check_for_duplicate_sim_descriptor,
sim_desc);
if (idup != NULL)
{
/* We don't close the descriptor due to the fact that it's
shared with some other inferior. If we were to close it,
that might needlessly muck up the other inferior. Of
course, it's possible that the damage has already been
done... Note that it *will* ultimately be closed during
cleanup of the other inferior. */
sim_desc = NULL;
error (
_("Inferior %d and inferior %d would have identical simulator state.\n"
"(This simulator does not support the running of more than one inferior.)"),
inf->num, idup->num);
}
}
if (sim_data == NULL)
{
sim_data = sim_inferior_data_key.emplace (inf, sim_desc);
}
else if (sim_desc)
{
/* This handles the case where sim_data was allocated prior to
needing a sim instance. */
sim_data->gdbsim_desc = sim_desc;
}
return sim_data;
}
/* Return pointer to per-inferior simulator data using PTID to find the
inferior in question. Return NULL when no inferior is found or
when ptid has a zero or negative pid component. */
static struct sim_inferior_data *
get_sim_inferior_data_by_ptid (ptid_t ptid, int sim_instance_needed)
{
struct inferior *inf;
int pid = ptid.pid ();
if (pid <= 0)
return NULL;
inf = find_inferior_pid (pid);
if (inf)
return get_sim_inferior_data (inf, sim_instance_needed);
else
return NULL;
}
/* Free the per-inferior simulator data. */
sim_inferior_data::~sim_inferior_data ()
{
if (gdbsim_desc)
sim_close (gdbsim_desc, 0);
}
static void
dump_mem (const gdb_byte *buf, int len)
{
fputs_unfiltered ("\t", gdb_stdlog);
if (len == 8 || len == 4)
{
uint32_t l[2];
memcpy (l, buf, len);
fprintf_unfiltered (gdb_stdlog, "0x%08x", l[0]);
if (len == 8)
fprintf_unfiltered (gdb_stdlog, " 0x%08x", l[1]);
}
else
{
int i;
for (i = 0; i < len; i++)
fprintf_unfiltered (gdb_stdlog, "0x%02x ", buf[i]);
}
fputs_unfiltered ("\n", gdb_stdlog);
}
/* Initialize gdb_callback. */
static void
init_callbacks (void)
{
if (!callbacks_initialized)
{
gdb_callback = default_callback;
gdb_callback.init (&gdb_callback);
gdb_callback.write_stdout = gdb_os_write_stdout;
gdb_callback.flush_stdout = gdb_os_flush_stdout;
gdb_callback.write_stderr = gdb_os_write_stderr;
gdb_callback.flush_stderr = gdb_os_flush_stderr;
gdb_callback.printf_filtered = gdb_os_printf_filtered;
gdb_callback.vprintf_filtered = gdb_os_vprintf_filtered;
gdb_callback.evprintf_filtered = gdb_os_evprintf_filtered;
gdb_callback.error = gdb_os_error;
gdb_callback.poll_quit = gdb_os_poll_quit;
gdb_callback.magic = HOST_CALLBACK_MAGIC;
callbacks_initialized = 1;
}
}
/* Release callbacks (free resources used by them). */
static void
end_callbacks (void)
{
if (callbacks_initialized)
{
gdb_callback.shutdown (&gdb_callback);
callbacks_initialized = 0;
}
}
/* GDB version of os_write_stdout callback. */
static int
gdb_os_write_stdout (host_callback *p, const char *buf, int len)
{
ui_file_write (gdb_stdtarg, buf, len);
return len;
}
/* GDB version of os_flush_stdout callback. */
static void
gdb_os_flush_stdout (host_callback *p)
{
gdb_flush (gdb_stdtarg);
}
/* GDB version of os_write_stderr callback. */
static int
gdb_os_write_stderr (host_callback *p, const char *buf, int len)
{
int i;
char b[2];
for (i = 0; i < len; i++)
{
b[0] = buf[i];
b[1] = 0;
fputs_unfiltered (b, gdb_stdtargerr);
}
return len;
}
/* GDB version of os_flush_stderr callback. */
static void
gdb_os_flush_stderr (host_callback *p)
{
gdb_flush (gdb_stdtargerr);
}
/* GDB version of printf_filtered callback. */
static void ATTRIBUTE_PRINTF (2, 3)
gdb_os_printf_filtered (host_callback * p, const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_filtered (gdb_stdout, format, args);
va_end (args);
}
/* GDB version of error vprintf_filtered. */
static void ATTRIBUTE_PRINTF (2, 0)
gdb_os_vprintf_filtered (host_callback * p, const char *format, va_list ap)
{
vfprintf_filtered (gdb_stdout, format, ap);
}
/* GDB version of error evprintf_filtered. */
static void ATTRIBUTE_PRINTF (2, 0)
gdb_os_evprintf_filtered (host_callback * p, const char *format, va_list ap)
{
vfprintf_filtered (gdb_stderr, format, ap);
}
/* GDB version of error callback. */
static void ATTRIBUTE_PRINTF (2, 3)
gdb_os_error (host_callback * p, const char *format, ...)
