14327 lines
441 KiB
C
14327 lines
441 KiB
C
/* Ada language support routines for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1992-2016 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "demangle.h"
|
||
#include "gdb_regex.h"
|
||
#include "frame.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcmd.h"
|
||
#include "expression.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "varobj.h"
|
||
#include "c-lang.h"
|
||
#include "inferior.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "breakpoint.h"
|
||
#include "gdbcore.h"
|
||
#include "hashtab.h"
|
||
#include "gdb_obstack.h"
|
||
#include "ada-lang.h"
|
||
#include "completer.h"
|
||
#include <sys/stat.h>
|
||
#include "ui-out.h"
|
||
#include "block.h"
|
||
#include "infcall.h"
|
||
#include "dictionary.h"
|
||
#include "annotate.h"
|
||
#include "valprint.h"
|
||
#include "source.h"
|
||
#include "observer.h"
|
||
#include "vec.h"
|
||
#include "stack.h"
|
||
#include "gdb_vecs.h"
|
||
#include "typeprint.h"
|
||
#include "namespace.h"
|
||
|
||
#include "psymtab.h"
|
||
#include "value.h"
|
||
#include "mi/mi-common.h"
|
||
#include "arch-utils.h"
|
||
#include "cli/cli-utils.h"
|
||
|
||
/* Define whether or not the C operator '/' truncates towards zero for
|
||
differently signed operands (truncation direction is undefined in C).
|
||
Copied from valarith.c. */
|
||
|
||
#ifndef TRUNCATION_TOWARDS_ZERO
|
||
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
|
||
#endif
|
||
|
||
static struct type *desc_base_type (struct type *);
|
||
|
||
static struct type *desc_bounds_type (struct type *);
|
||
|
||
static struct value *desc_bounds (struct value *);
|
||
|
||
static int fat_pntr_bounds_bitpos (struct type *);
|
||
|
||
static int fat_pntr_bounds_bitsize (struct type *);
|
||
|
||
static struct type *desc_data_target_type (struct type *);
|
||
|
||
static struct value *desc_data (struct value *);
|
||
|
||
static int fat_pntr_data_bitpos (struct type *);
|
||
|
||
static int fat_pntr_data_bitsize (struct type *);
|
||
|
||
static struct value *desc_one_bound (struct value *, int, int);
|
||
|
||
static int desc_bound_bitpos (struct type *, int, int);
|
||
|
||
static int desc_bound_bitsize (struct type *, int, int);
|
||
|
||
static struct type *desc_index_type (struct type *, int);
|
||
|
||
static int desc_arity (struct type *);
|
||
|
||
static int ada_type_match (struct type *, struct type *, int);
|
||
|
||
static int ada_args_match (struct symbol *, struct value **, int);
|
||
|
||
static int full_match (const char *, const char *);
|
||
|
||
static struct value *make_array_descriptor (struct type *, struct value *);
|
||
|
||
static void ada_add_block_symbols (struct obstack *,
|
||
const struct block *, const char *,
|
||
domain_enum, struct objfile *, int);
|
||
|
||
static void ada_add_all_symbols (struct obstack *, const struct block *,
|
||
const char *, domain_enum, int, int *);
|
||
|
||
static int is_nonfunction (struct block_symbol *, int);
|
||
|
||
static void add_defn_to_vec (struct obstack *, struct symbol *,
|
||
const struct block *);
|
||
|
||
static int num_defns_collected (struct obstack *);
|
||
|
||
static struct block_symbol *defns_collected (struct obstack *, int);
|
||
|
||
static struct value *resolve_subexp (struct expression **, int *, int,
|
||
struct type *);
|
||
|
||
static void replace_operator_with_call (struct expression **, int, int, int,
|
||
struct symbol *, const struct block *);
|
||
|
||
static int possible_user_operator_p (enum exp_opcode, struct value **);
|
||
|
||
static char *ada_op_name (enum exp_opcode);
|
||
|
||
static const char *ada_decoded_op_name (enum exp_opcode);
|
||
|
||
static int numeric_type_p (struct type *);
|
||
|
||
static int integer_type_p (struct type *);
|
||
|
||
static int scalar_type_p (struct type *);
|
||
|
||
static int discrete_type_p (struct type *);
|
||
|
||
static enum ada_renaming_category parse_old_style_renaming (struct type *,
|
||
const char **,
|
||
int *,
|
||
const char **);
|
||
|
||
static struct symbol *find_old_style_renaming_symbol (const char *,
|
||
const struct block *);
|
||
|
||
static struct type *ada_lookup_struct_elt_type (struct type *, char *,
|
||
int, int, int *);
|
||
|
||
static struct value *evaluate_subexp_type (struct expression *, int *);
|
||
|
||
static struct type *ada_find_parallel_type_with_name (struct type *,
|
||
const char *);
|
||
|
||
static int is_dynamic_field (struct type *, int);
|
||
|
||
static struct type *to_fixed_variant_branch_type (struct type *,
|
||
const gdb_byte *,
|
||
CORE_ADDR, struct value *);
|
||
|
||
static struct type *to_fixed_array_type (struct type *, struct value *, int);
|
||
|
||
static struct type *to_fixed_range_type (struct type *, struct value *);
|
||
|
||
static struct type *to_static_fixed_type (struct type *);
|
||
static struct type *static_unwrap_type (struct type *type);
|
||
|
||
static struct value *unwrap_value (struct value *);
|
||
|
||
static struct type *constrained_packed_array_type (struct type *, long *);
|
||
|
||
static struct type *decode_constrained_packed_array_type (struct type *);
|
||
|
||
static long decode_packed_array_bitsize (struct type *);
|
||
|
||
static struct value *decode_constrained_packed_array (struct value *);
|
||
|
||
static int ada_is_packed_array_type (struct type *);
|
||
|
||
static int ada_is_unconstrained_packed_array_type (struct type *);
|
||
|
||
static struct value *value_subscript_packed (struct value *, int,
|
||
struct value **);
|
||
|
||
static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
|
||
|
||
static struct value *coerce_unspec_val_to_type (struct value *,
|
||
struct type *);
|
||
|
||
static struct value *get_var_value (char *, char *);
|
||
|
||
static int lesseq_defined_than (struct symbol *, struct symbol *);
|
||
|
||
static int equiv_types (struct type *, struct type *);
|
||
|
||
static int is_name_suffix (const char *);
|
||
|
||
static int advance_wild_match (const char **, const char *, int);
|
||
|
||
static int wild_match (const char *, const char *);
|
||
|
||
static struct value *ada_coerce_ref (struct value *);
|
||
|
||
static LONGEST pos_atr (struct value *);
|
||
|
||
static struct value *value_pos_atr (struct type *, struct value *);
|
||
|
||
static struct value *value_val_atr (struct type *, struct value *);
|
||
|
||
static struct symbol *standard_lookup (const char *, const struct block *,
|
||
domain_enum);
|
||
|
||
static struct value *ada_search_struct_field (const char *, struct value *, int,
|
||
struct type *);
|
||
|
||
static struct value *ada_value_primitive_field (struct value *, int, int,
|
||
struct type *);
|
||
|
||
static int find_struct_field (const char *, struct type *, int,
|
||
struct type **, int *, int *, int *, int *);
|
||
|
||
static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
|
||
struct value *);
|
||
|
||
static int ada_resolve_function (struct block_symbol *, int,
|
||
struct value **, int, const char *,
|
||
struct type *);
|
||
|
||
static int ada_is_direct_array_type (struct type *);
|
||
|
||
static void ada_language_arch_info (struct gdbarch *,
|
||
struct language_arch_info *);
|
||
|
||
static struct value *ada_index_struct_field (int, struct value *, int,
|
||
struct type *);
|
||
|
||
static struct value *assign_aggregate (struct value *, struct value *,
|
||
struct expression *,
|
||
int *, enum noside);
|
||
|
||
static void aggregate_assign_from_choices (struct value *, struct value *,
|
||
struct expression *,
|
||
int *, LONGEST *, int *,
|
||
int, LONGEST, LONGEST);
|
||
|
||
static void aggregate_assign_positional (struct value *, struct value *,
|
||
struct expression *,
|
||
int *, LONGEST *, int *, int,
|
||
LONGEST, LONGEST);
|
||
|
||
|
||
static void aggregate_assign_others (struct value *, struct value *,
|
||
struct expression *,
|
||
int *, LONGEST *, int, LONGEST, LONGEST);
|
||
|
||
|
||
static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
|
||
|
||
|
||
static struct value *ada_evaluate_subexp (struct type *, struct expression *,
|
||
int *, enum noside);
|
||
|
||
static void ada_forward_operator_length (struct expression *, int, int *,
|
||
int *);
|
||
|
||
static struct type *ada_find_any_type (const char *name);
|
||
|
||
|
||
/* The result of a symbol lookup to be stored in our symbol cache. */
|
||
|
||
struct cache_entry
|
||
{
|
||
/* The name used to perform the lookup. */
|
||
const char *name;
|
||
/* The namespace used during the lookup. */
|
||
domain_enum domain;
|
||
/* The symbol returned by the lookup, or NULL if no matching symbol
|
||
was found. */
|
||
struct symbol *sym;
|
||
/* The block where the symbol was found, or NULL if no matching
|
||
symbol was found. */
|
||
const struct block *block;
|
||
/* A pointer to the next entry with the same hash. */
|
||
struct cache_entry *next;
|
||
};
|
||
|
||
/* The Ada symbol cache, used to store the result of Ada-mode symbol
|
||
lookups in the course of executing the user's commands.
|
||
|
||
The cache is implemented using a simple, fixed-sized hash.
|
||
The size is fixed on the grounds that there are not likely to be
|
||
all that many symbols looked up during any given session, regardless
|
||
of the size of the symbol table. If we decide to go to a resizable
|
||
table, let's just use the stuff from libiberty instead. */
|
||
|
||
#define HASH_SIZE 1009
|
||
|
||
struct ada_symbol_cache
|
||
{
|
||
/* An obstack used to store the entries in our cache. */
|
||
struct obstack cache_space;
|
||
|
||
/* The root of the hash table used to implement our symbol cache. */
|
||
struct cache_entry *root[HASH_SIZE];
|
||
};
|
||
|
||
static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
|
||
|
||
/* Maximum-sized dynamic type. */
|
||
static unsigned int varsize_limit;
|
||
|
||
/* FIXME: brobecker/2003-09-17: No longer a const because it is
|
||
returned by a function that does not return a const char *. */
|
||
static char *ada_completer_word_break_characters =
|
||
#ifdef VMS
|
||
" \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
|
||
#else
|
||
" \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
|
||
#endif
|
||
|
||
/* The name of the symbol to use to get the name of the main subprogram. */
|
||
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
|
||
= "__gnat_ada_main_program_name";
|
||
|
||
/* Limit on the number of warnings to raise per expression evaluation. */
|
||
static int warning_limit = 2;
|
||
|
||
/* Number of warning messages issued; reset to 0 by cleanups after
|
||
expression evaluation. */
|
||
static int warnings_issued = 0;
|
||
|
||
static const char *known_runtime_file_name_patterns[] = {
|
||
ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
|
||
};
|
||
|
||
static const char *known_auxiliary_function_name_patterns[] = {
|
||
ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
|
||
};
|
||
|
||
/* Space for allocating results of ada_lookup_symbol_list. */
|
||
static struct obstack symbol_list_obstack;
|
||
|
||
/* Maintenance-related settings for this module. */
|
||
|
||
static struct cmd_list_element *maint_set_ada_cmdlist;
|
||
static struct cmd_list_element *maint_show_ada_cmdlist;
|
||
|
||
/* Implement the "maintenance set ada" (prefix) command. */
|
||
|
||
static void
|
||
maint_set_ada_cmd (char *args, int from_tty)
|
||
{
|
||
help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
|
||
gdb_stdout);
|
||
}
|
||
|
||
/* Implement the "maintenance show ada" (prefix) command. */
|
||
|
||
static void
|
||
maint_show_ada_cmd (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
|
||
}
|
||
|
||
/* The "maintenance ada set/show ignore-descriptive-type" value. */
|
||
|
||
static int ada_ignore_descriptive_types_p = 0;
|
||
|
||
/* Inferior-specific data. */
|
||
|
||
/* Per-inferior data for this module. */
|
||
|
||
struct ada_inferior_data
|
||
{
|
||
/* The ada__tags__type_specific_data type, which is used when decoding
|
||
tagged types. With older versions of GNAT, this type was directly
|
||
accessible through a component ("tsd") in the object tag. But this
|
||
is no longer the case, so we cache it for each inferior. */
|
||
struct type *tsd_type;
|
||
|
||
/* The exception_support_info data. This data is used to determine
|
||
how to implement support for Ada exception catchpoints in a given
|
||
inferior. */
|
||
const struct exception_support_info *exception_info;
|
||
};
|
||
|
||
/* Our key to this module's inferior data. */
|
||
static const struct inferior_data *ada_inferior_data;
|
||
|
||
/* A cleanup routine for our inferior data. */
|
||
static void
|
||
ada_inferior_data_cleanup (struct inferior *inf, void *arg)
|
||
{
|
||
struct ada_inferior_data *data;
|
||
|
||
data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
|
||
if (data != NULL)
|
||
xfree (data);
|
||
}
|
||
|
||
/* Return our inferior data for the given inferior (INF).
|
||
|
||
This function always returns a valid pointer to an allocated
|
||
ada_inferior_data structure. If INF's inferior data has not
|
||
been previously set, this functions creates a new one with all
|
||
fields set to zero, sets INF's inferior to it, and then returns
|
||
a pointer to that newly allocated ada_inferior_data. */
|
||
|
||
static struct ada_inferior_data *
|
||
get_ada_inferior_data (struct inferior *inf)
|
||
{
|
||
struct ada_inferior_data *data;
|
||
|
||
data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
|
||
if (data == NULL)
|
||
{
|
||
data = XCNEW (struct ada_inferior_data);
|
||
set_inferior_data (inf, ada_inferior_data, data);
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
/* Perform all necessary cleanups regarding our module's inferior data
|
||
that is required after the inferior INF just exited. */
|
||
|
||
static void
|
||
ada_inferior_exit (struct inferior *inf)
|
||
{
|
||
ada_inferior_data_cleanup (inf, NULL);
|
||
set_inferior_data (inf, ada_inferior_data, NULL);
|
||
}
|
||
|
||
|
||
/* program-space-specific data. */
|
||
|
||
/* This module's per-program-space data. */
|
||
struct ada_pspace_data
|
||
{
|
||
/* The Ada symbol cache. */
|
||
struct ada_symbol_cache *sym_cache;
|
||
};
|
||
|
||
/* Key to our per-program-space data. */
|
||
static const struct program_space_data *ada_pspace_data_handle;
|
||
|
||
/* Return this module's data for the given program space (PSPACE).
|
||
If not is found, add a zero'ed one now.
