6a8492b562
(mcalloc): New function / macro. (mfree): New macro. (sim_size): Use mcalloc and mfree.
2778 lines
65 KiB
C
2778 lines
65 KiB
C
/* Simulator for the Renesas (formerly Hitachi) / SuperH Inc. SH architecture.
|
|
|
|
Written by Steve Chamberlain of Cygnus Support.
|
|
sac@cygnus.com
|
|
|
|
This file is part of SH sim
|
|
|
|
|
|
THIS SOFTWARE IS NOT COPYRIGHTED
|
|
|
|
Cygnus offers the following for use in the public domain. Cygnus
|
|
makes no warranty with regard to the software or it's performance
|
|
and the user accepts the software "AS IS" with all faults.
|
|
|
|
CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
|
|
THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <signal.h>
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_MMAP
|
|
#include <sys/mman.h>
|
|
# ifndef MAP_FAILED
|
|
# define MAP_FAILED -1
|
|
# endif
|
|
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
# endif
|
|
#endif
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "gdb/callback.h"
|
|
#include "gdb/remote-sim.h"
|
|
#include "gdb/sim-sh.h"
|
|
|
|
/* This file is local - if newlib changes, then so should this. */
|
|
#include "syscall.h"
|
|
|
|
#include <math.h>
|
|
|
|
#ifdef _WIN32
|
|
#include <float.h> /* Needed for _isnan() */
|
|
#define isnan _isnan
|
|
#endif
|
|
|
|
#ifndef SIGBUS
|
|
#define SIGBUS SIGSEGV
|
|
#endif
|
|
|
|
#ifndef SIGQUIT
|
|
#define SIGQUIT SIGTERM
|
|
#endif
|
|
|
|
#ifndef SIGTRAP
|
|
#define SIGTRAP 5
|
|
#endif
|
|
|
|
extern unsigned short sh_jump_table[], sh_dsp_table[0x1000], ppi_table[];
|
|
|
|
int sim_write (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size);
|
|
|
|
#define O_RECOMPILE 85
|
|
#define DEFINE_TABLE
|
|
#define DISASSEMBLER_TABLE
|
|
|
|
/* Define the rate at which the simulator should poll the host
|
|
for a quit. */
|
|
#define POLL_QUIT_INTERVAL 0x60000
|
|
|
|
typedef struct
|
|
{
|
|
int regs[20];
|
|
} regstacktype;
|
|
|
|
typedef union
|
|
{
|
|
|
|
struct
|
|
{
|
|
int regs[16];
|
|
int pc;
|
|
|
|
/* System registers. For sh-dsp this also includes A0 / X0 / X1 / Y0 / Y1
|
|
which are located in fregs, i.e. strictly speaking, these are
|
|
out-of-bounds accesses of sregs.i . This wart of the code could be
|
|
fixed by making fregs part of sregs, and including pc too - to avoid
|
|
alignment repercussions - but this would cause very onerous union /
|
|
structure nesting, which would only be managable with anonymous
|
|
unions and structs. */
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
int mach;
|
|
int macl;
|
|
int pr;
|
|
int dummy3, dummy4;
|
|
int fpul; /* A1 for sh-dsp - but only for movs etc. */
|
|
int fpscr; /* dsr for sh-dsp */
|
|
} named;
|
|
int i[7];
|
|
} sregs;
|
|
|
|
/* sh3e / sh-dsp */
|
|
union fregs_u
|
|
{
|
|
float f[16];
|
|
double d[8];
|
|
int i[16];
|
|
}
|
|
fregs[2];
|
|
|
|
/* Control registers; on the SH4, ldc / stc is privileged, except when
|
|
accessing gbr. */
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
int sr;
|
|
int gbr;
|
|
int vbr;
|
|
int ssr;
|
|
int spc;
|
|
int mod;
|
|
/* sh-dsp */
|
|
int rs;
|
|
int re;
|
|
/* sh3 */
|
|
int bank[8];
|
|
int dbr; /* debug base register */
|
|
int sgr; /* saved gr15 */
|
|
int ldst; /* load/store flag (boolean) */
|
|
int tbr;
|
|
int ibcr; /* sh2a bank control register */
|
|
int ibnr; /* sh2a bank number register */
|
|
} named;
|
|
int i[16];
|
|
} cregs;
|
|
|
|
unsigned char *insn_end;
|
|
|
|
int ticks;
|
|
int stalls;
|
|
int memstalls;
|
|
int cycles;
|
|
int insts;
|
|
|
|
int prevlock;
|
|
int thislock;
|
|
int exception;
|
|
|
|
int end_of_registers;
|
|
|
|
int msize;
|
|
#define PROFILE_FREQ 1
|
|
#define PROFILE_SHIFT 2
|
|
int profile;
|
|
unsigned short *profile_hist;
|
|
unsigned char *memory;
|
|
int xyram_select, xram_start, yram_start;
|
|
unsigned char *xmem;
|
|
unsigned char *ymem;
|
|
unsigned char *xmem_offset;
|
|
unsigned char *ymem_offset;
|
|
unsigned long bfd_mach;
|
|
regstacktype *regstack;
|
|
}
|
|
asregs;
|
|
int asints[40];
|
|
} saved_state_type;
|
|
|
|
saved_state_type saved_state;
|
|
|
|
struct loop_bounds { unsigned char *start, *end; };
|
|
|
|
/* These variables are at file scope so that functions other than
|
|
sim_resume can use the fetch/store macros */
|
|
|
|
static int target_little_endian;
|
|
static int global_endianw, endianb;
|
|
static int target_dsp;
|
|
static int host_little_endian;
|
|
static char **prog_argv;
|
|
|
|
static int maskw = 0;
|
|
static int maskl = 0;
|
|
|
|
static SIM_OPEN_KIND sim_kind;
|
|
static char *myname;
|
|
static int tracing = 0;
|
|
|
|
|
|
/* Short hand definitions of the registers */
|
|
|
|
#define SBIT(x) ((x)&sbit)
|
|
#define R0 saved_state.asregs.regs[0]
|
|
#define Rn saved_state.asregs.regs[n]
|
|
#define Rm saved_state.asregs.regs[m]
|
|
#define UR0 (unsigned int) (saved_state.asregs.regs[0])
|
|
#define UR (unsigned int) R
|
|
#define UR (unsigned int) R
|
|
#define SR0 saved_state.asregs.regs[0]
|
|
#define CREG(n) (saved_state.asregs.cregs.i[(n)])
|
|
#define GBR saved_state.asregs.cregs.named.gbr
|
|
#define VBR saved_state.asregs.cregs.named.vbr
|
|
#define DBR saved_state.asregs.cregs.named.dbr
|
|
#define TBR saved_state.asregs.cregs.named.tbr
|
|
#define IBCR saved_state.asregs.cregs.named.ibcr
|
|
#define IBNR saved_state.asregs.cregs.named.ibnr
|
|
#define BANKN (saved_state.asregs.cregs.named.ibnr & 0x1ff)
|
|
#define ME ((saved_state.asregs.cregs.named.ibnr >> 14) & 0x3)
|
|
#define SSR saved_state.asregs.cregs.named.ssr
|
|
#define SPC saved_state.asregs.cregs.named.spc
|
|
#define SGR saved_state.asregs.cregs.named.sgr
|
|
#define SREG(n) (saved_state.asregs.sregs.i[(n)])
|
|
#define MACH saved_state.asregs.sregs.named.mach
|
|
#define MACL saved_state.asregs.sregs.named.macl
|
|
#define PR saved_state.asregs.sregs.named.pr
|
|
#define FPUL saved_state.asregs.sregs.named.fpul
|
|
|
|
#define PC insn_ptr
|
|
|
|
|
|
|
|
/* Alternate bank of registers r0-r7 */
|
|
|
|
/* Note: code controling SR handles flips between BANK0 and BANK1 */
|
|
#define Rn_BANK(n) (saved_state.asregs.cregs.named.bank[(n)])
|
|
#define SET_Rn_BANK(n, EXP) do { saved_state.asregs.cregs.named.bank[(n)] = (EXP); } while (0)
|
|
|
|
|
|
/* Manipulate SR */
|
|
|
|
#define SR_MASK_BO (1 << 14)
|
|
#define SR_MASK_CS (1 << 13)
|
|
#define SR_MASK_DMY (1 << 11)
|
|
#define SR_MASK_DMX (1 << 10)
|
|
#define SR_MASK_M (1 << 9)
|
|
#define SR_MASK_Q (1 << 8)
|
|
#define SR_MASK_I (0xf << 4)
|
|
#define SR_MASK_S (1 << 1)
|
|
#define SR_MASK_T (1 << 0)
|
|
|
|
#define SR_MASK_BL (1 << 28)
|
|
#define SR_MASK_RB (1 << 29)
|
|
#define SR_MASK_MD (1 << 30)
|
|
#define SR_MASK_RC 0x0fff0000
|
|
#define SR_RC_INCREMENT -0x00010000
|
|
|
|
#define BO ((saved_state.asregs.cregs.named.sr & SR_MASK_BO) != 0)
|
|
#define CS ((saved_state.asregs.cregs.named.sr & SR_MASK_CS) != 0)
|
|
#define M ((saved_state.asregs.cregs.named.sr & SR_MASK_M) != 0)
|
|
#define Q ((saved_state.asregs.cregs.named.sr & SR_MASK_Q) != 0)
|
|
#define S ((saved_state.asregs.cregs.named.sr & SR_MASK_S) != 0)
|
|
#define T ((saved_state.asregs.cregs.named.sr & SR_MASK_T) != 0)
|
|
#define LDST ((saved_state.asregs.cregs.named.ldst) != 0)
|
|
|
|
#define SR_BL ((saved_state.asregs.cregs.named.sr & SR_MASK_BL) != 0)
|
|
#define SR_RB ((saved_state.asregs.cregs.named.sr & SR_MASK_RB) != 0)
|
|
#define SR_MD ((saved_state.asregs.cregs.named.sr & SR_MASK_MD) != 0)
|
|
#define SR_DMY ((saved_state.asregs.cregs.named.sr & SR_MASK_DMY) != 0)
|
|
#define SR_DMX ((saved_state.asregs.cregs.named.sr & SR_MASK_DMX) != 0)
|
|
#define SR_RC ((saved_state.asregs.cregs.named.sr & SR_MASK_RC))
|
|
|
|
/* Note: don't use this for privileged bits */
|
|
#define SET_SR_BIT(EXP, BIT) \
|
|
do { \
|
|
if ((EXP) & 1) \
|
|
saved_state.asregs.cregs.named.sr |= (BIT); \
|
|
else \
|
|
saved_state.asregs.cregs.named.sr &= ~(BIT); \
|
|
} while (0)
|
|
|
|
#define SET_SR_BO(EXP) SET_SR_BIT ((EXP), SR_MASK_BO)
|
|
#define SET_SR_CS(EXP) SET_SR_BIT ((EXP), SR_MASK_CS)
|
|
#define SET_BANKN(EXP) \
|
|
do { \
|
|
IBNR = (IBNR & 0xfe00) | (EXP & 0x1f); \
|
|
} while (0)
|
|
#define SET_ME(EXP) \
|
|
do { \
|
|
IBNR = (IBNR & 0x3fff) | ((EXP & 0x3) << 14); \
|
|
} while (0)
|
|
#define SET_SR_M(EXP) SET_SR_BIT ((EXP), SR_MASK_M)
|
|
#define SET_SR_Q(EXP) SET_SR_BIT ((EXP), SR_MASK_Q)
|
|
#define SET_SR_S(EXP) SET_SR_BIT ((EXP), SR_MASK_S)
|
|
#define SET_SR_T(EXP) SET_SR_BIT ((EXP), SR_MASK_T)
|
|
#define SET_LDST(EXP) (saved_state.asregs.cregs.named.ldst = ((EXP) != 0))
|
|
|
|
/* stc currently relies on being able to read SR without modifications. */
|
|
#define GET_SR() (saved_state.asregs.cregs.named.sr - 0)
|
|
|
|
#define SET_SR(x) set_sr (x)
|
|
|
|
#define SET_RC(x) \
|
|
(saved_state.asregs.cregs.named.sr \
|
|
= saved_state.asregs.cregs.named.sr & 0xf000ffff | ((x) & 0xfff) << 16)
|
|
|
|
/* Manipulate FPSCR */
|
|
|
|
#define FPSCR_MASK_FR (1 << 21)
|
|
#define FPSCR_MASK_SZ (1 << 20)
|
|
#define FPSCR_MASK_PR (1 << 19)
|
|
|
|
#define FPSCR_FR ((GET_FPSCR () & FPSCR_MASK_FR) != 0)
|
|
#define FPSCR_SZ ((GET_FPSCR () & FPSCR_MASK_SZ) != 0)
|
|
#define FPSCR_PR ((GET_FPSCR () & FPSCR_MASK_PR) != 0)
|
|
|
|
