binutils-gdb/gold/object.cc

940 lines
26 KiB
C++

// object.cc -- support for an object file for linking in gold
#include "gold.h"
#include <cerrno>
#include <cstring>
#include <cassert>
#include <cstdarg>
#include "target-select.h"
#include "layout.h"
#include "output.h"
#include "symtab.h"
#include "object.h"
#include "dynobj.h"
namespace gold
{
// Class Object.
// Set the target based on fields in the ELF file header.
void
Object::set_target(int machine, int size, bool big_endian, int osabi,
int abiversion)
{
Target* target = select_target(machine, size, big_endian, osabi, abiversion);
if (target == NULL)
{
fprintf(stderr, _("%s: %s: unsupported ELF machine number %d\n"),
program_name, this->name().c_str(), machine);
gold_exit(false);
}
this->target_ = target;
}
// Report an error for the elfcpp::Elf_file interface.
void
Object::error(const char* format, ...)
{
va_list args;
fprintf(stderr, "%s: %s: ", program_name, this->name().c_str());
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
putc('\n', stderr);
gold_exit(false);
}
// Return a view of the contents of a section.
const unsigned char*
Object::section_contents(unsigned int shndx, off_t* plen)
{
Location loc(this->do_section_contents(shndx));
*plen = loc.data_size;
return this->get_view(loc.file_offset, loc.data_size);
}
// Read the section data into SD. This is code common to Sized_relobj
// and Sized_dynobj, so we put it into Object.
template<int size, bool big_endian>
void
Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
Read_symbols_data* sd)
{
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
// Read the section headers.
const off_t shoff = elf_file->shoff();
const unsigned int shnum = this->shnum();
sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size);
// Read the section names.
const unsigned char* pshdrs = sd->section_headers->data();
const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
{
fprintf(stderr,
_("%s: %s: section name section has wrong type: %u\n"),
program_name, this->name().c_str(),
static_cast<unsigned int>(shdrnames.get_sh_type()));
gold_exit(false);
}
sd->section_names_size = shdrnames.get_sh_size();
sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
sd->section_names_size);
}
// If NAME is the name of a special .gnu.warning section, arrange for
// the warning to be issued. SHNDX is the section index. Return
// whether it is a warning section.
bool
Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
Symbol_table* symtab)
{
const char warn_prefix[] = ".gnu.warning.";
const int warn_prefix_len = sizeof warn_prefix - 1;
if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
{
symtab->add_warning(name + warn_prefix_len, this, shndx);
return true;
}
return false;
}
// Class Sized_relobj.
template<int size, bool big_endian>
Sized_relobj<size, big_endian>::Sized_relobj(
const std::string& name,
Input_file* input_file,
off_t offset,
const elfcpp::Ehdr<size, big_endian>& ehdr)
: Relobj(name, input_file, offset),
elf_file_(this, ehdr),
symtab_shndx_(-1U),
local_symbol_count_(0),
output_local_symbol_count_(0),
symbols_(NULL),
local_symbol_offset_(0),
local_values_(),
local_indexes_()
{
}
template<int size, bool big_endian>
Sized_relobj<size, big_endian>::~Sized_relobj()
{
}
// Set up an object file based on the file header. This sets up the
// target and reads the section information.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::setup(
const elfcpp::Ehdr<size, big_endian>& ehdr)
{
this->set_target(ehdr.get_e_machine(), size, big_endian,
ehdr.get_e_ident()[elfcpp::EI_OSABI],
ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
const unsigned int shnum = this->elf_file_.shnum();
this->set_shnum(shnum);
}
// Find the SHT_SYMTAB section, given the section headers. The ELF
// standard says that maybe in the future there can be more than one
// SHT_SYMTAB section. Until somebody figures out how that could
// work, we assume there is only one.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
{
const unsigned int shnum = this->shnum();
this->symtab_shndx_ = 0;
if (shnum > 0)
{
// Look through the sections in reverse order, since gas tends
// to put the symbol table at the end.