|
||
|
||
This function always returns a valid object. */
|
||
|
||
static struct ada_pspace_data *
|
||
get_ada_pspace_data (struct program_space *pspace)
|
||
{
|
||
struct ada_pspace_data *data;
|
||
|
||
data = ((struct ada_pspace_data *)
|
||
program_space_data (pspace, ada_pspace_data_handle));
|
||
if (data == NULL)
|
||
{
|
||
data = XCNEW (struct ada_pspace_data);
|
||
set_program_space_data (pspace, ada_pspace_data_handle, data);
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
/* The cleanup callback for this module's per-program-space data. */
|
||
|
||
static void
|
||
ada_pspace_data_cleanup (struct program_space *pspace, void *data)
|
||
{
|
||
struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
|
||
|
||
if (pspace_data->sym_cache != NULL)
|
||
ada_free_symbol_cache (pspace_data->sym_cache);
|
||
xfree (pspace_data);
|
||
}
|
||
|
||
/* Utilities */
|
||
|
||
/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
|
||
all typedef layers have been peeled. Otherwise, return TYPE.
|
||
|
||
Normally, we really expect a typedef type to only have 1 typedef layer.
|
||
In other words, we really expect the target type of a typedef type to be
|
||
a non-typedef type. This is particularly true for Ada units, because
|
||
the language does not have a typedef vs not-typedef distinction.
|
||
In that respect, the Ada compiler has been trying to eliminate as many
|
||
typedef definitions in the debugging information, since they generally
|
||
do not bring any extra information (we still use typedef under certain
|
||
circumstances related mostly to the GNAT encoding).
|
||
|
||
Unfortunately, we have seen situations where the debugging information
|
||
generated by the compiler leads to such multiple typedef layers. For
|
||
instance, consider the following example with stabs:
|
||
|
||
.stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
|
||
.stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
|
||
|
||
This is an error in the debugging information which causes type
|
||
pck__float_array___XUP to be defined twice, and the second time,
|
||
it is defined as a typedef of a typedef.
|
||
|
||
This is on the fringe of legality as far as debugging information is
|
||
concerned, and certainly unexpected. But it is easy to handle these
|
||
situations correctly, so we can afford to be lenient in this case. */
|
||
|
||
static struct type *
|
||
ada_typedef_target_type (struct type *type)
|
||
{
|
||
while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
return type;
|
||
}
|
||
|
||
/* Given DECODED_NAME a string holding a symbol name in its
|
||
decoded form (ie using the Ada dotted notation), returns
|
||
its unqualified name. */
|
||
|
||
static const char *
|
||
ada_unqualified_name (const char *decoded_name)
|
||
{
|
||
const char *result;
|
||
|
||
/* If the decoded name starts with '<', it means that the encoded
|
||
name does not follow standard naming conventions, and thus that
|
||
it is not your typical Ada symbol name. Trying to unqualify it
|
||
is therefore pointless and possibly erroneous. */
|
||
if (decoded_name[0] == '<')
|
||
return decoded_name;
|
||
|
||
result = strrchr (decoded_name, '.');
|
||
if (result != NULL)
|
||
result++; /* Skip the dot... */
|
||
else
|
||
result = decoded_name;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return a string starting with '<', followed by STR, and '>'.
|
||
The result is good until the next call. */
|
||
|
||
static char *
|
||
add_angle_brackets (const char *str)
|
||
{
|
||
static char *result = NULL;
|
||
|
||
xfree (result);
|
||
result = xstrprintf ("<%s>", str);
|
||
return result;
|
||
}
|
||
|
||
static char *
|
||
ada_get_gdb_completer_word_break_characters (void)
|
||
{
|
||
return ada_completer_word_break_characters;
|
||
}
|
||
|
||
/* Print an array element index using the Ada syntax. */
|
||
|
||
static void
|
||
ada_print_array_index (struct value *index_value, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
LA_VALUE_PRINT (index_value, stream, options);
|
||
fprintf_filtered (stream, " => ");
|
||
}
|
||
|
||
/* Assuming VECT points to an array of *SIZE objects of size
|
||
ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
|
||
updating *SIZE as necessary and returning the (new) array. */
|
||
|
||
void *
|
||
grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
|
||
{
|
||
if (*size < min_size)
|
||
{
|
||
*size *= 2;
|
||
if (*size < min_size)
|
||
*size = min_size;
|
||
vect = xrealloc (vect, *size * element_size);
|
||
}
|
||
return vect;
|
||
}
|
||
|
||
/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
|
||
suffix of FIELD_NAME beginning "___". */
|
||
|
||
static int
|
||
field_name_match (const char *field_name, const char *target)
|
||
{
|
||
int len = strlen (target);
|
||
|
||
return
|
||
(strncmp (field_name, target, len) == 0
|
||
&& (field_name[len] == '\0'
|
||
|| (startswith (field_name + len, "___")
|
||
&& strcmp (field_name + strlen (field_name) - 6,
|
||
"___XVN") != 0)));
|
||
}
|
||
|
||
|
||
/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
|
||
a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
|
||
and return its index. This function also handles fields whose name
|
||
have ___ suffixes because the compiler sometimes alters their name
|
||
by adding such a suffix to represent fields with certain constraints.
|
||
If the field could not be found, return a negative number if
|
||
MAYBE_MISSING is set. Otherwise raise an error. */
|
||
|
||
int
|
||
ada_get_field_index (const struct type *type, const char *field_name,
|
||
int maybe_missing)
|
||
{
|
||
int fieldno;
|
||
struct type *struct_type = check_typedef ((struct type *) type);
|
||
|
||
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
|
||
if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
|
||
return fieldno;
|
||
|
||
if (!maybe_missing)
|
||
error (_("Unable to find field %s in struct %s. Aborting"),
|
||
field_name, TYPE_NAME (struct_type));
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* The length of the prefix of NAME prior to any "___" suffix. */
|
||
|
||
int
|
||
ada_name_prefix_len (const char *name)
|
||
{
|
||
if (name == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
const char *p = strstr (name, "___");
|
||
|
||
if (p == NULL)
|
||
return strlen (name);
|
||
else
|
||
return p - name;
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if SUFFIX is a suffix of STR.
|
||
Return zero if STR is null. */
|
||
|
||
static int
|
||
is_suffix (const char *str, const char *suffix)
|
||
{
|
||
int len1, len2;
|
||
|
||
if (str == NULL)
|
||
return 0;
|
||
len1 = strlen (str);
|
||
len2 = strlen (suffix);
|
||
return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
|
||
}
|
||
|
||
/* The contents of value VAL, treated as a value of type TYPE. The
|
||
result is an lval in memory if VAL is. */
|
||
|
||
static struct value *
|
||
coerce_unspec_val_to_type (struct value *val, struct type *type)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
if (value_type (val) == type)
|
||
return val;
|
||
else
|
||
{
|
||
struct value *result;
|
||
|
||
/* Make sure that the object size is not unreasonable before
|
||
trying to allocate some memory for it. */
|
||
ada_ensure_varsize_limit (type);
|
||
|
||
if (value_lazy (val)
|
||
|| TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
|
||
result = allocate_value_lazy (type);
|
||
else
|
||
{
|
||
result = allocate_value (type);
|
||
value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
|
||
}
|
||
set_value_component_location (result, val);
|
||
set_value_bitsize (result, value_bitsize (val));
|
||
set_value_bitpos (result, value_bitpos (val));
|
||
set_value_address (result, value_address (val));
|
||
return result;
|
||
}
|
||
}
|
||
|
||
static const gdb_byte *
|
||
cond_offset_host (const gdb_byte *valaddr, long offset)
|
||
{
|
||
if (valaddr == NULL)
|
||
return NULL;
|
||
else
|
||
return valaddr + offset;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
cond_offset_target (CORE_ADDR address, long offset)
|
||
{
|
||
if (address == 0)
|
||
return 0;
|
||
else
|
||
return address + offset;
|
||
}
|
||
|
||
/* Issue a warning (as for the definition of warning in utils.c, but
|
||
with exactly one argument rather than ...), unless the limit on the
|
||
number of warnings has passed during the evaluation of the current
|
||
expression. */
|
||
|
||
/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
|
||
provided by "complaint". */
|
||
static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
|
||
|
||
static void
|
||
lim_warning (const char *format, ...)
|
||
{
|
||
va_list args;
|
||
|
||
va_start (args, format);
|
||
warnings_issued += 1;
|
||
if (warnings_issued <= warning_limit)
|
||
vwarning (format, args);
|
||
|
||
va_end (args);
|
||
}
|
||
|
||
/* Issue an error if the size of an object of type T is unreasonable,
|
||
i.e. if it would be a bad idea to allocate a value of this type in
|
||
GDB. */
|
||
|
||
void
|
||
ada_ensure_varsize_limit (const struct type *type)
|
||
{
|
||
if (TYPE_LENGTH (type) > varsize_limit)
|
||
error (_("object size is larger than varsize-limit"));
|
||
}
|
||
|
||
/* Maximum value of a SIZE-byte signed integer type. */
|
||
static LONGEST
|
||
max_of_size (int size)
|
||
{
|
||
LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
|
||
|
||
return top_bit | (top_bit - 1);
|
||
}
|
||
|
||
/* Minimum value of a SIZE-byte signed integer type. */
|
||
static LONGEST
|
||
min_of_size (int size)
|
||
{
|
||
return -max_of_size (size) - 1;
|
||
}
|
||
|
||
/* Maximum value of a SIZE-byte unsigned integer type. */
|
||
static ULONGEST
|
||
umax_of_size (int size)
|
||
{
|
||
ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
|
||
|
||
return top_bit | (top_bit - 1);
|
||
}
|
||
|
||
/* Maximum value of integral type T, as a signed quantity. */
|
||
static LONGEST
|
||
max_of_type (struct type *t)
|
||
{
|
||
if (TYPE_UNSIGNED (t))
|
||
return (LONGEST) umax_of_size (TYPE_LENGTH (t));
|
||
else
|
||
return max_of_size (TYPE_LENGTH (t));
|
||
}
|
||
|
||
/* Minimum value of integral type T, as a signed quantity. */
|
||
static LONGEST
|
||
min_of_type (struct type *t)
|
||
{
|
||
if (TYPE_UNSIGNED (t))
|
||
return 0;
|
||
else
|
||
return min_of_size (TYPE_LENGTH (t));
|
||
}
|
||
|
||
/* The largest value in the domain of TYPE, a discrete type, as an integer. */
|
||
LONGEST
|
||
ada_discrete_type_high_bound (struct type *type)
|
||
{
|
||
type = resolve_dynamic_type (type, NULL, 0);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
return TYPE_HIGH_BOUND (type);
|
||
case TYPE_CODE_ENUM:
|
||
return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
|
||
case TYPE_CODE_BOOL:
|
||
return 1;
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_INT:
|
||
return max_of_type (type);
|
||
default:
|
||
error (_("Unexpected type in ada_discrete_type_high_bound."));
|
||
}
|
||
}
|
||
|
||
/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
|
||
LONGEST
|
||
ada_discrete_type_low_bound (struct type *type)
|
||
{
|
||
type = resolve_dynamic_type (type, NULL, 0);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
return TYPE_LOW_BOUND (type);
|
||
case TYPE_CODE_ENUM:
|
||
return TYPE_FIELD_ENUMVAL (type, 0);
|
||
case TYPE_CODE_BOOL:
|
||
return 0;
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_INT:
|
||
return min_of_type (type);
|
||
default:
|
||
error (_("Unexpected type in ada_discrete_type_low_bound."));
|
||
}
|
||
}
|
||
|
||
/* The identity on non-range types. For range types, the underlying
|
||
non-range scalar type. */
|
||
|
||
static struct type *
|
||
get_base_type (struct type *type)
|
||
{
|
||
while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
|
||
{
|
||
if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
|
||
return type;
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
return type;
|
||
}
|
||
|
||
/* Return a decoded version of the given VALUE. This means returning
|
||
a value whose type is obtained by applying all the GNAT-specific
|
||
encondings, making the resulting type a static but standard description
|
||
of the initial type. */
|
||
|
||
struct value *
|
||
ada_get_decoded_value (struct value *value)
|
||
{
|
||
struct type *type = ada_check_typedef (value_type (value));
|
||
|
||
if (ada_is_array_descriptor_type (type)
|
||
|| (ada_is_constrained_packed_array_type (type)
|
||
&& TYPE_CODE (type) != TYPE_CODE_PTR))
|
||
{
|
||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
|
||
value = ada_coerce_to_simple_array_ptr (value);
|
||
else
|
||
value = ada_coerce_to_simple_array (value);
|
||
}
|
||
else
|
||
value = ada_to_fixed_value (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Same as ada_get_decoded_value, but with the given TYPE.
|
||
Because there is no associated actual value for this type,
|
||
the resulting type might be a best-effort approximation in
|
||
the case of dynamic types. */
|
||
|
||
struct type *
|
||
ada_get_decoded_type (struct type *type)
|
||
{
|
||
type = to_static_fixed_type (type);
|
||
if (ada_is_constrained_packed_array_type (type))
|
||
type = ada_coerce_to_simple_array_type (type);
|
||
return type;
|
||
}
|
||
|
||
|
||
|
||
/* Language Selection */
|
||
|
||
/* If the main program is in Ada, return language_ada, otherwise return LANG
|
||
(the main program is in Ada iif the adainit symbol is found). */
|
||
|
||
enum language
|
||
ada_update_initial_language (enum language lang)
|
||
{
|
||
if (lookup_minimal_symbol ("adainit", (const char *) NULL,
|
||
(struct objfile *) NULL).minsym != NULL)
|
||
return language_ada;
|
||
|
||
return lang;
|
||
}
|
||
|
||
/* If the main procedure is written in Ada, then return its name.
|
||
The result is good until the next call. Return NULL if the main
|
||
procedure doesn't appear to be in Ada. */
|
||
|
||
char *
|
||
ada_main_name (void)
|
||
{
|
||
struct bound_minimal_symbol msym;
|
||
static char *main_program_name = NULL;
|
||
|
||
/* For Ada, the name of the main procedure is stored in a specific
|
||
string constant, generated by the binder. Look for that symbol,
|
||
extract its address, and then read that string. If we didn't find
|
||
that string, then most probably the main procedure is not written
|
||
in Ada. */
|
||
msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
|
||
|
||
if (msym.minsym != NULL)
|
||
{
|
||
CORE_ADDR main_program_name_addr;
|
||
int err_code;
|
||
|
||
main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
|
||
if (main_program_name_addr == 0)
|
||
error (_("Invalid address for Ada main program name."));
|
||
|
||
xfree (main_program_name);
|
||
target_read_string (main_program_name_addr, &main_program_name,
|
||
1024, &err_code);
|
||
|
||
if (err_code != 0)
|
||
return NULL;
|
||
return main_program_name;
|
||
}
|
||
|
||
/* The main procedure doesn't seem to be in Ada. */
|
||
return NULL;
|
||
}
|
||
|
||
/* Symbols */
|
||
|
||
/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
|
||
of NULLs. */
|
||
|
||
const struct ada_opname_map ada_opname_table[] = {
|
||
{"Oadd", "\"+\"", BINOP_ADD},
|
||
{"Osubtract", "\"-\"", BINOP_SUB},
|
||
{"Omultiply", "\"*\"", BINOP_MUL},
|
||
{"Odivide", "\"/\"", BINOP_DIV},
|
||
{"Omod", "\"mod\"", BINOP_MOD},
|
||
{"Orem", "\"rem\"", BINOP_REM},
|
||
{"Oexpon", "\"**\"", BINOP_EXP},
|
||
{"Olt", "\"<\"", BINOP_LESS},
|
||
{"Ole", "\"<=\"", BINOP_LEQ},
|
||
{"Ogt", "\">\"", BINOP_GTR},
|
||
{"Oge", "\">=\"", BINOP_GEQ},
|
||
{"Oeq", "\"=\"", BINOP_EQUAL},
|
||
{"One", "\"/=\"", BINOP_NOTEQUAL},
|
||
{"Oand", "\"and\"", BINOP_BITWISE_AND},
|
||
{"Oor", "\"or\"", BINOP_BITWISE_IOR},
|
||
{"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
|
||
{"Oconcat", "\"&\"", BINOP_CONCAT},
|
||
{"Oabs", "\"abs\"", UNOP_ABS},
|
||
{"Onot", "\"not\"", UNOP_LOGICAL_NOT},
|
||
{"Oadd", "\"+\"", UNOP_PLUS},
|
||
{"Osubtract", "\"-\"", UNOP_NEG},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
/* The "encoded" form of DECODED, according to GNAT conventions.