{
va_list args;
va_start (args, format);
verror (format, args);
va_end (args);
}
int
one2one_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
/* Only makes sense to supply raw registers. */
gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
return regnum;
}
void
gdbsim_target::fetch_registers (struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
struct inferior *inf = find_inferior_ptid (regcache->ptid ());
struct sim_inferior_data *sim_data
= get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
if (regno == -1)
{
for (regno = 0; regno < gdbarch_num_regs (gdbarch); regno++)
fetch_registers (regcache, regno);
return;
}
switch (gdbarch_register_sim_regno (gdbarch, regno))
{
case LEGACY_SIM_REGNO_IGNORE:
break;
case SIM_REGNO_DOES_NOT_EXIST:
{
/* For moment treat a `does not exist' register the same way
as an ``unavailable'' register. */
regcache->raw_supply_zeroed (regno);
break;
}
default:
{
static int warn_user = 1;
int regsize = register_size (gdbarch, regno);
gdb::byte_vector buf (regsize, 0);
int nr_bytes;
gdb_assert (regno >= 0 && regno < gdbarch_num_regs (gdbarch));
nr_bytes = sim_fetch_register (sim_data->gdbsim_desc,
gdbarch_register_sim_regno
(gdbarch, regno),
buf.data (), regsize);
if (nr_bytes > 0 && nr_bytes != regsize && warn_user)
{
fprintf_unfiltered (gdb_stderr,
"Size of register %s (%d/%d) "
"incorrect (%d instead of %d))",
gdbarch_register_name (gdbarch, regno),
regno,
gdbarch_register_sim_regno (gdbarch, regno),
nr_bytes, regsize);
warn_user = 0;
}
/* FIXME: cagney/2002-05-27: Should check `nr_bytes == 0'
indicating that GDB and the SIM have different ideas about
which registers are fetchable. */
/* Else if (nr_bytes < 0): an old simulator, that doesn't
think to return the register size. Just assume all is ok. */
regcache->raw_supply (regno, buf.data ());
if (remote_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbsim_fetch_register: %d", regno);
/* FIXME: We could print something more intelligible. */
dump_mem (buf.data (), regsize);
}
break;
}
}
}
void
gdbsim_target::store_registers (struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
struct inferior *inf = find_inferior_ptid (regcache->ptid ());
struct sim_inferior_data *sim_data
= get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
if (regno == -1)
{
for (regno = 0; regno < gdbarch_num_regs (gdbarch); regno++)
store_registers (regcache, regno);
return;
}
else if (gdbarch_register_sim_regno (gdbarch, regno) >= 0)
{
int regsize = register_size (gdbarch, regno);
gdb::byte_vector tmp (regsize);
int nr_bytes;
regcache->cooked_read (regno, tmp.data ());
nr_bytes = sim_store_register (sim_data->gdbsim_desc,
gdbarch_register_sim_regno
(gdbarch, regno),
tmp.data (), regsize);
if (nr_bytes > 0 && nr_bytes != regsize)
internal_error (__FILE__, __LINE__,
_("Register size different to expected"));
if (nr_bytes < 0)
internal_error (__FILE__, __LINE__,
_("Register %d not updated"), regno);
if (nr_bytes == 0)
warning (_("Register %s not updated"),
gdbarch_register_name (gdbarch, regno));
if (remote_debug)
{
fprintf_unfiltered (gdb_stdlog, "gdbsim_store_register: %d", regno);
/* FIXME: We could print something more intelligible. */
dump_mem (tmp.data (), regsize);
}
}
}