/* Count the number of arguments in an argv. */
|
|
static int
|
|
count_argc (char **argv)
|
|
{
|
|
int i;
|
|
|
|
if (! argv)
|
|
return -1;
|
|
|
|
for (i = 0; argv[i] != NULL; ++i)
|
|
continue;
|
|
return i;
|
|
}
|
|
|
|
static void
|
|
set_fpscr1 (x)
|
|
int x;
|
|
{
|
|
int old = saved_state.asregs.sregs.named.fpscr;
|
|
saved_state.asregs.sregs.named.fpscr = (x);
|
|
/* swap the floating point register banks */
|
|
if ((saved_state.asregs.sregs.named.fpscr ^ old) & FPSCR_MASK_FR
|
|
/* Ignore bit change if simulating sh-dsp. */
|
|
&& ! target_dsp)
|
|
{
|
|
union fregs_u tmpf = saved_state.asregs.fregs[0];
|
|
saved_state.asregs.fregs[0] = saved_state.asregs.fregs[1];
|
|
saved_state.asregs.fregs[1] = tmpf;
|
|
}
|
|
}
|
|
|
|
/* sts relies on being able to read fpscr directly. */
|
|
#define GET_FPSCR() (saved_state.asregs.sregs.named.fpscr)
|
|
#define SET_FPSCR(x) \
|
|
do { \
|
|
set_fpscr1 (x); \
|
|
} while (0)
|
|
|
|
#define DSR (saved_state.asregs.sregs.named.fpscr)
|
|
|
|
int
|
|
fail ()
|
|
{
|
|
abort ();
|
|
}
|
|
|
|
#define RAISE_EXCEPTION(x) \
|
|
(saved_state.asregs.exception = x, saved_state.asregs.insn_end = 0)
|
|
|
|
#define RAISE_EXCEPTION_IF_IN_DELAY_SLOT() \
|
|
if (in_delay_slot) RAISE_EXCEPTION (SIGILL)
|
|
|
|
/* This function exists mainly for the purpose of setting a breakpoint to
|
|
catch simulated bus errors when running the simulator under GDB. */
|
|
|
|
void
|
|
raise_exception (x)
|
|
int x;
|
|
{
|
|
RAISE_EXCEPTION (x);
|
|
}
|
|
|
|
void
|
|
raise_buserror ()
|
|
{
|
|
raise_exception (SIGBUS);
|
|
}
|
|
|
|
#define PROCESS_SPECIAL_ADDRESS(addr, endian, ptr, bits_written, \
|
|
forbidden_addr_bits, data, retval) \
|
|
do { \
|
|
if (addr & forbidden_addr_bits) \
|
|
{ \
|
|
raise_buserror (); \
|
|
return retval; \
|
|
} \
|
|
else if ((addr & saved_state.asregs.xyram_select) \
|
|
== saved_state.asregs.xram_start) \
|
|
ptr = (void *) &saved_state.asregs.xmem_offset[addr ^ endian]; \
|
|
else if ((addr & saved_state.asregs.xyram_select) \
|
|
== saved_state.asregs.yram_start) \
|
|
ptr = (void *) &saved_state.asregs.ymem_offset[addr ^ endian]; \
|
|
else if ((unsigned) addr >> 24 == 0xf0 \
|
|
&& bits_written == 32 && (data & 1) == 0) \
|
|
/* This invalidates (if not associative) or might invalidate \
|
|
(if associative) an instruction cache line. This is used for \
|
|
trampolines. Since we don't simulate the cache, this is a no-op \
|
|
as far as the simulator is concerned. */ \
|
|
return retval; \
|
|
else \
|
|
{ \
|
|
if (bits_written == 8 && addr > 0x5000000) \
|
|
IOMEM (addr, 1, data); \
|
|
/* We can't do anything useful with the other stuff, so fail. */ \
|
|
raise_buserror (); \
|
|
return retval; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* FIXME: sim_resume should be renamed to sim_engine_run. sim_resume
|
|
being implemented by ../common/sim_resume.c and the below should
|
|
make a call to sim_engine_halt */
|
|
|
|
#define BUSERROR(addr, mask) ((addr) & (mask))
|
|
|
|
#define WRITE_BUSERROR(addr, mask, data, addr_func) \
|
|
do \
|
|
{ \
|
|
if (addr & mask) \
|
|
{ \
|
|
addr_func (addr, data); \
|
|
return; \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
#define READ_BUSERROR(addr, mask, addr_func) \
|
|
do \
|
|
{ \
|
|
if (addr & mask) \
|
|
return addr_func (addr); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Define this to enable register lifetime checking.
|
|
The compiler generates "add #0,rn" insns to mark registers as invalid,
|
|
the simulator uses this info to call fail if it finds a ref to an invalid
|
|
register before a def
|
|
|
|
#define PARANOID
|
|
*/
|
|
|
|
#ifdef PARANOID
|
|
int valid[16];
|
|
#define CREF(x) if (!valid[x]) fail ();
|
|
#define CDEF(x) valid[x] = 1;
|
|
#define UNDEF(x) valid[x] = 0;
|
|
#else
|
|
#define CREF(x)
|
|
#define CDEF(x)
|
|
#define UNDEF(x)
|
|
#endif
|
|
|
|
static void parse_and_set_memory_size PARAMS ((char *str));
|
|
static int IOMEM PARAMS ((int addr, int write, int value));
|
|
static struct loop_bounds get_loop_bounds PARAMS ((int, int, unsigned char *,
|
|
unsigned char *, int, int));
|
|
static void process_wlat_addr PARAMS ((int, int));
|
|
static void process_wwat_addr PARAMS ((int, int));
|
|
static void process_wbat_addr PARAMS ((int, int));
|
|
static int process_rlat_addr PARAMS ((int));
|
|
static int process_rwat_addr PARAMS ((int));
|
|
static int process_rbat_addr PARAMS ((int));
|
|
static void INLINE wlat_fast PARAMS ((unsigned char *, int, int, int));
|
|
static void INLINE wwat_fast PARAMS ((unsigned char *, int, int, int, int));
|
|
static void INLINE wbat_fast PARAMS ((unsigned char *, int, int, int));
|
|
static int INLINE rlat_fast PARAMS ((unsigned char *, int, int));
|
|
static int INLINE rwat_fast PARAMS ((unsigned char *, int, int, int));
|
|
static int INLINE rbat_fast PARAMS ((unsigned char *, int, int));
|
|
|
|
static host_callback *callback;
|
|
|
|
|
|
|
|
/* Floating point registers */
|
|
|
|
#define DR(n) (get_dr (n))
|
|
static double
|
|
get_dr (n)
|
|
int n;
|
|
{
|
|
n = (n & ~1);
|
|
if (host_little_endian)
|
|
{
|
|
union
|
|
{
|
|
int i[2];
|
|
double d;
|
|
} dr;
|
|
dr.i[1] = saved_state.asregs.fregs[0].i[n + 0];
|
|
dr.i[0] = saved_state.asregs.fregs[0].i[n + 1];
|
|
return dr.d;
|
|
}
|
|
else
|
|
return (saved_state.asregs.fregs[0].d[n >> 1]);
|
|
}
|
|
|
|
#define SET_DR(n, EXP) set_dr ((n), (EXP))
|
|
static void
|
|
set_dr (n, exp)
|
|
int n;
|
|
double exp;
|
|
{
|
|
n = (n & ~1);
|
|
if (host_little_endian)
|
|
{
|
|
union
|
|
{
|
|
int i[2];
|
|
double d;
|
|
} dr;
|
|
dr.d = exp;
|
|
saved_state.asregs.fregs[0].i[n + 0] = dr.i[1];
|
|
saved_state.asregs.fregs[0].i[n + 1] = dr.i[0];
|
|
}
|
|
else
|
|
saved_state.asregs.fregs[0].d[n >> 1] = exp;
|
|
}
|
|
|
|
#define SET_FI(n,EXP) (saved_state.asregs.fregs[0].i[(n)] = (EXP))
|
|
#define FI(n) (saved_state.asregs.fregs[0].i[(n)])
|
|
|
|
#define FR(n) (saved_state.asregs.fregs[0].f[(n)])
|
|
#define SET_FR(n,EXP) (saved_state.asregs.fregs[0].f[(n)] = (EXP))
|
|
|
|
#define XD_TO_XF(n) ((((n) & 1) << 5) | ((n) & 0x1e))
|
|
#define XF(n) (saved_state.asregs.fregs[(n) >> 5].i[(n) & 0x1f])
|
|
#define SET_XF(n,EXP) (saved_state.asregs.fregs[(n) >> 5].i[(n) & 0x1f] = (EXP))
|
|
|
|
#define RS saved_state.asregs.cregs.named.rs
|
|
#define RE saved_state.asregs.cregs.named.re
|
|
#define MOD (saved_state.asregs.cregs.named.mod)
|
|
#define SET_MOD(i) \
|
|
(MOD = (i), \
|
|
MOD_ME = (unsigned) MOD >> 16 | (SR_DMY ? ~0xffff : (SR_DMX ? 0 : 0x10000)), \
|
|
MOD_DELTA = (MOD & 0xffff) - ((unsigned) MOD >> 16))
|
|
|
|
#define DSP_R(n) saved_state.asregs.sregs.i[(n)]
|
|
#define DSP_GRD(n) DSP_R ((n) + 8)
|
|
#define GET_DSP_GRD(n) ((n | 2) == 7 ? SEXT (DSP_GRD (n)) : SIGN32 (DSP_R (n)))
|
|
#define A1 DSP_R (5)
|
|
#define A0 DSP_R (7)
|
|
#define X0 DSP_R (8)
|
|
#define X1 DSP_R (9)
|
|
#define Y0 DSP_R (10)
|
|
#define Y1 DSP_R (11)
|
|
#define M0 DSP_R (12)
|
|
#define A1G DSP_R (13)
|
|
#define M1 DSP_R (14)
|
|
#define A0G DSP_R (15)
|
|
/* DSP_R (16) / DSP_GRD (16) are used as a fake destination for pcmp. */
|
|
#define MOD_ME DSP_GRD (17)
|
|
#define MOD_DELTA DSP_GRD (18)
|
|
|
|
#define FP_OP(n, OP, m) \
|
|
{ \
|
|
if (FPSCR_PR) \
|
|
{ \
|
|
if (((n) & 1) || ((m) & 1)) \
|
|
RAISE_EXCEPTION (SIGILL); \
|
|
else \
|
|
SET_DR (n, (DR (n) OP DR (m))); \
|
|
} \
|
|
else \
|
|
SET_FR (n, (FR (n) OP FR (m))); \
|
|
} while (0)
|
|
|
|
#define FP_UNARY(n, OP) \
|
|
{ \
|
|
if (FPSCR_PR) \
|
|
{ \
|
|
if ((n) & 1) \
|
|
RAISE_EXCEPTION (SIGILL); \
|
|
else \
|
|
SET_DR (n, (OP (DR (n)))); \
|
|
} \
|
|
else \
|
|
SET_FR (n, (OP (FR (n)))); \
|
|
} while (0)
|
|
|
|
#define FP_CMP(n, OP, m) \
|
|
{ \
|
|
if (FPSCR_PR) \
|
|
{ \
|
|
if (((n) & 1) || ((m) & 1)) \
|
|
RAISE_EXCEPTION (SIGILL); \
|
|
else \
|
|
SET_SR_T (DR (n) OP DR (m)); \
|
|
} \
|
|
else \
|
|
SET_SR_T (FR (n) OP FR (m)); \
|
|
} while (0)
|
|
|
|
static void
|
|
set_sr (new_sr)
|
|
int new_sr;
|
|
{
|
|
/* do we need to swap banks */
|
|
int old_gpr = SR_MD && SR_RB;
|
|
int new_gpr = (new_sr & SR_MASK_MD) && (new_sr & SR_MASK_RB);
|
|
if (old_gpr != new_gpr)
|
|
{
|
|
int i, tmp;
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
tmp = saved_state.asregs.cregs.named.bank[i];
|
|
saved_state.asregs.cregs.named.bank[i] = saved_state.asregs.regs[i];
|
|
saved_state.asregs.regs[i] = tmp;
|
|
}
|
|
}
|
|
saved_state.asregs.cregs.named.sr = new_sr;
|
|
SET_MOD (MOD);
|
|
}
|
|
|
|
static void INLINE
|
|
wlat_fast (memory, x, value, maskl)
|
|
unsigned char *memory;
|
|
{
|
|
int v = value;
|
|
unsigned int *p = (unsigned int *) (memory + x);
|
|
WRITE_BUSERROR (x, maskl, v, process_wlat_addr);
|
|
*p = v;
|
|
}
|
|
|
|
static void INLINE
|
|
wwat_fast (memory, x, value, maskw, endianw)
|
|
unsigned char *memory;
|
|
{
|
|
int v = value;
|
|
unsigned short *p = (unsigned short *) (memory + (x ^ endianw));
|
|
WRITE_BUSERROR (x, maskw, v, process_wwat_addr);
|
|
*p = v;
|
|
}
|
|
|
|
static void INLINE
|
|
wbat_fast (memory, x, value, maskb)
|
|
unsigned char *memory;
|
|
{
|
|
unsigned char *p = memory + (x ^ endianb);
|
|
WRITE_BUSERROR (x, maskb, value, process_wbat_addr);
|
|
|
|
p[0] = value;