|
||
The result is valid until the next call to ada_encode. */
|
||
|
||
char *
|
||
ada_encode (const char *decoded)
|
||
{
|
||
static char *encoding_buffer = NULL;
|
||
static size_t encoding_buffer_size = 0;
|
||
const char *p;
|
||
int k;
|
||
|
||
if (decoded == NULL)
|
||
return NULL;
|
||
|
||
GROW_VECT (encoding_buffer, encoding_buffer_size,
|
||
2 * strlen (decoded) + 10);
|
||
|
||
k = 0;
|
||
for (p = decoded; *p != '\0'; p += 1)
|
||
{
|
||
if (*p == '.')
|
||
{
|
||
encoding_buffer[k] = encoding_buffer[k + 1] = '_';
|
||
k += 2;
|
||
}
|
||
else if (*p == '"')
|
||
{
|
||
const struct ada_opname_map *mapping;
|
||
|
||
for (mapping = ada_opname_table;
|
||
mapping->encoded != NULL
|
||
&& !startswith (p, mapping->decoded); mapping += 1)
|
||
;
|
||
if (mapping->encoded == NULL)
|
||
error (_("invalid Ada operator name: %s"), p);
|
||
strcpy (encoding_buffer + k, mapping->encoded);
|
||
k += strlen (mapping->encoded);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
encoding_buffer[k] = *p;
|
||
k += 1;
|
||
}
|
||
}
|
||
|
||
encoding_buffer[k] = '\0';
|
||
return encoding_buffer;
|
||
}
|
||
|
||
/* Return NAME folded to lower case, or, if surrounded by single
|
||
quotes, unfolded, but with the quotes stripped away. Result good
|
||
to next call. */
|
||
|
||
char *
|
||
ada_fold_name (const char *name)
|
||
{
|
||
static char *fold_buffer = NULL;
|
||
static size_t fold_buffer_size = 0;
|
||
|
||
int len = strlen (name);
|
||
GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
|
||
|
||
if (name[0] == '\'')
|
||
{
|
||
strncpy (fold_buffer, name + 1, len - 2);
|
||
fold_buffer[len - 2] = '\000';
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i <= len; i += 1)
|
||
fold_buffer[i] = tolower (name[i]);
|
||
}
|
||
|
||
return fold_buffer;
|
||
}
|
||
|
||
/* Return nonzero if C is either a digit or a lowercase alphabet character. */
|
||
|
||
static int
|
||
is_lower_alphanum (const char c)
|
||
{
|
||
return (isdigit (c) || (isalpha (c) && islower (c)));
|
||
}
|
||
|
||
/* ENCODED is the linkage name of a symbol and LEN contains its length.
|
||
This function saves in LEN the length of that same symbol name but
|
||
without either of these suffixes:
|
||
. .{DIGIT}+
|
||
. ${DIGIT}+
|
||
. ___{DIGIT}+
|
||
. __{DIGIT}+.
|
||
|
||
These are suffixes introduced by the compiler for entities such as
|
||
nested subprogram for instance, in order to avoid name clashes.
|
||
They do not serve any purpose for the debugger. */
|
||
|
||
static void
|
||
ada_remove_trailing_digits (const char *encoded, int *len)
|
||
{
|
||
if (*len > 1 && isdigit (encoded[*len - 1]))
|
||
{
|
||
int i = *len - 2;
|
||
|
||
while (i > 0 && isdigit (encoded[i]))
|
||
i--;
|
||
if (i >= 0 && encoded[i] == '.')
|
||
*len = i;
|
||
else if (i >= 0 && encoded[i] == '$')
|
||
*len = i;
|
||
else if (i >= 2 && startswith (encoded + i - 2, "___"))
|
||
*len = i - 2;
|
||
else if (i >= 1 && startswith (encoded + i - 1, "__"))
|
||
*len = i - 1;
|
||
}
|
||
}
|
||
|
||
/* Remove the suffix introduced by the compiler for protected object
|
||
subprograms. */
|
||
|
||
static void
|
||
ada_remove_po_subprogram_suffix (const char *encoded, int *len)
|
||
{
|
||
/* Remove trailing N. */
|
||
|
||
/* Protected entry subprograms are broken into two
|
||
separate subprograms: The first one is unprotected, and has
|
||
a 'N' suffix; the second is the protected version, and has
|
||
the 'P' suffix. The second calls the first one after handling
|
||
the protection. Since the P subprograms are internally generated,
|
||
we leave these names undecoded, giving the user a clue that this
|
||
entity is internal. */
|
||
|
||
if (*len > 1
|
||
&& encoded[*len - 1] == 'N'
|
||
&& (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
|
||
*len = *len - 1;
|
||
}
|
||
|
||
/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
|
||
|
||
static void
|
||
ada_remove_Xbn_suffix (const char *encoded, int *len)
|
||
{
|
||
int i = *len - 1;
|
||
|
||
while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
|
||
i--;
|
||
|
||
if (encoded[i] != 'X')
|
||
return;
|
||
|
||
if (i == 0)
|
||
return;
|
||
|
||
if (isalnum (encoded[i-1]))
|
||
*len = i;
|
||
}
|
||
|
||
/* If ENCODED follows the GNAT entity encoding conventions, then return
|
||
the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
|
||
replaced by ENCODED.
|
||
|
||
The resulting string is valid until the next call of ada_decode.
|
||
If the string is unchanged by decoding, the original string pointer
|
||
is returned. */
|
||
|
||
const char *
|
||
ada_decode (const char *encoded)
|
||
{
|
||
int i, j;
|
||
int len0;
|
||
const char *p;
|
||
char *decoded;
|
||
int at_start_name;
|
||
static char *decoding_buffer = NULL;
|
||
static size_t decoding_buffer_size = 0;
|
||
|
||
/* The name of the Ada main procedure starts with "_ada_".
|
||
This prefix is not part of the decoded name, so skip this part
|
||
if we see this prefix. */
|
||
if (startswith (encoded, "_ada_"))
|
||
encoded += 5;
|
||
|
||
/* If the name starts with '_', then it is not a properly encoded
|
||
name, so do not attempt to decode it. Similarly, if the name
|
||
starts with '<', the name should not be decoded. */
|
||
if (encoded[0] == '_' || encoded[0] == '<')
|
||
goto Suppress;
|
||
|
||
len0 = strlen (encoded);
|
||
|
||
ada_remove_trailing_digits (encoded, &len0);
|
||
ada_remove_po_subprogram_suffix (encoded, &len0);
|
||
|
||
/* Remove the ___X.* suffix if present. Do not forget to verify that
|
||
the suffix is located before the current "end" of ENCODED. We want
|
||
to avoid re-matching parts of ENCODED that have previously been
|
||
marked as discarded (by decrementing LEN0). */
|
||
p = strstr (encoded, "___");
|
||
if (p != NULL && p - encoded < len0 - 3)
|
||
{
|
||
if (p[3] == 'X')
|
||
len0 = p - encoded;
|
||
else
|
||
goto Suppress;
|
||
}
|
||
|
||
/* Remove any trailing TKB suffix. It tells us that this symbol
|
||
is for the body of a task, but that information does not actually
|
||
appear in the decoded name. */
|
||
|
||
if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
|
||
len0 -= 3;
|
||
|
||
/* Remove any trailing TB suffix. The TB suffix is slightly different
|
||
from the TKB suffix because it is used for non-anonymous task
|
||
bodies. */
|
||
|
||
if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
|
||
len0 -= 2;
|
||
|
||
/* Remove trailing "B" suffixes. */
|
||
/* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
|
||
|
||
if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
|
||
len0 -= 1;
|
||
|
||
/* Make decoded big enough for possible expansion by operator name. */
|
||
|
||
GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
|
||
decoded = decoding_buffer;
|
||
|
||
/* Remove trailing __{digit}+ or trailing ${digit}+. */
|
||
|
||
if (len0 > 1 && isdigit (encoded[len0 - 1]))
|
||
{
|
||
i = len0 - 2;
|
||
while ((i >= 0 && isdigit (encoded[i]))
|
||
|| (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
|
||
i -= 1;
|
||
if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
|
||
len0 = i - 1;
|
||
else if (encoded[i] == '$')
|
||
len0 = i;
|
||
}
|
||
|
||
/* The first few characters that are not alphabetic are not part
|
||
of any encoding we use, so we can copy them over verbatim. */
|
||
|
||
for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
|
||
decoded[j] = encoded[i];
|
||
|
||
at_start_name = 1;
|
||
while (i < len0)
|
||
{
|
||
/* Is this a symbol function? */
|
||
if (at_start_name && encoded[i] == 'O')
|
||
{
|
||
int k;
|
||
|
||
for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
|
||
{
|
||
int op_len = strlen (ada_opname_table[k].encoded);
|
||
if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
|
||
op_len - 1) == 0)
|
||
&& !isalnum (encoded[i + op_len]))
|
||
{
|
||
strcpy (decoded + j, ada_opname_table[k].decoded);
|
||
at_start_name = 0;
|
||
i += op_len;
|
||
j += strlen (ada_opname_table[k].decoded);
|
||
break;
|
||
}
|
||
}
|
||
if (ada_opname_table[k].encoded != NULL)
|
||
continue;
|
||
}
|
||
at_start_name = 0;
|
||
|
||
/* Replace "TK__" with "__", which will eventually be translated
|
||
into "." (just below). */
|
||
|
||
if (i < len0 - 4 && startswith (encoded + i, "TK__"))
|
||
i += 2;
|
||
|
||
/* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
|
||
be translated into "." (just below). These are internal names
|
||
generated for anonymous blocks inside which our symbol is nested. */
|
||
|
||
if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
|
||
&& encoded [i+2] == 'B' && encoded [i+3] == '_'
|
||
&& isdigit (encoded [i+4]))
|
||
{
|
||
int k = i + 5;
|
||
|
||
while (k < len0 && isdigit (encoded[k]))
|
||
k++; /* Skip any extra digit. */
|
||
|
||
/* Double-check that the "__B_{DIGITS}+" sequence we found
|
||
is indeed followed by "__". */
|
||
if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
|
||
i = k;
|
||
}
|
||
|
||
/* Remove _E{DIGITS}+[sb] */
|
||
|
||
/* Just as for protected object subprograms, there are 2 categories
|
||
of subprograms created by the compiler for each entry. The first
|
||
one implements the actual entry code, and has a suffix following
|
||
the convention above; the second one implements the barrier and
|
||
uses the same convention as above, except that the 'E' is replaced
|
||
by a 'B'.
|
||
|
||
Just as above, we do not decode the name of barrier functions
|
||
to give the user a clue that the code he is debugging has been
|
||
internally generated. */
|
||
|
||
if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
|
||
&& isdigit (encoded[i+2]))
|
||
{
|
||
int k = i + 3;
|
||
|
||
while (k < len0 && isdigit (encoded[k]))
|
||
k++;
|
||
|
||
if (k < len0
|
||
&& (encoded[k] == 'b' || encoded[k] == 's'))
|
||
{
|
||
k++;
|
||
/* Just as an extra precaution, make sure that if this
|
||
suffix is followed by anything else, it is a '_'.
|
||
Otherwise, we matched this sequence by accident. */
|
||
if (k == len0
|
||
|| (k < len0 && encoded[k] == '_'))
|
||
i = k;
|
||
}
|
||
}
|
||
|
||
/* Remove trailing "N" in [a-z0-9]+N__. The N is added by
|
||
the GNAT front-end in protected object subprograms. */
|
||
|
||
if (i < len0 + 3
|
||
&& encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
|
||
{
|
||
/* Backtrack a bit up until we reach either the begining of
|
||
the encoded name, or "__". Make sure that we only find
|
||
digits or lowercase characters. */
|
||
const char *ptr = encoded + i - 1;
|
||
|
||
while (ptr >= encoded && is_lower_alphanum (ptr[0]))
|
||
ptr--;
|
||
if (ptr < encoded
|
||
|| (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
|
||
i++;
|
||
}
|
||
|
||
if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
|
||
{
|
||
/* This is a X[bn]* sequence not separated from the previous
|
||
part of the name with a non-alpha-numeric character (in other
|
||
words, immediately following an alpha-numeric character), then
|
||
verify that it is placed at the end of the encoded name. If
|
||
not, then the encoding is not valid and we should abort the
|
||
decoding. Otherwise, just skip it, it is used in body-nested
|
||
package names. */
|
||
do
|
||
i += 1;
|
||
while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
|
||
if (i < len0)
|
||
goto Suppress;
|
||
}
|
||
else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
|
||
{
|
||
/* Replace '__' by '.'. */
|
||
decoded[j] = '.';
|
||
at_start_name = 1;
|
||
i += 2;
|
||
j += 1;
|
||
}
|
||
else
|
||
{
|
||
/* It's a character part of the decoded name, so just copy it
|
||
over. */
|
||
decoded[j] = encoded[i];
|
||
i += 1;
|
||
j += 1;
|
||
}
|
||
}
|
||
decoded[j] = '\000';
|
||
|
||
/* Decoded names should never contain any uppercase character.
|
||
Double-check this, and abort the decoding if we find one. */
|
||
|
||
for (i = 0; decoded[i] != '\0'; i += 1)
|
||
if (isupper (decoded[i]) || decoded[i] == ' ')
|
||
goto Suppress;
|
||
|
||
if (strcmp (decoded, encoded) == 0)
|
||
return encoded;
|
||
else
|
||
return decoded;
|
||
|
||
Suppress:
|
||
GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
|
||
decoded = decoding_buffer;
|
||
if (encoded[0] == '<')
|
||
strcpy (decoded, encoded);
|
||
else
|
||
xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
|
||
return decoded;
|
||
|
||
}
|
||
|
||
/* Table for keeping permanent unique copies of decoded names. Once
|
||
allocated, names in this table are never released. While this is a
|
||
storage leak, it should not be significant unless there are massive
|
||
changes in the set of decoded names in successive versions of a
|
||
symbol table loaded during a single session. */
|
||
static struct htab *decoded_names_store;
|
||
|
||
/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
|
||
in the language-specific part of GSYMBOL, if it has not been
|
||
previously computed. Tries to save the decoded name in the same
|
||
obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
|
||
in any case, the decoded symbol has a lifetime at least that of
|
||
GSYMBOL).
