binutils-gdb/gdb/sparcl-stub.c

947 lines
34 KiB
C

// OBSOLETE /****************************************************************************
// OBSOLETE
// OBSOLETE THIS SOFTWARE IS NOT COPYRIGHTED
// OBSOLETE
// OBSOLETE HP offers the following for use in the public domain. HP makes no
// OBSOLETE warranty with regard to the software or it's performance and the
// OBSOLETE user accepts the software "AS IS" with all faults.
// OBSOLETE
// OBSOLETE HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
// OBSOLETE TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OBSOLETE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
// OBSOLETE
// OBSOLETE ****************************************************************************/
// OBSOLETE
// OBSOLETE /****************************************************************************
// OBSOLETE * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
// OBSOLETE *
// OBSOLETE * Module name: remcom.c $
// OBSOLETE * Revision: 1.34 $
// OBSOLETE * Date: 91/03/09 12:29:49 $
// OBSOLETE * Contributor: Lake Stevens Instrument Division$
// OBSOLETE *
// OBSOLETE * Description: low level support for gdb debugger. $
// OBSOLETE *
// OBSOLETE * Considerations: only works on target hardware $
// OBSOLETE *
// OBSOLETE * Written by: Glenn Engel $
// OBSOLETE * ModuleState: Experimental $
// OBSOLETE *
// OBSOLETE * NOTES: See Below $
// OBSOLETE *
// OBSOLETE * Modified for SPARC by Stu Grossman, Cygnus Support.
// OBSOLETE * Based on sparc-stub.c, it's modified for SPARClite Debug Unit hardware
// OBSOLETE * breakpoint support to create sparclite-stub.c, by Kung Hsu, Cygnus Support.
// OBSOLETE *
// OBSOLETE * This code has been extensively tested on the Fujitsu SPARClite demo board.
// OBSOLETE *
// OBSOLETE * To enable debugger support, two things need to happen. One, a
// OBSOLETE * call to set_debug_traps() is necessary in order to allow any breakpoints
// OBSOLETE * or error conditions to be properly intercepted and reported to gdb.
// OBSOLETE * Two, a breakpoint needs to be generated to begin communication. This
// OBSOLETE * is most easily accomplished by a call to breakpoint(). Breakpoint()
// OBSOLETE * simulates a breakpoint by executing a trap #1.
// OBSOLETE *
// OBSOLETE *************
// OBSOLETE *
// OBSOLETE * The following gdb commands are supported:
// OBSOLETE *
// OBSOLETE * command function Return value
// OBSOLETE *
// OBSOLETE * g return the value of the CPU registers hex data or ENN
// OBSOLETE * G set the value of the CPU registers OK or ENN
// OBSOLETE * P set the value of a single CPU register OK or ENN
// OBSOLETE *
// OBSOLETE * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
// OBSOLETE * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
// OBSOLETE *
// OBSOLETE * c Resume at current address SNN ( signal NN)
// OBSOLETE * cAA..AA Continue at address AA..AA SNN
// OBSOLETE *
// OBSOLETE * s Step one instruction SNN
// OBSOLETE * sAA..AA Step one instruction from AA..AA SNN
// OBSOLETE *
// OBSOLETE * k kill
// OBSOLETE *
// OBSOLETE * ? What was the last sigval ? SNN (signal NN)
// OBSOLETE *
// OBSOLETE * All commands and responses are sent with a packet which includes a
// OBSOLETE * checksum. A packet consists of
// OBSOLETE *
// OBSOLETE * $<packet info>#<checksum>.
// OBSOLETE *
// OBSOLETE * where
// OBSOLETE * <packet info> :: <characters representing the command or response>
// OBSOLETE * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
// OBSOLETE *
// OBSOLETE * When a packet is received, it is first acknowledged with either '+' or '-'.
// OBSOLETE * '+' indicates a successful transfer. '-' indicates a failed transfer.
