22e048c9dd
* ada-lang.c: * ada-tasks.c: * ada-varobj.c: * amd64-darwin-tdep.c: * arm-symbian-tdep.c: * arm-tdep.c: * avr-tdep.c: * ax-gdb.c: * bfin-linux-tdep.c: * breakpoint.c: * c-valprint.c: * cli/cli-cmds.c: * coffread.c: * cp-support.c: * cris-tdep.c: * dwarf2-frame-tailcall.c: * dwarf2-frame.c: * dwarf2expr.c: * dwarf2loc.c: * dwarf2read.c: * elfread.c: * eval.c: * expprint.c: * f-valprint.c: * frv-tdep.c: * h8300-tdep.c: * hppa-hpux-tdep.c: * hppa-tdep.c: * hppanbsd-tdep.c: * i386-nto-tdep.c: * i386-tdep.c: * i387-tdep.c: * ia64-tdep.c: * jit.c: * linespec.c: * linux-tdep.c: * lm32-tdep.c: * m2-valprint.c: * m32c-tdep.c: * m32r-rom.c: * m32r-tdep.c: * m68k-tdep.c: * m68klinux-tdep.c: * mi/mi-main.c: * microblaze-tdep.c: * mips-linux-tdep.c: * mips-tdep.c: * mn10300-tdep.c: * p-valprint.c: * parse.c: * ppc-linux-tdep.c: * ppc-sysv-tdep.c: * printcmd.c: * python/py-finishbreakpoint.c: * python/py-inferior.c: * python/py-infthread.c: * python/py-type.c: * python/python.c: * remote-fileio.c: * remote-m32r-sdi.c: * remote-mips.c: * reverse.c: * rl78-tdep.c: * rs6000-aix-tdep.c: * rs6000-tdep.c: * s390-tdep.c: * score-tdep.c: * sh64-tdep.c: * skip.c: * solib-darwin.c: * solib-dsbt.c: * solib-frv.c: * sparc-tdep.c: * spu-multiarch.c: * spu-tdep.c: * stack.c: * symfile.c: * symtab.c: * tic6x-tdep.c: * tracepoint.c: * v850-tdep.c: * valarith.c: * valprint.c: * value.c: * xcoffread.c: * xtensa-tdep.c: * ada-lang.c: * ada-tasks.c: * ada-varobj.c: * amd64-darwin-tdep.c: * arm-symbian-tdep.c: * arm-tdep.c: Delete unused variables.
3332 lines
101 KiB
C
3332 lines
101 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2001-2012 Free Software Foundation, Inc.
|
|
|
|
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
|
|
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "objfiles.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "trad-frame.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "reggroups.h"
|
|
#include "regset.h"
|
|
#include "value.h"
|
|
#include "gdb_assert.h"
|
|
#include "dis-asm.h"
|
|
#include "solib-svr4.h"
|
|
#include "prologue-value.h"
|
|
#include "linux-tdep.h"
|
|
#include "s390-tdep.h"
|
|
|
|
#include "stap-probe.h"
|
|
#include "ax.h"
|
|
#include "ax-gdb.h"
|
|
#include "user-regs.h"
|
|
#include "cli/cli-utils.h"
|
|
#include <ctype.h>
|
|
|
|
#include "features/s390-linux32.c"
|
|
#include "features/s390-linux32v1.c"
|
|
#include "features/s390-linux32v2.c"
|
|
#include "features/s390-linux64.c"
|
|
#include "features/s390-linux64v1.c"
|
|
#include "features/s390-linux64v2.c"
|
|
#include "features/s390x-linux64.c"
|
|
#include "features/s390x-linux64v1.c"
|
|
#include "features/s390x-linux64v2.c"
|
|
|
|
/* The tdep structure. */
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
/* ABI version. */
|
|
enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
|
|
|
|
/* Pseudo register numbers. */
|
|
int gpr_full_regnum;
|
|
int pc_regnum;
|
|
int cc_regnum;
|
|
|
|
/* Core file register sets. */
|
|
const struct regset *gregset;
|
|
int sizeof_gregset;
|
|
|
|
const struct regset *fpregset;
|
|
int sizeof_fpregset;
|
|
};
|
|
|
|
|
|
/* ABI call-saved register information. */
|
|
|
|
static int
|
|
s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
switch (tdep->abi)
|
|
{
|
|
case ABI_LINUX_S390:
|
|
if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
|
|
|| regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
|
|
|| regnum == S390_A0_REGNUM)
|
|
return 1;
|
|
|
|
break;
|
|
|
|
case ABI_LINUX_ZSERIES:
|
|
if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
|
|
|| (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
|
|
|| (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
|
|
return 1;
|
|
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
/* The last-break address is read-only. */
|
|
return regnum == S390_LAST_BREAK_REGNUM;
|
|
}
|
|
|
|
static void
|
|
s390_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
|
|
|
|
/* Set special SYSTEM_CALL register to 0 to prevent the kernel from
|
|
messing with the PC we just installed, if we happen to be within
|
|
an interrupted system call that the kernel wants to restart.
|
|
|
|
Note that after we return from the dummy call, the SYSTEM_CALL and
|
|
ORIG_R2 registers will be automatically restored, and the kernel
|
|
continues to restart the system call at this point. */
|
|
if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0)
|
|
regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0);
|
|
}
|
|
|
|
|
|
/* DWARF Register Mapping. */
|
|
|
|
static int s390_dwarf_regmap[] =
|
|
{
|
|
/* General Purpose Registers. */
|
|
S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
|
|
S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
|
|
S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
|
|
S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
|
|
|
|
/* Floating Point Registers. */
|
|
S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
|
|
S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
|
|
S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
|
|
S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
|
|
|
|
/* Control Registers (not mapped). */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
/* Access Registers. */
|
|
S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
|
|
S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
|
|
S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
|
|
S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
|
|
|
|
/* Program Status Word. */
|
|
S390_PSWM_REGNUM,
|
|
S390_PSWA_REGNUM,
|
|
|
|
/* GPR Lower Half Access. */
|
|
S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
|
|
S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
|
|
S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
|
|
S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
|
|
|
|
/* GNU/Linux-specific registers (not mapped). */
|
|
-1, -1, -1,
|
|
};
|
|
|
|
/* Convert DWARF register number REG to the appropriate register
|
|
number used by GDB. */
|
|
static int
|
|
s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
|
|
GPRs. Note that call frame information still refers to the 32-bit
|
|
lower halves, because s390_adjust_frame_regnum uses register numbers
|
|
66 .. 81 to access GPRs. */
|
|
if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
|
|
return tdep->gpr_full_regnum + reg;
|
|
|
|
if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
|
|
return s390_dwarf_regmap[reg];
|
|
|
|
warning (_("Unmapped DWARF Register #%d encountered."), reg);
|
|
return -1;
|
|
}
|
|
|
|
/* Translate a .eh_frame register to DWARF register, or adjust a
|
|
.debug_frame register. */
|
|
static int
|
|
s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
|
|
{
|
|
/* See s390_dwarf_reg_to_regnum for comments. */
|
|
return (num >= 0 && num < 16)? num + 66 : num;
|
|
}
|
|
|
|
|
|
/* Pseudo registers. */
|
|
|
|
static const char *
|
|
s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (regnum == tdep->pc_regnum)
|
|
return "pc";
|
|
|
|
if (regnum == tdep->cc_regnum)
|
|
return "cc";
|
|
|
|
if (tdep->gpr_full_regnum != -1
|
|
&& regnum >= tdep->gpr_full_regnum
|
|
&& regnum < tdep->gpr_full_regnum + 16)
|
|
{
|
|
static const char *full_name[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
|
};
|
|
return full_name[regnum - tdep->gpr_full_regnum];
|
|
}
|
|
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
|
|
static struct type *
|
|
s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (regnum == tdep->pc_regnum)
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
|
|
if (regnum == tdep->cc_regnum)
|
|
return builtin_type (gdbarch)->builtin_int;
|
|
|
|
if (tdep->gpr_full_regnum != -1
|
|
&& regnum >= tdep->gpr_full_regnum
|
|
&& regnum < tdep->gpr_full_regnum + 16)
|
|
return builtin_type (gdbarch)->builtin_uint64;
|
|
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
|
|
static enum register_status
|
|
s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, gdb_byte *buf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int regsize = register_size (gdbarch, regnum);
|
|
ULONGEST val;
|
|
|
|
if (regnum == tdep->pc_regnum)
|
|
{
|
|
enum register_status status;
|
|
|
|
status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
|
|
if (status == REG_VALID)
|
|
{
|
|
if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
|
|
val &= 0x7fffffff;
|
|
store_unsigned_integer (buf, regsize, byte_order, val);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
if (regnum == tdep->cc_regnum)
|
|
{
|
|
enum register_status status;
|
|
|
|
status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
|
|
if (status == REG_VALID)
|
|
{
|
|
if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
|
|
val = (val >> 12) & 3;
|
|
else
|
|
val = (val >> 44) & 3;
|
|
store_unsigned_integer (buf, regsize, byte_order, val);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
if (tdep->gpr_full_regnum != -1
|
|
&& regnum >= tdep->gpr_full_regnum
|
|
&& regnum < tdep->gpr_full_regnum + 16)
|
|
{
|
|
enum register_status status;
|
|
ULONGEST val_upper;
|
|
|
|
regnum -= tdep->gpr_full_regnum;
|
|
|
|
status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
|
|
if (status == REG_VALID)
|
|
status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
|
|
&val_upper);
|
|
if (status == REG_VALID)
|
|
{
|
|
val |= val_upper << 32;
|
|
store_unsigned_integer (buf, regsize, byte_order, val);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
|
|
static void
|
|
s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, const gdb_byte *buf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int regsize = register_size (gdbarch, regnum);
|
|
ULONGEST val, psw;
|
|
|
|
if (regnum == tdep->pc_regnum)
|
|
{
|
|
val = extract_unsigned_integer (buf, regsize, byte_order);
|
|
if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
|
|
{
|
|
regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
|
|
val = (psw & 0x80000000) | (val & 0x7fffffff);
|
|
}
|
|
regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
|
|
return;
|
|
}
|
|
|
|
if (regnum == tdep->cc_regnum)
|
|
{
|
|
val = extract_unsigned_integer (buf, regsize, byte_order);
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
|
|
if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
|
|
val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
|
|
else
|
|
val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
|
|
regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
|
|
return;
|
|
}
|
|
|
|
if (tdep->gpr_full_regnum != -1
|
|
&& regnum >= tdep->gpr_full_regnum
|
|
&& regnum < tdep->gpr_full_regnum + 16)
|
|
{
|
|
regnum -= tdep->gpr_full_regnum;
|
|
val = extract_unsigned_integer (buf, regsize, byte_order);
|
|
regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
|
|
val & 0xffffffff);
|
|
regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
|
|
val >> 32);
|
|
return;
|
|
}
|
|
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
|
|
/* 'float' values are stored in the upper half of floating-point
|
|
registers, even though we are otherwise a big-endian platform. */
|
|
|
|
static struct value *
|
|
s390_value_from_register (struct type *type, int regnum,
|
|
struct frame_info *frame)
|
|
{
|
|
struct value *value = default_value_from_register (type, regnum, frame);
|
|
int len = TYPE_LENGTH (check_typedef (type));
|
|
|
|
if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
|
|
set_value_offset (value, 0);
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Register groups. */
|
|
|
|
static int
|
|
s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* We usually save/restore the whole PSW, which includes PC and CC.