|
||
The GSYMBOL parameter is "mutable" in the C++ sense: logically
|
||
const, but nevertheless modified to a semantically equivalent form
|
||
when a decoded name is cached in it. */
|
||
|
||
const char *
|
||
ada_decode_symbol (const struct general_symbol_info *arg)
|
||
{
|
||
struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
|
||
const char **resultp =
|
||
&gsymbol->language_specific.demangled_name;
|
||
|
||
if (!gsymbol->ada_mangled)
|
||
{
|
||
const char *decoded = ada_decode (gsymbol->name);
|
||
struct obstack *obstack = gsymbol->language_specific.obstack;
|
||
|
||
gsymbol->ada_mangled = 1;
|
||
|
||
if (obstack != NULL)
|
||
*resultp
|
||
= (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
|
||
else
|
||
{
|
||
/* Sometimes, we can't find a corresponding objfile, in
|
||
which case, we put the result on the heap. Since we only
|
||
decode when needed, we hope this usually does not cause a
|
||
significant memory leak (FIXME). */
|
||
|
||
char **slot = (char **) htab_find_slot (decoded_names_store,
|
||
decoded, INSERT);
|
||
|
||
if (*slot == NULL)
|
||
*slot = xstrdup (decoded);
|
||
*resultp = *slot;
|
||
}
|
||
}
|
||
|
||
return *resultp;
|
||
}
|
||
|
||
static char *
|
||
ada_la_decode (const char *encoded, int options)
|
||
{
|
||
return xstrdup (ada_decode (encoded));
|
||
}
|
||
|
||
/* Implement la_sniff_from_mangled_name for Ada. */
|
||
|
||
static int
|
||
ada_sniff_from_mangled_name (const char *mangled, char **out)
|
||
{
|
||
const char *demangled = ada_decode (mangled);
|
||
|
||
*out = NULL;
|
||
|
||
if (demangled != mangled && demangled != NULL && demangled[0] != '<')
|
||
{
|
||
/* Set the gsymbol language to Ada, but still return 0.
|
||
Two reasons for that:
|
||
|
||
1. For Ada, we prefer computing the symbol's decoded name
|
||
on the fly rather than pre-compute it, in order to save
|
||
memory (Ada projects are typically very large).
|
||
|
||
2. There are some areas in the definition of the GNAT
|
||
encoding where, with a bit of bad luck, we might be able
|
||
to decode a non-Ada symbol, generating an incorrect
|
||
demangled name (Eg: names ending with "TB" for instance
|
||
are identified as task bodies and so stripped from
|
||
the decoded name returned).
|
||
|
||
Returning 1, here, but not setting *DEMANGLED, helps us get a
|
||
little bit of the best of both worlds. Because we're last,
|
||
we should not affect any of the other languages that were
|
||
able to demangle the symbol before us; we get to correctly
|
||
tag Ada symbols as such; and even if we incorrectly tagged a
|
||
non-Ada symbol, which should be rare, any routing through the
|
||
Ada language should be transparent (Ada tries to behave much
|
||
like C/C++ with non-Ada symbols). */
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
|
||
suffixes that encode debugging information or leading _ada_ on
|
||
SYM_NAME (see is_name_suffix commentary for the debugging
|
||
information that is ignored). If WILD, then NAME need only match a
|
||
suffix of SYM_NAME minus the same suffixes. Also returns 0 if
|
||
either argument is NULL. */
|
||
|
||
static int
|
||
match_name (const char *sym_name, const char *name, int wild)
|
||
{
|
||
if (sym_name == NULL || name == NULL)
|
||
return 0;
|
||
else if (wild)
|
||
return wild_match (sym_name, name) == 0;
|
||
else
|
||
{
|
||
int len_name = strlen (name);
|
||
|
||
return (strncmp (sym_name, name, len_name) == 0
|
||
&& is_name_suffix (sym_name + len_name))
|
||
|| (startswith (sym_name, "_ada_")
|
||
&& strncmp (sym_name + 5, name, len_name) == 0
|
||
&& is_name_suffix (sym_name + len_name + 5));
|
||
}
|
||
}
|
||
|
||
|
||
/* Arrays */
|
||
|
||
/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
|
||
generated by the GNAT compiler to describe the index type used
|
||
for each dimension of an array, check whether it follows the latest
|
||
known encoding. If not, fix it up to conform to the latest encoding.
|
||
Otherwise, do nothing. This function also does nothing if
|
||
INDEX_DESC_TYPE is NULL.
|
||
|
||
The GNAT encoding used to describle the array index type evolved a bit.
|
||
Initially, the information would be provided through the name of each
|
||
field of the structure type only, while the type of these fields was
|
||
described as unspecified and irrelevant. The debugger was then expected
|
||
to perform a global type lookup using the name of that field in order
|
||
to get access to the full index type description. Because these global
|
||
lookups can be very expensive, the encoding was later enhanced to make
|
||
the global lookup unnecessary by defining the field type as being
|
||
the full index type description.
|
||
|
||
The purpose of this routine is to allow us to support older versions
|
||
of the compiler by detecting the use of the older encoding, and by
|
||
fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
|
||
we essentially replace each field's meaningless type by the associated
|
||
index subtype). */
|
||
|
||
void
|
||
ada_fixup_array_indexes_type (struct type *index_desc_type)
|
||
{
|
||
int i;
|
||
|
||
if (index_desc_type == NULL)
|
||
return;
|
||
gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
|
||
|
||
/* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
|
||
to check one field only, no need to check them all). If not, return
|
||
now.
|
||
|
||
If our INDEX_DESC_TYPE was generated using the older encoding,
|
||
the field type should be a meaningless integer type whose name
|
||
is not equal to the field name. */
|
||
if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
|
||
&& strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
|
||
TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
|
||
return;
|
||
|
||
/* Fixup each field of INDEX_DESC_TYPE. */
|
||
for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (index_desc_type, i);
|
||
struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
|
||
|
||
if (raw_type)
|
||
TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
|
||
}
|
||
}
|
||
|
||
/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
|
||
|
||
static char *bound_name[] = {
|
||
"LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
|
||
"LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
|
||
};
|
||
|
||
/* Maximum number of array dimensions we are prepared to handle. */
|
||
|
||
#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
|
||
|
||
|
||
/* The desc_* routines return primitive portions of array descriptors
|
||
(fat pointers). */
|
||
|
||
/* The descriptor or array type, if any, indicated by TYPE; removes
|
||
level of indirection, if needed. */
|
||
|
||
static struct type *
|
||
desc_base_type (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return NULL;
|
||
type = ada_check_typedef (type);
|
||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||
type = ada_typedef_target_type (type);
|
||
|
||
if (type != NULL
|
||
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (type) == TYPE_CODE_REF))
|
||
return ada_check_typedef (TYPE_TARGET_TYPE (type));
|
||
else
|
||
return type;
|
||
}
|
||
|
||
/* True iff TYPE indicates a "thin" array pointer type. */
|
||
|
||
static int
|
||
is_thin_pntr (struct type *type)
|
||
{
|
||
return
|
||
is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
|
||
|| is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
|
||
}
|
||
|
||
/* The descriptor type for thin pointer type TYPE. */
|
||
|
||
static struct type *
|
||
thin_descriptor_type (struct type *type)
|
||
{
|
||
struct type *base_type = desc_base_type (type);
|
||
|
||
if (base_type == NULL)
|
||
return NULL;
|
||
if (is_suffix (ada_type_name (base_type), "___XVE"))
|
||
return base_type;
|
||
else
|
||
{
|
||
struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
|
||
|
||
if (alt_type == NULL)
|
||
return base_type;
|
||
else
|
||
return alt_type;
|
||
}
|
||
}
|
||
|
||
/* A pointer to the array data for thin-pointer value VAL. */
|
||
|
||
static struct value *
|
||
thin_data_pntr (struct value *val)
|
||
{
|
||
struct type *type = ada_check_typedef (value_type (val));
|
||
struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
|
||
|
||
data_type = lookup_pointer_type (data_type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
return value_cast (data_type, value_copy (val));
|
||
else
|
||
return value_from_longest (data_type, value_address (val));
|
||
}
|
||
|
||
/* True iff TYPE indicates a "thick" array pointer type. */
|
||
|
||
static int
|
||
is_thick_pntr (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
|
||
}
|
||
|
||
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
|
||
pointer to one, the type of its bounds data; otherwise, NULL. */
|
||
|
||
static struct type *
|
||
desc_bounds_type (struct type *type)
|
||
{
|
||
struct type *r;
|
||
|
||
type = desc_base_type (type);
|
||
|
||
if (type == NULL)
|
||
return NULL;
|
||
else if (is_thin_pntr (type))
|
||
{
|
||
type = thin_descriptor_type (type);
|
||
if (type == NULL)
|
||
return NULL;
|
||
r = lookup_struct_elt_type (type, "BOUNDS", 1);
|
||
if (r != NULL)
|
||
return ada_check_typedef (r);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
{
|
||
r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
|
||
if (r != NULL)
|
||
return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* If ARR is an array descriptor (fat or thin pointer), or pointer to
|
||
one, a pointer to its bounds data. Otherwise NULL. */
|
||
|
||
static struct value *
|
||
desc_bounds (struct value *arr)
|
||
{
|
||
struct type *type = ada_check_typedef (value_type (arr));
|
||
|
||
if (is_thin_pntr (type))
|
||
{
|
||
struct type *bounds_type =
|
||
desc_bounds_type (thin_descriptor_type (type));
|
||
LONGEST addr;
|
||
|
||
if (bounds_type == NULL)
|
||
error (_("Bad GNAT array descriptor"));
|
||
|
||
/* NOTE: The following calculation is not really kosher, but
|
||
since desc_type is an XVE-encoded type (and shouldn't be),
|
||
the correct calculation is a real pain. FIXME (and fix GCC). */
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
addr = value_as_long (arr);
|
||
else
|
||
addr = value_address (arr);
|
||
|
||
return
|
||
value_from_longest (lookup_pointer_type (bounds_type),
|
||
addr - TYPE_LENGTH (bounds_type));
|
||
}
|
||
|
||
else if (is_thick_pntr (type))
|
||
{
|
||
struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
|
||
_("Bad GNAT array descriptor"));
|
||
struct type *p_bounds_type = value_type (p_bounds);
|
||
|
||
if (p_bounds_type
|
||
&& TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
|
||
{
|
||
struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
|
||
|
||
if (TYPE_STUB (target_type))
|
||
p_bounds = value_cast (lookup_pointer_type
|
||
(ada_check_typedef (target_type)),
|
||
p_bounds);
|
||
}
|
||
else
|
||
error (_("Bad GNAT array descriptor"));
|
||
|
||
return p_bounds;
|
||
}
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
position of the field containing the address of the bounds data. */
|
||
|
||
static int
|
||
fat_pntr_bounds_bitpos (struct type *type)
|
||
{
|
||
return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
|
||
}
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
size of the field containing the address of the bounds data. */
|
||
|
||
static int
|
||
fat_pntr_bounds_bitsize (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_FIELD_BITSIZE (type, 1) > 0)
|
||
return TYPE_FIELD_BITSIZE (type, 1);
|
||
else
|
||
return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
|
||
}
|
||
|
||
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
|
||
pointer to one, the type of its array data (a array-with-no-bounds type);
|
||
otherwise, NULL. Use ada_type_of_array to get an array type with bounds
|
||
data. */
|
||
|
||
static struct type *
|
||
desc_data_target_type (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
/* NOTE: The following is bogus; see comment in desc_bounds. */
|
||
if (is_thin_pntr (type))
|
||
return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
|
||
else if (is_thick_pntr (type))
|
||
{
|
||
struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
|
||
|
||
if (data_type
|
||
&& TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
|
||
return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* If ARR is an array descriptor (fat or thin pointer), a pointer to
|
||
its array data. */
|
||
|
||
static struct value *
|
||
desc_data (struct value *arr)
|
||
{
|
||
struct type *type = value_type (arr);
|
||
|
||
if (is_thin_pntr (type))
|
||
return thin_data_pntr (arr);
|
||
else if (is_thick_pntr (type))
|
||
return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
|
||
_("Bad GNAT array descriptor"));
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
position of the field containing the address of the data. */
|
||
|
||
static int
|
||
fat_pntr_data_bitpos (struct type *type)
|
||
{
|
||
return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
|
||
}
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
size of the field containing the address of the data. */
|
||
|
||
static int
|
||
fat_pntr_data_bitsize (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_FIELD_BITSIZE (type, 0) > 0)
|
||
return TYPE_FIELD_BITSIZE (type, 0);
|
||
else
|
||
return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
|
||
}
|
||
|
||
/* If BOUNDS is an array-bounds structure (or pointer to one), return
|
||
the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
||
bound, if WHICH is 1. The first bound is I=1. */
|
||
|
||
static struct value *
|
||
desc_one_bound (struct value *bounds, int i, int which)
|
||
{
|
||
return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
|
||
_("Bad GNAT array descriptor bounds"));
|
||
}
|
||
|
||
/* If BOUNDS is an array-bounds structure type, return the bit position
|
||
of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
||
bound, if WHICH is 1. The first bound is I=1. */
|
||
|
||
static int
|
||
desc_bound_bitpos (struct type *type, int i, int which)
|
||
{
|
||
return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
|
||
}
|
||
|
||
/* If BOUNDS is an array-bounds structure type, return the bit field size
|
||
of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
||
bound, if WHICH is 1. The first bound is I=1. */
|
||
|
||
static int
|
||
desc_bound_bitsize (struct type *type, int i, int which)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
|
||
return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
|
||
else
|
||
return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
|
||
}
|
||
|
||
/* If TYPE is the type of an array-bounds structure, the type of its
|
||
Ith bound (numbering from 1). Otherwise, NULL. */
|
||
|
||
static struct type *
|
||
desc_index_type (struct type *type, int i)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* The number of index positions in the array-bounds type TYPE.