// OBSOLETE *
// OBSOLETE * Example:
// OBSOLETE *
// OBSOLETE * Host: Reply:
// OBSOLETE * $m0,10#2a +$00010203040506070809101112131415#42
// OBSOLETE *
// OBSOLETE ****************************************************************************/
// OBSOLETE
// OBSOLETE #include <string.h>
// OBSOLETE #include <signal.h>
// OBSOLETE #include <sparclite.h>
// OBSOLETE
// OBSOLETE /************************************************************************
// OBSOLETE *
// OBSOLETE * external low-level support routines
// OBSOLETE */
// OBSOLETE
// OBSOLETE extern void putDebugChar (int c); /* write a single character */
// OBSOLETE extern int getDebugChar (void); /* read and return a single char */
// OBSOLETE
// OBSOLETE /************************************************************************/
// OBSOLETE /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
// OBSOLETE /* at least NUMREGBYTES*2 are needed for register packets */
// OBSOLETE #define BUFMAX 2048
// OBSOLETE
// OBSOLETE static int initialized = 0; /* !0 means we've been initialized */
// OBSOLETE
// OBSOLETE extern void breakinst ();
// OBSOLETE static void set_mem_fault_trap (int enable);
// OBSOLETE static void get_in_break_mode (void);
// OBSOLETE
// OBSOLETE static const char hexchars[]="0123456789abcdef";
// OBSOLETE
// OBSOLETE #define NUMREGS 80
// OBSOLETE
// OBSOLETE /* Number of bytes of registers. */
// OBSOLETE #define NUMREGBYTES (NUMREGS * 4)
// OBSOLETE enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
// OBSOLETE O0, O1, O2, O3, O4, O5, SP, O7,
// OBSOLETE L0, L1, L2, L3, L4, L5, L6, L7,
// OBSOLETE I0, I1, I2, I3, I4, I5, FP, I7,
// OBSOLETE
// OBSOLETE F0, F1, F2, F3, F4, F5, F6, F7,
// OBSOLETE F8, F9, F10, F11, F12, F13, F14, F15,
// OBSOLETE F16, F17, F18, F19, F20, F21, F22, F23,
// OBSOLETE F24, F25, F26, F27, F28, F29, F30, F31,
// OBSOLETE Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR,
// OBSOLETE DIA1, DIA2, DDA1, DDA2, DDV1, DDV2, DCR, DSR };
// OBSOLETE
// OBSOLETE /*************************** ASSEMBLY CODE MACROS *************************/
// OBSOLETE /* */
// OBSOLETE
// OBSOLETE extern void trap_low();
// OBSOLETE
// OBSOLETE /* Create private copies of common functions used by the stub. This prevents
// OBSOLETE nasty interactions between app code and the stub (for instance if user steps
// OBSOLETE into strlen, etc..) */
// OBSOLETE
// OBSOLETE static char *
// OBSOLETE strcpy (char *dst, const char *src)
// OBSOLETE {
// OBSOLETE char *retval = dst;
// OBSOLETE
// OBSOLETE while ((*dst++ = *src++) != '\000');
// OBSOLETE
// OBSOLETE return retval;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static void *
// OBSOLETE memcpy (void *vdst, const void *vsrc, int n)
// OBSOLETE {
// OBSOLETE char *dst = vdst;
// OBSOLETE const char *src = vsrc;
// OBSOLETE char *retval = dst;
// OBSOLETE
// OBSOLETE while (n-- > 0)
// OBSOLETE *dst++ = *src++;
// OBSOLETE
// OBSOLETE return retval;
// OBSOLETE }
// OBSOLETE
// OBSOLETE asm("
// OBSOLETE .reserve trapstack, 1000 * 4, \"bss\", 8
// OBSOLETE
// OBSOLETE .data
// OBSOLETE .align 4
// OBSOLETE
// OBSOLETE in_trap_handler:
// OBSOLETE .word 0
// OBSOLETE
// OBSOLETE .text
// OBSOLETE .align 4
// OBSOLETE
// OBSOLETE ! This function is called when any SPARC trap (except window overflow or
// OBSOLETE ! underflow) occurs. It makes sure that the invalid register window is still
// OBSOLETE ! available before jumping into C code. It will also restore the world if you
// OBSOLETE ! return from handle_exception.
// OBSOLETE !
// OBSOLETE ! On entry, trap_low expects l1 and l2 to contain pc and npc respectivly.
// OBSOLETE ! Register usage throughout the routine is as follows:
// OBSOLETE !
// OBSOLETE ! l0 - psr
// OBSOLETE ! l1 - pc
// OBSOLETE ! l2 - npc
// OBSOLETE ! l3 - wim
// OBSOLETE ! l4 - scratch and y reg
// OBSOLETE ! l5 - scratch and tbr
// OBSOLETE ! l6 - unused
// OBSOLETE ! l7 - unused
// OBSOLETE
// OBSOLETE .globl _trap_low
// OBSOLETE _trap_low:
// OBSOLETE mov %psr, %l0
// OBSOLETE mov %wim, %l3
// OBSOLETE
// OBSOLETE srl %l3, %l0, %l4 ! wim >> cwp
// OBSOLETE cmp %l4, 1
// OBSOLETE bne window_fine ! Branch if not in the invalid window
// OBSOLETE nop
// OBSOLETE
// OBSOLETE ! Handle window overflow
// OBSOLETE
// OBSOLETE mov %g1, %l4 ! Save g1, we use it to hold the wim
// OBSOLETE srl %l3, 1, %g1 ! Rotate wim right
// OBSOLETE tst %g1
// OBSOLETE bg good_wim ! Branch if new wim is non-zero
// OBSOLETE nop
// OBSOLETE
// OBSOLETE ! At this point, we need to bring a 1 into the high order bit of the wim.
// OBSOLETE ! Since we don't want to make any assumptions about the number of register
// OBSOLETE ! windows, we figure it out dynamically so as to setup the wim correctly.