|
|
}
|
|
|
|
/* Read functions */
|
|
|
|
static int INLINE
|
|
rlat_fast (memory, x, maskl)
|
|
unsigned char *memory;
|
|
{
|
|
unsigned int *p = (unsigned int *) (memory + x);
|
|
READ_BUSERROR (x, maskl, process_rlat_addr);
|
|
|
|
return *p;
|
|
}
|
|
|
|
static int INLINE
|
|
rwat_fast (memory, x, maskw, endianw)
|
|
unsigned char *memory;
|
|
int x, maskw, endianw;
|
|
{
|
|
unsigned short *p = (unsigned short *) (memory + (x ^ endianw));
|
|
READ_BUSERROR (x, maskw, process_rwat_addr);
|
|
|
|
return *p;
|
|
}
|
|
|
|
static int INLINE
|
|
riat_fast (insn_ptr, endianw)
|
|
unsigned char *insn_ptr;
|
|
{
|
|
unsigned short *p = (unsigned short *) ((size_t) insn_ptr ^ endianw);
|
|
|
|
return *p;
|
|
}
|
|
|
|
static int INLINE
|
|
rbat_fast (memory, x, maskb)
|
|
unsigned char *memory;
|
|
{
|
|
unsigned char *p = memory + (x ^ endianb);
|
|
READ_BUSERROR (x, maskb, process_rbat_addr);
|
|
|
|
return *p;
|
|
}
|
|
|
|
#define RWAT(x) (rwat_fast (memory, x, maskw, endianw))
|
|
#define RLAT(x) (rlat_fast (memory, x, maskl))
|
|
#define RBAT(x) (rbat_fast (memory, x, maskb))
|
|
#define RIAT(p) (riat_fast ((p), endianw))
|
|
#define WWAT(x,v) (wwat_fast (memory, x, v, maskw, endianw))
|
|
#define WLAT(x,v) (wlat_fast (memory, x, v, maskl))
|
|
#define WBAT(x,v) (wbat_fast (memory, x, v, maskb))
|
|
|
|
#define RUWAT(x) (RWAT (x) & 0xffff)
|
|
#define RSWAT(x) ((short) (RWAT (x)))
|
|
#define RSLAT(x) ((long) (RLAT (x)))
|
|
#define RSBAT(x) (SEXT (RBAT (x)))
|
|
|
|
#define RDAT(x, n) (do_rdat (memory, (x), (n), (maskl)))
|
|
static int
|
|
do_rdat (memory, x, n, maskl)
|
|
char *memory;
|
|
int x;
|
|
int n;
|
|
int maskl;
|
|
{
|
|
int f0;
|
|
int f1;
|
|
int i = (n & 1);
|
|
int j = (n & ~1);
|
|
f0 = rlat_fast (memory, x + 0, maskl);
|
|
f1 = rlat_fast (memory, x + 4, maskl);
|
|
saved_state.asregs.fregs[i].i[(j + 0)] = f0;
|
|
saved_state.asregs.fregs[i].i[(j + 1)] = f1;
|
|
return 0;
|
|
}
|
|
|
|
#define WDAT(x, n) (do_wdat (memory, (x), (n), (maskl)))
|
|
static int
|
|
do_wdat (memory, x, n, maskl)
|
|
char *memory;
|
|
int x;
|
|
int n;
|
|
int maskl;
|
|
{
|
|
int f0;
|
|
int f1;
|
|
int i = (n & 1);
|
|
int j = (n & ~1);
|
|
f0 = saved_state.asregs.fregs[i].i[(j + 0)];
|
|
f1 = saved_state.asregs.fregs[i].i[(j + 1)];
|
|
wlat_fast (memory, (x + 0), f0, maskl);
|
|
wlat_fast (memory, (x + 4), f1, maskl);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
process_wlat_addr (addr, value)
|
|
int addr;
|
|
int value;
|
|
{
|
|
unsigned int *ptr;
|
|
|
|
PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, 32, 3, value, );
|
|
*ptr = value;
|
|
}
|
|
|
|
static void
|
|
process_wwat_addr (addr, value)
|
|
int addr;
|
|
int value;
|
|
{
|
|
unsigned short *ptr;
|
|
|
|
PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, 16, 1, value, );
|
|
*ptr = value;
|
|
}
|
|
|
|
static void
|
|
process_wbat_addr (addr, value)
|
|
int addr;
|
|
int value;
|
|
{
|
|
unsigned char *ptr;
|
|
|
|
PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, 8, 0, value, );
|
|
*ptr = value;
|
|
}
|
|
|
|
static int
|
|
process_rlat_addr (addr)
|
|
int addr;
|
|
{
|
|
unsigned char *ptr;
|
|
|
|
PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, -32, 3, -1, 0);
|
|
return *ptr;
|
|
}
|
|
|
|
static int
|
|
process_rwat_addr (addr)
|
|
int addr;
|
|
{
|
|
unsigned char *ptr;
|
|
|
|
PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, -16, 1, -1, 0);
|
|
return *ptr;
|
|
}
|
|
|
|
static int
|
|
process_rbat_addr (addr)
|
|
int addr;
|
|
{
|
|
unsigned char *ptr;
|
|
|
|
PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, -8, 0, -1, 0);
|
|
return *ptr;
|
|
}
|
|
|
|
#define SEXT(x) (((x & 0xff) ^ (~0x7f))+0x80)
|
|
#define SEXT12(x) (((x & 0xfff) ^ 0x800) - 0x800)
|
|
#define SEXTW(y) ((int) ((short) y))
|
|
#if 0
|
|
#define SEXT32(x) ((int) ((x & 0xffffffff) ^ 0x80000000U) - 0x7fffffff - 1)
|
|
#else
|
|
#define SEXT32(x) ((int) (x))
|
|
#endif
|
|
#define SIGN32(x) (SEXT32 (x) >> 31)
|
|
|
|
/* convert pointer from target to host value. */
|
|
#define PT2H(x) ((x) + memory)
|
|
/* convert pointer from host to target value. */
|
|
#define PH2T(x) ((x) - memory)
|
|
|
|
#define SKIP_INSN(p) ((p) += ((RIAT (p) & 0xfc00) == 0xf800 ? 4 : 2))
|
|
|
|
#define SET_NIP(x) nip = (x); CHECK_INSN_PTR (nip);
|
|
|
|
static int in_delay_slot = 0;
|
|
#define Delay_Slot(TEMPPC) iword = RIAT (TEMPPC); in_delay_slot = 1; goto top;
|
|
|
|
#define CHECK_INSN_PTR(p) \
|
|
do { \
|
|
if (saved_state.asregs.exception || PH2T (p) & maskw) \
|
|
saved_state.asregs.insn_end = 0; \
|
|
else if (p < loop.end) \
|
|
saved_state.asregs.insn_end = loop.end; \
|
|
else \
|
|
saved_state.asregs.insn_end = mem_end; \
|
|
} while (0)
|
|
|
|
#ifdef ACE_FAST
|
|
|
|
#define MA(n)
|
|
#define L(x)
|
|
#define TL(x)
|
|
#define TB(x)
|
|
|
|
#else
|
|
|
|
#define MA(n) \
|
|
do { memstalls += ((((int) PC & 3) != 0) ? (n) : ((n) - 1)); } while (0)
|
|
|
|
#define L(x) thislock = x;
|
|
#define TL(x) if ((x) == prevlock) stalls++;
|
|
#define TB(x,y) if ((x) == prevlock || (y) == prevlock) stalls++;
|
|
|
|
#endif
|
|
|
|
#if defined(__GO32__) || defined(_WIN32)
|
|
int sim_memory_size = 19;
|
|
#else
|
|
int sim_memory_size = 24;
|
|
#endif
|
|
|
|
static int sim_profile_size = 17;
|
|
static int nsamples;
|
|
|
|
#undef TB
|
|
#define TB(x,y)
|
|
|
|
#define SMR1 (0x05FFFEC8) /* Channel 1 serial mode register */
|
|
#define BRR1 (0x05FFFEC9) /* Channel 1 bit rate register */
|
|
#define SCR1 (0x05FFFECA) /* Channel 1 serial control register */
|
|
#define TDR1 (0x05FFFECB) /* Channel 1 transmit data register */
|
|
#define SSR1 (0x05FFFECC) /* Channel 1 serial status register */
|
|
#define RDR1 (0x05FFFECD) /* Channel 1 receive data register */
|
|
|
|
#define SCI_RDRF 0x40 /* Recieve data register full */
|
|
#define SCI_TDRE 0x80 /* Transmit data register empty */
|
|
|
|
static int
|
|
IOMEM (addr, write, value)
|
|
int addr;
|
|
int write;
|
|
int value;
|
|
{
|
|
if (write)
|
|
{
|
|
switch (addr)
|
|
{
|
|
case TDR1:
|
|
if (value != '\r')
|
|
{
|
|
putchar (value);
|
|
fflush (stdout);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (addr)
|
|
{
|
|
case RDR1:
|
|
return getchar ();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_now ()
|
|
{
|
|
return time ((long *) 0);
|
|
}
|
|
|
|
static int
|
|
now_persec ()
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static FILE *profile_file;
|
|
|
|
static unsigned INLINE
|
|
swap (n)
|
|
unsigned n;
|
|
{
|
|
if (endianb)
|
|
n = (n << 24 | (n & 0xff00) << 8
|
|
| (n & 0xff0000) >> 8 | (n & 0xff000000) >> 24);
|
|
return n;
|
|
}
|
|
|
|
static unsigned short INLINE
|
|
swap16 (n)
|
|
unsigned short n;
|
|
{
|
|
if (endianb)
|
|
n = n << 8 | (n & 0xff00) >> 8;
|
|
return n;
|
|
}
|
|
|
|
static void
|
|
swapout (n)
|
|
int n;
|
|
{
|
|
if (profile_file)
|
|
{
|
|
union { char b[4]; int n; } u;
|
|
u.n = swap (n);
|
|
fwrite (u.b, 4, 1, profile_file);
|
|
}
|
|
}
|
|
|
|
static void
|
|
swapout16 (n)
|
|
int n;
|
|
{
|
|
union { char b[4]; int n; } u;
|
|
u.n = swap16 (n);
|
|
fwrite (u.b, 2, 1, profile_file);
|
|
}
|
|
|
|
/* Turn a pointer in a register into a pointer into real memory. */
|
|
|
|
static char *
|
|
ptr (x)
|
|
int x;
|
|
{
|
|
return (char *) (x + saved_state.asregs.memory);
|
|
}
|
|
|
|
/* STR points to a zero-terminated string in target byte order. Return
|
|
the number of bytes that need to be converted to host byte order in order
|
|
to use this string as a zero-terminated string on the host.
|
|
(Not counting the rounding up needed to operate on entire words.) */
|
|
static int
|
|
strswaplen (str)
|
|
int str;
|
|
{
|
|
unsigned char *memory = saved_state.asregs.memory;
|
|
int start, end;
|
|
int endian = endianb;
|
|
|
|
if (! endian)
|
|
return 0;
|
|
end = str;
|
|
for (end = str; memory[end ^ endian]; end++) ;
|
|
return end - str + 1;
|
|
}
|
|
|
|
static void
|
|
strnswap (str, len)
|
|
int str;
|
|
int len;
|
|
{
|
|
int *start, *end;
|
|
|
|
if (! endianb || ! len)
|
|
return;
|
|
start = (int *) ptr (str & ~3);
|
|
end = (int *) ptr (str + len);
|
|
do
|
|
{
|
|
int old = *start;
|
|
*start = (old << 24 | (old & 0xff00) << 8
|
|
| (old & 0xff0000) >> 8 | (old & 0xff000000) >> 24);
|
|
start++;
|
|
}
|
|
while (start < end);
|
|
}
|
|
|
|
/* Simulate a monitor trap, put the result into r0 and errno into r1
|
|
return offset by which to adjust pc. */
|
|
|
|
static int
|
|
trap (i, regs, insn_ptr, memory, maskl, maskw, endianw)
|
|
int i;
|
|
int *regs;
|
|
unsigned char *insn_ptr;
|
|
unsigned char *memory;
|
|
{
|
|
switch (i)
|
|
{
|
|
case 1:
|
|
printf ("%c", regs[0]);
|
|
break;
|
|
case 2:
|
|
raise_exception (SIGQUIT);
|
|
break;
|
|
case 3: /* FIXME: for backwards compat, should be removed */
|
|
case 33:
|
|
{
|
|
unsigned int countp = * (unsigned int *) (insn_ptr + 4);
|
|
|
|
WLAT (countp, RLAT (countp) + 1);
|
|
return 6;
|
|
}
|
|
case 34:
|
|
{
|
|
extern int errno;
|
|
int perrno = errno;
|
|
errno = 0;
|
|
|
|
switch (regs[4])
|
|
{
|
|
|
|
#if !defined(__GO32__) && !defined(_WIN32)
|
|
case SYS_fork:
|
|
regs[0] = fork ();
|
|
break;
|
|
/* This would work only if endianness matched between host and target.