|
|
However, some older gdbservers may not support saving/restoring
|
|
the whole PSW yet, and will return an XML register description
|
|
excluding those from the save/restore register groups. In those
|
|
cases, we still need to explicitly save/restore PC and CC in order
|
|
to push or pop frames. Since this doesn't hurt anything if we
|
|
already save/restore the whole PSW (it's just redundant), we add
|
|
PC and CC at this point unconditionally. */
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
|
|
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
|
}
|
|
|
|
|
|
/* Core file register sets. */
|
|
|
|
int s390_regmap_gregset[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
0x00, 0x04,
|
|
/* General Purpose Registers. */
|
|
0x08, 0x0c, 0x10, 0x14,
|
|
0x18, 0x1c, 0x20, 0x24,
|
|
0x28, 0x2c, 0x30, 0x34,
|
|
0x38, 0x3c, 0x40, 0x44,
|
|
/* Access Registers. */
|
|
0x48, 0x4c, 0x50, 0x54,
|
|
0x58, 0x5c, 0x60, 0x64,
|
|
0x68, 0x6c, 0x70, 0x74,
|
|
0x78, 0x7c, 0x80, 0x84,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GPR Uppper Halves. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
0x88, -1, -1,
|
|
};
|
|
|
|
int s390x_regmap_gregset[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
0x00, 0x08,
|
|
/* General Purpose Registers. */
|
|
0x10, 0x18, 0x20, 0x28,
|
|
0x30, 0x38, 0x40, 0x48,
|
|
0x50, 0x58, 0x60, 0x68,
|
|
0x70, 0x78, 0x80, 0x88,
|
|
/* Access Registers. */
|
|
0x90, 0x94, 0x98, 0x9c,
|
|
0xa0, 0xa4, 0xa8, 0xac,
|
|
0xb0, 0xb4, 0xb8, 0xbc,
|
|
0xc0, 0xc4, 0xc8, 0xcc,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GPR Uppper Halves. */
|
|
0x10, 0x18, 0x20, 0x28,
|
|
0x30, 0x38, 0x40, 0x48,
|
|
0x50, 0x58, 0x60, 0x68,
|
|
0x70, 0x78, 0x80, 0x88,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
0xd0, -1, -1,
|
|
};
|
|
|
|
int s390_regmap_fpregset[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
-1, -1,
|
|
/* General Purpose Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Access Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating Point Control Word. */
|
|
0x00,
|
|
/* Floating Point Registers. */
|
|
0x08, 0x10, 0x18, 0x20,
|
|
0x28, 0x30, 0x38, 0x40,
|
|
0x48, 0x50, 0x58, 0x60,
|
|
0x68, 0x70, 0x78, 0x80,
|
|
/* GPR Uppper Halves. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
-1, -1, -1,
|
|
};
|
|
|
|
int s390_regmap_upper[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
-1, -1,
|
|
/* General Purpose Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Access Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GPR Uppper Halves. */
|
|
0x00, 0x04, 0x08, 0x0c,
|
|
0x10, 0x14, 0x18, 0x1c,
|
|
0x20, 0x24, 0x28, 0x2c,
|
|
0x30, 0x34, 0x38, 0x3c,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
-1, -1, -1,
|
|
};
|
|
|
|
int s390_regmap_last_break[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
-1, -1,
|
|
/* General Purpose Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Access Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GPR Uppper Halves. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
-1, 4, -1,
|
|
};
|
|
|
|
int s390x_regmap_last_break[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
-1, -1,
|
|
/* General Purpose Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Access Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GPR Uppper Halves. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
-1, 0, -1,
|
|
};
|
|
|
|
int s390_regmap_system_call[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
-1, -1,
|
|
/* General Purpose Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Access Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GPR Uppper Halves. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* GNU/Linux-specific optional "registers". */
|
|
-1, -1, 0,
|
|
};
|
|
|
|
/* Supply register REGNUM from the register set REGSET to register cache
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
|
static void
|
|
s390_supply_regset (const struct regset *regset, struct regcache *regcache,
|
|
int regnum, const void *regs, size_t len)
|
|
{
|
|
const int *offset = regset->descr;
|
|
int i;
|
|
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
|
{
|
|
if ((regnum == i || regnum == -1) && offset[i] != -1)
|
|
regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
|
|
}
|
|
}
|
|
|
|
/* Collect register REGNUM from the register cache REGCACHE and store
|
|
it in the buffer specified by REGS and LEN as described by the
|
|
general-purpose register set REGSET. If REGNUM is -1, do this for
|
|
all registers in REGSET. */
|
|
static void
|
|
s390_collect_regset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *regs, size_t len)
|
|
{
|
|
const int *offset = regset->descr;
|
|
int i;
|
|
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
|
{
|
|
if ((regnum == i || regnum == -1) && offset[i] != -1)
|
|
regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
|
|
}
|
|
}
|
|
|
|
static const struct regset s390_gregset = {
|
|
s390_regmap_gregset,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static const struct regset s390x_gregset = {
|
|
s390x_regmap_gregset,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static const struct regset s390_fpregset = {
|
|
s390_regmap_fpregset,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static const struct regset s390_upper_regset = {
|
|
s390_regmap_upper,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static const struct regset s390_last_break_regset = {
|
|
s390_regmap_last_break,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static const struct regset s390x_last_break_regset = {
|
|
s390x_regmap_last_break,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static const struct regset s390_system_call_regset = {
|
|
s390_regmap_system_call,
|
|
s390_supply_regset,
|
|
s390_collect_regset
|
|
};
|
|
|
|
static struct core_regset_section s390_linux32_regset_sections[] =
|
|
{
|
|
{ ".reg", s390_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390_linux32v1_regset_sections[] =
|
|
{
|
|
{ ".reg", s390_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-last-break", 8, "s390 last-break address" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390_linux32v2_regset_sections[] =
|
|
{
|
|
{ ".reg", s390_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-last-break", 8, "s390 last-break address" },
|
|
{ ".reg-s390-system-call", 4, "s390 system-call" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390_linux64_regset_sections[] =
|
|
{
|
|
{ ".reg", s390_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390_linux64v1_regset_sections[] =
|
|
{
|
|
{ ".reg", s390_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
|
|
{ ".reg-s390-last-break", 8, "s930 last-break address" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390_linux64v2_regset_sections[] =
|
|
{
|
|
{ ".reg", s390_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
|
|
{ ".reg-s390-last-break", 8, "s930 last-break address" },
|
|
{ ".reg-s390-system-call", 4, "s390 system-call" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390x_linux64_regset_sections[] =
|
|
{
|
|
{ ".reg", s390x_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390x_linux64v1_regset_sections[] =
|
|
{
|
|
{ ".reg", s390x_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-last-break", 8, "s930 last-break address" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
static struct core_regset_section s390x_linux64v2_regset_sections[] =
|
|
{
|
|
{ ".reg", s390x_sizeof_gregset, "general-purpose" },
|
|
{ ".reg2", s390_sizeof_fpregset, "floating-point" },
|
|
{ ".reg-s390-last-break", 8, "s930 last-break address" },
|
|
{ ".reg-s390-system-call", 4, "s390 system-call" },
|
|
{ NULL, 0}
|
|
};
|
|
|
|
|
|
/* Return the appropriate register set for the core section identified
|
|
by SECT_NAME and SECT_SIZE. */
|
|
static const struct regset *
|
|
s390_regset_from_core_section (struct gdbarch *gdbarch,
|
|
const char *sect_name, size_t sect_size)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
|
|
return tdep->gregset;
|
|
|
|
if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
|
|
return tdep->fpregset;
|
|
|
|
if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
|
|
return &s390_upper_regset;
|
|
|
|
if (strcmp (sect_name, ".reg-s390-last-break") == 0 && sect_size >= 8)
|
|
return (gdbarch_ptr_bit (gdbarch) == 32
|
|
? &s390_last_break_regset : &s390x_last_break_regset);
|
|
|
|
if (strcmp (sect_name, ".reg-s390-system-call") == 0 && sect_size >= 4)
|
|
return &s390_system_call_regset;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct target_desc *
|
|
s390_core_read_description (struct gdbarch *gdbarch,
|
|
struct target_ops *target, bfd *abfd)
|
|
{
|
|
asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
|
|
asection *v1 = bfd_get_section_by_name (abfd, ".reg-s390-last-break");
|
|
asection *v2 = bfd_get_section_by_name (abfd, ".reg-s390-system-call");
|
|
asection *section = bfd_get_section_by_name (abfd, ".reg");
|
|
if (!section)
|
|
return NULL;
|
|
|
|
switch (bfd_section_size (abfd, section))
|
|
{
|
|
case s390_sizeof_gregset:
|
|
if (high_gprs)
|
|
return (v2? tdesc_s390_linux64v2 :
|
|
v1? tdesc_s390_linux64v1 : tdesc_s390_linux64);
|
|
else
|
|
return (v2? tdesc_s390_linux32v2 :
|
|
v1? tdesc_s390_linux32v1 : tdesc_s390_linux32);
|
|
|
|
case s390x_sizeof_gregset:
|
|
return (v2? tdesc_s390x_linux64v2 :
|
|
v1? tdesc_s390x_linux64v1 : tdesc_s390x_linux64);
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Decoding S/390 instructions. */
|
|
|
|
/* Named opcode values for the S/390 instructions we recognize. Some
|
|
instructions have their opcode split across two fields; those are the
|
|
op1_* and op2_* enums. */
|
|
enum
|
|
{
|
|
op1_lhi = 0xa7, op2_lhi = 0x08,
|
|
op1_lghi = 0xa7, op2_lghi = 0x09,
|
|
op1_lgfi = 0xc0, op2_lgfi = 0x01,
|
|
op_lr = 0x18,
|
|
op_lgr = 0xb904,
|
|
op_l = 0x58,
|
|
op1_ly = 0xe3, op2_ly = 0x58,
|
|
op1_lg = 0xe3, op2_lg = 0x04,
|
|
op_lm = 0x98,
|
|
op1_lmy = 0xeb, op2_lmy = 0x98,
|
|
op1_lmg = 0xeb, op2_lmg = 0x04,
|
|
op_st = 0x50,
|
|
op1_sty = 0xe3, op2_sty = 0x50,
|
|
op1_stg = 0xe3, op2_stg = 0x24,
|
|
op_std = 0x60,
|
|
op_stm = 0x90,
|
|
op1_stmy = 0xeb, op2_stmy = 0x90,
|
|
op1_stmg = 0xeb, op2_stmg = 0x24,
|
|
op1_aghi = 0xa7, op2_aghi = 0x0b,
|
|
op1_ahi = 0xa7, op2_ahi = 0x0a,
|
|
op1_agfi = 0xc2, op2_agfi = 0x08,
|
|
op1_afi = 0xc2, op2_afi = 0x09,
|
|
op1_algfi= 0xc2, op2_algfi= 0x0a,
|
|
op1_alfi = 0xc2, op2_alfi = 0x0b,
|
|
op_ar = 0x1a,
|
|
op_agr = 0xb908,
|
|
op_a = 0x5a,
|
|
op1_ay = 0xe3, op2_ay = 0x5a,
|
|
op1_ag = 0xe3, op2_ag = 0x08,
|
|
op1_slgfi= 0xc2, op2_slgfi= 0x04,
|
|
op1_slfi = 0xc2, op2_slfi = 0x05,
|
|
op_sr = 0x1b,
|
|
op_sgr = 0xb909,
|
|
op_s = 0x5b,
|
|
op1_sy = 0xe3, op2_sy = 0x5b,
|
|
op1_sg = 0xe3, op2_sg = 0x09,
|
|
op_nr = 0x14,
|
|
op_ngr = 0xb980,
|
|
op_la = 0x41,
|
|
op1_lay = 0xe3, op2_lay = 0x71,
|
|
op1_larl = 0xc0, op2_larl = 0x00,
|
|
op_basr = 0x0d,
|
|
op_bas = 0x4d,
|
|
op_bcr = 0x07,
|
|
op_bc = 0x0d,
|
|
op_bctr = 0x06,
|
|
op_bctgr = 0xb946,
|
|
op_bct = 0x46,
|
|
op1_bctg = 0xe3, op2_bctg = 0x46,
|
|
op_bxh = 0x86,
|
|
op1_bxhg = 0xeb, op2_bxhg = 0x44,
|
|
op_bxle = 0x87,
|
|
op1_bxleg= 0xeb, op2_bxleg= 0x45,
|
|
op1_bras = 0xa7, op2_bras = 0x05,
|
|
op1_brasl= 0xc0, op2_brasl= 0x05,
|
|
op1_brc = 0xa7, op2_brc = 0x04,
|
|
op1_brcl = 0xc0, op2_brcl = 0x04,
|
|
op1_brct = 0xa7, op2_brct = 0x06,
|
|
op1_brctg= 0xa7, op2_brctg= 0x07,
|
|
op_brxh = 0x84,
|
|
op1_brxhg= 0xec, op2_brxhg= 0x44,
|
|
op_brxle = 0x85,
|
|
op1_brxlg= 0xec, op2_brxlg= 0x45,
|
|
};
|
|
|
|
|
|
/* Read a single instruction from address AT. */
|
|
|
|
#define S390_MAX_INSTR_SIZE 6
|
|
static int
|
|
s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
|
|
{
|
|
static int s390_instrlen[] = { 2, 4, 4, 6 };
|
|
int instrlen;
|
|
|
|
if (target_read_memory (at, &instr[0], 2))
|
|
return -1;
|
|
instrlen = s390_instrlen[instr[0] >> 6];
|
|
if (instrlen > 2)
|
|
{
|
|
if (target_read_memory (at + 2, &instr[2], instrlen - 2))
|
|
return -1;
|
|
}
|
|
return instrlen;
|
|
}
|
|
|
|
|
|
/* The functions below are for recognizing and decoding S/390
|
|
instructions of various formats. Each of them checks whether INSN
|
|
is an instruction of the given format, with the specified opcodes.