const unsigned char* p = pshdrs + shnum * This::shdr_size;
unsigned int i = shnum;
while (i > 0)
{
--i;
p -= This::shdr_size;
typename This::Shdr shdr(p);
if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
{
this->symtab_shndx_ = i;
break;
}
}
}
}
// Read the sections and symbols from an object file.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
{
this->read_section_data(&this->elf_file_, sd);
const unsigned char* const pshdrs = sd->section_headers->data();
this->find_symtab(pshdrs);
if (this->symtab_shndx_ == 0)
{
// No symbol table. Weird but legal.
sd->symbols = NULL;
sd->symbols_size = 0;
sd->symbol_names = NULL;
sd->symbol_names_size = 0;
return;
}
// Get the symbol table section header.
typename This::Shdr symtabshdr(pshdrs
+ this->symtab_shndx_ * This::shdr_size);
assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// We only need the external symbols.
const int sym_size = This::sym_size;
const unsigned int loccount = symtabshdr.get_sh_info();
this->local_symbol_count_ = loccount;
off_t locsize = loccount * sym_size;
off_t extoff = symtabshdr.get_sh_offset() + locsize;
off_t extsize = symtabshdr.get_sh_size() - locsize;
// Read the symbol table.
File_view* fvsymtab = this->get_lasting_view(extoff, extsize);
// Read the section header for the symbol names.
unsigned int strtab_shndx = symtabshdr.get_sh_link();
if (strtab_shndx >= this->shnum())
{
fprintf(stderr, _("%s: %s: invalid symbol table name index: %u\n"),
program_name, this->name().c_str(), strtab_shndx);
gold_exit(false);
}
typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
{
fprintf(stderr,
_("%s: %s: symbol table name section has wrong type: %u\n"),
program_name, this->name().c_str(),
static_cast<unsigned int>(strtabshdr.get_sh_type()));
gold_exit(false);
}
// Read the symbol names.
File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
strtabshdr.get_sh_size());
sd->symbols = fvsymtab;
sd->symbols_size = extsize;
sd->symbol_names = fvstrtab;
sd->symbol_names_size = strtabshdr.get_sh_size();
}
// Return whether to include a section group in the link. LAYOUT is
// used to keep track of which section groups we have already seen.
// INDEX is the index of the section group and SHDR is the section
// header. If we do not want to include this group, we set bits in
// OMIT for each section which should be discarded.
template<int size, bool big_endian>
bool
Sized_relobj<size, big_endian>::include_section_group(
Layout* layout,
unsigned int index,
const elfcpp::Shdr<size, big_endian>& shdr,
std::vector<bool>* omit)
{
// Read the section contents.
const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
shdr.get_sh_size());
const elfcpp::Elf_Word* pword =
reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
// The first word contains flags. We only care about COMDAT section
// groups. Other section groups are always included in the link
// just like ordinary sections.
elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
if ((flags & elfcpp::GRP_COMDAT) == 0)
return true;
// Look up the group signature, which is the name of a symbol. This
// is a lot of effort to go to to read a string. Why didn't they
// just use the name of the SHT_GROUP section as the group
// signature?
// Get the appropriate symbol table header (this will normally be
// the single SHT_SYMTAB section, but in principle it need not be).
const unsigned int link = shdr.get_sh_link();
typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
// Read the symbol table entry.
if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
{
fprintf(stderr, _("%s: %s: section group %u info %u out of range\n"),
program_name, this->name().c_str(), index, shdr.get_sh_info());
gold_exit(false);
}
off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
const unsigned char* psym = this->get_view(symoff, This::sym_size);
elfcpp::Sym<size, big_endian> sym(psym);
// Read the symbol table names.
off_t symnamelen;
const unsigned char* psymnamesu;
psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen);
const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
// Get the section group signature.
if (sym.get_st_name() >= symnamelen)
{
fprintf(stderr, _("%s: %s: symbol %u name offset %u out of range\n"),
program_name, this->name().c_str(), shdr.get_sh_info(),
sym.get_st_name());
gold_exit(false);
}
const char* signature = psymnames + sym.get_st_name();
// It seems that some versions of gas will create a section group
// associated with a section symbol, and then fail to give a name to
// the section symbol. In such a case, use the name of the section.