// OBSOLETE
// OBSOLETE not %g1 ! Fill g1 with ones
// OBSOLETE mov %g1, %wim ! Fill the wim with ones
// OBSOLETE nop
// OBSOLETE nop
// OBSOLETE nop
// OBSOLETE mov %wim, %g1 ! Read back the wim
// OBSOLETE inc %g1 ! Now g1 has 1 just to left of wim
// OBSOLETE srl %g1, 1, %g1 ! Now put 1 at top of wim
// OBSOLETE mov %g0, %wim ! Clear wim so that subsequent save
// OBSOLETE nop ! won't trap
// OBSOLETE nop
// OBSOLETE nop
// OBSOLETE
// OBSOLETE good_wim:
// OBSOLETE save %g0, %g0, %g0 ! Slip into next window
// OBSOLETE mov %g1, %wim ! Install the new wim
// OBSOLETE
// OBSOLETE std %l0, [%sp + 0 * 4] ! save L & I registers
// OBSOLETE std %l2, [%sp + 2 * 4]
// OBSOLETE std %l4, [%sp + 4 * 4]
// OBSOLETE std %l6, [%sp + 6 * 4]
// OBSOLETE
// OBSOLETE std %i0, [%sp + 8 * 4]
// OBSOLETE std %i2, [%sp + 10 * 4]
// OBSOLETE std %i4, [%sp + 12 * 4]
// OBSOLETE std %i6, [%sp + 14 * 4]
// OBSOLETE
// OBSOLETE restore ! Go back to trap window.
// OBSOLETE mov %l4, %g1 ! Restore %g1
// OBSOLETE
// OBSOLETE window_fine:
// OBSOLETE sethi %hi(in_trap_handler), %l4
// OBSOLETE ld [%lo(in_trap_handler) + %l4], %l5
// OBSOLETE tst %l5
// OBSOLETE bg recursive_trap
// OBSOLETE inc %l5
// OBSOLETE
// OBSOLETE set trapstack+1000*4, %sp ! Switch to trap stack
// OBSOLETE
// OBSOLETE recursive_trap:
// OBSOLETE st %l5, [%lo(in_trap_handler) + %l4]
// OBSOLETE sub %sp,(16+1+6+1+80)*4,%sp ! Make room for input & locals
// OBSOLETE ! + hidden arg + arg spill
// OBSOLETE ! + doubleword alignment
// OBSOLETE ! + registers[72] local var
// OBSOLETE
// OBSOLETE std %g0, [%sp + (24 + 0) * 4] ! registers[Gx]
// OBSOLETE std %g2, [%sp + (24 + 2) * 4]
// OBSOLETE std %g4, [%sp + (24 + 4) * 4]
// OBSOLETE std %g6, [%sp + (24 + 6) * 4]
// OBSOLETE
// OBSOLETE std %i0, [%sp + (24 + 8) * 4] ! registers[Ox]
// OBSOLETE std %i2, [%sp + (24 + 10) * 4]
// OBSOLETE std %i4, [%sp + (24 + 12) * 4]
// OBSOLETE std %i6, [%sp + (24 + 14) * 4]
// OBSOLETE
// OBSOLETE mov %y, %l4
// OBSOLETE mov %tbr, %l5
// OBSOLETE st %l4, [%sp + (24 + 64) * 4] ! Y
// OBSOLETE st %l0, [%sp + (24 + 65) * 4] ! PSR
// OBSOLETE st %l3, [%sp + (24 + 66) * 4] ! WIM
// OBSOLETE st %l5, [%sp + (24 + 67) * 4] ! TBR
// OBSOLETE st %l1, [%sp + (24 + 68) * 4] ! PC
// OBSOLETE st %l2, [%sp + (24 + 69) * 4] ! NPC
// OBSOLETE
// OBSOLETE or %l0, 0xf20, %l4
// OBSOLETE mov %l4, %psr ! Turn on traps, disable interrupts
// OBSOLETE
// OBSOLETE set 0x1000, %l1
// OBSOLETE btst %l1, %l0 ! FP enabled?
// OBSOLETE be no_fpstore
// OBSOLETE nop
// OBSOLETE
// OBSOLETE ! Must save fsr first, to flush the FQ. This may cause a deferred fp trap, so
// OBSOLETE ! traps must be enabled to allow the trap handler to clean things up.
// OBSOLETE
// OBSOLETE st %fsr, [%sp + (24 + 70) * 4]
// OBSOLETE
// OBSOLETE std %f0, [%sp + (24 + 32) * 4]
// OBSOLETE std %f2, [%sp + (24 + 34) * 4]
// OBSOLETE std %f4, [%sp + (24 + 36) * 4]
// OBSOLETE std %f6, [%sp + (24 + 38) * 4]
// OBSOLETE std %f8, [%sp + (24 + 40) * 4]
// OBSOLETE std %f10, [%sp + (24 + 42) * 4]
// OBSOLETE std %f12, [%sp + (24 + 44) * 4]
// OBSOLETE std %f14, [%sp + (24 + 46) * 4]
// OBSOLETE std %f16, [%sp + (24 + 48) * 4]
// OBSOLETE std %f18, [%sp + (24 + 50) * 4]
// OBSOLETE std %f20, [%sp + (24 + 52) * 4]
// OBSOLETE std %f22, [%sp + (24 + 54) * 4]
// OBSOLETE std %f24, [%sp + (24 + 56) * 4]
// OBSOLETE std %f26, [%sp + (24 + 58) * 4]
// OBSOLETE std %f28, [%sp + (24 + 60) * 4]
// OBSOLETE std %f30, [%sp + (24 + 62) * 4]
// OBSOLETE no_fpstore:
// OBSOLETE
// OBSOLETE call _handle_exception
// OBSOLETE add %sp, 24 * 4, %o0 ! Pass address of registers
// OBSOLETE
// OBSOLETE ! Reload all of the registers that aren't on the stack
// OBSOLETE
// OBSOLETE ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx]
// OBSOLETE ldd [%sp + (24 + 2) * 4], %g2
// OBSOLETE ldd [%sp + (24 + 4) * 4], %g4
// OBSOLETE ldd [%sp + (24 + 6) * 4], %g6
// OBSOLETE
// OBSOLETE ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox]
// OBSOLETE ldd [%sp + (24 + 10) * 4], %i2
// OBSOLETE ldd [%sp + (24 + 12) * 4], %i4
// OBSOLETE ldd [%sp + (24 + 14) * 4], %i6
// OBSOLETE
// OBSOLETE
// OBSOLETE ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR
// OBSOLETE ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC
// OBSOLETE
// OBSOLETE set 0x1000, %l5
// OBSOLETE btst %l5, %l1 ! FP enabled?