|
|
If it is, it sets the remaining arguments to the values of the
|
|
instruction's fields, and returns a non-zero value; otherwise, it
|
|
returns zero.
|
|
|
|
These functions' arguments appear in the order they appear in the
|
|
instruction, not in the machine-language form. So, opcodes always
|
|
come first, even though they're sometimes scattered around the
|
|
instructions. And displacements appear before base and extension
|
|
registers, as they do in the assembly syntax, not at the end, as
|
|
they do in the machine language. */
|
|
static int
|
|
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
|
|
{
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
/* i2 is a 16-bit signed quantity. */
|
|
*i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_ril (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, int *i2)
|
|
{
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
/* i2 is a signed quantity. If the host 'int' is 32 bits long,
|
|
no sign extension is necessary, but we don't want to assume
|
|
that. */
|
|
*i2 = (((insn[2] << 24)
|
|
| (insn[3] << 16)
|
|
| (insn[4] << 8)
|
|
| (insn[5])) ^ 0x80000000) - 0x80000000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r2 = insn[1] & 0xf;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
|
{
|
|
if (((insn[0] << 8) | insn[1]) == op)
|
|
{
|
|
/* Yes, insn[3]. insn[2] is unused in RRE format. */
|
|
*r1 = (insn[3] >> 4) & 0xf;
|
|
*r2 = insn[3] & 0xf;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rs (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rsy (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op1
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
/* The 'long displacement' is a 20-bit signed integer. */
|
|
*d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
|
|
^ 0x80000) - 0x80000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rsi (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *r3, int *i2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
/* i2 is a 16-bit signed quantity. */
|
|
*i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rie (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *r3, int *i2)
|
|
{
|
|
if (insn[0] == op1
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
/* i2 is a 16-bit signed quantity. */
|
|
*i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rx (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*x2 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rxy (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op1
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*x2 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
/* The 'long displacement' is a 20-bit signed integer. */
|
|
*d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
|
|
^ 0x80000) - 0x80000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Prologue analysis. */
|
|
|
|
#define S390_NUM_GPRS 16
|
|
#define S390_NUM_FPRS 16
|
|
|
|
struct s390_prologue_data {
|
|
|
|
/* The stack. */
|
|
struct pv_area *stack;
|
|
|
|
/* The size and byte-order of a GPR or FPR. */
|
|
int gpr_size;
|
|
int fpr_size;
|
|
enum bfd_endian byte_order;
|
|
|
|
/* The general-purpose registers. */
|
|
pv_t gpr[S390_NUM_GPRS];
|
|
|
|
/* The floating-point registers. */
|
|
pv_t fpr[S390_NUM_FPRS];
|
|
|
|
/* The offset relative to the CFA where the incoming GPR N was saved
|
|
by the function prologue. 0 if not saved or unknown. */
|
|
int gpr_slot[S390_NUM_GPRS];
|
|
|
|
/* Likewise for FPRs. */
|
|
int fpr_slot[S390_NUM_FPRS];
|
|
|
|
/* Nonzero if the backchain was saved. This is assumed to be the
|
|
case when the incoming SP is saved at the current SP location. */
|
|
int back_chain_saved_p;
|
|
};
|
|
|
|
/* Return the effective address for an X-style instruction, like:
|
|
|
|
L R1, D2(X2, B2)
|
|
|
|
Here, X2 and B2 are registers, and D2 is a signed 20-bit
|
|
constant; the effective address is the sum of all three. If either
|
|
X2 or B2 are zero, then it doesn't contribute to the sum --- this
|
|
means that r0 can't be used as either X2 or B2. */
|
|
static pv_t
|
|
s390_addr (struct s390_prologue_data *data,
|
|
int d2, unsigned int x2, unsigned int b2)
|
|
{
|
|
pv_t result;
|
|
|
|
result = pv_constant (d2);
|
|
if (x2)
|
|
result = pv_add (result, data->gpr[x2]);
|
|
if (b2)
|
|
result = pv_add (result, data->gpr[b2]);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
|
|
static void
|
|
s390_store (struct s390_prologue_data *data,
|
|
int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
|
|
pv_t value)
|
|
{
|
|
pv_t addr = s390_addr (data, d2, x2, b2);
|
|
pv_t offset;
|
|
|
|
/* Check whether we are storing the backchain. */
|
|
offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
|
|
|
|
if (pv_is_constant (offset) && offset.k == 0)
|
|
if (size == data->gpr_size
|
|
&& pv_is_register_k (value, S390_SP_REGNUM, 0))
|
|
{
|
|
data->back_chain_saved_p = 1;
|
|
return;
|
|
}
|
|
|
|
|
|
/* Check whether we are storing a register into the stack. */
|
|
if (!pv_area_store_would_trash (data->stack, addr))
|
|
pv_area_store (data->stack, addr, size, value);
|
|
|
|
|
|
/* Note: If this is some store we cannot identify, you might think we
|
|
should forget our cached values, as any of those might have been hit.
|
|
|
|
However, we make the assumption that the register save areas are only
|
|
ever stored to once in any given function, and we do recognize these
|
|
stores. Thus every store we cannot recognize does not hit our data. */
|
|
}
|
|
|
|
/* Do a SIZE-byte load from D2(X2,B2). */
|
|
static pv_t
|
|
s390_load (struct s390_prologue_data *data,
|
|
int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
|
|
|
|
{
|
|
pv_t addr = s390_addr (data, d2, x2, b2);
|
|
|
|
/* If it's a load from an in-line constant pool, then we can
|
|
simulate that, under the assumption that the code isn't
|
|
going to change between the time the processor actually
|
|
executed it creating the current frame, and the time when
|
|
we're analyzing the code to unwind past that frame. */
|
|
if (pv_is_constant (addr))
|
|
{
|
|
struct target_section *secp;
|
|
secp = target_section_by_addr (¤t_target, addr.k);
|
|
if (secp != NULL
|
|
&& (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
|
|
& SEC_READONLY))
|
|
return pv_constant (read_memory_integer (addr.k, size,
|
|
data->byte_order));
|
|
}
|
|
|
|
/* Check whether we are accessing one of our save slots. */
|
|
return pv_area_fetch (data->stack, addr, size);
|
|
}
|
|
|
|
/* Function for finding saved registers in a 'struct pv_area'; we pass
|
|
this to pv_area_scan.