// FIXME.
std::string secname;
if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
{
secname = this->section_name(sym.get_st_shndx());
signature = secname.c_str();
}
// Record this section group, and see whether we've already seen one
// with the same signature.
if (layout->add_comdat(signature, true))
return true;
// This is a duplicate. We want to discard the sections in this
// group.
size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
for (size_t i = 1; i < count; ++i)
{
elfcpp::Elf_Word secnum =
elfcpp::Swap<32, big_endian>::readval(pword + i);
if (secnum >= this->shnum())
{
fprintf(stderr,
_("%s: %s: section %u in section group %u out of range"),
program_name, this->name().c_str(), secnum,
index);
gold_exit(false);
}
(*omit)[secnum] = true;
}
return false;
}
// Whether to include a linkonce section in the link. NAME is the
// name of the section and SHDR is the section header.
// Linkonce sections are a GNU extension implemented in the original
// GNU linker before section groups were defined. The semantics are
// that we only include one linkonce section with a given name. The
// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
// where T is the type of section and SYMNAME is the name of a symbol.
// In an attempt to make linkonce sections interact well with section
// groups, we try to identify SYMNAME and use it like a section group
// signature. We want to block section groups with that signature,
// but not other linkonce sections with that signature. We also use
// the full name of the linkonce section as a normal section group
// signature.
template<int size, bool big_endian>
bool
Sized_relobj<size, big_endian>::include_linkonce_section(
Layout* layout,
const char* name,
const elfcpp::Shdr<size, big_endian>&)
{
const char* symname = strrchr(name, '.') + 1;
bool include1 = layout->add_comdat(symname, false);
bool include2 = layout->add_comdat(name, true);
return include1 && include2;
}
// Lay out the input sections. We walk through the sections and check
// whether they should be included in the link. If they should, we
// pass them to the Layout object, which will return an output section
// and an offset.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_layout(const General_options& options,
Symbol_table* symtab,
Layout* layout,
Read_symbols_data* sd)
{
const unsigned int shnum = this->shnum();
if (shnum == 0)
return;
// Get the section headers.
const unsigned char* pshdrs = sd->section_headers->data();
// Get the section names.
const unsigned char* pnamesu = sd->section_names->data();
const char* pnames = reinterpret_cast<const char*>(pnamesu);
std::vector<Map_to_output>& map_sections(this->map_to_output());
map_sections.resize(shnum);
// Keep track of which sections to omit.
std::vector<bool> omit(shnum, false);
// Skip the first, dummy, section.
pshdrs += This::shdr_size;
for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
{
typename This::Shdr shdr(pshdrs);
if (shdr.get_sh_name() >= sd->section_names_size)
{
fprintf(stderr,
_("%s: %s: bad section name offset for section %u: %lu\n"),
program_name, this->name().c_str(), i,
static_cast<unsigned long>(shdr.get_sh_name()));
gold_exit(false);
}
const char* name = pnames + shdr.get_sh_name();
if (this->handle_gnu_warning_section(name, i, symtab))
{
if (!options.is_relocatable())
omit[i] = true;
}
bool discard = omit[i];
if (!discard)
{
if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
{
if (!this->include_section_group(layout, i, shdr, &omit))
discard = true;
}
else if (Layout::is_linkonce(name))
{
if (!this->include_linkonce_section(layout, name, shdr))
discard = true;
}
}
if (discard)
{
// Do not include this section in the link.