|
|
Besides, it's quite dangerous. */
|
|
#if 0
|
|
case SYS_execve:
|
|
regs[0] = execve (ptr (regs[5]), (char **) ptr (regs[6]),
|
|
(char **) ptr (regs[7]));
|
|
break;
|
|
case SYS_execv:
|
|
regs[0] = execve (ptr (regs[5]), (char **) ptr (regs[6]), 0);
|
|
break;
|
|
#endif
|
|
case SYS_pipe:
|
|
{
|
|
regs[0] = (BUSERROR (regs[5], maskl)
|
|
? -EINVAL
|
|
: pipe ((int *) ptr (regs[5])));
|
|
}
|
|
break;
|
|
|
|
case SYS_wait:
|
|
regs[0] = wait (ptr (regs[5]));
|
|
break;
|
|
#endif /* !defined(__GO32__) && !defined(_WIN32) */
|
|
|
|
case SYS_read:
|
|
strnswap (regs[6], regs[7]);
|
|
regs[0]
|
|
= callback->read (callback, regs[5], ptr (regs[6]), regs[7]);
|
|
strnswap (regs[6], regs[7]);
|
|
break;
|
|
case SYS_write:
|
|
strnswap (regs[6], regs[7]);
|
|
if (regs[5] == 1)
|
|
regs[0] = (int) callback->write_stdout (callback,
|
|
ptr (regs[6]), regs[7]);
|
|
else
|
|
regs[0] = (int) callback->write (callback, regs[5],
|
|
ptr (regs[6]), regs[7]);
|
|
strnswap (regs[6], regs[7]);
|
|
break;
|
|
case SYS_lseek:
|
|
regs[0] = callback->lseek (callback,regs[5], regs[6], regs[7]);
|
|
break;
|
|
case SYS_close:
|
|
regs[0] = callback->close (callback,regs[5]);
|
|
break;
|
|
case SYS_open:
|
|
{
|
|
int len = strswaplen (regs[5]);
|
|
strnswap (regs[5], len);
|
|
regs[0] = callback->open (callback, ptr (regs[5]), regs[6]);
|
|
strnswap (regs[5], len);
|
|
break;
|
|
}
|
|
case SYS_exit:
|
|
/* EXIT - caller can look in r5 to work out the reason */
|
|
raise_exception (SIGQUIT);
|
|
regs[0] = regs[5];
|
|
break;
|
|
|
|
case SYS_stat: /* added at hmsi */
|
|
/* stat system call */
|
|
{
|
|
struct stat host_stat;
|
|
int buf;
|
|
int len = strswaplen (regs[5]);
|
|
|
|
strnswap (regs[5], len);
|
|
regs[0] = stat (ptr (regs[5]), &host_stat);
|
|
strnswap (regs[5], len);
|
|
|
|
buf = regs[6];
|
|
|
|
WWAT (buf, host_stat.st_dev);
|
|
buf += 2;
|
|
WWAT (buf, host_stat.st_ino);
|
|
buf += 2;
|
|
WLAT (buf, host_stat.st_mode);
|
|
buf += 4;
|
|
WWAT (buf, host_stat.st_nlink);
|
|
buf += 2;
|
|
WWAT (buf, host_stat.st_uid);
|
|
buf += 2;
|
|
WWAT (buf, host_stat.st_gid);
|
|
buf += 2;
|
|
WWAT (buf, host_stat.st_rdev);
|
|
buf += 2;
|
|
WLAT (buf, host_stat.st_size);
|
|
buf += 4;
|
|
WLAT (buf, host_stat.st_atime);
|
|
buf += 4;
|
|
WLAT (buf, 0);
|
|
buf += 4;
|
|
WLAT (buf, host_stat.st_mtime);
|
|
buf += 4;
|
|
WLAT (buf, 0);
|
|
buf += 4;
|
|
WLAT (buf, host_stat.st_ctime);
|
|
buf += 4;
|
|
WLAT (buf, 0);
|
|
buf += 4;
|
|
WLAT (buf, 0);
|
|
buf += 4;
|
|
WLAT (buf, 0);
|
|
buf += 4;
|
|
}
|
|
break;
|
|
|
|
#ifndef _WIN32
|
|
case SYS_chown:
|
|
{
|
|
int len = strswaplen (regs[5]);
|
|
|
|
strnswap (regs[5], len);
|
|
regs[0] = chown (ptr (regs[5]), regs[6], regs[7]);
|
|
strnswap (regs[5], len);
|
|
break;
|
|
}
|
|
#endif /* _WIN32 */
|
|
case SYS_chmod:
|
|
{
|
|
int len = strswaplen (regs[5]);
|
|
|
|
strnswap (regs[5], len);
|
|
regs[0] = chmod (ptr (regs[5]), regs[6]);
|
|
strnswap (regs[5], len);
|
|
break;
|
|
}
|
|
case SYS_utime:
|
|
{
|
|
/* Cast the second argument to void *, to avoid type mismatch
|
|
if a prototype is present. */
|
|
int len = strswaplen (regs[5]);
|
|
|
|
strnswap (regs[5], len);
|
|
regs[0] = utime (ptr (regs[5]), (void *) ptr (regs[6]));
|
|
strnswap (regs[5], len);
|
|
break;
|
|
}
|
|
case SYS_argc:
|
|
regs[0] = count_argc (prog_argv);
|
|
break;
|
|
case SYS_argnlen:
|
|
if (regs[5] < count_argc (prog_argv))
|
|
regs[0] = strlen (prog_argv[regs[5]]);
|
|
else
|
|
regs[0] = -1;
|
|
break;
|
|
case SYS_argn:
|
|
if (regs[5] < count_argc (prog_argv))
|
|
{
|
|
/* Include the termination byte. */
|
|
int i = strlen (prog_argv[regs[5]]) + 1;
|
|
regs[0] = sim_write (0, regs[6], prog_argv[regs[5]], i);
|
|
}
|
|
else
|
|
regs[0] = -1;
|
|
break;
|
|
case SYS_time:
|
|
regs[0] = get_now ();
|
|
break;
|
|
case SYS_ftruncate:
|
|
regs[0] = callback->ftruncate (callback, regs[5], regs[6]);
|
|
break;
|
|
case SYS_truncate:
|
|
{
|
|
int len = strswaplen (regs[5]);
|
|
strnswap (regs[5], len);
|
|
regs[0] = callback->truncate (callback, ptr (regs[5]), regs[6]);
|
|
strnswap (regs[5], len);
|
|
break;
|
|
}
|
|
default:
|
|
regs[0] = -1;
|
|
break;
|
|
}
|
|
regs[1] = callback->get_errno (callback);
|
|
errno = perrno;
|
|
}
|
|
break;
|
|
|
|
case 13: /* Set IBNR */
|
|
IBNR = regs[0] & 0xffff;
|
|
break;
|
|
case 14: /* Set IBCR */
|
|
IBCR = regs[0] & 0xffff;
|
|
break;
|
|
case 0xc3:
|
|
case 255:
|
|
raise_exception (SIGTRAP);
|
|
if (i == 0xc3)
|
|
return -2;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
control_c (sig, code, scp, addr)
|
|
int sig;
|
|
int code;
|
|
char *scp;
|
|
char *addr;
|
|
{
|
|
raise_exception (SIGINT);
|
|
}
|
|
|
|
static int
|
|
div1 (R, iRn2, iRn1/*, T*/)
|
|
int *R;
|
|
int iRn1;
|
|
int iRn2;
|
|
/* int T;*/
|
|
{
|
|
unsigned long tmp0;
|
|
unsigned char old_q, tmp1;
|
|
|
|
old_q = Q;
|
|
SET_SR_Q ((unsigned char) ((0x80000000 & R[iRn1]) != 0));
|
|
R[iRn1] <<= 1;
|
|
R[iRn1] |= (unsigned long) T;
|
|
|
|
switch (old_q)
|
|
{
|
|
case 0:
|
|
switch (M)
|
|
{
|
|
case 0:
|
|
tmp0 = R[iRn1];
|
|
R[iRn1] -= R[iRn2];
|
|
tmp1 = (R[iRn1] > tmp0);
|
|
switch (Q)
|
|
{
|
|
case 0:
|
|
SET_SR_Q (tmp1);
|
|
break;
|
|
case 1:
|
|
SET_SR_Q ((unsigned char) (tmp1 == 0));
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
tmp0 = R[iRn1];
|
|
R[iRn1] += R[iRn2];
|
|
tmp1 = (R[iRn1] < tmp0);
|
|
switch (Q)
|
|
{
|
|
case 0:
|
|
SET_SR_Q ((unsigned char) (tmp1 == 0));
|
|
break;
|
|
case 1:
|
|
SET_SR_Q (tmp1);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
switch (M)
|
|
{
|
|
case 0:
|
|
tmp0 = R[iRn1];
|
|
R[iRn1] += R[iRn2];
|
|
tmp1 = (R[iRn1] < tmp0);
|
|
switch (Q)
|
|
{
|
|
case 0:
|
|
SET_SR_Q (tmp1);
|
|
break;
|
|
case 1:
|
|
SET_SR_Q ((unsigned char) (tmp1 == 0));
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
tmp0 = R[iRn1];
|
|
R[iRn1] -= R[iRn2];
|
|
tmp1 = (R[iRn1] > tmp0);
|
|
switch (Q)
|
|
{
|
|
case 0:
|
|
SET_SR_Q ((unsigned char) (tmp1 == 0));
|
|
break;
|
|
case 1:
|
|
SET_SR_Q (tmp1);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
/*T = (Q == M);*/
|
|
SET_SR_T (Q == M);
|
|
/*return T;*/
|
|
}
|
|
|
|
static void
|
|
dmul (sign, rm, rn)
|
|
int sign;
|
|
unsigned int rm;
|
|
unsigned int rn;
|
|
{
|
|
unsigned long RnL, RnH;
|
|
unsigned long RmL, RmH;
|
|
unsigned long temp0, temp1, temp2, temp3;
|
|
unsigned long Res2, Res1, Res0;
|
|
|
|
RnL = rn & 0xffff;
|
|
RnH = (rn >> 16) & 0xffff;
|
|
RmL = rm & 0xffff;
|
|
RmH = (rm >> 16) & 0xffff;
|
|
temp0 = RmL * RnL;
|
|
temp1 = RmH * RnL;
|
|
temp2 = RmL * RnH;
|
|
temp3 = RmH * RnH;
|
|
Res2 = 0;
|
|
Res1 = temp1 + temp2;
|
|
if (Res1 < temp1)
|
|
Res2 += 0x00010000;
|
|
temp1 = (Res1 << 16) & 0xffff0000;
|
|
Res0 = temp0 + temp1;
|
|
if (Res0 < temp0)
|
|
Res2 += 1;
|
|
Res2 += ((Res1 >> 16) & 0xffff) + temp3;
|
|
|
|
if (sign)
|
|
{
|
|
if (rn & 0x80000000)
|
|
Res2 -= rm;
|
|
if (rm & 0x80000000)
|
|
Res2 -= rn;
|
|
}
|
|
|
|
MACH = Res2;
|
|
MACL = Res0;
|
|
}
|
|
|
|
static void
|
|
macw (regs, memory, n, m, endianw)
|
|
int *regs;
|
|
unsigned char *memory;
|
|
int m, n;
|
|
int endianw;
|
|
{
|
|
long tempm, tempn;
|
|
long prod, macl, sum;
|
|
|
|
tempm=RSWAT (regs[m]); regs[m]+=2;
|
|
tempn=RSWAT (regs[n]); regs[n]+=2;
|
|
|
|
macl = MACL;
|
|
prod = (long) (short) tempm * (long) (short) tempn;
|
|
sum = prod + macl;
|
|
if (S)
|
|
{
|
|
if ((~(prod ^ macl) & (sum ^ prod)) < 0)
|
|
{
|
|
/* MACH's lsb is a sticky overflow bit. */
|
|
MACH |= 1;
|
|
/* Store the smallest negative number in MACL if prod is
|
|
negative, and the largest positive number otherwise. */
|
|
sum = 0x7fffffff + (prod < 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
long mach;
|
|
/* Add to MACH the sign extended product, and carry from low sum. */
|
|
mach = MACH + (-(prod < 0)) + ((unsigned long) sum < prod);
|
|
/* Sign extend at 10:th bit in MACH. */
|
|
MACH = (mach & 0x1ff) | -(mach & 0x200);
|
|
}
|
|
MACL = sum;
|
|
}
|
|
|
|
static void
|
|
macl (regs, memory, n, m)
|
|
int *regs;
|
|
unsigned char *memory;
|
|
int m, n;
|
|
{
|
|
long tempm, tempn;
|
|
long prod, macl, mach, sum;
|
|
long long ans,ansl,ansh,t;
|
|
unsigned long long high,low,combine;
|
|
union mac64
|
|
{
|
|
long m[2]; /* mach and macl*/
|
|
long long m64; /* 64 bit MAC */
|
|
}mac64;
|
|
|
|
tempm = RSLAT (regs[m]);
|
|
regs[m] += 4;
|
|
|
|
tempn = RSLAT (regs[n]);
|
|
regs[n] += 4;
|
|
|
|
mach = MACH;
|
|
macl = MACL;
|
|
|
|
mac64.m[0] = macl;
|
|
mac64.m[1] = mach;
|
|
|
|
ans = (long long) tempm * (long long) tempn; /* Multiply 32bit * 32bit */
|
|
|
|
mac64.m64 += ans; /* Accumulate 64bit + 64 bit */
|
|
|
|
macl = mac64.m[0];
|
|
mach = mac64.m[1];
|
|
|
|
if (S) /* Store only 48 bits of the result */
|
|
{
|
|
if (mach < 0) /* Result is negative */
|
|
{
|
|
mach = mach & 0x0000ffff; /* Mask higher 16 bits */
|
|
mach |= 0xffff8000; /* Sign extend higher 16 bits */
|
|
}
|
|
else
|
|
mach = mach & 0x00007fff; /* Postive Result */