|
|
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
|
offset from the frame base, and SIZE indicates that the whole
|
|
register was saved, record its offset in the reg_offset table in
|
|
PROLOGUE_UNTYPED. */
|
|
static void
|
|
s390_check_for_saved (void *data_untyped, pv_t addr,
|
|
CORE_ADDR size, pv_t value)
|
|
{
|
|
struct s390_prologue_data *data = data_untyped;
|
|
int i, offset;
|
|
|
|
if (!pv_is_register (addr, S390_SP_REGNUM))
|
|
return;
|
|
|
|
offset = 16 * data->gpr_size + 32 - addr.k;
|
|
|
|
/* If we are storing the original value of a register, we want to
|
|
record the CFA offset. If the same register is stored multiple
|
|
times, the stack slot with the highest address counts. */
|
|
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
|
if (size == data->gpr_size
|
|
&& pv_is_register_k (value, S390_R0_REGNUM + i, 0))
|
|
if (data->gpr_slot[i] == 0
|
|
|| data->gpr_slot[i] > offset)
|
|
{
|
|
data->gpr_slot[i] = offset;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
|
if (size == data->fpr_size
|
|
&& pv_is_register_k (value, S390_F0_REGNUM + i, 0))
|
|
if (data->fpr_slot[i] == 0
|
|
|| data->fpr_slot[i] > offset)
|
|
{
|
|
data->fpr_slot[i] = offset;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Analyze the prologue of the function starting at START_PC,
|
|
continuing at most until CURRENT_PC. Initialize DATA to
|
|
hold all information we find out about the state of the registers
|
|
and stack slots. Return the address of the instruction after
|
|
the last one that changed the SP, FP, or back chain; or zero
|
|
on error. */
|
|
static CORE_ADDR
|
|
s390_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR start_pc,
|
|
CORE_ADDR current_pc,
|
|
struct s390_prologue_data *data)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
|
|
/* Our return value:
|
|
The address of the instruction after the last one that changed
|
|
the SP, FP, or back chain; zero if we got an error trying to
|
|
read memory. */
|
|
CORE_ADDR result = start_pc;
|
|
|
|
/* The current PC for our abstract interpretation. */
|
|
CORE_ADDR pc;
|
|
|
|
/* The address of the next instruction after that. */
|
|
CORE_ADDR next_pc;
|
|
|
|
/* Set up everything's initial value. */
|
|
{
|
|
int i;
|
|
|
|
data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
|
|
|
/* For the purpose of prologue tracking, we consider the GPR size to
|
|
be equal to the ABI word size, even if it is actually larger
|
|
(i.e. when running a 32-bit binary under a 64-bit kernel). */
|
|
data->gpr_size = word_size;
|
|
data->fpr_size = 8;
|
|
data->byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
|
data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
|
|
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
|
data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
|
|
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
|
data->gpr_slot[i] = 0;
|
|
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
|
data->fpr_slot[i] = 0;
|
|
|
|
data->back_chain_saved_p = 0;
|
|
}
|
|
|
|
/* Start interpreting instructions, until we hit the frame's
|
|
current PC or the first branch instruction. */
|
|
for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
|
|
{
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
|
int insn_len = s390_readinstruction (insn, pc);
|
|
|
|
bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
|
|
bfd_byte *insn32 = word_size == 4 ? insn : dummy;
|
|
bfd_byte *insn64 = word_size == 8 ? insn : dummy;
|
|
|
|
/* Fields for various kinds of instructions. */
|
|
unsigned int b2, r1, r2, x2, r3;
|
|
int i2, d2;
|
|
|
|
/* The values of SP and FP before this instruction,
|
|
for detecting instructions that change them. */
|
|
pv_t pre_insn_sp, pre_insn_fp;
|
|
/* Likewise for the flag whether the back chain was saved. */
|
|
int pre_insn_back_chain_saved_p;
|
|
|
|
/* If we got an error trying to read the instruction, report it. */
|
|
if (insn_len < 0)
|
|
{
|
|
result = 0;
|
|
break;
|
|
}
|
|
|
|
next_pc = pc + insn_len;
|
|
|
|
pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
|
pre_insn_back_chain_saved_p = data->back_chain_saved_p;
|
|
|
|
|
|
/* LHI r1, i2 --- load halfword immediate. */
|
|
/* LGHI r1, i2 --- load halfword immediate (64-bit version). */
|
|
/* LGFI r1, i2 --- load fullword immediate. */
|
|
if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
|
|
|| is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
|
|
|| is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
|
|
data->gpr[r1] = pv_constant (i2);
|
|
|
|
/* LR r1, r2 --- load from register. */
|
|
/* LGR r1, r2 --- load from register (64-bit version). */
|
|
else if (is_rr (insn32, op_lr, &r1, &r2)
|
|
|| is_rre (insn64, op_lgr, &r1, &r2))
|
|
data->gpr[r1] = data->gpr[r2];
|
|
|
|
/* L r1, d2(x2, b2) --- load. */
|
|
/* LY r1, d2(x2, b2) --- load (long-displacement version). */
|
|
/* LG r1, d2(x2, b2) --- load (64-bit version). */
|
|
else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
|
|
data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
|
|
|
|
/* ST r1, d2(x2, b2) --- store. */
|
|
/* STY r1, d2(x2, b2) --- store (long-displacement version). */
|
|
/* STG r1, d2(x2, b2) --- store (64-bit version). */
|
|
else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
|
|
s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
|
|
|
|
/* STD r1, d2(x2,b2) --- store floating-point register. */
|
|
else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
|
|
s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
|
|
|
|
/* STM r1, r3, d2(b2) --- store multiple. */
|
|
/* STMY r1, r3, d2(b2) --- store multiple (long-displacement
|
|
version). */
|
|
/* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
|
|
else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
|
|
|| is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
|
|
|| is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
|
|
{
|
|
for (; r1 <= r3; r1++, d2 += data->gpr_size)
|
|
s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
|
|
}
|
|
|
|
/* AHI r1, i2 --- add halfword immediate. */
|
|
/* AGHI r1, i2 --- add halfword immediate (64-bit version). */
|
|
/* AFI r1, i2 --- add fullword immediate. */
|
|
/* AGFI r1, i2 --- add fullword immediate (64-bit version). */
|
|
else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
|
|
|| is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
|
|
|| is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
|
|
|| is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
|
|
data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
|
|
|
|
/* ALFI r1, i2 --- add logical immediate. */
|
|
/* ALGFI r1, i2 --- add logical immediate (64-bit version). */
|
|
else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
|
|
|| is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
|
|
data->gpr[r1] = pv_add_constant (data->gpr[r1],
|
|
(CORE_ADDR)i2 & 0xffffffff);
|
|
|
|
/* AR r1, r2 -- add register. */
|
|
/* AGR r1, r2 -- add register (64-bit version). */
|
|
else if (is_rr (insn32, op_ar, &r1, &r2)
|
|
|| is_rre (insn64, op_agr, &r1, &r2))
|
|
data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
|
|
|
|
/* A r1, d2(x2, b2) -- add. */
|
|
/* AY r1, d2(x2, b2) -- add (long-displacement version). */
|
|
/* AG r1, d2(x2, b2) -- add (64-bit version). */
|
|
else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
|
|
data->gpr[r1] = pv_add (data->gpr[r1],
|
|
s390_load (data, d2, x2, b2, data->gpr_size));
|
|
|
|
/* SLFI r1, i2 --- subtract logical immediate. */
|
|
/* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
|
|
else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
|
|
|| is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
|
|
data->gpr[r1] = pv_add_constant (data->gpr[r1],
|
|
-((CORE_ADDR)i2 & 0xffffffff));
|
|
|
|
/* SR r1, r2 -- subtract register. */
|
|
/* SGR r1, r2 -- subtract register (64-bit version). */
|
|
else if (is_rr (insn32, op_sr, &r1, &r2)
|
|
|| is_rre (insn64, op_sgr, &r1, &r2))
|
|
data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
|
|
|
|
/* S r1, d2(x2, b2) -- subtract. */
|
|
/* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
|
|
/* SG r1, d2(x2, b2) -- subtract (64-bit version). */
|
|
else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
|
|
data->gpr[r1] = pv_subtract (data->gpr[r1],
|
|
s390_load (data, d2, x2, b2, data->gpr_size));
|
|
|
|
/* LA r1, d2(x2, b2) --- load address. */
|
|
/* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
|
|
else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
|
|
data->gpr[r1] = s390_addr (data, d2, x2, b2);
|
|
|
|
/* LARL r1, i2 --- load address relative long. */
|
|
else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
|
|
data->gpr[r1] = pv_constant (pc + i2 * 2);
|
|
|
|
/* BASR r1, 0 --- branch and save.
|
|
Since r2 is zero, this saves the PC in r1, but doesn't branch. */
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
|
&& r2 == 0)
|
|
data->gpr[r1] = pv_constant (next_pc);
|
|
|
|
/* BRAS r1, i2 --- branch relative and save. */
|
|
else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
|
|
{
|
|
data->gpr[r1] = pv_constant (next_pc);
|
|
next_pc = pc + i2 * 2;
|
|
|
|
/* We'd better not interpret any backward branches. We'll
|
|
never terminate. */
|
|
if (next_pc <= pc)
|
|
break;
|
|
}
|
|
|
|
/* Terminate search when hitting any other branch instruction. */
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
|
|| is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
|
|
|| is_rr (insn, op_bcr, &r1, &r2)
|
|
|| is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
|
|
|| is_ri (insn, op1_brc, op2_brc, &r1, &i2)
|
|
|| is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
|
|
|| is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
|
|
break;
|
|
|
|
else
|
|
/* An instruction we don't know how to simulate. The only
|
|
safe thing to do would be to set every value we're tracking
|
|
to 'unknown'. Instead, we'll be optimistic: we assume that
|
|
we *can* interpret every instruction that the compiler uses
|
|
to manipulate any of the data we're interested in here --
|
|
then we can just ignore anything else. */
|
|
;
|
|
|
|
/* Record the address after the last instruction that changed
|
|
the FP, SP, or backlink. Ignore instructions that changed
|
|
them back to their original values --- those are probably
|
|
restore instructions. (The back chain is never restored,
|
|
just popped.) */
|
|
{
|
|
pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
|
|
|
if ((! pv_is_identical (pre_insn_sp, sp)
|
|
&& ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
|
|
&& sp.kind != pvk_unknown)
|
|
|| (! pv_is_identical (pre_insn_fp, fp)
|
|
&& ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
|
|
&& fp.kind != pvk_unknown)
|
|
|| pre_insn_back_chain_saved_p != data->back_chain_saved_p)
|
|
result = next_pc;
|
|
}
|
|
}
|
|
|
|
/* Record where all the registers were saved. */
|
|
pv_area_scan (data->stack, s390_check_for_saved, data);
|
|
|
|
free_pv_area (data->stack);
|
|
data->stack = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Advance PC across any function entry prologue instructions to reach
|
|
some "real" code. */
|
|
static CORE_ADDR
|
|
s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
struct s390_prologue_data data;
|
|
CORE_ADDR skip_pc;
|
|
skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
|
|
return skip_pc ? skip_pc : pc;
|
|
}
|
|
|
|
/* Return true if we are in the functin's epilogue, i.e. after the
|
|
instruction that destroyed the function's stack frame. */
|
|
static int
|
|
s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
|
|
/* In frameless functions, there's not frame to destroy and thus
|
|
we don't care about the epilogue.
|
|
|
|
In functions with frame, the epilogue sequence is a pair of
|
|
a LM-type instruction that restores (amongst others) the
|
|
return register %r14 and the stack pointer %r15, followed
|
|
by a branch 'br %r14' --or equivalent-- that effects the
|
|
actual return.
|
|
|
|
In that situation, this function needs to return 'true' in
|
|
exactly one case: when pc points to that branch instruction.
|
|
|
|
Thus we try to disassemble the one instructions immediately
|
|
preceding pc and check whether it is an LM-type instruction
|
|
modifying the stack pointer.