|
||
Return 0 if TYPE is NULL. */
|
||
|
||
static int
|
||
desc_arity (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (type != NULL)
|
||
return TYPE_NFIELDS (type) / 2;
|
||
return 0;
|
||
}
|
||
|
||
/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
|
||
an array descriptor type (representing an unconstrained array
|
||
type). */
|
||
|
||
static int
|
||
ada_is_direct_array_type (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
type = ada_check_typedef (type);
|
||
return (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||
|| ada_is_array_descriptor_type (type));
|
||
}
|
||
|
||
/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
|
||
* to one. */
|
||
|
||
static int
|
||
ada_is_array_type (struct type *type)
|
||
{
|
||
while (type != NULL
|
||
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (type) == TYPE_CODE_REF))
|
||
type = TYPE_TARGET_TYPE (type);
|
||
return ada_is_direct_array_type (type);
|
||
}
|
||
|
||
/* Non-zero iff TYPE is a simple array type or pointer to one. */
|
||
|
||
int
|
||
ada_is_simple_array_type (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
type = ada_check_typedef (type);
|
||
return (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||
|| (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
&& TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
|
||
== TYPE_CODE_ARRAY));
|
||
}
|
||
|
||
/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
|
||
|
||
int
|
||
ada_is_array_descriptor_type (struct type *type)
|
||
{
|
||
struct type *data_type = desc_data_target_type (type);
|
||
|
||
if (type == NULL)
|
||
return 0;
|
||
type = ada_check_typedef (type);
|
||
return (data_type != NULL
|
||
&& TYPE_CODE (data_type) == TYPE_CODE_ARRAY
|
||
&& desc_arity (desc_bounds_type (type)) > 0);
|
||
}
|
||
|
||
/* Non-zero iff type is a partially mal-formed GNAT array
|
||
descriptor. FIXME: This is to compensate for some problems with
|
||
debugging output from GNAT. Re-examine periodically to see if it
|
||
is still needed. */
|
||
|
||
int
|
||
ada_is_bogus_array_descriptor (struct type *type)
|
||
{
|
||
return
|
||
type != NULL
|
||
&& TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
|
||
|| lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
|
||
&& !ada_is_array_descriptor_type (type);
|
||
}
|
||
|
||
|
||
/* If ARR has a record type in the form of a standard GNAT array descriptor,
|
||
(fat pointer) returns the type of the array data described---specifically,
|
||
a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
|
||
in from the descriptor; otherwise, they are left unspecified. If
|
||
the ARR denotes a null array descriptor and BOUNDS is non-zero,
|
||
returns NULL. The result is simply the type of ARR if ARR is not
|
||
a descriptor. */
|
||
struct type *
|
||
ada_type_of_array (struct value *arr, int bounds)
|
||
{
|
||
if (ada_is_constrained_packed_array_type (value_type (arr)))
|
||
return decode_constrained_packed_array_type (value_type (arr));
|
||
|
||
if (!ada_is_array_descriptor_type (value_type (arr)))
|
||
return value_type (arr);
|
||
|
||
if (!bounds)
|
||
{
|
||
struct type *array_type =
|
||
ada_check_typedef (desc_data_target_type (value_type (arr)));
|
||
|
||
if (ada_is_unconstrained_packed_array_type (value_type (arr)))
|
||
TYPE_FIELD_BITSIZE (array_type, 0) =
|
||
decode_packed_array_bitsize (value_type (arr));
|
||
|
||
return array_type;
|
||
}
|
||
else
|
||
{
|
||
struct type *elt_type;
|
||
int arity;
|
||
struct value *descriptor;
|
||
|
||
elt_type = ada_array_element_type (value_type (arr), -1);
|
||
arity = ada_array_arity (value_type (arr));
|
||
|
||
if (elt_type == NULL || arity == 0)
|
||
return ada_check_typedef (value_type (arr));
|
||
|
||
descriptor = desc_bounds (arr);
|
||
if (value_as_long (descriptor) == 0)
|
||
return NULL;
|
||
while (arity > 0)
|
||
{
|
||
struct type *range_type = alloc_type_copy (value_type (arr));
|
||
struct type *array_type = alloc_type_copy (value_type (arr));
|
||
struct value *low = desc_one_bound (descriptor, arity, 0);
|
||
struct value *high = desc_one_bound (descriptor, arity, 1);
|
||
|
||
arity -= 1;
|
||
create_static_range_type (range_type, value_type (low),
|
||
longest_to_int (value_as_long (low)),
|
||
longest_to_int (value_as_long (high)));
|
||
elt_type = create_array_type (array_type, elt_type, range_type);
|
||
|
||
if (ada_is_unconstrained_packed_array_type (value_type (arr)))
|
||
{
|
||
/* We need to store the element packed bitsize, as well as
|
||
recompute the array size, because it was previously
|
||
computed based on the unpacked element size. */
|
||
LONGEST lo = value_as_long (low);
|
||
LONGEST hi = value_as_long (high);
|
||
|
||
TYPE_FIELD_BITSIZE (elt_type, 0) =
|
||
decode_packed_array_bitsize (value_type (arr));
|
||
/* If the array has no element, then the size is already
|
||
zero, and does not need to be recomputed. */
|
||
if (lo < hi)
|
||
{
|
||
int array_bitsize =
|
||
(hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
|
||
|
||
TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
return lookup_pointer_type (elt_type);
|
||
}
|
||
}
|
||
|
||
/* If ARR does not represent an array, returns ARR unchanged.
|
||
Otherwise, returns either a standard GDB array with bounds set
|
||
appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
|
||
GDB array. Returns NULL if ARR is a null fat pointer. */
|
||
|
||
struct value *
|
||
ada_coerce_to_simple_array_ptr (struct value *arr)
|
||
{
|
||
if (ada_is_array_descriptor_type (value_type (arr)))
|
||
{
|
||
struct type *arrType = ada_type_of_array (arr, 1);
|
||
|
||
if (arrType == NULL)
|
||
return NULL;
|
||
return value_cast (arrType, value_copy (desc_data (arr)));
|
||
}
|
||
else if (ada_is_constrained_packed_array_type (value_type (arr)))
|
||
return decode_constrained_packed_array (arr);
|
||
else
|
||
return arr;
|
||
}
|
||
|
||
/* If ARR does not represent an array, returns ARR unchanged.
|
||
Otherwise, returns a standard GDB array describing ARR (which may
|
||
be ARR itself if it already is in the proper form). */
|
||
|
||
struct value *
|
||
ada_coerce_to_simple_array (struct value *arr)
|
||
{
|
||
if (ada_is_array_descriptor_type (value_type (arr)))
|
||
{
|
||
struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
|
||
|
||
if (arrVal == NULL)
|
||
error (_("Bounds unavailable for null array pointer."));
|
||
ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
|
||
return value_ind (arrVal);
|
||
}
|
||
else if (ada_is_constrained_packed_array_type (value_type (arr)))
|
||
return decode_constrained_packed_array (arr);
|
||
else
|
||
return arr;
|
||
}
|
||
|
||
/* If TYPE represents a GNAT array type, return it translated to an
|
||
ordinary GDB array type (possibly with BITSIZE fields indicating
|
||
packing). For other types, is the identity. */
|
||
|
||
struct type *
|
||
ada_coerce_to_simple_array_type (struct type *type)
|
||
{
|
||
if (ada_is_constrained_packed_array_type (type))
|
||
return decode_constrained_packed_array_type (type);
|
||
|
||
if (ada_is_array_descriptor_type (type))
|
||
return ada_check_typedef (desc_data_target_type (type));
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
|
||
|
||
static int
|
||
ada_is_packed_array_type (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
type = desc_base_type (type);
|
||
type = ada_check_typedef (type);
|
||
return
|
||
ada_type_name (type) != NULL
|
||
&& strstr (ada_type_name (type), "___XP") != NULL;
|
||
}
|
||
|
||
/* Non-zero iff TYPE represents a standard GNAT constrained
|
||
packed-array type. */
|
||
|
||
int
|
||
ada_is_constrained_packed_array_type (struct type *type)
|
||
{
|
||
return ada_is_packed_array_type (type)
|
||
&& !ada_is_array_descriptor_type (type);
|
||
}
|
||
|
||
/* Non-zero iff TYPE represents an array descriptor for a
|
||
unconstrained packed-array type. */
|
||
|
||
static int
|
||
ada_is_unconstrained_packed_array_type (struct type *type)
|
||
{
|
||
return ada_is_packed_array_type (type)
|
||
&& ada_is_array_descriptor_type (type);
|
||
}
|
||
|
||
/* Given that TYPE encodes a packed array type (constrained or unconstrained),
|
||
return the size of its elements in bits. */
|
||
|
||
static long
|
||
decode_packed_array_bitsize (struct type *type)
|
||
{
|
||
const char *raw_name;
|
||
const char *tail;
|
||
long bits;
|
||
|
||
/* Access to arrays implemented as fat pointers are encoded as a typedef
|
||
of the fat pointer type. We need the name of the fat pointer type
|
||
to do the decoding, so strip the typedef layer. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||
type = ada_typedef_target_type (type);
|
||
|
||
raw_name = ada_type_name (ada_check_typedef (type));
|
||
if (!raw_name)
|
||
raw_name = ada_type_name (desc_base_type (type));
|
||
|
||
if (!raw_name)
|
||
return 0;
|
||
|
||
tail = strstr (raw_name, "___XP");
|
||
gdb_assert (tail != NULL);
|
||
|
||
if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
|
||
{
|
||
lim_warning
|
||
(_("could not understand bit size information on packed array"));
|
||
return 0;
|
||
}
|
||
|
||
return bits;
|
||
}
|
||
|
||
/* Given that TYPE is a standard GDB array type with all bounds filled
|
||
in, and that the element size of its ultimate scalar constituents
|
||
(that is, either its elements, or, if it is an array of arrays, its
|
||
elements' elements, etc.) is *ELT_BITS, return an identical type,
|
||
but with the bit sizes of its elements (and those of any
|
||
constituent arrays) recorded in the BITSIZE components of its
|
||
TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
|
||
in bits.
|
||
|
||
Note that, for arrays whose index type has an XA encoding where
|
||
a bound references a record discriminant, getting that discriminant,
|
||
and therefore the actual value of that bound, is not possible
|
||
because none of the given parameters gives us access to the record.
|
||
This function assumes that it is OK in the context where it is being
|
||
used to return an array whose bounds are still dynamic and where
|
||
the length is arbitrary. */
|
||
|
||
static struct type *
|
||
constrained_packed_array_type (struct type *type, long *elt_bits)
|
||
{
|
||
struct type *new_elt_type;
|
||
struct type *new_type;
|
||
struct type *index_type_desc;
|
||
struct type *index_type;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
type = ada_check_typedef (type);
|
||
if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
||
return type;
|
||
|
||
index_type_desc = ada_find_parallel_type (type, "___XA");
|
||
if (index_type_desc)
|
||
index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
|
||
NULL);
|
||
else
|
||
index_type = TYPE_INDEX_TYPE (type);
|
||
|
||
new_type = alloc_type_copy (type);
|
||
new_elt_type =
|
||
constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
|
||
elt_bits);
|
||
create_array_type (new_type, new_elt_type, index_type);
|
||
TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
|
||
TYPE_NAME (new_type) = ada_type_name (type);
|
||
|
||
if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
|
||
&& is_dynamic_type (check_typedef (index_type)))
|
||
|| get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
|
||
low_bound = high_bound = 0;
|
||
if (high_bound < low_bound)
|
||
*elt_bits = TYPE_LENGTH (new_type) = 0;
|
||
else
|
||
{
|
||
*elt_bits *= (high_bound - low_bound + 1);
|
||
TYPE_LENGTH (new_type) =
|
||
(*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
}
|
||
|
||
TYPE_FIXED_INSTANCE (new_type) = 1;
|
||
return new_type;
|
||
}
|
||
|
||
/* The array type encoded by TYPE, where
|
||
ada_is_constrained_packed_array_type (TYPE). */
|
||
|
||
static struct type *
|
||
decode_constrained_packed_array_type (struct type *type)
|
||
{
|
||
const char *raw_name = ada_type_name (ada_check_typedef (type));
|
||
char *name;
|
||
const char *tail;
|
||
struct type *shadow_type;
|
||
long bits;
|
||
|
||
if (!raw_name)
|
||
raw_name = ada_type_name (desc_base_type (type));
|
||
|
||
if (!raw_name)
|
||
return NULL;
|
||
|
||
name = (char *) alloca (strlen (raw_name) + 1);
|
||
tail = strstr (raw_name, "___XP");
|
||
type = desc_base_type (type);
|
||
|
||
memcpy (name, raw_name, tail - raw_name);
|
||
name[tail - raw_name] = '\000';
|
||
|
||
shadow_type = ada_find_parallel_type_with_name (type, name);
|
||
|
||
if (shadow_type == NULL)
|
||
{
|
||
lim_warning (_("could not find bounds information on packed array"));
|
||
return NULL;
|
||
}
|
||
shadow_type = check_typedef (shadow_type);
|
||
|
||
if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
|
||
{
|
||
lim_warning (_("could not understand bounds "
|
||
"information on packed array"));
|
||
return NULL;
|
||
}
|
||
|
||
bits = decode_packed_array_bitsize (type);
|
||
return constrained_packed_array_type (shadow_type, &bits);
|
||
}
|
||
|
||
/* Given that ARR is a struct value *indicating a GNAT constrained packed
|
||
array, returns a simple array that denotes that array. Its type is a
|
||
standard GDB array type except that the BITSIZEs of the array
|
||
target types are set to the number of bits in each element, and the
|
||
type length is set appropriately. */
|
||
|
||
static struct value *
|
||
decode_constrained_packed_array (struct value *arr)
|
||
{
|
||
struct type *type;
|
||
|
||
/* If our value is a pointer, then dereference it. Likewise if
|
||
the value is a reference. Make sure that this operation does not
|
||
cause the target type to be fixed, as this would indirectly cause
|
||
this array to be decoded. The rest of the routine assumes that
|
||
the array hasn't been decoded yet, so we use the basic "coerce_ref"
|
||
and "value_ind" routines to perform the dereferencing, as opposed
|
||
to using "ada_coerce_ref" or "ada_value_ind". */
|
||
arr = coerce_ref (arr);
|
||
if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
|
||
arr = value_ind (arr);
|
||
|
||
type = decode_constrained_packed_array_type (value_type (arr));
|
||
if (type == NULL)
|
||
{
|
||
error (_("can't unpack array"));
|
||
return NULL;
|
||
}
|
||
|
||
if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
|
||
&& ada_is_modular_type (value_type (arr)))
|
||
{
|
||
/* This is a (right-justified) modular type representing a packed
|
||
array with no wrapper. In order to interpret the value through
|
||
the (left-justified) packed array type we just built, we must
|
||
first left-justify it. */
|
||
int bit_size, bit_pos;
|
||
ULONGEST mod;
|
||
|
||
mod = ada_modulus (value_type (arr)) - 1;
|
||
bit_size = 0;
|
||
while (mod > 0)
|
||
{
|
||
bit_size += 1;
|
||
mod >>= 1;
|
||
}
|
||
bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
|
||
arr = ada_value_primitive_packed_val (arr, NULL,
|
||
bit_pos / HOST_CHAR_BIT,
|
||
bit_pos % HOST_CHAR_BIT,
|
||
bit_size,
|
||
type);
|
||
}
|
||
|
||
return coerce_unspec_val_to_type (arr, type);
|
||
}
|
||
|
||
|
||
/* The value of the element of packed array ARR at the ARITY indices
|
||
given in IND. ARR must be a simple array. */
|
||
|
||
static struct value *
|
||
value_subscript_packed (struct value *arr, int arity, struct value **ind)
|
||
{
|
||
int i;
|
||
int bits, elt_off, bit_off;
|
||
long elt_total_bit_offset;
|
||
struct type *elt_type;
|
||
struct value *v;
|
||
|
||
bits = 0;
|
||
elt_total_bit_offset = 0;
|
||
elt_type = ada_check_typedef (value_type (arr));
|
||
for (i = 0; i < arity; i += 1)
|
||
{
|
||
if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
|
||
|| TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
|
||
error
|
||
(_("attempt to do packed indexing of "
|
||
"something other than a packed array"));
|
||
else
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (elt_type);
|
||
LONGEST lowerbound, upperbound;
|
||
LONGEST idx;
|
||
|
||
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
||
{
|
||
lim_warning (_("don't know bounds of array"));
|
||
lowerbound = upperbound = 0;
|
||
}
|
||
|
||
idx = pos_atr (ind[i]);
|
||
if (idx < lowerbound || idx > upperbound)
|
||
lim_warning (_("packed array index %ld out of bounds"),
|
||
(long) idx);
|
||
bits = TYPE_FIELD_BITSIZE (elt_type, 0);
|
||
elt_total_bit_offset += (idx - lowerbound) * bits;
|
||
elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
|
||
}
|
||
}
|
||
elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
|
||
bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
|
||
|
||
v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
|
||
bits, elt_type);
|
||
return v;
|
||
}
|
||
|
||
/* Non-zero iff TYPE includes negative integer values. */
|
||
|
||
static int
|
||
has_negatives (struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
default:
|
||
return 0;
|
||
case TYPE_CODE_INT:
|
||
return !TYPE_UNSIGNED (type);
|
||
case TYPE_CODE_RANGE:
|
||
return TYPE_LOW_BOUND (type) < 0;
|
||
}
|
||
}
|
||
|
||
/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
|
||
unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
|
||
the unpacked buffer.