// OBSOLETE be no_fpreload
// OBSOLETE nop
// OBSOLETE
// OBSOLETE ldd [%sp + (24 + 32) * 4], %f0
// OBSOLETE ldd [%sp + (24 + 34) * 4], %f2
// OBSOLETE ldd [%sp + (24 + 36) * 4], %f4
// OBSOLETE ldd [%sp + (24 + 38) * 4], %f6
// OBSOLETE ldd [%sp + (24 + 40) * 4], %f8
// OBSOLETE ldd [%sp + (24 + 42) * 4], %f10
// OBSOLETE ldd [%sp + (24 + 44) * 4], %f12
// OBSOLETE ldd [%sp + (24 + 46) * 4], %f14
// OBSOLETE ldd [%sp + (24 + 48) * 4], %f16
// OBSOLETE ldd [%sp + (24 + 50) * 4], %f18
// OBSOLETE ldd [%sp + (24 + 52) * 4], %f20
// OBSOLETE ldd [%sp + (24 + 54) * 4], %f22
// OBSOLETE ldd [%sp + (24 + 56) * 4], %f24
// OBSOLETE ldd [%sp + (24 + 58) * 4], %f26
// OBSOLETE ldd [%sp + (24 + 60) * 4], %f28
// OBSOLETE ldd [%sp + (24 + 62) * 4], %f30
// OBSOLETE
// OBSOLETE ld [%sp + (24 + 70) * 4], %fsr
// OBSOLETE no_fpreload:
// OBSOLETE
// OBSOLETE restore ! Ensure that previous window is valid
// OBSOLETE save %g0, %g0, %g0 ! by causing a window_underflow trap
// OBSOLETE
// OBSOLETE mov %l0, %y
// OBSOLETE mov %l1, %psr ! Make sure that traps are disabled
// OBSOLETE ! for rett
// OBSOLETE sethi %hi(in_trap_handler), %l4
// OBSOLETE ld [%lo(in_trap_handler) + %l4], %l5
// OBSOLETE dec %l5
// OBSOLETE st %l5, [%lo(in_trap_handler) + %l4]
// OBSOLETE
// OBSOLETE jmpl %l2, %g0 ! Restore old PC
// OBSOLETE rett %l3 ! Restore old nPC
// OBSOLETE ");
// OBSOLETE
// OBSOLETE /* Convert ch from a hex digit to an int */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE hex (unsigned char ch)
// OBSOLETE {
// OBSOLETE if (ch >= 'a' && ch <= 'f')
// OBSOLETE return ch-'a'+10;
// OBSOLETE if (ch >= '0' && ch <= '9')
// OBSOLETE return ch-'0';
// OBSOLETE if (ch >= 'A' && ch <= 'F')
// OBSOLETE return ch-'A'+10;
// OBSOLETE return -1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE static char remcomInBuffer[BUFMAX];
// OBSOLETE static char remcomOutBuffer[BUFMAX];
// OBSOLETE
// OBSOLETE /* scan for the sequence $<data>#<checksum> */
// OBSOLETE
// OBSOLETE unsigned char *
// OBSOLETE getpacket (void)
// OBSOLETE {
// OBSOLETE unsigned char *buffer = &remcomInBuffer[0];
// OBSOLETE unsigned char checksum;
// OBSOLETE unsigned char xmitcsum;
// OBSOLETE int count;
// OBSOLETE char ch;
// OBSOLETE
// OBSOLETE while (1)
// OBSOLETE {
// OBSOLETE /* wait around for the start character, ignore all other characters */
// OBSOLETE while ((ch = getDebugChar ()) != '$')
// OBSOLETE ;
// OBSOLETE
// OBSOLETE retry:
// OBSOLETE checksum = 0;
// OBSOLETE xmitcsum = -1;
// OBSOLETE count = 0;
// OBSOLETE
// OBSOLETE /* now, read until a # or end of buffer is found */
// OBSOLETE while (count < BUFMAX)
// OBSOLETE {
// OBSOLETE ch = getDebugChar ();
// OBSOLETE if (ch == '$')
// OBSOLETE goto retry;
// OBSOLETE if (ch == '#')
// OBSOLETE break;
// OBSOLETE checksum = checksum + ch;
// OBSOLETE buffer[count] = ch;
// OBSOLETE count = count + 1;
// OBSOLETE }
// OBSOLETE buffer[count] = 0;
// OBSOLETE
// OBSOLETE if (ch == '#')
// OBSOLETE {
// OBSOLETE ch = getDebugChar ();
// OBSOLETE xmitcsum = hex (ch) << 4;
// OBSOLETE ch = getDebugChar ();
// OBSOLETE xmitcsum += hex (ch);
// OBSOLETE
// OBSOLETE if (checksum != xmitcsum)
// OBSOLETE {
// OBSOLETE putDebugChar ('-'); /* failed checksum */
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE putDebugChar ('+'); /* successful transfer */
// OBSOLETE
// OBSOLETE /* if a sequence char is present, reply the sequence ID */
// OBSOLETE if (buffer[2] == ':')
// OBSOLETE {
// OBSOLETE putDebugChar (buffer[0]);
// OBSOLETE putDebugChar (buffer[1]);
// OBSOLETE
// OBSOLETE return &buffer[3];
// OBSOLETE }
// OBSOLETE
// OBSOLETE return &buffer[0];