|
|
|
|
Note that disassembling backwards is not reliable, so there
|
|
is a slight chance of false positives here ... */
|
|
|
|
bfd_byte insn[6];
|
|
unsigned int r1, r3, b2;
|
|
int d2;
|
|
|
|
if (word_size == 4
|
|
&& !target_read_memory (pc - 4, insn, 4)
|
|
&& is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
|
return 1;
|
|
|
|
if (word_size == 4
|
|
&& !target_read_memory (pc - 6, insn, 6)
|
|
&& is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
|
return 1;
|
|
|
|
if (word_size == 8
|
|
&& !target_read_memory (pc - 6, insn, 6)
|
|
&& is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Displaced stepping. */
|
|
|
|
/* Fix up the state of registers and memory after having single-stepped
|
|
a displaced instruction. */
|
|
static void
|
|
s390_displaced_step_fixup (struct gdbarch *gdbarch,
|
|
struct displaced_step_closure *closure,
|
|
CORE_ADDR from, CORE_ADDR to,
|
|
struct regcache *regs)
|
|
{
|
|
/* Since we use simple_displaced_step_copy_insn, our closure is a
|
|
copy of the instruction. */
|
|
gdb_byte *insn = (gdb_byte *) closure;
|
|
static int s390_instrlen[] = { 2, 4, 4, 6 };
|
|
int insnlen = s390_instrlen[insn[0] >> 6];
|
|
|
|
/* Fields for various kinds of instructions. */
|
|
unsigned int b2, r1, r2, x2, r3;
|
|
int i2, d2;
|
|
|
|
/* Get current PC and addressing mode bit. */
|
|
CORE_ADDR pc = regcache_read_pc (regs);
|
|
ULONGEST amode = 0;
|
|
|
|
if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
|
|
{
|
|
regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
|
|
amode &= 0x80000000;
|
|
}
|
|
|
|
if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
|
|
paddress (gdbarch, from), paddress (gdbarch, to),
|
|
paddress (gdbarch, pc), insnlen, (int) amode);
|
|
|
|
/* Handle absolute branch and save instructions. */
|
|
if (is_rr (insn, op_basr, &r1, &r2)
|
|
|| is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
|
|
{
|
|
/* Recompute saved return address in R1. */
|
|
regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
|
|
amode | (from + insnlen));
|
|
}
|
|
|
|
/* Handle absolute branch instructions. */
|
|
else if (is_rr (insn, op_bcr, &r1, &r2)
|
|
|| is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
|
|
|| is_rr (insn, op_bctr, &r1, &r2)
|
|
|| is_rre (insn, op_bctgr, &r1, &r2)
|
|
|| is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
|
|
|| is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
|
|
|| is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
|
|
|| is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
|
|
|| is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
|
|
|| is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
|
|
{
|
|
/* Update PC iff branch was *not* taken. */
|
|
if (pc == to + insnlen)
|
|
regcache_write_pc (regs, from + insnlen);
|
|
}
|
|
|
|
/* Handle PC-relative branch and save instructions. */
|
|
else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
|
|
|| is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
|
|
{
|
|
/* Update PC. */
|
|
regcache_write_pc (regs, pc - to + from);
|
|
/* Recompute saved return address in R1. */
|
|
regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
|
|
amode | (from + insnlen));
|
|
}
|
|
|
|
/* Handle PC-relative branch instructions. */
|
|
else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
|
|
|| is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
|
|
|| is_ri (insn, op1_brct, op2_brct, &r1, &i2)
|
|
|| is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
|
|
|| is_rsi (insn, op_brxh, &r1, &r3, &i2)
|
|
|| is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
|
|
|| is_rsi (insn, op_brxle, &r1, &r3, &i2)
|
|
|| is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
|
|
{
|
|
/* Update PC. */
|
|
regcache_write_pc (regs, pc - to + from);
|
|
}
|
|
|
|
/* Handle LOAD ADDRESS RELATIVE LONG. */
|
|
else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
|
|
{
|
|
/* Update PC. */
|
|
regcache_write_pc (regs, from + insnlen);
|
|
/* Recompute output address in R1. */
|
|
regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
|
|
amode | (from + i2 * 2));
|
|
}
|
|
|
|
/* If we executed a breakpoint instruction, point PC right back at it. */
|
|
else if (insn[0] == 0x0 && insn[1] == 0x1)
|
|
regcache_write_pc (regs, from);
|
|
|
|
/* For any other insn, PC points right after the original instruction. */
|
|
else
|
|
regcache_write_pc (regs, from + insnlen);
|
|
|
|
if (debug_displaced)
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"displaced: (s390) pc is now %s\n",
|
|
paddress (gdbarch, regcache_read_pc (regs)));
|
|
}
|
|
|
|
|
|
/* Helper routine to unwind pseudo registers. */
|
|
|
|
static struct value *
|
|
s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct type *type = register_type (gdbarch, regnum);
|
|
|
|
/* Unwind PC via PSW address. */
|
|
if (regnum == tdep->pc_regnum)
|
|
{
|
|
struct value *val;
|
|
|
|
val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
|
|
if (!value_optimized_out (val))
|
|
{
|
|
LONGEST pswa = value_as_long (val);
|
|
|
|
if (TYPE_LENGTH (type) == 4)
|
|
return value_from_pointer (type, pswa & 0x7fffffff);
|
|
else
|
|
return value_from_pointer (type, pswa);
|
|
}
|
|
}
|
|
|
|
/* Unwind CC via PSW mask. */
|
|
if (regnum == tdep->cc_regnum)
|
|
{
|
|
struct value *val;
|
|
|
|
val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
|
|
if (!value_optimized_out (val))
|
|
{
|
|
LONGEST pswm = value_as_long (val);
|
|
|
|
if (TYPE_LENGTH (type) == 4)
|
|
return value_from_longest (type, (pswm >> 12) & 3);
|
|
else
|
|
return value_from_longest (type, (pswm >> 44) & 3);
|
|
}
|
|
}
|
|
|
|
/* Unwind full GPRs to show at least the lower halves (as the
|
|
upper halves are undefined). */
|
|
if (tdep->gpr_full_regnum != -1
|
|
&& regnum >= tdep->gpr_full_regnum
|
|
&& regnum < tdep->gpr_full_regnum + 16)
|
|
{
|
|
int reg = regnum - tdep->gpr_full_regnum;
|
|
struct value *val;
|
|
|
|
val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
|
|
if (!value_optimized_out (val))
|
|
return value_cast (type, val);
|
|
}
|
|
|
|
return allocate_optimized_out_value (type);
|
|
}
|
|
|
|
static struct value *
|
|
s390_trad_frame_prev_register (struct frame_info *this_frame,
|
|
struct trad_frame_saved_reg saved_regs[],
|
|
int regnum)
|
|
{
|
|
if (regnum < S390_NUM_REGS)
|
|
return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
|
|
else
|
|
return s390_unwind_pseudo_register (this_frame, regnum);
|
|
}
|
|
|
|
|
|
/* Normal stack frames. */
|
|
|
|
struct s390_unwind_cache {
|
|
|
|
CORE_ADDR func;
|
|
CORE_ADDR frame_base;
|
|
CORE_ADDR local_base;
|
|
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static int
|
|
s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
|
|
struct s390_unwind_cache *info)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
struct s390_prologue_data data;
|
|
pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
|
pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
int i;
|
|
CORE_ADDR cfa;
|
|
CORE_ADDR func;
|
|
CORE_ADDR result;
|
|
ULONGEST reg;
|
|
CORE_ADDR prev_sp;
|
|
int frame_pointer;
|
|
int size;
|
|
struct frame_info *next_frame;
|
|
|
|
/* Try to find the function start address. If we can't find it, we don't
|
|
bother searching for it -- with modern compilers this would be mostly
|
|
pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
|
|
or else a valid backchain ... */
|
|
func = get_frame_func (this_frame);
|
|
if (!func)
|
|
return 0;
|
|
|
|
/* Try to analyze the prologue. */
|
|
result = s390_analyze_prologue (gdbarch, func,
|
|
get_frame_pc (this_frame), &data);
|
|
if (!result)
|
|
return 0;
|
|
|
|
/* If this was successful, we should have found the instruction that
|
|
sets the stack pointer register to the previous value of the stack
|
|
pointer minus the frame size. */
|
|
if (!pv_is_register (*sp, S390_SP_REGNUM))
|
|
return 0;
|
|
|
|
/* A frame size of zero at this point can mean either a real
|
|
frameless function, or else a failure to find the prologue.
|
|
Perform some sanity checks to verify we really have a
|
|
frameless function. */
|
|
if (sp->k == 0)
|
|
{
|
|
/* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
|
|
size zero. This is only possible if the next frame is a sentinel
|
|
frame, a dummy frame, or a signal trampoline frame. */
|
|
/* FIXME: cagney/2004-05-01: This sanity check shouldn't be
|
|
needed, instead the code should simpliy rely on its
|
|
analysis. */
|
|
next_frame = get_next_frame (this_frame);
|
|
while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
|
|
next_frame = get_next_frame (next_frame);
|
|
if (next_frame
|
|
&& get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
|
|
return 0;
|
|
|
|
/* If we really have a frameless function, %r14 must be valid
|
|
-- in particular, it must point to a different function. */
|
|
reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
|
|
reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
|
|
if (get_pc_function_start (reg) == func)
|
|
{
|
|
/* However, there is one case where it *is* valid for %r14
|
|
to point to the same function -- if this is a recursive
|
|
call, and we have stopped in the prologue *before* the
|
|
stack frame was allocated.
|
|
|
|
Recognize this case by looking ahead a bit ... */
|
|
|
|
struct s390_prologue_data data2;
|
|
pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
|
|
if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
|
|
&& pv_is_register (*sp, S390_SP_REGNUM)
|
|
&& sp->k != 0))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* OK, we've found valid prologue data. */
|
|
size = -sp->k;
|
|
|
|
/* If the frame pointer originally also holds the same value
|
|
as the stack pointer, we're probably using it. If it holds
|
|
some other value -- even a constant offset -- it is most
|
|
likely used as temp register. */
|
|
if (pv_is_identical (*sp, *fp))
|
|
frame_pointer = S390_FRAME_REGNUM;
|
|
else
|
|
frame_pointer = S390_SP_REGNUM;
|
|
|
|
/* If we've detected a function with stack frame, we'll still have to
|
|
treat it as frameless if we're currently within the function epilog
|
|
code at a point where the frame pointer has already been restored.
|
|
This can only happen in an innermost frame. */
|
|
/* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
|
|
instead the code should simpliy rely on its analysis. */
|
|
next_frame = get_next_frame (this_frame);
|
|
while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
|
|
next_frame = get_next_frame (next_frame);
|
|
if (size > 0
|
|
&& (next_frame == NULL
|
|
|| get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
|
|
{
|
|
/* See the comment in s390_in_function_epilogue_p on why this is
|
|
not completely reliable ... */
|
|
if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
|
|
{
|
|
memset (&data, 0, sizeof (data));
|
|
size = 0;
|
|
frame_pointer = S390_SP_REGNUM;
|
|
}
|
|
}
|
|
|
|
/* Once we know the frame register and the frame size, we can unwind
|
|
the current value of the frame register from the next frame, and
|
|
add back the frame size to arrive that the previous frame's
|
|
stack pointer value. */
|
|
prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
|
|
cfa = prev_sp + 16*word_size + 32;
|
|
|
|
/* Set up ABI call-saved/call-clobbered registers. */
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
|
if (!s390_register_call_saved (gdbarch, i))
|
|
trad_frame_set_unknown (info->saved_regs, i);
|
|
|
|
/* CC is always call-clobbered. */
|
|
trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
|
|
|
|
/* Record the addresses of all register spill slots the prologue parser
|
|
has recognized. Consider only registers defined as call-saved by the
|
|
ABI; for call-clobbered registers the parser may have recognized
|
|
spurious stores. */
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
|
|
&& data.gpr_slot[i] != 0)
|
|
info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
|
|
&& data.fpr_slot[i] != 0)
|
|
info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
|
|
|
|
/* Function return will set PC to %r14. */
|
|
info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
|
|
|
|
/* In frameless functions, we unwind simply by moving the return
|
|
address to the PC. However, if we actually stored to the
|
|
save area, use that -- we might only think the function frameless
|
|
because we're in the middle of the prologue ... */
|
|
if (size == 0
|
|
&& !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
|
|
{
|
|
info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
|
|
}
|
|
|
|
/* Another sanity check: unless this is a frameless function,
|
|
we should have found spill slots for SP and PC.