|
|
}
|
|
|
|
MACL = macl;
|
|
MACH = mach;
|
|
}
|
|
|
|
enum {
|
|
B_BCLR = 0,
|
|
B_BSET = 1,
|
|
B_BST = 2,
|
|
B_BLD = 3,
|
|
B_BAND = 4,
|
|
B_BOR = 5,
|
|
B_BXOR = 6,
|
|
B_BLDNOT = 11,
|
|
B_BANDNOT = 12,
|
|
B_BORNOT = 13,
|
|
|
|
MOVB_RM = 0x0000,
|
|
MOVW_RM = 0x1000,
|
|
MOVL_RM = 0x2000,
|
|
FMOV_RM = 0x3000,
|
|
MOVB_MR = 0x4000,
|
|
MOVW_MR = 0x5000,
|
|
MOVL_MR = 0x6000,
|
|
FMOV_MR = 0x7000,
|
|
MOVU_BMR = 0x8000,
|
|
MOVU_WMR = 0x9000,
|
|
};
|
|
|
|
/* Do extended displacement move instructions. */
|
|
void
|
|
do_long_move_insn (int op, int disp12, int m, int n, int *thatlock)
|
|
{
|
|
int memstalls = 0;
|
|
int thislock = *thatlock;
|
|
int endianw = global_endianw;
|
|
int *R = &(saved_state.asregs.regs[0]);
|
|
unsigned char *memory = saved_state.asregs.memory;
|
|
int maskb = ~((saved_state.asregs.msize - 1) & ~0);
|
|
unsigned char *insn_ptr = PT2H (saved_state.asregs.pc);
|
|
|
|
switch (op) {
|
|
case MOVB_RM: /* signed */
|
|
WBAT (disp12 * 1 + R[n], R[m]);
|
|
break;
|
|
case MOVW_RM:
|
|
WWAT (disp12 * 2 + R[n], R[m]);
|
|
break;
|
|
case MOVL_RM:
|
|
WLAT (disp12 * 4 + R[n], R[m]);
|
|
break;
|
|
case FMOV_RM: /* floating point */
|
|
if (FPSCR_SZ)
|
|
{
|
|
MA (1);
|
|
WDAT (R[n] + 8 * disp12, m);
|
|
}
|
|
else
|
|
WLAT (R[n] + 4 * disp12, FI (m));
|
|
break;
|
|
case MOVB_MR:
|
|
R[n] = RSBAT (disp12 * 1 + R[m]);
|
|
L (n);
|
|
break;
|
|
case MOVW_MR:
|
|
R[n] = RSWAT (disp12 * 2 + R[m]);
|
|
L (n);
|
|
break;
|
|
case MOVL_MR:
|
|
R[n] = RLAT (disp12 * 4 + R[m]);
|
|
L (n);
|
|
break;
|
|
case FMOV_MR:
|
|
if (FPSCR_SZ) {
|
|
MA (1);
|
|
RDAT (R[m] + 8 * disp12, n);
|
|
}
|
|
else
|
|
SET_FI (n, RLAT (R[m] + 4 * disp12));
|
|
break;
|
|
case MOVU_BMR: /* unsigned */
|
|
R[n] = RBAT (disp12 * 1 + R[m]);
|
|
L (n);
|
|
break;
|
|
case MOVU_WMR:
|
|
R[n] = RWAT (disp12 * 2 + R[m]);
|
|
L (n);
|
|
break;
|
|
default:
|
|
RAISE_EXCEPTION (SIGINT);
|
|
exit (1);
|
|
}
|
|
saved_state.asregs.memstalls += memstalls;
|
|
*thatlock = thislock;
|
|
}
|
|
|
|
/* Do binary logical bit-manipulation insns. */
|
|
void
|
|
do_blog_insn (int imm, int addr, int binop,
|
|
unsigned char *memory, int maskb)
|
|
{
|
|
int oldval = RBAT (addr);
|
|
|
|
switch (binop) {
|
|
case B_BCLR: /* bclr.b */
|
|
WBAT (addr, oldval & ~imm);
|
|
break;
|
|
case B_BSET: /* bset.b */
|
|
WBAT (addr, oldval | imm);
|
|
break;
|
|
case B_BST: /* bst.b */
|
|
if (T)
|
|
WBAT (addr, oldval | imm);
|
|
else
|
|
WBAT (addr, oldval & ~imm);
|
|
break;
|
|
case B_BLD: /* bld.b */
|
|
SET_SR_T ((oldval & imm) != 0);
|
|
break;
|
|
case B_BAND: /* band.b */
|
|
SET_SR_T (T && ((oldval & imm) != 0));
|
|
break;
|
|
case B_BOR: /* bor.b */
|
|
SET_SR_T (T || ((oldval & imm) != 0));
|
|
break;
|
|
case B_BXOR: /* bxor.b */
|
|
SET_SR_T (T ^ ((oldval & imm) != 0));
|
|
break;
|
|
case B_BLDNOT: /* bldnot.b */
|
|
SET_SR_T ((oldval & imm) == 0);
|
|
break;
|
|
case B_BANDNOT: /* bandnot.b */
|
|
SET_SR_T (T && ((oldval & imm) == 0));
|
|
break;
|
|
case B_BORNOT: /* bornot.b */
|
|
SET_SR_T (T || ((oldval & imm) == 0));
|
|
break;
|
|
}
|
|
}
|
|
float
|
|
fsca_s (int in, double (*f) (double))
|
|
{
|
|
double rad = ldexp ((in & 0xffff), -15) * 3.141592653589793238462643383;
|
|
double result = (*f) (rad);
|
|
double error, upper, lower, frac;
|
|
int exp;
|
|
|
|
/* Search the value with the maximum error that is still within the
|
|
architectural spec. */
|
|
error = ldexp (1., -21);
|
|
/* compensate for calculation inaccuracy by reducing error. */
|
|
error = error - ldexp (1., -50);
|
|
upper = result + error;
|
|
frac = frexp (upper, &exp);
|
|
upper = ldexp (floor (ldexp (frac, 24)), exp - 24);
|
|
lower = result - error;
|
|
frac = frexp (lower, &exp);
|
|
lower = ldexp (ceil (ldexp (frac, 24)), exp - 24);
|
|
return abs (upper - result) >= abs (lower - result) ? upper : lower;
|
|
}
|
|
|
|
float
|
|
fsrra_s (float in)
|
|
{
|
|
double result = 1. / sqrt (in);
|
|
int exp;
|
|
double frac, upper, lower, error, eps;
|
|
|
|
/* refine result */
|
|
result = result - (result * result * in - 1) * 0.5 * result;
|
|
/* Search the value with the maximum error that is still within the
|
|
architectural spec. */
|
|
frac = frexp (result, &exp);
|
|
frac = ldexp (frac, 24);
|
|
error = 4.0; /* 1 << 24-1-21 */
|
|
/* use eps to compensate for possible 1 ulp error in our 'exact' result. */
|
|
eps = ldexp (1., -29);
|
|
upper = floor (frac + error - eps);
|
|
if (upper > 16777216.)
|
|
upper = floor ((frac + error - eps) * 0.5) * 2.;
|
|
lower = ceil ((frac - error + eps) * 2) * .5;
|
|
if (lower > 8388608.)
|
|
lower = ceil (frac - error + eps);
|
|
upper = ldexp (upper, exp - 24);
|
|
lower = ldexp (lower, exp - 24);
|
|
return upper - result >= result - lower ? upper : lower;
|
|
}
|
|
|
|
|
|
/* GET_LOOP_BOUNDS {EXTENDED}
|
|
These two functions compute the actual starting and ending point
|
|
of the repeat loop, based on the RS and RE registers (repeat start,
|
|
repeat stop). The extended version is called for LDRC, and the
|
|
regular version is called for SETRC. The difference is that for
|
|
LDRC, the loop start and end instructions are literally the ones
|
|
pointed to by RS and RE -- for SETRC, they're not (see docs). */
|
|
|
|
static struct loop_bounds
|
|
get_loop_bounds_ext (rs, re, memory, mem_end, maskw, endianw)
|
|
int rs, re;
|
|
unsigned char *memory, *mem_end;
|
|
int maskw, endianw;
|
|
{
|
|
struct loop_bounds loop;
|
|
|
|
/* FIXME: should I verify RS < RE? */
|
|
loop.start = PT2H (RS); /* FIXME not using the params? */
|
|
loop.end = PT2H (RE & ~1); /* Ignore bit 0 of RE. */
|
|
SKIP_INSN (loop.end);
|
|
if (loop.end >= mem_end)
|
|
loop.end = PT2H (0);
|
|
return loop;
|
|
}
|
|
|
|
static struct loop_bounds
|
|
get_loop_bounds (rs, re, memory, mem_end, maskw, endianw)
|
|
int rs, re;
|
|
unsigned char *memory, *mem_end;
|
|
int maskw, endianw;
|
|
{
|
|
struct loop_bounds loop;
|
|
|
|
if (SR_RC)
|
|
{
|
|
if (RS >= RE)
|
|
{
|
|
loop.start = PT2H (RE - 4);
|
|
SKIP_INSN (loop.start);
|
|
loop.end = loop.start;
|
|
if (RS - RE == 0)
|
|
SKIP_INSN (loop.end);
|
|
if (RS - RE <= 2)
|
|
SKIP_INSN (loop.end);
|
|
SKIP_INSN (loop.end);
|
|
}
|
|
else
|
|
{
|
|
loop.start = PT2H (RS);
|
|
loop.end = PT2H (RE - 4);
|
|
SKIP_INSN (loop.end);
|
|
SKIP_INSN (loop.end);
|
|
SKIP_INSN (loop.end);
|
|
SKIP_INSN (loop.end);
|
|
}
|
|
if (loop.end >= mem_end)
|
|
loop.end = PT2H (0);
|
|
}
|
|
else
|
|
loop.end = PT2H (0);
|
|
|
|
return loop;
|
|
}
|
|
|
|
static void ppi_insn ();
|
|
|
|
#include "ppi.c"
|
|
|
|
/* Provide calloc / free versions that use an anonymous mmap. This can
|
|
significantly cut the start-up time when a large simulator memory is
|
|
required, because pages are only zeroed on demand. */
|
|
#ifdef MAP_ANONYMOUS
|
|
void *
|
|
mcalloc (size_t nmemb, size_t size)
|
|
{
|
|
void *page;
|
|
|
|
if (nmemb != 1)
|
|
size *= nmemb;
|
|
return mmap (0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
}
|
|
|
|
#define mfree(start,length) munmap ((start), (length))
|
|
#else
|
|
#define mcalloc calloc
|
|
#define mfree(start,length) free(start)
|
|
#endif
|
|
|
|
/* Set the memory size to the power of two provided. */
|
|
|
|
void
|
|
sim_size (power)
|
|
int power;
|
|
|
|
{
|
|
sim_memory_size = power;
|
|
|
|
if (saved_state.asregs.memory)
|
|
{
|
|
mfree (saved_state.asregs.memory, saved_state.asregs.msize);
|
|
}
|
|
|
|
saved_state.asregs.msize = 1 << power;
|
|
|
|
saved_state.asregs.memory =
|
|
(unsigned char *) mcalloc (1, saved_state.asregs.msize);
|
|
|
|
if (!saved_state.asregs.memory)
|
|
{
|
|
fprintf (stderr,
|
|
"Not enough VM for simulation of %d bytes of RAM\n",
|
|
saved_state.asregs.msize);
|
|
|
|
saved_state.asregs.msize = 1;
|
|
saved_state.asregs.memory = (unsigned char *) mcalloc (1, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
init_dsp (abfd)
|
|
struct bfd *abfd;
|
|
{
|
|
int was_dsp = target_dsp;
|
|
unsigned long mach = bfd_get_mach (abfd);
|
|
|
|
if (mach == bfd_mach_sh_dsp ||
|
|
mach == bfd_mach_sh4al_dsp ||
|
|
mach == bfd_mach_sh3_dsp)
|
|
{
|
|
int ram_area_size, xram_start, yram_start;
|
|
int new_select;
|
|
|
|
target_dsp = 1;
|
|
if (mach == bfd_mach_sh_dsp)
|
|
{
|
|
/* SH7410 (orig. sh-sdp):
|
|
4KB each for X & Y memory;
|
|
On-chip X RAM 0x0800f000-0x0800ffff
|
|
On-chip Y RAM 0x0801f000-0x0801ffff */
|
|
xram_start = 0x0800f000;
|
|
ram_area_size = 0x1000;
|
|
}
|
|
if (mach == bfd_mach_sh3_dsp || mach == bfd_mach_sh4al_dsp)
|
|
{
|
|
/* SH7612:
|
|
8KB each for X & Y memory;
|
|
On-chip X RAM 0x1000e000-0x1000ffff
|
|
On-chip Y RAM 0x1001e000-0x1001ffff */
|
|
xram_start = 0x1000e000;
|
|
ram_area_size = 0x2000;
|
|
}
|
|
yram_start = xram_start + 0x10000;
|
|
new_select = ~(ram_area_size - 1);
|
|
if (saved_state.asregs.xyram_select != new_select)
|
|
{
|
|
saved_state.asregs.xyram_select = new_select;
|
|
free (saved_state.asregs.xmem);
|
|
free (saved_state.asregs.ymem);
|
|