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* send the packet in buffer. */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE putpacket (unsigned char *buffer)
// OBSOLETE {
// OBSOLETE unsigned char checksum;
// OBSOLETE int count;
// OBSOLETE unsigned char ch;
// OBSOLETE
// OBSOLETE /* $<packet info>#<checksum>. */
// OBSOLETE do
// OBSOLETE {
// OBSOLETE putDebugChar('$');
// OBSOLETE checksum = 0;
// OBSOLETE count = 0;
// OBSOLETE
// OBSOLETE while (ch = buffer[count])
// OBSOLETE {
// OBSOLETE putDebugChar (ch);
// OBSOLETE checksum += ch;
// OBSOLETE count += 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE putDebugChar('#');
// OBSOLETE putDebugChar(hexchars[checksum >> 4]);
// OBSOLETE putDebugChar(hexchars[checksum & 0xf]);
// OBSOLETE
// OBSOLETE }
// OBSOLETE while (getDebugChar() != '+');
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an
// OBSOLETE error. */
// OBSOLETE static volatile int mem_err = 0;
// OBSOLETE
// OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf.
// OBSOLETE * Return a pointer to the last char put in buf (null), in case of mem fault,
// OBSOLETE * return 0.
// OBSOLETE * If MAY_FAULT is non-zero, then we will handle memory faults by returning
// OBSOLETE * a 0, else treat a fault like any other fault in the stub.
// OBSOLETE */
// OBSOLETE
// OBSOLETE static unsigned char *
// OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
// OBSOLETE {
// OBSOLETE unsigned char ch;
// OBSOLETE
// OBSOLETE set_mem_fault_trap(may_fault);
// OBSOLETE
// OBSOLETE while (count-- > 0)
// OBSOLETE {
// OBSOLETE ch = *mem++;
// OBSOLETE if (mem_err)
// OBSOLETE return 0;
// OBSOLETE *buf++ = hexchars[ch >> 4];
// OBSOLETE *buf++ = hexchars[ch & 0xf];
// OBSOLETE }
// OBSOLETE
// OBSOLETE *buf = 0;
// OBSOLETE
// OBSOLETE set_mem_fault_trap(0);
// OBSOLETE
// OBSOLETE return buf;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* convert the hex array pointed to by buf into binary to be placed in mem
// OBSOLETE * return a pointer to the character AFTER the last byte written */
// OBSOLETE
// OBSOLETE static char *
// OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
// OBSOLETE {
// OBSOLETE int i;
// OBSOLETE unsigned char ch;
// OBSOLETE
// OBSOLETE set_mem_fault_trap(may_fault);
// OBSOLETE
// OBSOLETE for (i=0; i<count; i++)
// OBSOLETE {
// OBSOLETE ch = hex(*buf++) << 4;
// OBSOLETE ch |= hex(*buf++);
// OBSOLETE *mem++ = ch;
// OBSOLETE if (mem_err)
// OBSOLETE return 0;
// OBSOLETE }
// OBSOLETE
// OBSOLETE set_mem_fault_trap(0);
// OBSOLETE
// OBSOLETE return mem;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* This table contains the mapping between SPARC hardware trap types, and
// OBSOLETE signals, which are primarily what GDB understands. It also indicates
// OBSOLETE which hardware traps we need to commandeer when initializing the stub. */
// OBSOLETE
// OBSOLETE static struct hard_trap_info
// OBSOLETE {
// OBSOLETE unsigned char tt; /* Trap type code for SPARClite */
// OBSOLETE unsigned char signo; /* Signal that we map this trap into */
// OBSOLETE } hard_trap_info[] = {
// OBSOLETE {0x01, SIGSEGV}, /* instruction access error */
// OBSOLETE {0x02, SIGILL}, /* privileged instruction */
// OBSOLETE {0x03, SIGILL}, /* illegal instruction */
// OBSOLETE {0x04, SIGEMT}, /* fp disabled */
// OBSOLETE {0x07, SIGBUS}, /* mem address not aligned */
// OBSOLETE {0x09, SIGSEGV}, /* data access exception */
// OBSOLETE {0x0a, SIGEMT}, /* tag overflow */
// OBSOLETE {0x20, SIGBUS}, /* r register access error */
// OBSOLETE {0x21, SIGBUS}, /* instruction access error */
// OBSOLETE {0x24, SIGEMT}, /* cp disabled */