|
|
If not, we cannot unwind further -- this happens e.g. in
|
|
libc's thread_start routine. */
|
|
if (size > 0)
|
|
{
|
|
if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
|
|
|| !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
|
|
prev_sp = -1;
|
|
}
|
|
|
|
/* We use the current value of the frame register as local_base,
|
|
and the top of the register save area as frame_base. */
|
|
if (prev_sp != -1)
|
|
{
|
|
info->frame_base = prev_sp + 16*word_size + 32;
|
|
info->local_base = prev_sp - size;
|
|
}
|
|
|
|
info->func = func;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
|
|
struct s390_unwind_cache *info)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR backchain;
|
|
ULONGEST reg;
|
|
LONGEST sp;
|
|
int i;
|
|
|
|
/* Set up ABI call-saved/call-clobbered registers. */
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
|
if (!s390_register_call_saved (gdbarch, i))
|
|
trad_frame_set_unknown (info->saved_regs, i);
|
|
|
|
/* CC is always call-clobbered. */
|
|
trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
|
|
|
|
/* Get the backchain. */
|
|
reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
|
|
backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
|
|
|
|
/* A zero backchain terminates the frame chain. As additional
|
|
sanity check, let's verify that the spill slot for SP in the
|
|
save area pointed to by the backchain in fact links back to
|
|
the save area. */
|
|
if (backchain != 0
|
|
&& safe_read_memory_integer (backchain + 15*word_size,
|
|
word_size, byte_order, &sp)
|
|
&& (CORE_ADDR)sp == backchain)
|
|
{
|
|
/* We don't know which registers were saved, but it will have
|
|
to be at least %r14 and %r15. This will allow us to continue
|
|
unwinding, but other prev-frame registers may be incorrect ... */
|
|
info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
|
|
info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
|
|
|
|
/* Function return will set PC to %r14. */
|
|
info->saved_regs[S390_PSWA_REGNUM]
|
|
= info->saved_regs[S390_RETADDR_REGNUM];
|
|
|
|
/* We use the current value of the frame register as local_base,
|
|
and the top of the register save area as frame_base. */
|
|
info->frame_base = backchain + 16*word_size + 32;
|
|
info->local_base = reg;
|
|
}
|
|
|
|
info->func = get_frame_pc (this_frame);
|
|
}
|
|
|
|
static struct s390_unwind_cache *
|
|
s390_frame_unwind_cache (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct s390_unwind_cache *info;
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
info->func = -1;
|
|
info->frame_base = -1;
|
|
info->local_base = -1;
|
|
|
|
/* Try to use prologue analysis to fill the unwind cache.
|
|
If this fails, fall back to reading the stack backchain. */
|
|
if (!s390_prologue_frame_unwind_cache (this_frame, info))
|
|
s390_backchain_frame_unwind_cache (this_frame, info);
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
s390_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
if (info->frame_base == -1)
|
|
return;
|
|
|
|
*this_id = frame_id_build (info->frame_base, info->func);
|
|
}
|
|
|
|
static struct value *
|
|
s390_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind s390_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
s390_frame_this_id,
|
|
s390_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
|
|
/* Code stubs and their stack frames. For things like PLTs and NULL
|
|
function calls (where there is no true frame and the return address
|
|
is in the RETADDR register). */
|
|
|
|
struct s390_stub_unwind_cache
|
|
{
|
|
CORE_ADDR frame_base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct s390_stub_unwind_cache *
|
|
s390_stub_frame_unwind_cache (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
struct s390_stub_unwind_cache *info;
|
|
ULONGEST reg;
|
|
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
/* The return address is in register %r14. */
|
|
info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
|
|
|
|
/* Retrieve stack pointer and determine our frame base. */
|
|
reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
|
|
info->frame_base = reg + 16*word_size + 32;
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
s390_stub_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct s390_stub_unwind_cache *info
|
|
= s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
*this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
|
|
}
|
|
|
|
static struct value *
|
|
s390_stub_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct s390_stub_unwind_cache *info
|
|
= s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static int
|
|
s390_stub_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR addr_in_block;
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
|
|
|
/* If the current PC points to non-readable memory, we assume we
|
|
have trapped due to an invalid function pointer call. We handle
|
|
the non-existing current function like a PLT stub. */
|
|
addr_in_block = get_frame_address_in_block (this_frame);
|
|
if (in_plt_section (addr_in_block, NULL)
|
|
|| s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct frame_unwind s390_stub_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
s390_stub_frame_this_id,
|
|
s390_stub_frame_prev_register,
|
|
NULL,
|
|
s390_stub_frame_sniffer
|
|
};
|
|
|
|
|
|
/* Signal trampoline stack frames. */
|
|
|
|
struct s390_sigtramp_unwind_cache {
|
|
CORE_ADDR frame_base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct s390_sigtramp_unwind_cache *
|
|
s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct s390_sigtramp_unwind_cache *info;
|
|
ULONGEST this_sp, prev_sp;
|
|
CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
|
|
int i;
|
|
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
|
|
next_ra = get_frame_pc (this_frame);
|
|
next_cfa = this_sp + 16*word_size + 32;
|
|
|
|
/* New-style RT frame:
|
|
retcode + alignment (8 bytes)
|
|
siginfo (128 bytes)
|
|
ucontext (contains sigregs at offset 5 words). */
|
|
if (next_ra == next_cfa)
|
|
{
|
|
sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
|
|
/* sigregs are followed by uc_sigmask (8 bytes), then by the
|
|
upper GPR halves if present. */
|
|
sigreg_high_off = 8;
|
|
}
|
|
|
|
/* Old-style RT frame and all non-RT frames:
|
|
old signal mask (8 bytes)
|
|
pointer to sigregs. */
|
|
else
|
|
{
|
|
sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
|
|
word_size, byte_order);
|
|
/* sigregs are followed by signo (4 bytes), then by the
|
|
upper GPR halves if present. */
|
|
sigreg_high_off = 4;
|
|
}
|
|
|
|
/* The sigregs structure looks like this:
|
|
long psw_mask;
|
|
long psw_addr;
|
|
long gprs[16];
|
|
int acrs[16];
|
|
int fpc;
|
|
int __pad;
|
|
double fprs[16]; */
|
|
|
|
/* PSW mask and address. */
|
|
info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
|
|
sigreg_ptr += word_size;
|
|
info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
|
|
sigreg_ptr += word_size;
|
|
|
|
/* Then the GPRs. */
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += word_size;
|
|
}
|
|
|
|
/* Then the ACRs. */
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += 4;
|
|
}
|
|
|
|
/* The floating-point control word. */
|
|
info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
|
|
sigreg_ptr += 8;
|
|
|
|
/* And finally the FPRs. */
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += 8;
|
|
}
|
|
|
|
/* If we have them, the GPR upper halves are appended at the end. */
|
|
sigreg_ptr += sigreg_high_off;
|
|
if (tdep->gpr_full_regnum != -1)
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += 4;
|
|
}
|
|
|
|
/* Restore the previous frame's SP. */
|
|
prev_sp = read_memory_unsigned_integer (
|
|
info->saved_regs[S390_SP_REGNUM].addr,
|
|
word_size, byte_order);
|
|
|
|
/* Determine our frame base. */
|
|
info->frame_base = prev_sp + 16*word_size + 32;
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
s390_sigtramp_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct s390_sigtramp_unwind_cache *info
|
|
= s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
*this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
|
|
}
|
|
|
|
static struct value *
|
|
s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct s390_sigtramp_unwind_cache *info
|
|
= s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static int
|
|
s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
|
bfd_byte sigreturn[2];
|
|
|
|
if (target_read_memory (pc, sigreturn, 2))
|
|
return 0;
|
|
|
|
if (sigreturn[0] != 0x0a /* svc */)
|
|
return 0;
|
|
|
|
if (sigreturn[1] != 119 /* sigreturn */
|
|
&& sigreturn[1] != 173 /* rt_sigreturn */)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const struct frame_unwind s390_sigtramp_frame_unwind = {
|
|
SIGTRAMP_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
s390_sigtramp_frame_this_id,
|
|
s390_sigtramp_frame_prev_register,
|
|
NULL,
|
|
s390_sigtramp_frame_sniffer
|
|
};
|
|
|
|
|
|
/* Frame base handling. */
|
|
|
|
static CORE_ADDR
|
|
s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (this_frame, this_cache);
|
|
return info->frame_base;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_local_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (this_frame, this_cache);
|
|
return info->local_base;
|
|
}
|
|
|
|
static const struct frame_base s390_frame_base = {
|
|
&s390_frame_unwind,
|
|
s390_frame_base_address,
|
|
s390_local_base_address,
|
|
s390_local_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
ULONGEST pc;
|
|
pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
|
|
return gdbarch_addr_bits_remove (gdbarch, pc);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST sp;
|
|
sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
|
return gdbarch_addr_bits_remove (gdbarch, sp);
|
|
}
|
|
|
|
|
|
/* DWARF-2 frame support. */
|
|
|
|
static struct value *
|
|
s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
|
|
int regnum)
|
|
{
|
|
return s390_unwind_pseudo_register (this_frame, regnum);
|
|
}
|
|
|
|
static void
|
|
s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
|
struct dwarf2_frame_state_reg *reg,
|
|
struct frame_info *this_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* The condition code (and thus PSW mask) is call-clobbered. */
|
|
if (regnum == S390_PSWM_REGNUM)
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
|
|
|
/* The PSW address unwinds to the return address. */
|
|
else if (regnum == S390_PSWA_REGNUM)
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
|
|
|
/* Fixed registers are call-saved or call-clobbered
|
|
depending on the ABI in use. */
|
|
else if (regnum < S390_NUM_REGS)
|
|
{
|
|
if (s390_register_call_saved (gdbarch, regnum))
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
|
else
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
|
}
|
|
|
|
/* We install a special function to unwind pseudos. */
|
|
else
|
|
{
|
|
reg->how = DWARF2_FRAME_REG_FN;
|
|
reg->loc.fn = s390_dwarf2_prev_register;
|
|
}
|
|
}
|
|
|
|
|
|
/* Dummy function calls. */
|
|
|
|
/* Return non-zero if TYPE is an integer-like type, zero otherwise.
|
|
"Integer-like" types are those that should be passed the way
|
|
integers are: integers, enums, ranges, characters, and booleans. */
|
|
static int
|
|
is_integer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_INT
|
|
|| code == TYPE_CODE_ENUM
|
|
|| code == TYPE_CODE_RANGE
|
|
|| code == TYPE_CODE_CHAR
|
|
|| code == TYPE_CODE_BOOL);
|
|
}
|
|
|
|
/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
|
|
"Pointer-like" types are those that should be passed the way
|
|
pointers are: pointers and references. */
|
|
static int
|
|
is_pointer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_PTR
|
|
|| code == TYPE_CODE_REF);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a `float singleton' or `double
|
|
singleton', zero otherwise.