saved_state.asregs.xmem =
|
|
(unsigned char *) calloc (1, ram_area_size);
|
|
saved_state.asregs.ymem =
|
|
(unsigned char *) calloc (1, ram_area_size);
|
|
|
|
/* Disable use of X / Y mmeory if not allocated. */
|
|
if (! saved_state.asregs.xmem || ! saved_state.asregs.ymem)
|
|
{
|
|
saved_state.asregs.xyram_select = 0;
|
|
if (saved_state.asregs.xmem)
|
|
free (saved_state.asregs.xmem);
|
|
if (saved_state.asregs.ymem)
|
|
free (saved_state.asregs.ymem);
|
|
}
|
|
}
|
|
saved_state.asregs.xram_start = xram_start;
|
|
saved_state.asregs.yram_start = yram_start;
|
|
saved_state.asregs.xmem_offset = saved_state.asregs.xmem - xram_start;
|
|
saved_state.asregs.ymem_offset = saved_state.asregs.ymem - yram_start;
|
|
}
|
|
else
|
|
{
|
|
target_dsp = 0;
|
|
if (saved_state.asregs.xyram_select)
|
|
{
|
|
saved_state.asregs.xyram_select = 0;
|
|
free (saved_state.asregs.xmem);
|
|
free (saved_state.asregs.ymem);
|
|
}
|
|
}
|
|
|
|
if (! saved_state.asregs.xyram_select)
|
|
{
|
|
saved_state.asregs.xram_start = 1;
|
|
saved_state.asregs.yram_start = 1;
|
|
}
|
|
|
|
if (saved_state.asregs.regstack == NULL)
|
|
saved_state.asregs.regstack =
|
|
calloc (512, sizeof *saved_state.asregs.regstack);
|
|
|
|
if (target_dsp != was_dsp)
|
|
{
|
|
int i, tmp;
|
|
|
|
for (i = (sizeof sh_dsp_table / sizeof sh_dsp_table[0]) - 1; i >= 0; i--)
|
|
{
|
|
tmp = sh_jump_table[0xf000 + i];
|
|
sh_jump_table[0xf000 + i] = sh_dsp_table[i];
|
|
sh_dsp_table[i] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
init_pointers ()
|
|
{
|
|
host_little_endian = 0;
|
|
* (char*) &host_little_endian = 1;
|
|
host_little_endian &= 1;
|
|
|
|
if (saved_state.asregs.msize != 1 << sim_memory_size)
|
|
{
|
|
sim_size (sim_memory_size);
|
|
}
|
|
|
|
if (saved_state.asregs.profile && !profile_file)
|
|
{
|
|
profile_file = fopen ("gmon.out", "wb");
|
|
/* Seek to where to put the call arc data */
|
|
nsamples = (1 << sim_profile_size);
|
|
|
|
fseek (profile_file, nsamples * 2 + 12, 0);
|
|
|
|
if (!profile_file)
|
|
{
|
|
fprintf (stderr, "Can't open gmon.out\n");
|
|
}
|
|
else
|
|
{
|
|
saved_state.asregs.profile_hist =
|
|
(unsigned short *) calloc (64, (nsamples * sizeof (short) / 64));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_profile ()
|
|
{
|
|
unsigned int minpc;
|
|
unsigned int maxpc;
|
|
unsigned short *p;
|
|
int i;
|
|
|
|
p = saved_state.asregs.profile_hist;
|
|
minpc = 0;
|
|
maxpc = (1 << sim_profile_size);
|
|
|
|
fseek (profile_file, 0L, 0);
|
|
swapout (minpc << PROFILE_SHIFT);
|
|
swapout (maxpc << PROFILE_SHIFT);
|
|
swapout (nsamples * 2 + 12);
|
|
for (i = 0; i < nsamples; i++)
|
|
swapout16 (saved_state.asregs.profile_hist[i]);
|
|
|
|
}
|
|
|
|
static void
|
|
gotcall (from, to)
|
|
int from;
|
|
int to;
|
|
{
|
|
swapout (from);
|
|
swapout (to);
|
|
swapout (1);
|
|
}
|
|
|
|
#define MMASKB ((saved_state.asregs.msize -1) & ~0)
|
|
|
|
int
|
|
sim_stop (sd)
|
|
SIM_DESC sd;
|
|
{
|
|
raise_exception (SIGINT);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
sim_resume (sd, step, siggnal)
|
|
SIM_DESC sd;
|
|
int step, siggnal;
|
|
{
|
|
register unsigned char *insn_ptr;
|
|
unsigned char *mem_end;
|
|
struct loop_bounds loop;
|
|
register int cycles = 0;
|
|
register int stalls = 0;
|
|
register int memstalls = 0;
|
|
register int insts = 0;
|
|
register int prevlock;
|
|
#if 1
|
|
int thislock;
|
|
#else
|
|
register int thislock;
|
|
#endif
|
|
register unsigned int doprofile;
|
|
register int pollcount = 0;
|
|
/* endianw is used for every insn fetch, hence it makes sense to cache it.
|
|
endianb is used less often. */
|
|
register int endianw = global_endianw;
|
|
|
|
int tick_start = get_now ();
|
|
void (*prev) ();
|
|
void (*prev_fpe) ();
|
|
|
|
register unsigned short *jump_table = sh_jump_table;
|
|
|
|
register int *R = &(saved_state.asregs.regs[0]);
|
|
/*register int T;*/
|
|
#ifndef PR
|
|
register int PR;
|
|
#endif
|
|
|
|
register int maskb = ~((saved_state.asregs.msize - 1) & ~0);
|
|
register int maskw = ~((saved_state.asregs.msize - 1) & ~1);
|
|
register int maskl = ~((saved_state.asregs.msize - 1) & ~3);
|
|
register unsigned char *memory;
|
|
register unsigned int sbit = ((unsigned int) 1 << 31);
|
|
|
|
prev = signal (SIGINT, control_c);
|
|
prev_fpe = signal (SIGFPE, SIG_IGN);
|
|
|
|
init_pointers ();
|
|
saved_state.asregs.exception = 0;
|
|
|
|
memory = saved_state.asregs.memory;
|
|
mem_end = memory + saved_state.asregs.msize;
|
|
|
|
if (RE & 1)
|
|
loop = get_loop_bounds_ext (RS, RE, memory, mem_end, maskw, endianw);
|
|
else
|
|
loop = get_loop_bounds (RS, RE, memory, mem_end, maskw, endianw);
|
|
|
|
insn_ptr = PT2H (saved_state.asregs.pc);
|
|
CHECK_INSN_PTR (insn_ptr);
|
|
|
|
#ifndef PR
|
|
PR = saved_state.asregs.sregs.named.pr;
|
|
#endif
|
|
/*T = GET_SR () & SR_MASK_T;*/
|
|
prevlock = saved_state.asregs.prevlock;
|
|
thislock = saved_state.asregs.thislock;
|
|
doprofile = saved_state.asregs.profile;
|
|
|
|
/* If profiling not enabled, disable it by asking for
|
|
profiles infrequently. */
|
|
if (doprofile == 0)
|
|
doprofile = ~0;
|
|
|
|
loop:
|
|
if (step && insn_ptr < saved_state.asregs.insn_end)
|
|
{
|
|
if (saved_state.asregs.exception)
|
|
/* This can happen if we've already been single-stepping and
|
|
encountered a loop end. */
|
|
saved_state.asregs.insn_end = insn_ptr;
|
|
else
|
|
{
|
|
saved_state.asregs.exception = SIGTRAP;
|
|
saved_state.asregs.insn_end = insn_ptr + 2;
|
|
}
|
|
}
|
|
|
|
while (insn_ptr < saved_state.asregs.insn_end)
|
|
{
|
|
register unsigned int iword = RIAT (insn_ptr);
|
|
register unsigned int ult;
|
|
register unsigned char *nip = insn_ptr + 2;
|
|
|
|
#ifndef ACE_FAST
|
|
insts++;
|
|
#endif
|
|
top:
|
|
if (tracing)
|
|
fprintf (stderr, "PC: %08x, insn: %04x\n", PH2T (insn_ptr), iword);
|
|
|
|
#include "code.c"
|
|
|
|
|
|
in_delay_slot = 0;
|
|
insn_ptr = nip;
|
|
|
|
if (--pollcount < 0)
|
|
{
|
|
pollcount = POLL_QUIT_INTERVAL;
|
|
if ((*callback->poll_quit) != NULL
|
|
&& (*callback->poll_quit) (callback))
|
|
{
|
|
sim_stop (sd);
|
|
}
|
|
}
|
|
|
|
#ifndef ACE_FAST
|
|
prevlock = thislock;
|
|
thislock = 30;
|
|
cycles++;
|
|
|
|
if (cycles >= doprofile)
|
|
{
|
|
|
|
saved_state.asregs.cycles += doprofile;
|
|
cycles -= doprofile;
|
|
if (saved_state.asregs.profile_hist)
|
|
{
|
|
int n = PH2T (insn_ptr) >> PROFILE_SHIFT;
|
|
if (n < nsamples)
|
|
{
|
|
int i = saved_state.asregs.profile_hist[n];
|
|
if (i < 65000)
|
|
saved_state.asregs.profile_hist[n] = i + 1;
|
|
}
|
|
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
if (saved_state.asregs.insn_end == loop.end)
|
|
{
|
|
saved_state.asregs.cregs.named.sr += SR_RC_INCREMENT;
|
|
if (SR_RC)
|
|
insn_ptr = loop.start;
|
|
else
|
|
{
|
|
saved_state.asregs.insn_end = mem_end;
|
|
loop.end = PT2H (0);
|
|
}
|
|
goto loop;
|
|
}
|
|
|
|
if (saved_state.asregs.exception == SIGILL
|
|
|| saved_state.asregs.exception == SIGBUS)
|
|
{
|
|
insn_ptr -= 2;
|
|
}
|
|
/* Check for SIGBUS due to insn fetch. */
|
|
else if (! saved_state.asregs.exception)
|
|
saved_state.asregs.exception = SIGBUS;
|
|
|
|
saved_state.asregs.ticks += get_now () - tick_start;
|
|
saved_state.asregs.cycles += cycles;
|
|
saved_state.asregs.stalls += stalls;
|
|
saved_state.asregs.memstalls += memstalls;
|
|
saved_state.asregs.insts += insts;
|
|
saved_state.asregs.pc = PH2T (insn_ptr);
|
|
#ifndef PR
|
|
saved_state.asregs.sregs.named.pr = PR;
|
|
#endif
|
|
|
|
saved_state.asregs.prevlock = prevlock;
|
|
saved_state.asregs.thislock = thislock;
|
|
|
|
if (profile_file)
|
|
{
|
|
dump_profile ();
|
|
}
|
|
|
|
signal (SIGFPE, prev_fpe);
|
|
signal (SIGINT, prev);
|
|
}
|
|
|
|
int
|
|
sim_write (sd, addr, buffer, size)
|
|
SIM_DESC sd;
|
|
SIM_ADDR addr;
|
|
unsigned char *buffer;
|
|
int size;
|
|
{
|
|
int i;
|
|
|
|
init_pointers ();
|
|
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
saved_state.asregs.memory[(MMASKB & (addr + i)) ^ endianb] = buffer[i];
|
|
}
|
|
return size;
|
|
}
|
|
|
|
int
|
|
sim_read (sd, addr, buffer, size)
|
|
SIM_DESC sd;
|
|
SIM_ADDR addr;
|
|
unsigned char *buffer;
|
|
int size;
|
|
{
|
|
int i;
|
|
|
|
init_pointers ();
|
|
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
buffer[i] = saved_state.asregs.memory[(MMASKB & (addr + i)) ^ endianb];
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static int gdb_bank_number;
|
|
enum {
|
|
REGBANK_MACH = 15,
|
|
REGBANK_IVN = 16,
|
|
REGBANK_PR = 17,
|
|
REGBANK_GBR = 18,
|
|
REGBANK_MACL = 19
|
|
};
|
|
|
|
int
|
|
sim_store_register (sd, rn, memory, length)
|
|
SIM_DESC sd;
|
|
int rn;
|
|
unsigned char *memory;
|
|
int length;
|
|
{
|
|
unsigned val;
|
|
|
|
init_pointers ();
|
|
val = swap (* (int *) memory);
|
|
switch (rn)
|
|
{
|
|
case SIM_SH_R0_REGNUM: case SIM_SH_R1_REGNUM: case SIM_SH_R2_REGNUM:
|
|
case SIM_SH_R3_REGNUM: case SIM_SH_R4_REGNUM: case SIM_SH_R5_REGNUM:
|
|
case SIM_SH_R6_REGNUM: case SIM_SH_R7_REGNUM: case SIM_SH_R8_REGNUM:
|