/* Kill the running program. This may involve closing any open files
and releasing other resources acquired by the simulated program. */
void
gdbsim_target::kill ()
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_kill\n");
/* There is no need to `kill' running simulator - the simulator is
not running. Mourning it is enough. */
target_mourn_inferior (inferior_ptid);
}
/* Load an executable file into the target process. This is expected to
not only bring new code into the target process, but also to update
GDB's symbol tables to match. */
void
gdbsim_target::load (const char *args, int fromtty)
{
const char *prog;
struct sim_inferior_data *sim_data
= get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
if (args == NULL)
error_no_arg (_("program to load"));
gdb_argv argv (args);
prog = tilde_expand (argv[0]);
if (argv[1] != NULL)
error (_("GDB sim does not yet support a load offset."));
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_load: prog \"%s\"\n", prog);
/* FIXME: We will print two messages on error.
Need error to either not print anything if passed NULL or need
another routine that doesn't take any arguments. */
if (sim_load (sim_data->gdbsim_desc, prog, NULL, fromtty) == SIM_RC_FAIL)
error (_("unable to load program"));
/* FIXME: If a load command should reset the targets registers then
a call to sim_create_inferior() should go here. */
sim_data->program_loaded = 1;
}
/* Start an inferior process and set inferior_ptid to its pid.
EXEC_FILE is the file to run.
ARGS is a string containing the arguments to the program.
ENV is the environment vector to pass. Errors reported with error().
On VxWorks and various standalone systems, we ignore exec_file. */
/* This is called not only when we first attach, but also when the
user types "run" after having attached. */
void
gdbsim_target::create_inferior (const char *exec_file,
const std::string &allargs,
char **env, int from_tty)
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
int len;
char *arg_buf;
const char *args = allargs.c_str ();
if (exec_file == 0 || exec_bfd == 0)
warning (_("No executable file specified."));
if (!sim_data->program_loaded)
warning (_("No program loaded."));
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbsim_create_inferior: exec_file \"%s\", args \"%s\"\n",
(exec_file ? exec_file : "(NULL)"),
args);
if (inferior_ptid == sim_data->remote_sim_ptid)
kill ();
remove_breakpoints ();
init_wait_for_inferior ();
gdb_argv built_argv;
if (exec_file != NULL)
{
len = strlen (exec_file) + 1 + allargs.size () + 1 + /*slop */ 10;
arg_buf = (char *) alloca (len);
arg_buf[0] = '\0';
strcat (arg_buf, exec_file);
strcat (arg_buf, " ");
strcat (arg_buf, args);
built_argv.reset (arg_buf);
}
if (sim_create_inferior (sim_data->gdbsim_desc, exec_bfd,
built_argv.get (), env)
!= SIM_RC_OK)
error (_("Unable to create sim inferior."));
inferior_ptid = sim_data->remote_sim_ptid;
inferior_appeared (current_inferior (), inferior_ptid.pid ());
add_thread_silent (inferior_ptid);
insert_breakpoints (); /* Needed to get correct instruction
in cache. */
clear_proceed_status (0);
}
/* The open routine takes the rest of the parameters from the command,
and (if successful) pushes a new target onto the stack.