|
||
|
||
The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
|
||
enough to contain at least BIT_OFFSET bits. If not, an error is raised.
|
||
|
||
IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
|
||
zero otherwise.
|
||
|
||
IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
|
||
|
||
IS_SCALAR is nonzero if the data corresponds to a signed type. */
|
||
|
||
static void
|
||
ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
|
||
gdb_byte *unpacked, int unpacked_len,
|
||
int is_big_endian, int is_signed_type,
|
||
int is_scalar)
|
||
{
|
||
int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
|
||
int src_idx; /* Index into the source area */
|
||
int src_bytes_left; /* Number of source bytes left to process. */
|
||
int srcBitsLeft; /* Number of source bits left to move */
|
||
int unusedLS; /* Number of bits in next significant
|
||
byte of source that are unused */
|
||
|
||
int unpacked_idx; /* Index into the unpacked buffer */
|
||
int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
|
||
|
||
unsigned long accum; /* Staging area for bits being transferred */
|
||
int accumSize; /* Number of meaningful bits in accum */
|
||
unsigned char sign;
|
||
|
||
/* Transmit bytes from least to most significant; delta is the direction
|
||
the indices move. */
|
||
int delta = is_big_endian ? -1 : 1;
|
||
|
||
/* Make sure that unpacked is large enough to receive the BIT_SIZE
|
||
bits from SRC. .*/
|
||
if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
|
||
error (_("Cannot unpack %d bits into buffer of %d bytes"),
|
||
bit_size, unpacked_len);
|
||
|
||
srcBitsLeft = bit_size;
|
||
src_bytes_left = src_len;
|
||
unpacked_bytes_left = unpacked_len;
|
||
sign = 0;
|
||
|
||
if (is_big_endian)
|
||
{
|
||
src_idx = src_len - 1;
|
||
if (is_signed_type
|
||
&& ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
|
||
sign = ~0;
|
||
|
||
unusedLS =
|
||
(HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
|
||
% HOST_CHAR_BIT;
|
||
|
||
if (is_scalar)
|
||
{
|
||
accumSize = 0;
|
||
unpacked_idx = unpacked_len - 1;
|
||
}
|
||
else
|
||
{
|
||
/* Non-scalar values must be aligned at a byte boundary... */
|
||
accumSize =
|
||
(HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
|
||
/* ... And are placed at the beginning (most-significant) bytes
|
||
of the target. */
|
||
unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
|
||
unpacked_bytes_left = unpacked_idx + 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
|
||
|
||
src_idx = unpacked_idx = 0;
|
||
unusedLS = bit_offset;
|
||
accumSize = 0;
|
||
|
||
if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
|
||
sign = ~0;
|
||
}
|
||
|
||
accum = 0;
|
||
while (src_bytes_left > 0)
|
||
{
|
||
/* Mask for removing bits of the next source byte that are not
|
||
part of the value. */
|
||
unsigned int unusedMSMask =
|
||
(1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
|
||
1;
|
||
/* Sign-extend bits for this byte. */
|
||
unsigned int signMask = sign & ~unusedMSMask;
|
||
|
||
accum |=
|
||
(((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
|
||
accumSize += HOST_CHAR_BIT - unusedLS;
|
||
if (accumSize >= HOST_CHAR_BIT)
|
||
{
|
||
unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
|
||
accumSize -= HOST_CHAR_BIT;
|
||
accum >>= HOST_CHAR_BIT;
|
||
unpacked_bytes_left -= 1;
|
||
unpacked_idx += delta;
|
||
}
|
||
srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
|
||
unusedLS = 0;
|
||
src_bytes_left -= 1;
|
||
src_idx += delta;
|
||
}
|
||
while (unpacked_bytes_left > 0)
|
||
{
|
||
accum |= sign << accumSize;
|
||
unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
|
||
accumSize -= HOST_CHAR_BIT;
|
||
if (accumSize < 0)
|
||
accumSize = 0;
|
||
accum >>= HOST_CHAR_BIT;
|
||
unpacked_bytes_left -= 1;
|
||
unpacked_idx += delta;
|
||
}
|
||
}
|
||
|
||
/* Create a new value of type TYPE from the contents of OBJ starting
|
||
at byte OFFSET, and bit offset BIT_OFFSET within that byte,
|
||
proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
|
||
assigning through the result will set the field fetched from.
|
||
VALADDR is ignored unless OBJ is NULL, in which case,
|
||
VALADDR+OFFSET must address the start of storage containing the
|
||
packed value. The value returned in this case is never an lval.
|
||
Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
|
||
|
||
struct value *
|
||
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
|
||
long offset, int bit_offset, int bit_size,
|
||
struct type *type)
|
||
{
|
||
struct value *v;
|
||
const gdb_byte *src; /* First byte containing data to unpack */
|
||
gdb_byte *unpacked;
|
||
const int is_scalar = is_scalar_type (type);
|
||
const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
|
||
gdb_byte *staging = NULL;
|
||
int staging_len = 0;
|
||
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
||
|
||
type = ada_check_typedef (type);
|
||
|
||
if (obj == NULL)
|
||
src = valaddr + offset;
|
||
else
|
||
src = value_contents (obj) + offset;
|
||
|
||
if (is_dynamic_type (type))
|
||
{
|
||
/* The length of TYPE might by dynamic, so we need to resolve
|
||
TYPE in order to know its actual size, which we then use
|
||
to create the contents buffer of the value we return.
|
||
The difficulty is that the data containing our object is
|
||
packed, and therefore maybe not at a byte boundary. So, what
|
||
we do, is unpack the data into a byte-aligned buffer, and then
|
||
use that buffer as our object's value for resolving the type. */
|
||
staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
staging = (gdb_byte *) malloc (staging_len);
|
||
make_cleanup (xfree, staging);
|
||
|
||
ada_unpack_from_contents (src, bit_offset, bit_size,
|
||
staging, staging_len,
|
||
is_big_endian, has_negatives (type),
|
||
is_scalar);
|
||
type = resolve_dynamic_type (type, staging, 0);
|
||
if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
|
||
{
|
||
/* This happens when the length of the object is dynamic,
|
||
and is actually smaller than the space reserved for it.
|
||
For instance, in an array of variant records, the bit_size
|
||
we're given is the array stride, which is constant and
|
||
normally equal to the maximum size of its element.
|
||
But, in reality, each element only actually spans a portion
|
||
of that stride. */
|
||
bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
|
||
}
|
||
}
|
||
|
||
if (obj == NULL)
|
||
{
|
||
v = allocate_value (type);
|
||
src = valaddr + offset;
|
||
}
|
||
else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
|
||
{
|
||
int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
|
||
gdb_byte *buf;
|
||
|
||
v = value_at (type, value_address (obj) + offset);
|
||
buf = (gdb_byte *) alloca (src_len);
|
||
read_memory (value_address (v), buf, src_len);
|
||
src = buf;
|
||
}
|
||
else
|
||
{
|
||
v = allocate_value (type);
|
||
src = value_contents (obj) + offset;
|
||
}
|
||
|
||
if (obj != NULL)
|
||
{
|
||
long new_offset = offset;
|
||
|
||
set_value_component_location (v, obj);
|
||
set_value_bitpos (v, bit_offset + value_bitpos (obj));
|
||
set_value_bitsize (v, bit_size);
|
||
if (value_bitpos (v) >= HOST_CHAR_BIT)
|
||
{
|
||
++new_offset;
|
||
set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
|
||
}
|
||
set_value_offset (v, new_offset);
|
||
|
||
/* Also set the parent value. This is needed when trying to
|
||
assign a new value (in inferior memory). */
|
||
set_value_parent (v, obj);
|
||
}
|
||
else
|
||
set_value_bitsize (v, bit_size);
|
||
unpacked = value_contents_writeable (v);
|
||
|
||
if (bit_size == 0)
|
||
{
|
||
memset (unpacked, 0, TYPE_LENGTH (type));
|
||
do_cleanups (old_chain);
|
||
return v;
|
||
}
|
||
|
||
if (staging != NULL && staging_len == TYPE_LENGTH (type))
|
||
{
|
||
/* Small short-cut: If we've unpacked the data into a buffer
|
||
of the same size as TYPE's length, then we can reuse that,
|
||
instead of doing the unpacking again. */
|
||
memcpy (unpacked, staging, staging_len);
|
||
}
|
||
else
|
||
ada_unpack_from_contents (src, bit_offset, bit_size,
|
||
unpacked, TYPE_LENGTH (type),
|
||
is_big_endian, has_negatives (type), is_scalar);
|
||
|
||
do_cleanups (old_chain);
|
||
return v;
|
||
}
|
||
|
||
/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
|
||
TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
|
||
not overlap. */
|
||
static void
|
||
move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
|
||
int src_offset, int n, int bits_big_endian_p)
|
||
{
|
||
unsigned int accum, mask;
|
||
int accum_bits, chunk_size;
|
||
|
||
target += targ_offset / HOST_CHAR_BIT;
|
||
targ_offset %= HOST_CHAR_BIT;
|
||
source += src_offset / HOST_CHAR_BIT;
|
||
src_offset %= HOST_CHAR_BIT;
|
||
if (bits_big_endian_p)
|
||
{
|
||
accum = (unsigned char) *source;
|
||
source += 1;
|
||
accum_bits = HOST_CHAR_BIT - src_offset;
|
||
|
||
while (n > 0)
|
||
{
|
||
int unused_right;
|
||
|
||
accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
|
||
accum_bits += HOST_CHAR_BIT;
|
||
source += 1;
|
||
chunk_size = HOST_CHAR_BIT - targ_offset;
|
||
if (chunk_size > n)
|
||
chunk_size = n;
|
||
unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
|
||
mask = ((1 << chunk_size) - 1) << unused_right;
|
||
*target =
|
||
(*target & ~mask)
|
||
| ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
|
||
n -= chunk_size;
|
||
accum_bits -= chunk_size;
|
||
target += 1;
|
||
targ_offset = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
accum = (unsigned char) *source >> src_offset;
|
||
source += 1;
|
||
accum_bits = HOST_CHAR_BIT - src_offset;
|
||
|
||
while (n > 0)
|
||
{
|
||
accum = accum + ((unsigned char) *source << accum_bits);
|
||
accum_bits += HOST_CHAR_BIT;
|
||
source += 1;
|
||
chunk_size = HOST_CHAR_BIT - targ_offset;
|
||
if (chunk_size > n)
|
||
chunk_size = n;
|
||
mask = ((1 << chunk_size) - 1) << targ_offset;
|
||
*target = (*target & ~mask) | ((accum << targ_offset) & mask);
|
||
n -= chunk_size;
|
||
accum_bits -= chunk_size;
|
||
accum >>= chunk_size;
|
||
target += 1;
|
||
targ_offset = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Store the contents of FROMVAL into the location of TOVAL.
|
||
Return a new value with the location of TOVAL and contents of
|
||
FROMVAL. Handles assignment into packed fields that have
|
||
floating-point or non-scalar types. */
|
||
|
||
static struct value *
|
||
ada_value_assign (struct value *toval, struct value *fromval)
|
||
{
|
||
struct type *type = value_type (toval);
|
||
int bits = value_bitsize (toval);
|
||
|
||
toval = ada_coerce_ref (toval);
|
||
fromval = ada_coerce_ref (fromval);
|
||
|
||
if (ada_is_direct_array_type (value_type (toval)))
|
||
toval = ada_coerce_to_simple_array (toval);
|
||
if (ada_is_direct_array_type (value_type (fromval)))
|
||
fromval = ada_coerce_to_simple_array (fromval);
|
||
|
||
if (!deprecated_value_modifiable (toval))
|
||
error (_("Left operand of assignment is not a modifiable lvalue."));
|
||
|
||
if (VALUE_LVAL (toval) == lval_memory
|
||
&& bits > 0
|
||
&& (TYPE_CODE (type) == TYPE_CODE_FLT
|
||
|| TYPE_CODE (type) == TYPE_CODE_STRUCT))
|
||
{
|
||
int len = (value_bitpos (toval)
|
||
+ bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
int from_size;
|
||
gdb_byte *buffer = (gdb_byte *) alloca (len);
|
||
struct value *val;
|
||
CORE_ADDR to_addr = value_address (toval);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
fromval = value_cast (type, fromval);
|
||
|
||
read_memory (to_addr, buffer, len);
|
||
from_size = value_bitsize (fromval);
|
||
if (from_size == 0)
|
||
from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
|
||
if (gdbarch_bits_big_endian (get_type_arch (type)))
|
||
move_bits (buffer, value_bitpos (toval),
|
||
value_contents (fromval), from_size - bits, bits, 1);
|
||
else
|
||
move_bits (buffer, value_bitpos (toval),
|
||
value_contents (fromval), 0, bits, 0);
|
||
write_memory_with_notification (to_addr, buffer, len);
|
||
|
||
val = value_copy (toval);
|
||
memcpy (value_contents_raw (val), value_contents (fromval),
|
||
TYPE_LENGTH (type));
|
||
deprecated_set_value_type (val, type);
|
||
|
||
return val;
|
||
}
|
||
|
||
return value_assign (toval, fromval);
|
||
}
|
||
|
||
|
||
/* Given that COMPONENT is a memory lvalue that is part of the lvalue
|
||
CONTAINER, assign the contents of VAL to COMPONENTS's place in
|
||
CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
|
||
COMPONENT, and not the inferior's memory. The current contents
|
||
of COMPONENT are ignored.
|
||
|
||
Although not part of the initial design, this function also works
|
||
when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
|
||
had a null address, and COMPONENT had an address which is equal to
|
||
its offset inside CONTAINER. */
|
||
|
||
static void
|
||
value_assign_to_component (struct value *container, struct value *component,
|
||
struct value *val)
|
||
{
|
||
LONGEST offset_in_container =
|
||
(LONGEST) (value_address (component) - value_address (container));
|
||
int bit_offset_in_container =
|
||
value_bitpos (component) - value_bitpos (container);
|
||
int bits;
|
||
|
||
val = value_cast (value_type (component), val);
|
||
|
||
if (value_bitsize (component) == 0)
|
||
bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
|
||
else
|
||
bits = value_bitsize (component);
|
||
|
||
if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
|
||
move_bits (value_contents_writeable (container) + offset_in_container,
|
||
value_bitpos (container) + bit_offset_in_container,
|
||
value_contents (val),
|
||
TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
|
||
bits, 1);
|
||
else
|
||
move_bits (value_contents_writeable (container) + offset_in_container,
|
||
value_bitpos (container) + bit_offset_in_container,
|
||
value_contents (val), 0, bits, 0);
|
||
}
|
||
|
||
/* The value of the element of array ARR at the ARITY indices given in IND.