|
case SIM_SH_R9_REGNUM: case SIM_SH_R10_REGNUM: case SIM_SH_R11_REGNUM:
|
|
case SIM_SH_R12_REGNUM: case SIM_SH_R13_REGNUM: case SIM_SH_R14_REGNUM:
|
|
case SIM_SH_R15_REGNUM:
|
|
saved_state.asregs.regs[rn] = val;
|
|
break;
|
|
case SIM_SH_PC_REGNUM:
|
|
saved_state.asregs.pc = val;
|
|
break;
|
|
case SIM_SH_PR_REGNUM:
|
|
PR = val;
|
|
break;
|
|
case SIM_SH_GBR_REGNUM:
|
|
GBR = val;
|
|
break;
|
|
case SIM_SH_VBR_REGNUM:
|
|
VBR = val;
|
|
break;
|
|
case SIM_SH_MACH_REGNUM:
|
|
MACH = val;
|
|
break;
|
|
case SIM_SH_MACL_REGNUM:
|
|
MACL = val;
|
|
break;
|
|
case SIM_SH_SR_REGNUM:
|
|
SET_SR (val);
|
|
break;
|
|
case SIM_SH_FPUL_REGNUM:
|
|
FPUL = val;
|
|
break;
|
|
case SIM_SH_FPSCR_REGNUM:
|
|
SET_FPSCR (val);
|
|
break;
|
|
case SIM_SH_FR0_REGNUM: case SIM_SH_FR1_REGNUM: case SIM_SH_FR2_REGNUM:
|
|
case SIM_SH_FR3_REGNUM: case SIM_SH_FR4_REGNUM: case SIM_SH_FR5_REGNUM:
|
|
case SIM_SH_FR6_REGNUM: case SIM_SH_FR7_REGNUM: case SIM_SH_FR8_REGNUM:
|
|
case SIM_SH_FR9_REGNUM: case SIM_SH_FR10_REGNUM: case SIM_SH_FR11_REGNUM:
|
|
case SIM_SH_FR12_REGNUM: case SIM_SH_FR13_REGNUM: case SIM_SH_FR14_REGNUM:
|
|
case SIM_SH_FR15_REGNUM:
|
|
SET_FI (rn - SIM_SH_FR0_REGNUM, val);
|
|
break;
|
|
case SIM_SH_DSR_REGNUM:
|
|
DSR = val;
|
|
break;
|
|
case SIM_SH_A0G_REGNUM:
|
|
A0G = val;
|
|
break;
|
|
case SIM_SH_A0_REGNUM:
|
|
A0 = val;
|
|
break;
|
|
case SIM_SH_A1G_REGNUM:
|
|
A1G = val;
|
|
break;
|
|
case SIM_SH_A1_REGNUM:
|
|
A1 = val;
|
|
break;
|
|
case SIM_SH_M0_REGNUM:
|
|
M0 = val;
|
|
break;
|
|
case SIM_SH_M1_REGNUM:
|
|
M1 = val;
|
|
break;
|
|
case SIM_SH_X0_REGNUM:
|
|
X0 = val;
|
|
break;
|
|
case SIM_SH_X1_REGNUM:
|
|
X1 = val;
|
|
break;
|
|
case SIM_SH_Y0_REGNUM:
|
|
Y0 = val;
|
|
break;
|
|
case SIM_SH_Y1_REGNUM:
|
|
Y1 = val;
|
|
break;
|
|
case SIM_SH_MOD_REGNUM:
|
|
SET_MOD (val);
|
|
break;
|
|
case SIM_SH_RS_REGNUM:
|
|
RS = val;
|
|
break;
|
|
case SIM_SH_RE_REGNUM:
|
|
RE = val;
|
|
break;
|
|
case SIM_SH_SSR_REGNUM:
|
|
SSR = val;
|
|
break;
|
|
case SIM_SH_SPC_REGNUM:
|
|
SPC = val;
|
|
break;
|
|
/* The rn_bank idiosyncracies are not due to hardware differences, but to
|
|
a weird aliasing naming scheme for sh3 / sh3e / sh4. */
|
|
case SIM_SH_R0_BANK0_REGNUM: case SIM_SH_R1_BANK0_REGNUM:
|
|
case SIM_SH_R2_BANK0_REGNUM: case SIM_SH_R3_BANK0_REGNUM:
|
|
case SIM_SH_R4_BANK0_REGNUM: case SIM_SH_R5_BANK0_REGNUM:
|
|
case SIM_SH_R6_BANK0_REGNUM: case SIM_SH_R7_BANK0_REGNUM:
|
|
if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
|
|
{
|
|
rn -= SIM_SH_R0_BANK0_REGNUM;
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[rn] = val;
|
|
}
|
|
else
|
|
if (SR_MD && SR_RB)
|
|
Rn_BANK (rn - SIM_SH_R0_BANK0_REGNUM) = val;
|
|
else
|
|
saved_state.asregs.regs[rn - SIM_SH_R0_BANK0_REGNUM] = val;
|
|
break;
|
|
case SIM_SH_R0_BANK1_REGNUM: case SIM_SH_R1_BANK1_REGNUM:
|
|
case SIM_SH_R2_BANK1_REGNUM: case SIM_SH_R3_BANK1_REGNUM:
|
|
case SIM_SH_R4_BANK1_REGNUM: case SIM_SH_R5_BANK1_REGNUM:
|
|
case SIM_SH_R6_BANK1_REGNUM: case SIM_SH_R7_BANK1_REGNUM:
|
|
if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
|
|
{
|
|
rn -= SIM_SH_R0_BANK1_REGNUM;
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[rn + 8] = val;
|
|
}
|
|
else
|
|
if (SR_MD && SR_RB)
|
|
saved_state.asregs.regs[rn - SIM_SH_R0_BANK1_REGNUM] = val;
|
|
else
|
|
Rn_BANK (rn - SIM_SH_R0_BANK1_REGNUM) = val;
|
|
break;
|
|
case SIM_SH_R0_BANK_REGNUM: case SIM_SH_R1_BANK_REGNUM:
|
|
case SIM_SH_R2_BANK_REGNUM: case SIM_SH_R3_BANK_REGNUM:
|
|
case SIM_SH_R4_BANK_REGNUM: case SIM_SH_R5_BANK_REGNUM:
|
|
case SIM_SH_R6_BANK_REGNUM: case SIM_SH_R7_BANK_REGNUM:
|
|
SET_Rn_BANK (rn - SIM_SH_R0_BANK_REGNUM, val);
|
|
break;
|
|
case SIM_SH_TBR_REGNUM:
|
|
TBR = val;
|
|
break;
|
|
case SIM_SH_IBNR_REGNUM:
|
|
IBNR = val;
|
|
break;
|
|
case SIM_SH_IBCR_REGNUM:
|
|
IBCR = val;
|
|
break;
|
|
case SIM_SH_BANK_REGNUM:
|
|
/* This is a pseudo-register maintained just for gdb.
|
|
It tells us what register bank gdb would like to read/write. */
|
|
gdb_bank_number = val;
|
|
break;
|
|
case SIM_SH_BANK_MACL_REGNUM:
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACL] = val;
|
|
break;
|
|
case SIM_SH_BANK_GBR_REGNUM:
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_GBR] = val;
|
|
break;
|
|
case SIM_SH_BANK_PR_REGNUM:
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_PR] = val;
|
|
break;
|
|
case SIM_SH_BANK_IVN_REGNUM:
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_IVN] = val;
|
|
break;
|
|
case SIM_SH_BANK_MACH_REGNUM:
|
|
saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACH] = val;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
sim_fetch_register (sd, rn, memory, length)
|
|
SIM_DESC sd;
|
|
int rn;
|
|
unsigned char *memory;
|
|
int length;
|
|
{
|
|
int val;
|
|
|
|
init_pointers ();
|
|
switch (rn)
|
|
{
|
|
case SIM_SH_R0_REGNUM: case SIM_SH_R1_REGNUM: case SIM_SH_R2_REGNUM:
|
|
case SIM_SH_R3_REGNUM: case SIM_SH_R4_REGNUM: case SIM_SH_R5_REGNUM:
|
|
case SIM_SH_R6_REGNUM: case SIM_SH_R7_REGNUM: case SIM_SH_R8_REGNUM:
|
|
case SIM_SH_R9_REGNUM: case SIM_SH_R10_REGNUM: case SIM_SH_R11_REGNUM:
|
|
case SIM_SH_R12_REGNUM: case SIM_SH_R13_REGNUM: case SIM_SH_R14_REGNUM:
|
|
case SIM_SH_R15_REGNUM:
|
|
val = saved_state.asregs.regs[rn];
|
|
break;
|
|
case SIM_SH_PC_REGNUM:
|
|
val = saved_state.asregs.pc;
|
|
break;
|
|
case SIM_SH_PR_REGNUM:
|
|
val = PR;
|
|
break;
|
|
case SIM_SH_GBR_REGNUM:
|
|
val = GBR;
|
|
break;
|
|
case SIM_SH_VBR_REGNUM:
|
|
val = VBR;
|
|
break;
|
|
case SIM_SH_MACH_REGNUM:
|
|
val = MACH;
|
|
break;
|
|
case SIM_SH_MACL_REGNUM:
|
|
val = MACL;
|
|
break;
|
|
case SIM_SH_SR_REGNUM:
|
|
val = GET_SR ();
|
|
break;
|
|
case SIM_SH_FPUL_REGNUM:
|
|
val = FPUL;
|
|
break;
|
|
case SIM_SH_FPSCR_REGNUM:
|
|
val = GET_FPSCR ();
|
|
break;
|
|
case SIM_SH_FR0_REGNUM: case SIM_SH_FR1_REGNUM: case SIM_SH_FR2_REGNUM:
|
|
case SIM_SH_FR3_REGNUM: case SIM_SH_FR4_REGNUM: case SIM_SH_FR5_REGNUM:
|
|
case SIM_SH_FR6_REGNUM: case SIM_SH_FR7_REGNUM: case SIM_SH_FR8_REGNUM:
|
|
case SIM_SH_FR9_REGNUM: case SIM_SH_FR10_REGNUM: case SIM_SH_FR11_REGNUM:
|
|
case SIM_SH_FR12_REGNUM: case SIM_SH_FR13_REGNUM: case SIM_SH_FR14_REGNUM:
|
|
case SIM_SH_FR15_REGNUM:
|
|
val = FI (rn - SIM_SH_FR0_REGNUM);
|
|
break;
|
|
case SIM_SH_DSR_REGNUM:
|
|
val = DSR;
|
|
break;
|
|
case SIM_SH_A0G_REGNUM:
|
|
val = SEXT (A0G);
|
|
break;
|
|
case SIM_SH_A0_REGNUM:
|
|
val = A0;
|
|
break;
|
|
case SIM_SH_A1G_REGNUM:
|
|
val = SEXT (A1G);
|
|
break;
|
|
case SIM_SH_A1_REGNUM:
|
|
val = A1;
|
|
break;
|
|
case SIM_SH_M0_REGNUM:
|
|
val = M0;
|
|
break;
|
|
case SIM_SH_M1_REGNUM:
|
|
val = M1;
|
|
break;
|
|
case SIM_SH_X0_REGNUM:
|
|
val = X0;
|
|
break;
|
|
case SIM_SH_X1_REGNUM:
|
|
val = X1;
|
|
break;
|
|
case SIM_SH_Y0_REGNUM:
|
|
val = Y0;
|
|
break;
|
|
case SIM_SH_Y1_REGNUM:
|
|
val = Y1;
|
|
break;
|
|
case SIM_SH_MOD_REGNUM:
|
|
val = MOD;
|
|
break;
|
|
case SIM_SH_RS_REGNUM:
|
|
val = RS;
|
|
break;
|
|
case SIM_SH_RE_REGNUM:
|
|
val = RE;
|
|
break;
|
|
case SIM_SH_SSR_REGNUM:
|
|
val = SSR;
|
|
break;
|
|
case SIM_SH_SPC_REGNUM:
|
|
val = SPC;
|
|
break;
|
|
/* The rn_bank idiosyncracies are not due to hardware differences, but to
|
|
a weird aliasing naming scheme for sh3 / sh3e / sh4. */
|
|
case SIM_SH_R0_BANK0_REGNUM: case SIM_SH_R1_BANK0_REGNUM:
|
|
case SIM_SH_R2_BANK0_REGNUM: case SIM_SH_R3_BANK0_REGNUM:
|
|
case SIM_SH_R4_BANK0_REGNUM: case SIM_SH_R5_BANK0_REGNUM:
|
|
case SIM_SH_R6_BANK0_REGNUM: case SIM_SH_R7_BANK0_REGNUM:
|
|
if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
|
|
{
|
|
rn -= SIM_SH_R0_BANK0_REGNUM;
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[rn];
|
|
}
|
|
else
|
|
val = (SR_MD && SR_RB
|
|
? Rn_BANK (rn - SIM_SH_R0_BANK0_REGNUM)
|
|
: saved_state.asregs.regs[rn - SIM_SH_R0_BANK0_REGNUM]);
|
|
break;
|
|
case SIM_SH_R0_BANK1_REGNUM: case SIM_SH_R1_BANK1_REGNUM:
|
|
case SIM_SH_R2_BANK1_REGNUM: case SIM_SH_R3_BANK1_REGNUM:
|
|
case SIM_SH_R4_BANK1_REGNUM: case SIM_SH_R5_BANK1_REGNUM:
|
|
case SIM_SH_R6_BANK1_REGNUM: case SIM_SH_R7_BANK1_REGNUM:
|
|
if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
|
|
{
|
|
rn -= SIM_SH_R0_BANK1_REGNUM;
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[rn + 8];
|
|
}
|
|
else
|
|
val = (! SR_MD || ! SR_RB
|
|
? Rn_BANK (rn - SIM_SH_R0_BANK1_REGNUM)
|
|
: saved_state.asregs.regs[rn - SIM_SH_R0_BANK1_REGNUM]);
|
|
break;
|
|
case SIM_SH_R0_BANK_REGNUM: case SIM_SH_R1_BANK_REGNUM:
|
|
case SIM_SH_R2_BANK_REGNUM: case SIM_SH_R3_BANK_REGNUM:
|
|
case SIM_SH_R4_BANK_REGNUM: case SIM_SH_R5_BANK_REGNUM:
|
|
case SIM_SH_R6_BANK_REGNUM: case SIM_SH_R7_BANK_REGNUM:
|
|
val = Rn_BANK (rn - SIM_SH_R0_BANK_REGNUM);
|
|
break;
|
|
case SIM_SH_TBR_REGNUM:
|
|
val = TBR;
|
|
break;
|
|
case SIM_SH_IBNR_REGNUM:
|
|
val = IBNR;
|
|
break;
|
|
case SIM_SH_IBCR_REGNUM:
|
|
val = IBCR;
|
|
break;
|
|
case SIM_SH_BANK_REGNUM:
|
|
/* This is a pseudo-register maintained just for gdb.