Targets should supply this routine, if only to provide an error message. */
/* Called when selecting the simulator. E.g. (gdb) target sim name. */
static void
gdbsim_target_open (const char *args, int from_tty)
{
int len;
char *arg_buf;
struct sim_inferior_data *sim_data;
const char *sysroot;
SIM_DESC gdbsim_desc;
sysroot = gdb_sysroot;
if (is_target_filename (sysroot))
sysroot += strlen (TARGET_SYSROOT_PREFIX);
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbsim_open: args \"%s\"\n", args ? args : "(null)");
/* Ensure that the sim target is not on the target stack. This is
necessary, because if it is on the target stack, the call to
push_target below will invoke sim_close(), thus freeing various
state (including a sim instance) that we allocate prior to
invoking push_target(). We want to delay the push_target()
operation until after we complete those operations which could
error out. */
if (gdbsim_is_open)
unpush_target (&gdbsim_ops);
len = (7 + 1 /* gdbsim */
+ strlen (" -E little")
+ strlen (" --architecture=xxxxxxxxxx")
+ strlen (" --sysroot=") + strlen (sysroot) +
+ (args ? strlen (args) : 0)
+ 50) /* slack */ ;
arg_buf = (char *) alloca (len);
strcpy (arg_buf, "gdbsim"); /* 7 */
/* Specify the byte order for the target when it is explicitly
specified by the user (not auto detected). */
switch (selected_byte_order ())
{
case BFD_ENDIAN_BIG:
strcat (arg_buf, " -E big");
break;
case BFD_ENDIAN_LITTLE:
strcat (arg_buf, " -E little");
break;
case BFD_ENDIAN_UNKNOWN:
break;
}
/* Specify the architecture of the target when it has been
explicitly specified */
if (selected_architecture_name () != NULL)
{
strcat (arg_buf, " --architecture=");
strcat (arg_buf, selected_architecture_name ());
}
/* Pass along gdb's concept of the sysroot. */
strcat (arg_buf, " --sysroot=");
strcat (arg_buf, sysroot);
/* finally, any explicit args */
if (args)
{
strcat (arg_buf, " "); /* 1 */
strcat (arg_buf, args);
}
gdb_argv argv (arg_buf);
sim_argv = argv.release ();
init_callbacks ();
gdbsim_desc = sim_open (SIM_OPEN_DEBUG, &gdb_callback, exec_bfd, sim_argv);
if (gdbsim_desc == 0)
{
freeargv (sim_argv);
sim_argv = NULL;
error (_("unable to create simulator instance"));
}
/* Reset the pid numberings for this batch of sim instances. */
next_pid = INITIAL_PID;
/* Allocate the inferior data, but do not allocate a sim instance
since we've already just done that. */
sim_data = get_sim_inferior_data (current_inferior (),
SIM_INSTANCE_NOT_NEEDED);
sim_data->gdbsim_desc = gdbsim_desc;
push_target (&gdbsim_ops);
printf_filtered ("Connected to the simulator.\n");
/* There's nothing running after "target sim" or "load"; not until
"run". */
inferior_ptid = null_ptid;
gdbsim_is_open = 1;
}
/* Callback for iterate_over_inferiors. Called (indirectly) by
gdbsim_close(). */
static int
gdbsim_close_inferior (struct inferior *inf, void *arg)
{
struct sim_inferior_data *sim_data = sim_inferior_data_key.get (inf);
if (sim_data != NULL)
{
ptid_t ptid = sim_data->remote_sim_ptid;
sim_inferior_data_key.clear (inf);
/* Having a ptid allocated and stored in remote_sim_ptid does
not mean that a corresponding inferior was ever created.
Thus we need to verify the existence of an inferior using the
pid in question before setting inferior_ptid via
switch_to_thread() or mourning the inferior. */
if (find_inferior_ptid (ptid) != NULL)
{
switch_to_thread (ptid);
generic_mourn_inferior ();
}
}
return 0;
}
/* Close out all files and local state before this target loses control. */
void
gdbsim_target::close ()
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_close\n");
iterate_over_inferiors (gdbsim_close_inferior, NULL);
if (sim_argv != NULL)
{
freeargv (sim_argv);
sim_argv = NULL;
}
end_callbacks ();
gdbsim_is_open = 0;
}
/* Takes a program previously attached to and detaches it.