// OBSOLETE {0x29, SIGBUS}, /* data access error */
// OBSOLETE {0x2a, SIGFPE}, /* divide by zero */
// OBSOLETE {0x2b, SIGBUS}, /* data store error */
// OBSOLETE {0x80+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */
// OBSOLETE {0xff, SIGTRAP}, /* hardware breakpoint */
// OBSOLETE {0, 0} /* Must be last */
// OBSOLETE };
// OBSOLETE
// OBSOLETE /* Set up exception handlers for tracing and breakpoints */
// OBSOLETE
// OBSOLETE void
// OBSOLETE set_debug_traps (void)
// OBSOLETE {
// OBSOLETE struct hard_trap_info *ht;
// OBSOLETE
// OBSOLETE /* Only setup fp traps if the FP is disabled. */
// OBSOLETE
// OBSOLETE for (ht = hard_trap_info;
// OBSOLETE ht->tt != 0 && ht->signo != 0;
// OBSOLETE ht++)
// OBSOLETE if (ht->tt != 4 || ! (read_psr () & 0x1000))
// OBSOLETE exceptionHandler(ht->tt, trap_low);
// OBSOLETE
// OBSOLETE initialized = 1;
// OBSOLETE }
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE ! Trap handler for memory errors. This just sets mem_err to be non-zero. It
// OBSOLETE ! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
// OBSOLETE ! 0 would ever contain code that could mem fault. This routine will skip
// OBSOLETE ! past the faulting instruction after setting mem_err.
// OBSOLETE
// OBSOLETE .text
// OBSOLETE .align 4
// OBSOLETE
// OBSOLETE _fltr_set_mem_err:
// OBSOLETE sethi %hi(_mem_err), %l0
// OBSOLETE st %l1, [%l0 + %lo(_mem_err)]
// OBSOLETE jmpl %l2, %g0
// OBSOLETE rett %l2+4
// OBSOLETE ");
// OBSOLETE
// OBSOLETE static void
// OBSOLETE set_mem_fault_trap (int enable)
// OBSOLETE {
// OBSOLETE extern void fltr_set_mem_err();
// OBSOLETE mem_err = 0;
// OBSOLETE
// OBSOLETE if (enable)
// OBSOLETE exceptionHandler(9, fltr_set_mem_err);
// OBSOLETE else
// OBSOLETE exceptionHandler(9, trap_low);
// OBSOLETE }
// OBSOLETE
// OBSOLETE asm ("
// OBSOLETE .text
// OBSOLETE .align 4
// OBSOLETE
// OBSOLETE _dummy_hw_breakpoint:
// OBSOLETE jmpl %l2, %g0
// OBSOLETE rett %l2+4
// OBSOLETE nop
// OBSOLETE nop
// OBSOLETE ");
// OBSOLETE
// OBSOLETE static void
// OBSOLETE get_in_break_mode (void)
// OBSOLETE {
// OBSOLETE extern void dummy_hw_breakpoint();
// OBSOLETE
// OBSOLETE exceptionHandler (255, dummy_hw_breakpoint);
// OBSOLETE
// OBSOLETE asm ("ta 255");
// OBSOLETE
// OBSOLETE exceptionHandler (255, trap_low);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert the SPARC hardware trap type code to a unix signal number. */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE computeSignal (int tt)
// OBSOLETE {
// OBSOLETE struct hard_trap_info *ht;
// OBSOLETE
// OBSOLETE for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
// OBSOLETE if (ht->tt == tt)
// OBSOLETE return ht->signo;
// OBSOLETE
// OBSOLETE return SIGHUP; /* default for things we don't know about */
// OBSOLETE }
// OBSOLETE
// OBSOLETE /*
// OBSOLETE * While we find nice hex chars, build an int.
// OBSOLETE * Return number of chars processed.
// OBSOLETE */
// OBSOLETE
// OBSOLETE static int
// OBSOLETE hexToInt(char **ptr, int *intValue)
// OBSOLETE {
// OBSOLETE int numChars = 0;
// OBSOLETE int hexValue;
// OBSOLETE
// OBSOLETE *intValue = 0;
// OBSOLETE
// OBSOLETE while (**ptr)
// OBSOLETE {
// OBSOLETE hexValue = hex(**ptr);
// OBSOLETE if (hexValue < 0)
// OBSOLETE break;
// OBSOLETE
// OBSOLETE *intValue = (*intValue << 4) | hexValue;
// OBSOLETE numChars ++;
// OBSOLETE
// OBSOLETE (*ptr)++;
// OBSOLETE }
// OBSOLETE
// OBSOLETE return (numChars);
// OBSOLETE }
// OBSOLETE
// OBSOLETE /*
// OBSOLETE * This function does all command procesing for interfacing to gdb. It
// OBSOLETE * returns 1 if you should skip the instruction at the trap address, 0
// OBSOLETE * otherwise.