|
|
It tells us what register bank gdb would like to read/write. */
|
|
val = gdb_bank_number;
|
|
break;
|
|
case SIM_SH_BANK_MACL_REGNUM:
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACL];
|
|
break;
|
|
case SIM_SH_BANK_GBR_REGNUM:
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_GBR];
|
|
break;
|
|
case SIM_SH_BANK_PR_REGNUM:
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_PR];
|
|
break;
|
|
case SIM_SH_BANK_IVN_REGNUM:
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_IVN];
|
|
break;
|
|
case SIM_SH_BANK_MACH_REGNUM:
|
|
val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACH];
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
* (int *) memory = swap (val);
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
sim_trace (sd)
|
|
SIM_DESC sd;
|
|
{
|
|
tracing = 1;
|
|
sim_resume (sd, 0, 0);
|
|
tracing = 0;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
sim_stop_reason (sd, reason, sigrc)
|
|
SIM_DESC sd;
|
|
enum sim_stop *reason;
|
|
int *sigrc;
|
|
{
|
|
/* The SH simulator uses SIGQUIT to indicate that the program has
|
|
exited, so we must check for it here and translate it to exit. */
|
|
if (saved_state.asregs.exception == SIGQUIT)
|
|
{
|
|
*reason = sim_exited;
|
|
*sigrc = saved_state.asregs.regs[5];
|
|
}
|
|
else
|
|
{
|
|
*reason = sim_stopped;
|
|
*sigrc = saved_state.asregs.exception;
|
|
}
|
|
}
|
|
|
|
void
|
|
sim_info (sd, verbose)
|
|
SIM_DESC sd;
|
|
int verbose;
|
|
{
|
|
double timetaken =
|
|
(double) saved_state.asregs.ticks / (double) now_persec ();
|
|
double virttime = saved_state.asregs.cycles / 36.0e6;
|
|
|
|
callback->printf_filtered (callback, "\n\n# instructions executed %10d\n",
|
|
saved_state.asregs.insts);
|
|
callback->printf_filtered (callback, "# cycles %10d\n",
|
|
saved_state.asregs.cycles);
|
|
callback->printf_filtered (callback, "# pipeline stalls %10d\n",
|
|
saved_state.asregs.stalls);
|
|
callback->printf_filtered (callback, "# misaligned load/store %10d\n",
|
|
saved_state.asregs.memstalls);
|
|
callback->printf_filtered (callback, "# real time taken %10.4f\n",
|
|
timetaken);
|
|
callback->printf_filtered (callback, "# virtual time taken %10.4f\n",
|
|
virttime);
|
|
callback->printf_filtered (callback, "# profiling size %10d\n",
|
|
sim_profile_size);
|
|
callback->printf_filtered (callback, "# profiling frequency %10d\n",
|
|
saved_state.asregs.profile);
|
|
callback->printf_filtered (callback, "# profile maxpc %10x\n",
|
|
(1 << sim_profile_size) << PROFILE_SHIFT);
|
|
|
|
if (timetaken != 0)
|
|
{
|
|
callback->printf_filtered (callback, "# cycles/second %10d\n",
|
|
(int) (saved_state.asregs.cycles / timetaken));
|
|
callback->printf_filtered (callback, "# simulation ratio %10.4f\n",
|
|
virttime / timetaken);
|
|
}
|
|
}
|
|
|
|
void
|
|
sim_set_profile (n)
|
|
int n;
|
|
{
|
|
saved_state.asregs.profile = n;
|
|
}
|
|
|
|
void
|
|
sim_set_profile_size (n)
|
|
int n;
|
|
{
|
|
sim_profile_size = n;
|
|
}
|
|
|
|
SIM_DESC
|
|
sim_open (kind, cb, abfd, argv)
|
|
SIM_OPEN_KIND kind;
|
|
host_callback *cb;
|
|
struct bfd *abfd;
|
|
char **argv;
|
|
{
|
|
char **p;
|
|
int endian_set = 0;
|
|
int i;
|
|
union
|
|
{
|
|
int i;
|
|
short s[2];
|
|
char c[4];
|
|
}
|
|
mem_word;
|
|
|
|
sim_kind = kind;
|
|
myname = argv[0];
|
|
callback = cb;
|
|
|
|
for (p = argv + 1; *p != NULL; ++p)
|
|
{
|
|
if (strcmp (*p, "-E") == 0)
|
|
{
|
|
++p;
|
|
if (*p == NULL)
|
|
{
|
|
/* FIXME: This doesn't use stderr, but then the rest of the
|
|
file doesn't either. */
|
|
callback->printf_filtered (callback, "Missing argument to `-E'.\n");
|
|
return 0;
|
|
}
|
|
target_little_endian = strcmp (*p, "big") != 0;
|
|
endian_set = 1;
|
|
}
|
|
else if (isdigit (**p))
|
|
parse_and_set_memory_size (*p);
|
|
}
|
|
|
|
if (abfd != NULL && ! endian_set)
|
|
target_little_endian = ! bfd_big_endian (abfd);
|
|
|
|
if (abfd)
|
|
init_dsp (abfd);
|
|
|
|
for (i = 4; (i -= 2) >= 0; )
|
|
mem_word.s[i >> 1] = i;
|
|
global_endianw = mem_word.i >> (target_little_endian ? 0 : 16) & 0xffff;
|
|
|
|
for (i = 4; --i >= 0; )
|
|
mem_word.c[i] = i;
|
|
endianb = mem_word.i >> (target_little_endian ? 0 : 24) & 0xff;
|
|
|
|
/* fudge our descriptor for now */
|
|
return (SIM_DESC) 1;
|
|
}
|
|
|
|
static void
|
|
parse_and_set_memory_size (str)
|
|
char *str;
|
|
{
|
|
int n;
|
|
|
|
n = strtol (str, NULL, 10);
|
|
if (n > 0 && n <= 24)
|
|
sim_memory_size = n;
|
|
else
|
|
callback->printf_filtered (callback, "Bad memory size %d; must be 1 to 24, inclusive\n", n);
|
|
}
|
|
|
|
void
|
|
sim_close (sd, quitting)
|
|
SIM_DESC sd;
|
|
int quitting;
|
|
{
|
|
/* nothing to do */
|
|
}
|
|
|
|
SIM_RC
|
|
sim_load (sd, prog, abfd, from_tty)
|
|
SIM_DESC sd;
|
|
char *prog;
|
|
bfd *abfd;
|
|
int from_tty;
|
|
{
|
|
extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
|
|
bfd *prog_bfd;
|
|
|
|
prog_bfd = sim_load_file (sd, myname, callback, prog, abfd,
|
|
sim_kind == SIM_OPEN_DEBUG,
|
|
0, sim_write);
|
|
|
|
/* Set the bfd machine type. */
|
|
if (prog_bfd)
|
|
saved_state.asregs.bfd_mach = bfd_get_mach (prog_bfd);
|
|
else if (abfd)
|
|
saved_state.asregs.bfd_mach = bfd_get_mach (abfd);
|
|
else
|
|
saved_state.asregs.bfd_mach = 0;
|
|
|
|
if (prog_bfd == NULL)
|
|
return SIM_RC_FAIL;
|
|
if (abfd == NULL)
|
|
bfd_close (prog_bfd);
|
|
return SIM_RC_OK;
|
|
}
|
|
|
|
SIM_RC
|
|
sim_create_inferior (sd, prog_bfd, argv, env)
|
|
SIM_DESC sd;
|
|
struct bfd *prog_bfd;
|
|
char **argv;
|
|
char **env;
|
|
{
|
|
/* Clear the registers. */
|
|
memset (&saved_state, 0,
|
|
(char*) &saved_state.asregs.end_of_registers - (char*) &saved_state);
|
|
|
|
/* Set the PC. */
|
|
if (prog_bfd != NULL)
|
|
saved_state.asregs.pc = bfd_get_start_address (prog_bfd);
|
|
|
|
/* Set the bfd machine type. */
|
|
if (prog_bfd != NULL)
|
|
saved_state.asregs.bfd_mach = bfd_get_mach (prog_bfd);
|
|
|
|
/* Record the program's arguments. */
|
|
prog_argv = argv;
|
|
|
|
return SIM_RC_OK;
|
|
}
|
|
|
|
void
|
|
sim_do_command (sd, cmd)
|
|
SIM_DESC sd;
|
|
char *cmd;
|
|
{
|
|
char *sms_cmd = "set-memory-size";
|
|
int cmdsize;
|
|
|
|
if (cmd == NULL || *cmd == '\0')
|
|
{
|
|
cmd = "help";
|
|
}
|
|
|
|
cmdsize = strlen (sms_cmd);
|
|
if (strncmp (cmd, sms_cmd, cmdsize) == 0
|
|
&& strchr (" \t", cmd[cmdsize]) != NULL)
|
|
{
|
|
parse_and_set_memory_size (cmd + cmdsize + 1);
|
|
}
|
|
else if (strcmp (cmd, "help") == 0)
|
|
{
|
|
(callback->printf_filtered) (callback,
|
|
"List of SH simulator commands:\n\n");
|
|
(callback->printf_filtered) (callback, "set-memory-size <n> -- Set the number of address bits to use\n");
|
|
(callback->printf_filtered) (callback, "\n");
|
|
}
|
|
else
|
|
{
|
|
(callback->printf_filtered) (callback, "Error: \"%s\" is not a valid SH simulator command.\n", cmd);
|
|
}
|
|
}
|
|
|
|
void
|
|
sim_set_callbacks (p)
|
|
host_callback *p;
|
|
{
|
|
callback = p;
|
|
}
|