The program may resume execution (some targets do, some don't) and will
no longer stop on signals, etc. We better not have left any breakpoints
in the program or it'll die when it hits one. FROM_TTY says whether to be
verbose or not. */
/* Terminate the open connection to the remote debugger.
Use this when you want to detach and do something else with your gdb. */
void
gdbsim_target::detach (inferior *inf, int from_tty)
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_detach\n");
unpush_target (this); /* calls gdbsim_close to do the real work */
if (from_tty)
printf_filtered ("Ending simulator %s debugging\n", target_shortname);
}
/* Resume execution of the target process. STEP says whether to single-step
or to run free; SIGGNAL is the signal value (e.g. SIGINT) to be given
to the target, or zero for no signal. */
struct resume_data
{
enum gdb_signal siggnal;
int step;
};
static int
gdbsim_resume_inferior (struct inferior *inf, void *arg)
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (inf, SIM_INSTANCE_NOT_NEEDED);
struct resume_data *rd = (struct resume_data *) arg;
if (sim_data)
{
sim_data->resume_siggnal = rd->siggnal;
sim_data->resume_step = rd->step;
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
_("gdbsim_resume: pid %d, step %d, signal %d\n"),
inf->pid, rd->step, rd->siggnal);
}
/* When called from iterate_over_inferiors, a zero return causes the
iteration process to proceed until there are no more inferiors to
consider. */
return 0;
}
void
gdbsim_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
{
struct resume_data rd;
struct sim_inferior_data *sim_data
= get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NOT_NEEDED);
rd.siggnal = siggnal;
rd.step = step;
/* We don't access any sim_data members within this function.
What's of interest is whether or not the call to
get_sim_inferior_data_by_ptid(), above, is able to obtain a
non-NULL pointer. If it managed to obtain a non-NULL pointer, we
know we have a single inferior to consider. If it's NULL, we
either have multiple inferiors to resume or an error condition. */
if (sim_data)
gdbsim_resume_inferior (find_inferior_ptid (ptid), &rd);
else if (ptid == minus_one_ptid)
iterate_over_inferiors (gdbsim_resume_inferior, &rd);
else
error (_("The program is not being run."));
}
/* Notify the simulator of an asynchronous request to interrupt.
The simulator shall ensure that the interrupt request is eventually
delivered to the simulator. If the call is made while the
simulator is not running then the interrupt request is processed when
the simulator is next resumed.
For simulators that do not support this operation, just abort. */
static int
gdbsim_interrupt_inferior (struct inferior *inf, void *arg)
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
if (sim_data)
{
if (!sim_stop (sim_data->gdbsim_desc))
{
quit ();
}
}
/* When called from iterate_over_inferiors, a zero return causes the
iteration process to proceed until there are no more inferiors to
consider. */
return 0;
}
void
gdbsim_target::interrupt ()
{
iterate_over_inferiors (gdbsim_interrupt_inferior, NULL);
}
/* GDB version of os_poll_quit callback.
Taken from gdb/util.c - should be in a library. */
static int
gdb_os_poll_quit (host_callback *p)
{
if (deprecated_ui_loop_hook != NULL)
deprecated_ui_loop_hook (0);
if (check_quit_flag ()) /* gdb's idea of quit */
return 1;
return 0;
}
/* Wait for inferior process to do something. Return pid of child,
or -1 in case of error; store status through argument pointer STATUS,
just as `wait' would. */
static void
gdbsim_cntrl_c (int signo)
{
gdbsim_ops.interrupt ();
}
ptid_t
gdbsim_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
{
struct sim_inferior_data *sim_data;
static sighandler_t prev_sigint;
int sigrc = 0;
enum sim_stop reason = sim_running;
/* This target isn't able to (yet) resume more than one inferior at a time.