// OBSOLETE */
// OBSOLETE
// OBSOLETE static void
// OBSOLETE handle_exception (unsigned long *registers)
// OBSOLETE {
// OBSOLETE int tt; /* Trap type */
// OBSOLETE int sigval;
// OBSOLETE int addr;
// OBSOLETE int length;
// OBSOLETE char *ptr;
// OBSOLETE unsigned long *sp;
// OBSOLETE unsigned long dsr;
// OBSOLETE
// OBSOLETE /* First, we must force all of the windows to be spilled out */
// OBSOLETE
// OBSOLETE asm(" save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE save %sp, -64, %sp
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE restore
// OBSOLETE ");
// OBSOLETE
// OBSOLETE get_in_break_mode (); /* Enable DSU register writes */
// OBSOLETE
// OBSOLETE registers[DIA1] = read_asi (1, 0xff00);
// OBSOLETE registers[DIA2] = read_asi (1, 0xff04);
// OBSOLETE registers[DDA1] = read_asi (1, 0xff08);
// OBSOLETE registers[DDA2] = read_asi (1, 0xff0c);
// OBSOLETE registers[DDV1] = read_asi (1, 0xff10);
// OBSOLETE registers[DDV2] = read_asi (1, 0xff14);
// OBSOLETE registers[DCR] = read_asi (1, 0xff18);
// OBSOLETE registers[DSR] = read_asi (1, 0xff1c);
// OBSOLETE
// OBSOLETE if (registers[PC] == (unsigned long)breakinst)
// OBSOLETE {
// OBSOLETE registers[PC] = registers[NPC];
// OBSOLETE registers[NPC] += 4;
// OBSOLETE }
// OBSOLETE sp = (unsigned long *)registers[SP];
// OBSOLETE
// OBSOLETE dsr = (unsigned long)registers[DSR];
// OBSOLETE if (dsr & 0x3c)
// OBSOLETE tt = 255;
// OBSOLETE else
// OBSOLETE tt = (registers[TBR] >> 4) & 0xff;
// OBSOLETE
// OBSOLETE /* reply to host that an exception has occurred */
// OBSOLETE sigval = computeSignal(tt);
// OBSOLETE ptr = remcomOutBuffer;
// OBSOLETE
// OBSOLETE *ptr++ = 'T';
// OBSOLETE *ptr++ = hexchars[sigval >> 4];
// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[PC >> 4];
// OBSOLETE *ptr++ = hexchars[PC & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((char *)&registers[PC], ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[FP >> 4];
// OBSOLETE *ptr++ = hexchars[FP & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[SP >> 4];
// OBSOLETE *ptr++ = hexchars[SP & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((char *)&sp, ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[NPC >> 4];
// OBSOLETE *ptr++ = hexchars[NPC & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((char *)&registers[NPC], ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = hexchars[O7 >> 4];
// OBSOLETE *ptr++ = hexchars[O7 & 0xf];
// OBSOLETE *ptr++ = ':';
// OBSOLETE ptr = mem2hex((char *)&registers[O7], ptr, 4, 0);
// OBSOLETE *ptr++ = ';';
// OBSOLETE
// OBSOLETE *ptr++ = 0;
// OBSOLETE
// OBSOLETE putpacket(remcomOutBuffer);
// OBSOLETE
// OBSOLETE while (1)
// OBSOLETE {
// OBSOLETE remcomOutBuffer[0] = 0;
// OBSOLETE
// OBSOLETE ptr = getpacket();
// OBSOLETE switch (*ptr++)
// OBSOLETE {
// OBSOLETE case '?':
// OBSOLETE remcomOutBuffer[0] = 'S';
// OBSOLETE remcomOutBuffer[1] = hexchars[sigval >> 4];
// OBSOLETE remcomOutBuffer[2] = hexchars[sigval & 0xf];
// OBSOLETE remcomOutBuffer[3] = 0;
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'd':
// OBSOLETE /* toggle debug flag */
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'g': /* return the value of the CPU registers */
// OBSOLETE memcpy (&registers[L0], sp, 16 * 4); /* Copy L & I regs from stack */
// OBSOLETE mem2hex ((char *)registers, remcomOutBuffer, NUMREGBYTES, 0);
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'G': /* Set the value of all registers */
// OBSOLETE case 'P': /* Set the value of one register */
// OBSOLETE {
// OBSOLETE unsigned long *newsp, psr;
// OBSOLETE
// OBSOLETE psr = registers[PSR];
// OBSOLETE
// OBSOLETE if (ptr[-1] == 'P')
// OBSOLETE {
// OBSOLETE int regno;
// OBSOLETE
// OBSOLETE if (hexToInt (&ptr, &regno)
// OBSOLETE && *ptr++ == '=')
// OBSOLETE if (regno >= L0 && regno <= I7)
// OBSOLETE hex2mem (ptr, sp + regno - L0, 4, 0);
// OBSOLETE else
// OBSOLETE hex2mem (ptr, (char *)&registers[regno], 4, 0);
// OBSOLETE else
// OBSOLETE {
// OBSOLETE strcpy (remcomOutBuffer, "E01");
// OBSOLETE break;
// OBSOLETE }
// OBSOLETE }