|
||
ARR may be either a simple array, GNAT array descriptor, or pointer
|
||
thereto. */
|
||
|
||
struct value *
|
||
ada_value_subscript (struct value *arr, int arity, struct value **ind)
|
||
{
|
||
int k;
|
||
struct value *elt;
|
||
struct type *elt_type;
|
||
|
||
elt = ada_coerce_to_simple_array (arr);
|
||
|
||
elt_type = ada_check_typedef (value_type (elt));
|
||
if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
|
||
&& TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
|
||
return value_subscript_packed (elt, arity, ind);
|
||
|
||
for (k = 0; k < arity; k += 1)
|
||
{
|
||
if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
|
||
error (_("too many subscripts (%d expected)"), k);
|
||
elt = value_subscript (elt, pos_atr (ind[k]));
|
||
}
|
||
return elt;
|
||
}
|
||
|
||
/* Assuming ARR is a pointer to a GDB array, the value of the element
|
||
of *ARR at the ARITY indices given in IND.
|
||
Does not read the entire array into memory.
|
||
|
||
Note: Unlike what one would expect, this function is used instead of
|
||
ada_value_subscript for basically all non-packed array types. The reason
|
||
for this is that a side effect of doing our own pointer arithmetics instead
|
||
of relying on value_subscript is that there is no implicit typedef peeling.
|
||
This is important for arrays of array accesses, where it allows us to
|
||
preserve the fact that the array's element is an array access, where the
|
||
access part os encoded in a typedef layer. */
|
||
|
||
static struct value *
|
||
ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
|
||
{
|
||
int k;
|
||
struct value *array_ind = ada_value_ind (arr);
|
||
struct type *type
|
||
= check_typedef (value_enclosing_type (array_ind));
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||
&& TYPE_FIELD_BITSIZE (type, 0) > 0)
|
||
return value_subscript_packed (array_ind, arity, ind);
|
||
|
||
for (k = 0; k < arity; k += 1)
|
||
{
|
||
LONGEST lwb, upb;
|
||
struct value *lwb_value;
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
||
error (_("too many subscripts (%d expected)"), k);
|
||
arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
value_copy (arr));
|
||
get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
|
||
lwb_value = value_from_longest (value_type(ind[k]), lwb);
|
||
arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
|
||
return value_ind (arr);
|
||
}
|
||
|
||
/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
|
||
actual type of ARRAY_PTR is ignored), returns the Ada slice of
|
||
HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
|
||
this array is LOW, as per Ada rules. */
|
||
static struct value *
|
||
ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
|
||
int low, int high)
|
||
{
|
||
struct type *type0 = ada_check_typedef (type);
|
||
struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
|
||
struct type *index_type
|
||
= create_static_range_type (NULL, base_index_type, low, high);
|
||
struct type *slice_type =
|
||
create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
|
||
int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
|
||
LONGEST base_low_pos, low_pos;
|
||
CORE_ADDR base;
|
||
|
||
if (!discrete_position (base_index_type, low, &low_pos)
|
||
|| !discrete_position (base_index_type, base_low, &base_low_pos))
|
||
{
|
||
warning (_("unable to get positions in slice, use bounds instead"));
|
||
low_pos = low;
|
||
base_low_pos = base_low;
|
||
}
|
||
|
||
base = value_as_address (array_ptr)
|
||
+ ((low_pos - base_low_pos)
|
||
* TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
|
||
return value_at_lazy (slice_type, base);
|
||
}
|
||
|
||
|
||
static struct value *
|
||
ada_value_slice (struct value *array, int low, int high)
|
||
{
|
||
struct type *type = ada_check_typedef (value_type (array));
|
||
struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
|
||
struct type *index_type
|
||
= create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
|
||
struct type *slice_type =
|
||
create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
|
||
LONGEST low_pos, high_pos;
|
||
|
||
if (!discrete_position (base_index_type, low, &low_pos)
|
||
|| !discrete_position (base_index_type, high, &high_pos))
|
||
{
|
||
warning (_("unable to get positions in slice, use bounds instead"));
|
||
low_pos = low;
|
||
high_pos = high;
|
||
}
|
||
|
||
return value_cast (slice_type,
|
||
value_slice (array, low, high_pos - low_pos + 1));
|
||
}
|
||
|
||
/* If type is a record type in the form of a standard GNAT array
|
||
descriptor, returns the number of dimensions for type. If arr is a
|
||
simple array, returns the number of "array of"s that prefix its
|
||
type designation. Otherwise, returns 0. */
|
||
|
||
int
|
||
ada_array_arity (struct type *type)
|
||
{
|
||
int arity;
|
||
|
||
if (type == NULL)
|
||
return 0;
|
||
|
||
type = desc_base_type (type);
|
||
|
||
arity = 0;
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
return desc_arity (desc_bounds_type (type));
|
||
else
|
||
while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
arity += 1;
|
||
type = ada_check_typedef (TYPE_TARGET_TYPE (type));
|
||
}
|
||
|
||
return arity;
|
||
}
|
||
|
||
/* If TYPE is a record type in the form of a standard GNAT array
|
||
descriptor or a simple array type, returns the element type for
|
||
TYPE after indexing by NINDICES indices, or by all indices if
|
||
NINDICES is -1. Otherwise, returns NULL. */
|
||
|
||
struct type *
|
||
ada_array_element_type (struct type *type, int nindices)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
{
|
||
int k;
|
||
struct type *p_array_type;
|
||
|
||
p_array_type = desc_data_target_type (type);
|
||
|
||
k = ada_array_arity (type);
|
||
if (k == 0)
|
||
return NULL;
|
||
|
||
/* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
|
||
if (nindices >= 0 && k > nindices)
|
||
k = nindices;
|
||
while (k > 0 && p_array_type != NULL)
|
||
{
|
||
p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
|
||
k -= 1;
|
||
}
|
||
return p_array_type;
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
nindices -= 1;
|
||
}
|
||
return type;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* The type of nth index in arrays of given type (n numbering from 1).
|
||
Does not examine memory. Throws an error if N is invalid or TYPE
|
||
is not an array type. NAME is the name of the Ada attribute being
|
||
evaluated ('range, 'first, 'last, or 'length); it is used in building
|
||
the error message. */
|
||
|
||
static struct type *
|
||
ada_index_type (struct type *type, int n, const char *name)
|
||
{
|
||
struct type *result_type;
|
||
|
||
type = desc_base_type (type);
|
||
|
||
if (n < 0 || n > ada_array_arity (type))
|
||
error (_("invalid dimension number to '%s"), name);
|
||
|
||
if (ada_is_simple_array_type (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 1; i < n; i += 1)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
|
||
/* FIXME: The stabs type r(0,0);bound;bound in an array type
|
||
has a target type of TYPE_CODE_UNDEF. We compensate here, but
|
||
perhaps stabsread.c would make more sense. */
|
||
if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
|
||
result_type = NULL;
|
||
}
|
||
else
|
||
{
|
||
result_type = desc_index_type (desc_bounds_type (type), n);
|
||
if (result_type == NULL)
|
||
error (_("attempt to take bound of something that is not an array"));
|
||
}
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* Given that arr is an array type, returns the lower bound of the
|
||
Nth index (numbering from 1) if WHICH is 0, and the upper bound if
|
||
WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
|
||
array-descriptor type. It works for other arrays with bounds supplied
|
||
by run-time quantities other than discriminants. */
|
||
|
||
static LONGEST
|
||
ada_array_bound_from_type (struct type *arr_type, int n, int which)
|
||
{
|
||
struct type *type, *index_type_desc, *index_type;
|
||
int i;
|
||
|
||
gdb_assert (which == 0 || which == 1);
|
||
|
||
if (ada_is_constrained_packed_array_type (arr_type))
|
||
arr_type = decode_constrained_packed_array_type (arr_type);
|
||
|
||
if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
|
||
return (LONGEST) - which;
|
||
|
||
if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
|
||
type = TYPE_TARGET_TYPE (arr_type);
|
||
else
|
||
type = arr_type;
|
||
|
||
if (TYPE_FIXED_INSTANCE (type))
|
||
{
|
||
/* The array has already been fixed, so we do not need to
|
||
check the parallel ___XA type again. That encoding has
|
||
already been applied, so ignore it now. */
|
||
index_type_desc = NULL;
|
||
}
|
||
else
|
||
{
|
||
index_type_desc = ada_find_parallel_type (type, "___XA");
|
||
ada_fixup_array_indexes_type (index_type_desc);
|
||
}
|
||
|
||
if (index_type_desc != NULL)
|
||
index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
|
||
NULL);
|
||
else
|
||
{
|
||
struct type *elt_type = check_typedef (type);
|
||
|
||
for (i = 1; i < n; i++)
|
||
elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
|
||
|
||
index_type = TYPE_INDEX_TYPE (elt_type);
|
||
}
|
||
|
||
return
|
||
(LONGEST) (which == 0
|
||
? ada_discrete_type_low_bound (index_type)
|
||
: ada_discrete_type_high_bound (index_type));
|
||
}
|
||
|
||
/* Given that arr is an array value, returns the lower bound of the
|
||
nth index (numbering from 1) if WHICH is 0, and the upper bound if
|
||
WHICH is 1. This routine will also work for arrays with bounds
|
||
supplied by run-time quantities other than discriminants. */
|
||
|
||
static LONGEST
|
||
ada_array_bound (struct value *arr, int n, int which)
|
||
{
|
||
struct type *arr_type;
|
||
|
||
if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
|
||
arr = value_ind (arr);
|
||
arr_type = value_enclosing_type (arr);
|
||
|
||
if (ada_is_constrained_packed_array_type (arr_type))
|
||
return ada_array_bound (decode_constrained_packed_array (arr), n, which);
|
||
else if (ada_is_simple_array_type (arr_type))
|
||
return ada_array_bound_from_type (arr_type, n, which);
|
||
else
|
||
return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
|
||
}
|
||
|
||
/* Given that arr is an array value, returns the length of the
|
||
nth index. This routine will also work for arrays with bounds
|
||
supplied by run-time quantities other than discriminants.
|
||
Does not work for arrays indexed by enumeration types with representation
|
||
clauses at the moment. */
|
||
|
||
static LONGEST
|
||
ada_array_length (struct value *arr, int n)
|
||
{
|
||
struct type *arr_type, *index_type;
|
||
int low, high;
|
||
|
||
if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
|
||
arr = value_ind (arr);
|
||
arr_type = value_enclosing_type (arr);
|
||
|
||
if (ada_is_constrained_packed_array_type (arr_type))
|
||
return ada_array_length (decode_constrained_packed_array (arr), n);
|
||
|
||
if (ada_is_simple_array_type (arr_type))
|
||
{
|
||
low = ada_array_bound_from_type (arr_type, n, 0);
|
||
high = ada_array_bound_from_type (arr_type, n, 1);
|
||
}
|
||
else
|
||
{
|
||
low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
|
||
high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
|
||
}
|
||
|
||
arr_type = check_typedef (arr_type);
|
||
index_type = TYPE_INDEX_TYPE (arr_type);
|
||
if (index_type != NULL)
|
||
{
|
||
struct type *base_type;
|
||
if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
|
||
base_type = TYPE_TARGET_TYPE (index_type);
|
||
else
|
||
base_type = index_type;
|
||
|
||
low = pos_atr (value_from_longest (base_type, low));
|
||
high = pos_atr (value_from_longest (base_type, high));
|
||
}
|
||
return high - low + 1;
|
||
}
|
||
|
||
/* An empty array whose type is that of ARR_TYPE (an array type),
|
||
with bounds LOW to LOW-1. */
|
||
|
||
static struct value *
|
||
empty_array (struct type *arr_type, int low)
|
||
{
|
||
struct type *arr_type0 = ada_check_typedef (arr_type);
|
||
struct type *index_type
|
||
= create_static_range_type
|
||
(NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
|
||
struct type *elt_type = ada_array_element_type (arr_type0, 1);
|
||
|
||
return allocate_value (create_array_type (NULL, elt_type, index_type));
|
||
}
|
||
|
||
|
||
/* Name resolution */
|
||
|
||
/* The "decoded" name for the user-definable Ada operator corresponding
|
||
to OP. */
|
||
|
||
static const char *
|
||
ada_decoded_op_name (enum exp_opcode op)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
|
||
{
|
||
if (ada_opname_table[i].op == op)
|
||
return ada_opname_table[i].decoded;
|
||
}
|
||
error (_("Could not find operator name for opcode"));
|
||
}
|
||
|
||
|
||
/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
|
||
references (marked by OP_VAR_VALUE nodes in which the symbol has an
|
||
undefined namespace) and converts operators that are
|
||
user-defined into appropriate function calls. If CONTEXT_TYPE is
|
||
non-null, it provides a preferred result type [at the moment, only
|
||
type void has any effect---causing procedures to be preferred over
|
||
functions in calls]. A null CONTEXT_TYPE indicates that a non-void
|
||
return type is preferred. May change (expand) *EXP. */
|
||
|
||
static void
|
||
resolve (struct expression **expp, int void_context_p)
|
||
{
|
||
struct type *context_type = NULL;
|
||
int pc = 0;
|
||
|
||
if (void_context_p)
|
||
context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
|
||
|
||
resolve_subexp (expp, &pc, 1, context_type);
|
||
}
|
||
|
||
/* Resolve the operator of the subexpression beginning at
|
||
position *POS of *EXPP. "Resolving" consists of replacing
|
||
the symbols that have undefined namespaces in OP_VAR_VALUE nodes
|
||
with their resolutions, replacing built-in operators with
|
||
function calls to user-defined operators, where appropriate, and,
|
||
when DEPROCEDURE_P is non-zero, converting function-valued variables
|
||
into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
|
||
are as in ada_resolve, above. */
|
||
|
||
static struct value *
|
||
resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
|
||
struct type *context_type)
|
||
{
|
||
int pc = *pos;
|
||
int i;
|
||
struct expression *exp; /* Convenience: == *expp. */
|
||
enum exp_opcode op = (*expp)->elts[pc].opcode;
|
||
struct value **argvec; /* Vector of operand types (alloca'ed). */
|
||
int nargs; /* Number of operands. */
|
||
int oplen;
|
||
|
||
argvec = NULL;
|
||
nargs = 0;
|
||
exp = *expp;
|
||
|
||
/* Pass one: resolve operands, saving their types and updating *pos,
|
||
if needed. */
|
||
switch (op)
|
||
{
|
||
case OP_FUNCALL:
|
||