map_sections[i].output_section = NULL;
continue;
}
off_t offset;
Output_section* os = layout->layout(this, i, name, shdr, &offset);
map_sections[i].output_section = os;
map_sections[i].offset = offset;
}
delete sd->section_headers;
sd->section_headers = NULL;
delete sd->section_names;
sd->section_names = NULL;
}
// Add the symbols to the symbol table.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
Read_symbols_data* sd)
{
if (sd->symbols == NULL)
{
assert(sd->symbol_names == NULL);
return;
}
const int sym_size = This::sym_size;
size_t symcount = sd->symbols_size / sym_size;
if (symcount * sym_size != sd->symbols_size)
{
fprintf(stderr,
_("%s: %s: size of symbols is not multiple of symbol size\n"),
program_name, this->name().c_str());
gold_exit(false);
}
this->symbols_ = new Symbol*[symcount];
const char* sym_names =
reinterpret_cast<const char*>(sd->symbol_names->data());
symtab->add_from_relobj(this, sd->symbols->data(), symcount, sym_names,
sd->symbol_names_size, this->symbols_);
delete sd->symbols;
sd->symbols = NULL;
delete sd->symbol_names;
sd->symbol_names = NULL;
}
// Finalize the local symbols. Here we record the file offset at
// which they should be output, we add their names to *POOL, and we
// add their values to THIS->LOCAL_VALUES_ and their indexes in the
// output symbol table to THIS->LOCAL_INDEXES_. Return the symbol
// index. This function is always called from the main thread. The
// actual output of the local symbols will occur in a separate task.
template<int size, bool big_endian>
unsigned int
Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
off_t off,
Stringpool* pool)
{
assert(this->symtab_shndx_ != -1U);
if (this->symtab_shndx_ == 0)
{
// This object has no symbols. Weird but legal.
return index;
}
assert(off == static_cast<off_t>(align_address(off, size >> 3)));
this->local_symbol_offset_ = off;
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx_;
typename This::Shdr symtabshdr(this,
this->elf_file_.section_header(symtab_shndx));
assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size = This::sym_size;
const unsigned int loccount = this->local_symbol_count_;
assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize);
this->local_values_.resize(loccount);
this->local_indexes_.resize(loccount);
// Read the symbol names.
const unsigned int strtab_shndx = symtabshdr.get_sh_link();
off_t strtab_size;
const unsigned char* pnamesu = this->section_contents(strtab_shndx,
&strtab_size);
const char* pnames = reinterpret_cast<const char*>(pnamesu);
// Loop over the local symbols.
const std::vector<Map_to_output>& mo(this->map_to_output());
unsigned int shnum = this->shnum();
unsigned int count = 0;
// Skip the first, dummy, symbol.
psyms += sym_size;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<size, big_endian> sym(psyms);
unsigned int shndx = sym.get_st_shndx();
if (shndx >= elfcpp::SHN_LORESERVE)
{
if (shndx == elfcpp::SHN_ABS)
this->local_values_[i] = sym.get_st_value();
else
{
// FIXME: Handle SHN_XINDEX.
fprintf(stderr,
_("%s: %s: unknown section index %u "
"for local symbol %u\n"),
program_name, this->name().c_str(), shndx, i);
gold_exit(false);
}
}
else
{
if (shndx >= shnum)
{
fprintf(stderr,
_("%s: %s: local symbol %u section index %u "
"out of range\n"),
program_name, this->name().c_str(), i, shndx);
gold_exit(false);
}
if (mo[shndx].output_section == NULL)
{
this->local_values_[i] = 0;
this->local_indexes_[i] = -1U;
continue;
}
this->local_values_[i] = (mo[shndx].output_section->address()
+ mo[shndx].offset
+ sym.get_st_value());
}
// Decide whether this symbol should go into the output file.
if (sym.get_st_type() == elfcpp::STT_SECTION)
{
this->local_indexes_[i] = -1U;
continue;
}
if (sym.get_st_name() >= strtab_size)
{
fprintf(stderr,
_("%s: %s: local symbol %u section name "
"out of range: %u >= %u\n"),
program_name, this->name().c_str(),
i, sym.get_st_name(),
static_cast<unsigned int>(strtab_size));
gold_exit(false);
}
const char* name = pnames + sym.get_st_name();
pool->add(name, NULL);
this->local_indexes_[i] = index;
++index;
off += sym_size;
++count;
}
this->output_local_symbol_count_ = count;
return index;
}
// Write out the local symbols.