// OBSOLETE else
// OBSOLETE {
// OBSOLETE hex2mem (ptr, (char *)registers, NUMREGBYTES, 0);
// OBSOLETE memcpy (sp, &registers[L0], 16 * 4); /* Copy L & I regs to stack */
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* See if the stack pointer has moved. If so, then copy the saved
// OBSOLETE locals and ins to the new location. This keeps the window
// OBSOLETE overflow and underflow routines happy. */
// OBSOLETE
// OBSOLETE newsp = (unsigned long *)registers[SP];
// OBSOLETE if (sp != newsp)
// OBSOLETE sp = memcpy(newsp, sp, 16 * 4);
// OBSOLETE
// OBSOLETE /* Don't allow CWP to be modified. */
// OBSOLETE
// OBSOLETE if (psr != registers[PSR])
// OBSOLETE registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
// OBSOLETE
// OBSOLETE strcpy(remcomOutBuffer,"OK");
// OBSOLETE }
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
// OBSOLETE /* Try to read %x,%x. */
// OBSOLETE
// OBSOLETE if (hexToInt(&ptr, &addr)
// OBSOLETE && *ptr++ == ','
// OBSOLETE && hexToInt(&ptr, &length))
// OBSOLETE {
// OBSOLETE if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
// OBSOLETE break;
// OBSOLETE
// OBSOLETE strcpy (remcomOutBuffer, "E03");
// OBSOLETE }
// OBSOLETE else
// OBSOLETE strcpy(remcomOutBuffer,"E01");
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
// OBSOLETE /* Try to read '%x,%x:'. */
// OBSOLETE
// OBSOLETE if (hexToInt(&ptr, &addr)
// OBSOLETE && *ptr++ == ','
// OBSOLETE && hexToInt(&ptr, &length)
// OBSOLETE && *ptr++ == ':')
// OBSOLETE {
// OBSOLETE if (hex2mem(ptr, (char *)addr, length, 1))
// OBSOLETE strcpy(remcomOutBuffer, "OK");
// OBSOLETE else
// OBSOLETE strcpy(remcomOutBuffer, "E03");
// OBSOLETE }
// OBSOLETE else
// OBSOLETE strcpy(remcomOutBuffer, "E02");
// OBSOLETE break;
// OBSOLETE
// OBSOLETE case 'c': /* cAA..AA Continue at address AA..AA(optional) */
// OBSOLETE /* try to read optional parameter, pc unchanged if no parm */
// OBSOLETE if (hexToInt(&ptr, &addr))
// OBSOLETE {
// OBSOLETE registers[PC] = addr;
// OBSOLETE registers[NPC] = addr + 4;
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Need to flush the instruction cache here, as we may have deposited a
// OBSOLETE breakpoint, and the icache probably has no way of knowing that a data ref to
// OBSOLETE some location may have changed something that is in the instruction cache.
// OBSOLETE */
// OBSOLETE
// OBSOLETE flush_i_cache ();
// OBSOLETE
// OBSOLETE if (!(registers[DSR] & 0x1) /* DSU enabled? */
// OBSOLETE && !(registers[DCR] & 0x200)) /* Are we in break state? */
// OBSOLETE { /* Yes, set the DSU regs */
// OBSOLETE write_asi (1, 0xff00, registers[DIA1]);
// OBSOLETE write_asi (1, 0xff04, registers[DIA2]);
// OBSOLETE write_asi (1, 0xff08, registers[DDA1]);
// OBSOLETE write_asi (1, 0xff0c, registers[DDA2]);
// OBSOLETE write_asi (1, 0xff10, registers[DDV1]);
// OBSOLETE write_asi (1, 0xff14, registers[DDV2]);
// OBSOLETE write_asi (1, 0xff1c, registers[DSR]);
// OBSOLETE write_asi (1, 0xff18, registers[DCR] | 0x200); /* Clear break */
// OBSOLETE }
// OBSOLETE
// OBSOLETE return;
// OBSOLETE
// OBSOLETE /* kill the program */
// OBSOLETE case 'k' : /* do nothing */
// OBSOLETE break;
// OBSOLETE #if 0
// OBSOLETE case 't': /* Test feature */
// OBSOLETE asm (" std %f30,[%sp]");
// OBSOLETE break;
// OBSOLETE #endif
// OBSOLETE case 'r': /* Reset */
// OBSOLETE asm ("call 0
// OBSOLETE nop ");
// OBSOLETE break;
// OBSOLETE } /* switch */
// OBSOLETE
// OBSOLETE /* reply to the request */
// OBSOLETE putpacket(remcomOutBuffer);
// OBSOLETE }
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* This function will generate a breakpoint exception. It is used at the
// OBSOLETE beginning of a program to sync up with a debugger and can be used
// OBSOLETE otherwise as a quick means to stop program execution and "break" into
// OBSOLETE the debugger. */
// OBSOLETE
// OBSOLETE void
// OBSOLETE breakpoint (void)
// OBSOLETE {
// OBSOLETE if (!initialized)
// OBSOLETE return;
// OBSOLETE
// OBSOLETE asm(" .globl _breakinst
// OBSOLETE
// OBSOLETE _breakinst: ta 1
// OBSOLETE ");
// OBSOLETE }