|
|
|
|
A `T singleton' is a struct type with one member, whose type is
|
|
either T or a `T singleton'. So, the following are all float
|
|
singletons:
|
|
|
|
struct { float x };
|
|
struct { struct { float x; } x; };
|
|
struct { struct { struct { float x; } x; } x; };
|
|
|
|
... and so on.
|
|
|
|
All such structures are passed as if they were floats or doubles,
|
|
as the (revised) ABI says. */
|
|
static int
|
|
is_float_singleton (struct type *type)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
|
|
{
|
|
struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
|
|
CHECK_TYPEDEF (singleton_type);
|
|
|
|
return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
|
|
|| is_float_singleton (singleton_type));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a struct-like type, zero otherwise.
|
|
"Struct-like" types are those that should be passed as structs are:
|
|
structs and unions.
|
|
|
|
As an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we exclude
|
|
those types here. *shrug* */
|
|
static int
|
|
is_struct_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_UNION
|
|
|| (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a float-like type, zero otherwise.
|
|
"Float-like" types are those that should be passed as
|
|
floating-point values are.
|
|
|
|
You'd think this would just be floats, doubles, long doubles, etc.
|
|
But as an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we include
|
|
those types here. *shrug* */
|
|
static int
|
|
is_float_like (struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT
|
|
|| is_float_singleton (type));
|
|
}
|
|
|
|
|
|
static int
|
|
is_power_of_two (unsigned int n)
|
|
{
|
|
return ((n & (n - 1)) == 0);
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed as a pointer to a copy,
|
|
zero otherwise. */
|
|
static int
|
|
s390_function_arg_pass_by_reference (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return 1;
|
|
|
|
return (is_struct_like (type) && !is_power_of_two (TYPE_LENGTH (type)))
|
|
|| TYPE_CODE (type) == TYPE_CODE_COMPLEX
|
|
|| (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type));
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed in a float register
|
|
if possible. */
|
|
static int
|
|
s390_function_arg_float (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return 0;
|
|
|
|
return is_float_like (type);
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed in an integer register
|
|
(or a pair of integer registers) if possible. */
|
|
static int
|
|
s390_function_arg_integer (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return 0;
|
|
|
|
return is_integer_like (type)
|
|
|| is_pointer_like (type)
|
|
|| (is_struct_like (type) && is_power_of_two (length));
|
|
}
|
|
|
|
/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
|
|
word as required for the ABI. */
|
|
static LONGEST
|
|
extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct type *type = check_typedef (value_type (arg));
|
|
|
|
/* Even structs get passed in the least significant bits of the
|
|
register / memory word. It's not really right to extract them as
|
|
an integer, but it does take care of the extension. */
|
|
if (TYPE_UNSIGNED (type))
|
|
return extract_unsigned_integer (value_contents (arg),
|
|
TYPE_LENGTH (type), byte_order);
|
|
else
|
|
return extract_signed_integer (value_contents (arg),
|
|
TYPE_LENGTH (type), byte_order);
|
|
}
|
|
|
|
|
|
/* Return the alignment required by TYPE. */
|
|
static int
|
|
alignment_of (struct type *type)
|
|
{
|
|
int alignment;
|
|
|
|
if (is_integer_like (type)
|
|
|| is_pointer_like (type)
|
|
|| TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
alignment = TYPE_LENGTH (type);
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
int i;
|
|
|
|
alignment = 1;
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
int field_alignment
|
|
= alignment_of (check_typedef (TYPE_FIELD_TYPE (type, i)));
|
|
|
|
if (field_alignment > alignment)
|
|
alignment = field_alignment;
|
|
}
|
|
}
|
|
else
|
|
alignment = 1;
|
|
|
|
/* Check that everything we ever return is a power of two. Lots of
|
|
code doesn't want to deal with aligning things to arbitrary
|
|
boundaries. */
|
|
gdb_assert ((alignment & (alignment - 1)) == 0);
|
|
|
|
return alignment;
|
|
}
|
|
|
|
|
|
/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
|
|
place to be passed to a function, as specified by the "GNU/Linux
|
|
for S/390 ELF Application Binary Interface Supplement".
|
|
|
|
SP is the current stack pointer. We must put arguments, links,
|
|
padding, etc. whereever they belong, and return the new stack
|
|
pointer value.
|
|
|
|
If STRUCT_RETURN is non-zero, then the function we're calling is
|
|
going to return a structure by value; STRUCT_ADDR is the address of
|
|
a block we've allocated for it on the stack.
|
|
|
|
Our caller has taken care of any type promotions needed to satisfy
|
|
prototypes or the old K&R argument-passing rules. */
|
|
static CORE_ADDR
|
|
s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int i;
|
|
|
|
/* If the i'th argument is passed as a reference to a copy, then
|
|
copy_addr[i] is the address of the copy we made. */
|
|
CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
|
|
|
|
/* Reserve space for the reference-to-copy area. */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
if (s390_function_arg_pass_by_reference (type))
|
|
{
|
|
sp -= length;
|
|
sp = align_down (sp, alignment_of (type));
|
|
copy_addr[i] = sp;
|
|
}
|
|
}
|
|
|
|
/* Reserve space for the parameter area. As a conservative
|
|
simplification, we assume that everything will be passed on the
|
|
stack. Since every argument larger than 8 bytes will be
|
|
passed by reference, we use this simple upper bound. */
|
|
sp -= nargs * 8;
|
|
|
|
/* After all that, make sure it's still aligned on an eight-byte
|
|
boundary. */
|
|
sp = align_down (sp, 8);
|
|
|
|
/* Allocate the standard frame areas: the register save area, the
|
|
word reserved for the compiler (which seems kind of meaningless),
|
|
and the back chain pointer. */
|
|
sp -= 16*word_size + 32;
|
|
|
|
/* Now we have the final SP value. Make sure we didn't underflow;
|
|
on 31-bit, this would result in addresses with the high bit set,
|
|
which causes confusion elsewhere. Note that if we error out
|
|
here, stack and registers remain untouched. */
|
|
if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
|
|
error (_("Stack overflow"));
|
|
|
|
|
|
/* Finally, place the actual parameters, working from SP towards
|
|
higher addresses. The code above is supposed to reserve enough
|
|
space for this. */
|
|
{
|
|
int fr = 0;
|
|
int gr = 2;
|
|
CORE_ADDR starg = sp + 16*word_size + 32;
|
|
|
|
/* A struct is returned using general register 2. */
|
|
if (struct_return)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
|
|
struct_addr);
|
|
gr++;
|
|
}
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
if (s390_function_arg_pass_by_reference (type))
|
|
{
|
|
/* Actually copy the argument contents to the stack slot
|
|
that was reserved above. */
|
|
write_memory (copy_addr[i], value_contents (arg), length);
|
|
|
|
if (gr <= 6)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
|
|
copy_addr[i]);
|
|
gr++;
|
|
}
|
|
else
|
|
{
|
|
write_memory_unsigned_integer (starg, word_size, byte_order,
|
|
copy_addr[i]);
|
|
starg += word_size;
|
|
}
|
|
}
|
|
else if (s390_function_arg_float (type))
|
|
{
|
|
/* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
|
|
the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
|
|
if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
|
|
0, length, value_contents (arg));
|
|
fr += 2;
|
|
}
|
|
else
|
|
{
|
|
/* When we store a single-precision value in a stack slot,
|
|
it occupies the rightmost bits. */
|
|
starg = align_up (starg + length, word_size);
|
|
write_memory (starg - length, value_contents (arg), length);
|
|
}
|
|
}
|
|
else if (s390_function_arg_integer (type) && length <= word_size)
|
|
{
|
|
if (gr <= 6)
|
|
{
|
|
/* Integer arguments are always extended to word size. */
|
|
regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
|
|
extend_simple_arg (gdbarch,
|
|
arg));
|
|
gr++;
|
|
}
|
|
else
|
|
{
|
|
/* Integer arguments are always extended to word size. */
|
|
write_memory_signed_integer (starg, word_size, byte_order,
|
|
extend_simple_arg (gdbarch, arg));
|
|
starg += word_size;
|
|
}
|
|
}
|
|
else if (s390_function_arg_integer (type) && length == 2*word_size)
|
|
{
|
|
if (gr <= 5)
|
|
{
|
|
regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
|
|
value_contents (arg));
|
|
regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
|
|
value_contents (arg) + word_size);
|
|
gr += 2;
|
|
}
|
|
else
|
|
{
|
|
/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
|
|
in it, then don't go back and use it again later. */
|
|
gr = 7;
|
|
|
|
write_memory (starg, value_contents (arg), length);
|
|
starg += length;
|
|
}
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, _("unknown argument type"));
|
|
}
|
|
}
|
|
|
|
/* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
|
|
if (word_size == 4)
|
|
{
|
|
ULONGEST pswa;
|
|
regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
|
|
bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
|
|
}
|
|
regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
|
|
|
|
/* Store updated stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
|
|
|
|
/* We need to return the 'stack part' of the frame ID,
|
|
which is actually the top of the register save area. */
|
|
return sp + 16*word_size + 32;
|
|
}
|
|
|
|
/* Assuming THIS_FRAME is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
returned by push_dummy_call, and the PC match the dummy frame's
|
|
breakpoint. */
|
|
static struct frame_id
|
|
s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
|
|
sp = gdbarch_addr_bits_remove (gdbarch, sp);
|
|
|
|
return frame_id_build (sp + 16*word_size + 32,
|
|
get_frame_pc (this_frame));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
/* Both the 32- and 64-bit ABI's say that the stack pointer should
|
|
always be aligned on an eight-byte boundary. */
|
|
return (addr & -8);
|
|
}
|
|
|
|
|
|
/* Function return value access. */
|
|
|
|
static enum return_value_convention
|
|
s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
|
|
{
|
|
int length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_UNION:
|
|
case TYPE_CODE_ARRAY:
|
|
case TYPE_CODE_COMPLEX:
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
default:
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
static enum return_value_convention
|
|
s390_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *out, const gdb_byte *in)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
enum return_value_convention rvc;
|
|
int length;
|
|
|
|
type = check_typedef (type);
|
|
rvc = s390_return_value_convention (gdbarch, type);
|
|
length = TYPE_LENGTH (type);
|
|
|
|
if (in)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
regcache_cooked_write_part (regcache, S390_F0_REGNUM,
|
|
0, length, in);
|
|
}
|
|
else if (length <= word_size)
|
|
{
|
|
/* Integer arguments are always extended to word size. */
|
|
if (TYPE_UNSIGNED (type))
|
|
regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
|
|
extract_unsigned_integer (in, length, byte_order));
|
|
else
|
|
regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
|
|
extract_signed_integer (in, length, byte_order));
|
|
}
|
|
else if (length == 2*word_size)
|
|
{
|
|
regcache_cooked_write (regcache, S390_R2_REGNUM, in);
|
|
regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, _("invalid return type"));
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error (_("Cannot set function return value."));
|
|
break;
|
|
}
|
|
}
|
|
else if (out)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
regcache_cooked_read_part (regcache, S390_F0_REGNUM,
|
|
0, length, out);