template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::write_local_symbols(Output_file* of,
const Stringpool* sympool)
{
assert(this->symtab_shndx_ != -1U);
if (this->symtab_shndx_ == 0)
{
// This object has no symbols. Weird but legal.
return;
}
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx_;
typename This::Shdr symtabshdr(this,
this->elf_file_.section_header(symtab_shndx));
assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
const unsigned int loccount = this->local_symbol_count_;
assert(loccount == symtabshdr.get_sh_info());
// Read the local symbols.
const int sym_size = This::sym_size;
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize);
// Read the symbol names.
const unsigned int strtab_shndx = symtabshdr.get_sh_link();
off_t strtab_size;
const unsigned char* pnamesu = this->section_contents(strtab_shndx,
&strtab_size);
const char* pnames = reinterpret_cast<const char*>(pnamesu);
// Get a view into the output file.
off_t output_size = this->output_local_symbol_count_ * sym_size;
unsigned char* oview = of->get_output_view(this->local_symbol_offset_,
output_size);
const std::vector<Map_to_output>& mo(this->map_to_output());
assert(this->local_values_.size() == loccount);
assert(this->local_indexes_.size() == loccount);
unsigned char* ov = oview;
psyms += sym_size;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<size, big_endian> isym(psyms);
if (this->local_indexes_[i] == -1U)
continue;
assert(this->local_indexes_[i] != 0);
unsigned int st_shndx = isym.get_st_shndx();
if (st_shndx < elfcpp::SHN_LORESERVE)
{
assert(st_shndx < mo.size());
if (mo[st_shndx].output_section == NULL)
continue;
st_shndx = mo[st_shndx].output_section->out_shndx();
}
elfcpp::Sym_write<size, big_endian> osym(ov);
assert(isym.get_st_name() < strtab_size);
const char* name = pnames + isym.get_st_name();
osym.put_st_name(sympool->get_offset(name));
osym.put_st_value(this->local_values_[i]);
osym.put_st_size(isym.get_st_size());
osym.put_st_info(isym.get_st_info());
osym.put_st_other(isym.get_st_other());
osym.put_st_shndx(st_shndx);
ov += sym_size;
}
assert(ov - oview == output_size);
of->write_output_view(this->local_symbol_offset_, output_size, oview);
}
// Input_objects methods.
// Add a regular relocatable object to the list.
void
Input_objects::add_object(Object* obj)
{
if (obj->is_dynamic())
this->dynobj_list_.push_back(static_cast<Dynobj*>(obj));
else
this->relobj_list_.push_back(static_cast<Relobj*>(obj));
Target* target = obj->target();
if (this->target_ == NULL)
this->target_ = target;
else if (this->target_ != target)
{
fprintf(stderr, "%s: %s: incompatible target\n",
program_name, obj->name().c_str());
gold_exit(false);
}
}
// Relocate_info methods.
// Return a string describing the location of a relocation. This is
// only used in error messages.
template<int size, bool big_endian>
std::string
Relocate_info<size, big_endian>::location(size_t relnum, off_t) const
{
std::string ret(this->object->name());
ret += ": reloc ";
char buf[100];
snprintf(buf, sizeof buf, "%zu", relnum);
ret += buf;
ret += " in reloc section ";
snprintf(buf, sizeof buf, "%u", this->reloc_shndx);
ret += buf;
ret += " (" + this->object->section_name(this->reloc_shndx);
ret += ") for section ";
snprintf(buf, sizeof buf, "%u", this->data_shndx);
ret += buf;
ret += " (" + this->object->section_name(this->data_shndx) + ")";
return ret;
}
} // End namespace gold.
namespace
{
using namespace gold;
// Read an ELF file with the header and return the appropriate
// instance of Object.