When ptid is minus_one_ptid, just use the current inferior. If we're
given an explicit pid, we'll try to find it and use that instead. */
if (ptid == minus_one_ptid)
sim_data = get_sim_inferior_data (current_inferior (),
SIM_INSTANCE_NEEDED);
else
{
sim_data = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NEEDED);
if (sim_data == NULL)
error (_("Unable to wait for pid %d. Inferior not found."),
ptid.pid ());
inferior_ptid = ptid;
}
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_wait\n");
#if defined (HAVE_SIGACTION) && defined (SA_RESTART)
{
struct sigaction sa, osa;
sa.sa_handler = gdbsim_cntrl_c;
sigemptyset (&sa.sa_mask);
sa.sa_flags = 0;
sigaction (SIGINT, &sa, &osa);
prev_sigint = osa.sa_handler;
}
#else
prev_sigint = signal (SIGINT, gdbsim_cntrl_c);
#endif
sim_resume (sim_data->gdbsim_desc, sim_data->resume_step,
sim_data->resume_siggnal);
signal (SIGINT, prev_sigint);
sim_data->resume_step = 0;
sim_stop_reason (sim_data->gdbsim_desc, &reason, &sigrc);
switch (reason)
{
case sim_exited:
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = sigrc;
break;
case sim_stopped:
switch (sigrc)
{
case GDB_SIGNAL_ABRT:
quit ();
break;
case GDB_SIGNAL_INT:
case GDB_SIGNAL_TRAP:
default:
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum gdb_signal) sigrc;
break;
}
break;
case sim_signalled:
status->kind = TARGET_WAITKIND_SIGNALLED;
status->value.sig = (enum gdb_signal) sigrc;
break;
case sim_running:
case sim_polling:
/* FIXME: Is this correct? */
break;
}
return inferior_ptid;
}
/* Get ready to modify the registers array. On machines which store
individual registers, this doesn't need to do anything. On machines
which store all the registers in one fell swoop, this makes sure
that registers contains all the registers from the program being
debugged. */
void
gdbsim_target::prepare_to_store (struct regcache *regcache)
{
/* Do nothing, since we can store individual regs. */
}
/* Helper for gdbsim_xfer_partial that handles memory transfers.
Arguments are like target_xfer_partial. */
static enum target_xfer_status
gdbsim_xfer_memory (struct target_ops *target,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
int l;
/* If this target doesn't have memory yet, return 0 causing the
request to be passed to a lower target, hopefully an exec
file. */
if (!target->has_memory ())
return TARGET_XFER_EOF;
if (!sim_data->program_loaded)
error (_("No program loaded."));
/* Note that we obtained the sim_data pointer above using
SIM_INSTANCE_NOT_NEEDED. We do this so that we don't needlessly
allocate a sim instance prior to loading a program. If we
get to this point in the code though, gdbsim_desc should be
non-NULL. (Note that a sim instance is needed in order to load
the program...) */
gdb_assert (sim_data->gdbsim_desc != NULL);
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbsim_xfer_memory: readbuf %s, writebuf %s, "
"memaddr %s, len %s\n",
host_address_to_string (readbuf),
host_address_to_string (writebuf),
paddress (target_gdbarch (), memaddr),
pulongest (len));
if (writebuf)
{
if (remote_debug && len > 0)
dump_mem (writebuf, len);
l = sim_write (sim_data->gdbsim_desc, memaddr, writebuf, len);
}
else
{
l = sim_read (sim_data->gdbsim_desc, memaddr, readbuf, len);
if (remote_debug && len > 0)
dump_mem (readbuf, len);
}
if (l > 0)
{
*xfered_len = (ULONGEST) l;
return TARGET_XFER_OK;
}
else if (l == 0)
return TARGET_XFER_EOF;
else
return TARGET_XFER_E_IO;
}
/* Target to_xfer_partial implementation. */
enum target_xfer_status
gdbsim_target::xfer_partial (enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len)
{
switch (object)
{
case TARGET_OBJECT_MEMORY:
return gdbsim_xfer_memory (this, readbuf, writebuf, offset, len,
xfered_len);
default:
return TARGET_XFER_E_IO;
}
}
void
gdbsim_target::files_info ()
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
const char *file = "nothing";
if (exec_bfd)
file = bfd_get_filename (exec_bfd);
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_files_info: file \"%s\"\n", file);
if (exec_bfd)
{
fprintf_unfiltered (gdb_stdlog, "\tAttached to %s running program %s\n",