|
|
}
|
|
else if (length <= word_size)
|
|
{
|
|
/* Integer arguments occupy the rightmost bits. */
|
|
regcache_cooked_read_part (regcache, S390_R2_REGNUM,
|
|
word_size - length, length, out);
|
|
}
|
|
else if (length == 2*word_size)
|
|
{
|
|
regcache_cooked_read (regcache, S390_R2_REGNUM, out);
|
|
regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, _("invalid return type"));
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error (_("Function return value unknown."));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rvc;
|
|
}
|
|
|
|
|
|
/* Breakpoints. */
|
|
|
|
static const gdb_byte *
|
|
s390_breakpoint_from_pc (struct gdbarch *gdbarch,
|
|
CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static const gdb_byte breakpoint[] = { 0x0, 0x1 };
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
|
|
/* Address handling. */
|
|
|
|
static CORE_ADDR
|
|
s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
return addr & 0x7fffffff;
|
|
}
|
|
|
|
static int
|
|
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
if (byte_size == 4)
|
|
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
|
|
return "mode32";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
|
|
const char *name,
|
|
int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "mode32") == 0)
|
|
{
|
|
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Implementation of `gdbarch_stap_is_single_operand', as defined in
|
|
gdbarch.h. */
|
|
|
|
static int
|
|
s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
|
|
{
|
|
return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement
|
|
or indirection. */
|
|
|| *s == '%' /* Register access. */
|
|
|| isdigit (*s)); /* Literal number. */
|
|
}
|
|
|
|
/* Set up gdbarch struct. */
|
|
|
|
static struct gdbarch *
|
|
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
const struct target_desc *tdesc = info.target_desc;
|
|
struct tdesc_arch_data *tdesc_data = NULL;
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int tdep_abi;
|
|
int have_upper = 0;
|
|
int have_linux_v1 = 0;
|
|
int have_linux_v2 = 0;
|
|
int first_pseudo_reg, last_pseudo_reg;
|
|
|
|
/* Default ABI and register size. */
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_s390_31:
|
|
tdep_abi = ABI_LINUX_S390;
|
|
break;
|
|
|
|
case bfd_mach_s390_64:
|
|
tdep_abi = ABI_LINUX_ZSERIES;
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/* Use default target description if none provided by the target. */
|
|
if (!tdesc_has_registers (tdesc))
|
|
{
|
|
if (tdep_abi == ABI_LINUX_S390)
|
|
tdesc = tdesc_s390_linux32;
|
|
else
|
|
tdesc = tdesc_s390x_linux64;
|
|
}
|
|
|
|
/* Check any target description for validity. */
|
|
if (tdesc_has_registers (tdesc))
|
|
{
|
|
static const char *const gprs[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
|
};
|
|
static const char *const fprs[] = {
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
|
|
};
|
|
static const char *const acrs[] = {
|
|
"acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
|
|
"acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
|
|
};
|
|
static const char *const gprs_lower[] = {
|
|
"r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
|
|
"r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
|
|
};
|
|
static const char *const gprs_upper[] = {
|
|
"r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
|
|
"r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
|
|
};
|
|
const struct tdesc_feature *feature;
|
|
int i, valid_p = 1;
|
|
|
|
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
|
|
if (feature == NULL)
|
|
return NULL;
|
|
|
|
tdesc_data = tdesc_data_alloc ();
|
|
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_PSWM_REGNUM, "pswm");
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_PSWA_REGNUM, "pswa");
|
|
|
|
if (tdesc_unnumbered_register (feature, "r0"))
|
|
{
|
|
for (i = 0; i < 16; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_R0_REGNUM + i, gprs[i]);
|
|
}
|
|
else
|
|
{
|
|
have_upper = 1;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_R0_REGNUM + i,
|
|
gprs_lower[i]);
|
|
for (i = 0; i < 16; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_R0_UPPER_REGNUM + i,
|
|
gprs_upper[i]);
|
|
}
|
|
|
|
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
|
|
if (feature == NULL)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_FPC_REGNUM, "fpc");
|
|
for (i = 0; i < 16; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_F0_REGNUM + i, fprs[i]);
|
|
|
|
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
|
|
if (feature == NULL)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++)
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
|
S390_A0_REGNUM + i, acrs[i]);
|
|
|
|
/* Optional GNU/Linux-specific "registers". */
|
|
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
|
|
if (feature)
|
|
{
|
|
tdesc_numbered_register (feature, tdesc_data,
|
|
S390_ORIG_R2_REGNUM, "orig_r2");
|
|
|
|
if (tdesc_numbered_register (feature, tdesc_data,
|
|
S390_LAST_BREAK_REGNUM, "last_break"))
|
|
have_linux_v1 = 1;
|
|
|
|
if (tdesc_numbered_register (feature, tdesc_data,
|
|
S390_SYSTEM_CALL_REGNUM, "system_call"))
|
|
have_linux_v2 = 1;
|
|
|
|
if (have_linux_v2 > have_linux_v1)
|
|
valid_p = 0;
|
|
}
|
|
|
|
if (!valid_p)
|
|
{
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Find a candidate among extant architectures. */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
|
if (!tdep)
|
|
continue;
|
|
if (tdep->abi != tdep_abi)
|
|
continue;
|
|
if ((tdep->gpr_full_regnum != -1) != have_upper)
|
|
continue;
|
|
if (tdesc_data != NULL)
|
|
tdesc_data_cleanup (tdesc_data);
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* Otherwise create a new gdbarch for the specified machine type. */
|
|
tdep = XCALLOC (1, struct gdbarch_tdep);
|
|
tdep->abi = tdep_abi;
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 0);
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
|
|
/* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
|
|
We can safely let them default to 128-bit, since the debug info
|
|
will give the size of type actually used in each case. */
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
|
|
|
/* Amount PC must be decremented by after a breakpoint. This is
|
|
often the number of bytes returned by gdbarch_breakpoint_from_pc but not
|
|
always. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
|
/* Stack grows downward. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
|
|
set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
|
|
|
|
set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
|
|
set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
|
set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
|
s390_regset_from_core_section);
|
|
set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
|
|
set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
|
|
set_gdbarch_write_pc (gdbarch, s390_write_pc);
|
|
set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
|
|
set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
|
|
set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
|
|
set_tdesc_pseudo_register_reggroup_p (gdbarch,
|
|
s390_pseudo_register_reggroup_p);
|
|
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
|
|
|
|
/* Assign pseudo register numbers. */
|
|
first_pseudo_reg = gdbarch_num_regs (gdbarch);
|
|
last_pseudo_reg = first_pseudo_reg;
|
|
tdep->gpr_full_regnum = -1;
|
|
if (have_upper)
|
|
{
|
|
tdep->gpr_full_regnum = last_pseudo_reg;
|
|
last_pseudo_reg += 16;
|
|
}
|
|
tdep->pc_regnum = last_pseudo_reg++;
|
|
tdep->cc_regnum = last_pseudo_reg++;
|
|
set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
|
|
|
|
/* Inferior function calls. */
|
|
set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
|
|
set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
|
|
set_gdbarch_frame_align (gdbarch, s390_frame_align);
|
|
set_gdbarch_return_value (gdbarch, s390_return_value);
|
|
|
|
/* Frame handling. */
|
|
dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
|
|
dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
|
frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
|
|
frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
|
|
frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
|
|
frame_base_set_default (gdbarch, &s390_frame_base);
|
|
set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
|
|
|
|
/* Displaced stepping. */
|
|
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
|
simple_displaced_step_copy_insn);
|
|
set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
|
|
set_gdbarch_displaced_step_free_closure (gdbarch,
|
|
simple_displaced_step_free_closure);
|
|
set_gdbarch_displaced_step_location (gdbarch,
|
|
displaced_step_at_entry_point);
|
|
set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
|
|
|
|
/* Note that GNU/Linux is the only OS supported on this
|
|
platform. */
|
|
linux_init_abi (info, gdbarch);
|
|
|
|
switch (tdep->abi)
|
|
{
|
|
case ABI_LINUX_S390:
|
|
tdep->gregset = &s390_gregset;
|
|
tdep->sizeof_gregset = s390_sizeof_gregset;
|
|
tdep->fpregset = &s390_fpregset;
|
|
tdep->sizeof_fpregset = s390_sizeof_fpregset;
|
|
|
|
set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
|
if (have_upper)
|
|
{
|
|
if (have_linux_v2)
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390_linux64v2_regset_sections);
|
|
else if (have_linux_v1)
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390_linux64v1_regset_sections);
|
|
else
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390_linux64_regset_sections);
|
|
}
|
|
else
|
|
{
|
|
if (have_linux_v2)
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390_linux32v2_regset_sections);
|
|
else if (have_linux_v1)
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390_linux32v1_regset_sections);
|
|
else
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390_linux32_regset_sections);
|
|
}
|
|
break;
|
|
|
|
case ABI_LINUX_ZSERIES:
|
|
tdep->gregset = &s390x_gregset;
|
|
tdep->sizeof_gregset = s390x_sizeof_gregset;
|
|
tdep->fpregset = &s390_fpregset;
|
|
tdep->sizeof_fpregset = s390_sizeof_fpregset;
|
|
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
|
set_gdbarch_address_class_type_flags (gdbarch,
|
|
s390_address_class_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name (gdbarch,
|
|
s390_address_class_type_flags_to_name);
|
|
set_gdbarch_address_class_name_to_type_flags (gdbarch,
|
|
s390_address_class_name_to_type_flags);
|
|
|
|
if (have_linux_v2)
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390x_linux64v2_regset_sections);
|
|
else if (have_linux_v1)
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390x_linux64v1_regset_sections);
|
|
else
|
|
set_gdbarch_core_regset_sections (gdbarch,
|
|
s390x_linux64_regset_sections);
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_s390);
|
|
|
|
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
|
|
|
/* Enable TLS support. */
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
|
svr4_fetch_objfile_link_map);
|
|
|
|
set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
|
|
|
|
/* SystemTap functions. */
|
|
set_gdbarch_stap_register_prefix (gdbarch, "%");
|
|
set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
|
|
set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
|
|
set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_s390_tdep (void)
|
|
{
|
|
/* Hook us into the gdbarch mechanism. */
|
|
register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
|
|
|
|
/* Initialize the GNU/Linux target descriptions. */
|
|
initialize_tdesc_s390_linux32 ();
|
|
initialize_tdesc_s390_linux32v1 ();
|
|
initialize_tdesc_s390_linux32v2 ();
|
|
initialize_tdesc_s390_linux64 ();
|
|
initialize_tdesc_s390_linux64v1 ();
|
|
initialize_tdesc_s390_linux64v2 ();
|
|
initialize_tdesc_s390x_linux64 ();
|
|
initialize_tdesc_s390x_linux64v1 ();
|
|
initialize_tdesc_s390x_linux64v2 ();
|
|
}
|