template<int size, bool big_endian>
Object*
make_elf_sized_object(const std::string& name, Input_file* input_file,
off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
int et = ehdr.get_e_type();
if (et == elfcpp::ET_REL)
{
Sized_relobj<size, big_endian>* obj =
new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
obj->setup(ehdr);
return obj;
}
else if (et == elfcpp::ET_DYN)
{
Sized_dynobj<size, big_endian>* obj =
new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
obj->setup(ehdr);
return obj;
}
else
{
fprintf(stderr, _("%s: %s: unsupported ELF file type %d\n"),
program_name, name.c_str(), et);
gold_exit(false);
}
}
} // End anonymous namespace.
namespace gold
{
// Read an ELF file and return the appropriate instance of Object.
Object*
make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
const unsigned char* p, off_t bytes)
{
if (bytes < elfcpp::EI_NIDENT)
{
fprintf(stderr, _("%s: %s: ELF file too short\n"),
program_name, name.c_str());
gold_exit(false);
}
int v = p[elfcpp::EI_VERSION];
if (v != elfcpp::EV_CURRENT)
{
if (v == elfcpp::EV_NONE)
fprintf(stderr, _("%s: %s: invalid ELF version 0\n"),
program_name, name.c_str());
else
fprintf(stderr, _("%s: %s: unsupported ELF version %d\n"),
program_name, name.c_str(), v);
gold_exit(false);
}
int c = p[elfcpp::EI_CLASS];
if (c == elfcpp::ELFCLASSNONE)
{
fprintf(stderr, _("%s: %s: invalid ELF class 0\n"),
program_name, name.c_str());
gold_exit(false);
}
else if (c != elfcpp::ELFCLASS32
&& c != elfcpp::ELFCLASS64)
{
fprintf(stderr, _("%s: %s: unsupported ELF class %d\n"),
program_name, name.c_str(), c);
gold_exit(false);
}
int d = p[elfcpp::EI_DATA];
if (d == elfcpp::ELFDATANONE)
{
fprintf(stderr, _("%s: %s: invalid ELF data encoding\n"),
program_name, name.c_str());
gold_exit(false);
}
else if (d != elfcpp::ELFDATA2LSB
&& d != elfcpp::ELFDATA2MSB)
{
fprintf(stderr, _("%s: %s: unsupported ELF data encoding %d\n"),
program_name, name.c_str(), d);
gold_exit(false);
}
bool big_endian = d == elfcpp::ELFDATA2MSB;
if (c == elfcpp::ELFCLASS32)
{
if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
{
fprintf(stderr, _("%s: %s: ELF file too short\n"),
program_name, name.c_str());
gold_exit(false);
}
if (big_endian)
{
elfcpp::Ehdr<32, true> ehdr(p);
return make_elf_sized_object<32, true>(name, input_file,
offset, ehdr);
}
else
{
elfcpp::Ehdr<32, false> ehdr(p);
return make_elf_sized_object<32, false>(name, input_file,
offset, ehdr);
}
}
else
{
if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
{
fprintf(stderr, _("%s: %s: ELF file too short\n"),
program_name, name.c_str());
gold_exit(false);
}
if (big_endian)
{
elfcpp::Ehdr<64, true> ehdr(p);
return make_elf_sized_object<64, true>(name, input_file,
offset, ehdr);
}
else
{
elfcpp::Ehdr<64, false> ehdr(p);
return make_elf_sized_object<64, false>(name, input_file,
offset, ehdr);
}
}
}
// Instantiate the templates we need. We could use the configure
// script to restrict this to only the ones for implemented targets.
template
class Sized_relobj<32, false>;
template
class Sized_relobj<32, true>;
template
class Sized_relobj<64, false>;
template
class Sized_relobj<64, true>;
template
struct Relocate_info<32, false>;
template
struct Relocate_info<32, true>;
template
struct Relocate_info<64, false>;
template
struct Relocate_info<64, true>;
} // End namespace gold.