target_shortname, file);
sim_info (sim_data->gdbsim_desc, 0);
}
}
/* Clear the simulator's notion of what the break points are. */
void
gdbsim_target::mourn_inferior ()
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "gdbsim_mourn_inferior:\n");
remove_breakpoints ();
generic_mourn_inferior ();
}
/* Pass the command argument through to the simulator verbatim. The
simulator must do any command interpretation work. */
void
simulator_command (const char *args, int from_tty)
{
struct sim_inferior_data *sim_data;
/* We use inferior_data() instead of get_sim_inferior_data() here in
order to avoid attaching a sim_inferior_data struct to an
inferior unnecessarily. The reason we take such care here is due
to the fact that this function, simulator_command(), may be called
even when the sim target is not active. If we were to use
get_sim_inferior_data() here, it is possible that this call would
be made either prior to gdbsim_open() or after gdbsim_close(),
thus allocating memory that would not be garbage collected until
the ultimate destruction of the associated inferior. */
sim_data = sim_inferior_data_key.get (current_inferior ());
if (sim_data == NULL || sim_data->gdbsim_desc == NULL)
{
/* PREVIOUSLY: The user may give a command before the simulator
is opened. [...] (??? assuming of course one wishes to
continue to allow commands to be sent to unopened simulators,
which isn't entirely unreasonable). */
/* The simulator is a builtin abstraction of a remote target.
Consistent with that model, access to the simulator, via sim
commands, is restricted to the period when the channel to the
simulator is open. */
error (_("Not connected to the simulator target"));
}
sim_do_command (sim_data->gdbsim_desc, args);
/* Invalidate the register cache, in case the simulator command does
something funny. */
registers_changed ();
}
static void
sim_command_completer (struct cmd_list_element *ignore,
completion_tracker &tracker,
const char *text, const char *word)
{
struct sim_inferior_data *sim_data;
sim_data = sim_inferior_data_key.get (current_inferior ());
if (sim_data == NULL || sim_data->gdbsim_desc == NULL)
return;
/* sim_complete_command returns a NULL-terminated malloc'ed array of
malloc'ed strings. */
struct sim_completions_deleter
{
void operator() (char **ptr) const
{
for (size_t i = 0; ptr[i] != NULL; i++)
xfree (ptr[i]);
xfree (ptr);
}
};
std::unique_ptr<char *[], sim_completions_deleter> sim_completions
(sim_complete_command (sim_data->gdbsim_desc, text, word));
if (sim_completions == NULL)
return;
/* Count the elements and add completions from tail to head because
below we'll swap elements out of the array in case add_completion
throws and the deleter deletes until it finds a NULL element. */
size_t count = 0;
while (sim_completions[count] != NULL)
count++;
for (size_t i = count; i > 0; i--)
{
gdb::unique_xmalloc_ptr<char> match (sim_completions[i - 1]);
sim_completions[i - 1] = NULL;
tracker.add_completion (std::move (match));
}
}
/* Check to see if a thread is still alive. */
bool
gdbsim_target::thread_alive (ptid_t ptid)
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NOT_NEEDED);
if (sim_data == NULL)
return false;
if (ptid == sim_data->remote_sim_ptid)
/* The simulators' task is always alive. */
return true;
return false;
}
/* Convert a thread ID to a string. */
std::string
gdbsim_target::pid_to_str (ptid_t ptid)
{
return normal_pid_to_str (ptid);
}
/* Simulator memory may be accessed after the program has been loaded. */
bool
gdbsim_target::has_all_memory ()
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
if (!sim_data->program_loaded)
return false;
return true;
}
bool
gdbsim_target::has_memory ()
{
struct sim_inferior_data *sim_data
= get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
if (!sim_data->program_loaded)
return false;
return true;
}
void
_initialize_remote_sim (void)
{
struct cmd_list_element *c;
add_target (gdbsim_target_info, gdbsim_target_open);
c = add_com ("sim", class_obscure, simulator_command,
_("Send a command to the simulator."));
set_cmd_completer (c, sim_command_completer);
}