if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
|
||
&& SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
|
||
*pos += 7;
|
||
else
|
||
{
|
||
*pos += 3;
|
||
resolve_subexp (expp, pos, 0, NULL);
|
||
}
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
break;
|
||
|
||
case UNOP_ADDR:
|
||
*pos += 1;
|
||
resolve_subexp (expp, pos, 0, NULL);
|
||
break;
|
||
|
||
case UNOP_QUAL:
|
||
*pos += 3;
|
||
resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
|
||
break;
|
||
|
||
case OP_ATR_MODULUS:
|
||
case OP_ATR_SIZE:
|
||
case OP_ATR_TAG:
|
||
case OP_ATR_FIRST:
|
||
case OP_ATR_LAST:
|
||
case OP_ATR_LENGTH:
|
||
case OP_ATR_POS:
|
||
case OP_ATR_VAL:
|
||
case OP_ATR_MIN:
|
||
case OP_ATR_MAX:
|
||
case TERNOP_IN_RANGE:
|
||
case BINOP_IN_BOUNDS:
|
||
case UNOP_IN_RANGE:
|
||
case OP_AGGREGATE:
|
||
case OP_OTHERS:
|
||
case OP_CHOICES:
|
||
case OP_POSITIONAL:
|
||
case OP_DISCRETE_RANGE:
|
||
case OP_NAME:
|
||
ada_forward_operator_length (exp, pc, &oplen, &nargs);
|
||
*pos += oplen;
|
||
break;
|
||
|
||
case BINOP_ASSIGN:
|
||
{
|
||
struct value *arg1;
|
||
|
||
*pos += 1;
|
||
arg1 = resolve_subexp (expp, pos, 0, NULL);
|
||
if (arg1 == NULL)
|
||
resolve_subexp (expp, pos, 1, NULL);
|
||
else
|
||
resolve_subexp (expp, pos, 1, value_type (arg1));
|
||
break;
|
||
}
|
||
|
||
case UNOP_CAST:
|
||
*pos += 3;
|
||
nargs = 1;
|
||
break;
|
||
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_EXP:
|
||
case BINOP_CONCAT:
|
||
case BINOP_LOGICAL_AND:
|
||
case BINOP_LOGICAL_OR:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
case BINOP_LESS:
|
||
case BINOP_GTR:
|
||
case BINOP_LEQ:
|
||
case BINOP_GEQ:
|
||
|
||
case BINOP_REPEAT:
|
||
case BINOP_SUBSCRIPT:
|
||
case BINOP_COMMA:
|
||
*pos += 1;
|
||
nargs = 2;
|
||
break;
|
||
|
||
case UNOP_NEG:
|
||
case UNOP_PLUS:
|
||
case UNOP_LOGICAL_NOT:
|
||
case UNOP_ABS:
|
||
case UNOP_IND:
|
||
*pos += 1;
|
||
nargs = 1;
|
||
break;
|
||
|
||
case OP_LONG:
|
||
case OP_DOUBLE:
|
||
case OP_VAR_VALUE:
|
||
*pos += 4;
|
||
break;
|
||
|
||
case OP_TYPE:
|
||
case OP_BOOL:
|
||
case OP_LAST:
|
||
case OP_INTERNALVAR:
|
||
*pos += 3;
|
||
break;
|
||
|
||
case UNOP_MEMVAL:
|
||
*pos += 3;
|
||
nargs = 1;
|
||
break;
|
||
|
||
case OP_REGISTER:
|
||
*pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
||
break;
|
||
|
||
case STRUCTOP_STRUCT:
|
||
*pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
||
nargs = 1;
|
||
break;
|
||
|
||
case TERNOP_SLICE:
|
||
*pos += 1;
|
||
nargs = 3;
|
||
break;
|
||
|
||
case OP_STRING:
|
||
break;
|
||
|
||
default:
|
||
error (_("Unexpected operator during name resolution"));
|
||
}
|
||
|
||
argvec = XALLOCAVEC (struct value *, nargs + 1);
|
||
for (i = 0; i < nargs; i += 1)
|
||
argvec[i] = resolve_subexp (expp, pos, 1, NULL);
|
||
argvec[i] = NULL;
|
||
exp = *expp;
|
||
|
||
/* Pass two: perform any resolution on principal operator. */
|
||
switch (op)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case OP_VAR_VALUE:
|
||
if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
|
||
{
|
||
struct block_symbol *candidates;
|
||
int n_candidates;
|
||
|
||
n_candidates =
|
||
ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
|
||
(exp->elts[pc + 2].symbol),
|
||
exp->elts[pc + 1].block, VAR_DOMAIN,
|
||
&candidates);
|
||
|
||
if (n_candidates > 1)
|
||
{
|
||
/* Types tend to get re-introduced locally, so if there
|
||
are any local symbols that are not types, first filter
|
||
out all types. */
|
||
int j;
|
||
for (j = 0; j < n_candidates; j += 1)
|
||
switch (SYMBOL_CLASS (candidates[j].symbol))
|
||
{
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
case LOC_COMPUTED:
|
||
goto FoundNonType;
|
||
default:
|
||
break;
|
||
}
|
||
FoundNonType:
|
||
if (j < n_candidates)
|
||
{
|
||
j = 0;
|
||
while (j < n_candidates)
|
||
{
|
||
if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
|
||
{
|
||
candidates[j] = candidates[n_candidates - 1];
|
||
n_candidates -= 1;
|
||
}
|
||
else
|
||
j += 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (n_candidates == 0)
|
||
error (_("No definition found for %s"),
|
||
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
||
else if (n_candidates == 1)
|
||
i = 0;
|
||
else if (deprocedure_p
|
||
&& !is_nonfunction (candidates, n_candidates))
|
||
{
|
||
i = ada_resolve_function
|
||
(candidates, n_candidates, NULL, 0,
|
||
SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
|
||
context_type);
|
||
if (i < 0)
|
||
error (_("Could not find a match for %s"),
|
||
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
||
}
|
||
else
|
||
{
|
||
printf_filtered (_("Multiple matches for %s\n"),
|
||
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
||
user_select_syms (candidates, n_candidates, 1);
|
||
i = 0;
|
||
}
|
||
|
||
exp->elts[pc + 1].block = candidates[i].block;
|
||
exp->elts[pc + 2].symbol = candidates[i].symbol;
|
||
if (innermost_block == NULL
|
||
|| contained_in (candidates[i].block, innermost_block))
|
||
innermost_block = candidates[i].block;
|
||
}
|
||
|
||
if (deprocedure_p
|
||
&& (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
|
||
== TYPE_CODE_FUNC))
|
||
{
|
||
replace_operator_with_call (expp, pc, 0, 0,
|
||
exp->elts[pc + 2].symbol,
|
||
exp->elts[pc + 1].block);
|
||
exp = *expp;
|
||
}
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
{
|
||
if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
|
||
&& SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
|
||
{
|
||
struct block_symbol *candidates;
|
||
int n_candidates;
|
||
|
||
n_candidates =
|
||
ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
|
||
(exp->elts[pc + 5].symbol),
|
||
exp->elts[pc + 4].block, VAR_DOMAIN,
|
||
&candidates);
|
||
if (n_candidates == 1)
|
||
i = 0;
|
||
else
|
||
{
|
||
i = ada_resolve_function
|
||
(candidates, n_candidates,
|
||
argvec, nargs,
|
||
SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
|
||
context_type);
|
||
if (i < 0)
|
||
error (_("Could not find a match for %s"),
|
||
SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
|
||
}
|
||
|
||
exp->elts[pc + 4].block = candidates[i].block;
|
||
exp->elts[pc + 5].symbol = candidates[i].symbol;
|
||
if (innermost_block == NULL
|
||
|| contained_in (candidates[i].block, innermost_block))
|
||
innermost_block = candidates[i].block;
|
||
}
|
||
}
|
||
break;
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_CONCAT:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
case BINOP_LESS:
|
||
case BINOP_GTR:
|
||
case BINOP_LEQ:
|
||
case BINOP_GEQ:
|
||
case BINOP_EXP:
|
||
case UNOP_NEG:
|
||
case UNOP_PLUS:
|
||
case UNOP_LOGICAL_NOT:
|
||
case UNOP_ABS:
|
||
if (possible_user_operator_p (op, argvec))
|
||
{
|
||
struct block_symbol *candidates;
|
||
int n_candidates;
|
||
|
||
n_candidates =
|
||
ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
|
||
(struct block *) NULL, VAR_DOMAIN,
|
||
&candidates);
|
||
i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
|
||
ada_decoded_op_name (op), NULL);
|
||
if (i < 0)
|
||
break;
|
||
|
||
replace_operator_with_call (expp, pc, nargs, 1,
|
||
candidates[i].symbol,
|
||
candidates[i].block);
|
||
exp = *expp;
|
||
}
|
||
break;
|
||
|
||
case OP_TYPE:
|
||
case OP_REGISTER:
|
||
return NULL;
|
||
}
|
||
|
||
*pos = pc;
|
||
return evaluate_subexp_type (exp, pos);
|
||
}
|
||
|
||
/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
|
||
MAY_DEREF is non-zero, the formal may be a pointer and the actual
|
||
a non-pointer. */
|
||
/* The term "match" here is rather loose. The match is heuristic and
|
||
liberal. */
|
||
|
||
static int
|
||
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
|
||
{
|
||
ftype = ada_check_typedef (ftype);
|
||
atype = ada_check_typedef (atype);
|
||
|
||
if (TYPE_CODE (ftype) == TYPE_CODE_REF)
|
||
ftype = TYPE_TARGET_TYPE (ftype);
|
||
if (TYPE_CODE (atype) == TYPE_CODE_REF)
|
||
atype = TYPE_TARGET_TYPE (atype);
|
||
|
||
switch (TYPE_CODE (ftype))
|
||
{
|
||
default:
|
||
return TYPE_CODE (ftype) == TYPE_CODE (atype);
|
||
case TYPE_CODE_PTR:
|
||
if (TYPE_CODE (atype) == TYPE_CODE_PTR)
|
||
return ada_type_match (TYPE_TARGET_TYPE (ftype),
|
||
TYPE_TARGET_TYPE (atype), 0);
|
||
else
|
||
return (may_deref
|
||
&& ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
switch (TYPE_CODE (atype))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
|
||
|| ada_is_array_descriptor_type (atype));
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
if (ada_is_array_descriptor_type (ftype))
|
||
return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
|
||
|| ada_is_array_descriptor_type (atype));
|
||
else
|
||
return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
|
||
&& !ada_is_array_descriptor_type (atype));
|
||
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_FLT:
|
||
return (TYPE_CODE (atype) == TYPE_CODE (ftype));
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if the formals of FUNC "sufficiently match" the
|
||
vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
|
||
may also be an enumeral, in which case it is treated as a 0-
|
||
argument function. */
|
||
|
||
static int
|
||
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
|
||
{
|
||
int i;
|
||
struct type *func_type = SYMBOL_TYPE (func);
|
||
|
||
if (SYMBOL_CLASS (func) == LOC_CONST
|
||
&& TYPE_CODE (func_type) == TYPE_CODE_ENUM)
|
||
return (n_actuals == 0);
|
||
else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
|
||
return 0;
|
||
|
||
if (TYPE_NFIELDS (func_type) != n_actuals)
|
||
return 0;
|
||
|
||
for (i = 0; i < n_actuals; i += 1)
|
||
{
|
||
if (actuals[i] == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
|
||
i));
|
||
struct type *atype = ada_check_typedef (value_type (actuals[i]));
|
||
|
||
if (!ada_type_match (ftype, atype, 1))
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* False iff function type FUNC_TYPE definitely does not produce a value
|
||
compatible with type CONTEXT_TYPE. Conservatively returns 1 if
|
||
FUNC_TYPE is not a valid function type with a non-null return type
|
||
or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
|
||
|
||
static int
|
||
return_match (struct type *func_type, struct type *context_type)
|
||
{
|
||
struct type *return_type;
|
||
|
||
if (func_type == NULL)
|
||
return 1;
|
||
|
||
if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
|
||
return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
|
||
else
|
||
return_type = get_base_type (func_type);
|
||
if (return_type == NULL)
|
||
return 1;
|
||
|
||
context_type = get_base_type (context_type);
|
||
|
||
if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
|
||
return context_type == NULL || return_type == context_type;
|
||
else if (context_type == NULL)
|
||
return TYPE_CODE (return_type) != TYPE_CODE_VOID;
|
||
else
|
||
return TYPE_CODE (return_type) == TYPE_CODE (context_type);
|
||
}
|
||
|
||
|
||
/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
|
||
function (if any) that matches the types of the NARGS arguments in
|
||
ARGS. If CONTEXT_TYPE is non-null and there is at least one match
|
||
that returns that type, then eliminate matches that don't. If
|
||
CONTEXT_TYPE is void and there is at least one match that does not
|
||
return void, eliminate all matches that do.
|
||
|
||
Asks the user if there is more than one match remaining. Returns -1
|
||
if there is no such symbol or none is selected. NAME is used
|
||
solely for messages. May re-arrange and modify SYMS in
|
||
the process; the index returned is for the modified vector. */
|
||
|
||
static int
|
||
ada_resolve_function (struct block_symbol syms[],
|
||
int nsyms, struct value **args, int nargs,
|
||
const char *name, struct type *context_type)
|
||
{
|
||
int fallback;
|
||
int k;
|
||
int m; /* Number of hits */
|
||
|
||
m = 0;
|
||
/* In the first pass of the loop, we only accept functions matching
|
||
context_type. If none are found, we add a second pass of the loop
|
||
where every function is accepted. */
|
||
for (fallback = 0; m == 0 && fallback < 2; fallback++)
|
||
{
|
||
for (k = 0; k < nsyms; k += 1)
|
||
{
|
||
struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
|
||
|
||
if (ada_args_match (syms[k].symbol, args, nargs)
|
||
&& (fallback || return_match (type, context_type)))
|
||
{
|
||
syms[m] = syms[k];
|
||
m += 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we got multiple matches, ask the user which one to use. Don't do this
|
||
interactive thing during completion, though, as the purpose of the
|
||
completion is providing a list of all possible matches. Prompting the
|
||
user to filter it down would be completely unexpected in this case. */
|
||
if (m == 0)
|
||
return -1;
|
||
else if (m > 1 && !parse_completion)
|
||
{
|
||
printf_filtered (_("Multiple matches for %s\n"), name);
|
||
user_select_syms (syms, m, 1);
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Returns true (non-zero) iff decoded name N0 should appear before N1
|
||
in a listing of choices during disambiguation (see sort_choices, below).
|
||
The idea is that overloadings of a subprogram name from the
|
||
same package should sort in their source order. We settle for ordering
|
||
such symbols by their trailing number (__N or $N). */
|
||
|
||
static int
|
||
encoded_ordered_before (const char *N0, const char *N1)
|
||
{
|
||
if (N1 == NULL)
|
||
return 0;
|
||
else if (N0 == NULL)
|
||
return 1;
|
||
else
|
||
{
|
||
int k0, k1;
|
||
|
||
for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
|
||
;
|
||
for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
|
||
;
|
||
if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
|
||
&& (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
|
||
{
|
||
int n0, n1;
|
||
|
||
n0 = k0;
|
||
while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
|
||
n0 -= 1;
|
||
n1 = k1;
|
||
while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
|
||
n1 -= 1;
|
||
if (n0 == n1 && strncmp (N0, N1, n0) == 0)
|
||
return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
|
||
}
|
||
return (strcmp (N0, N1) < 0);
|
||
}
|
||
}
|
||
|
||
/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
|
||
encoded names. */
|
||
|
||
static void
|
||
sort_choices (struct block_symbol syms[], int nsyms)
|
||
{
|
||
int i;
|
||
|
||
for (i = 1; i < nsyms; i += 1)
|
||
{
|
||
struct block_symbol sym = syms[i];
|
||
int j;
|
||
|
||
for (j = i - 1; j >= 0; j -= 1)
|
||
{
|
||
if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
|
||
SYMBOL_LINKAGE_NAME (sym.symbol)))
|
||
break;
|
||
syms[j + 1] = syms[j];
|
||
}
|
||
syms[j + 1] = sym;
|
||
}
|
||
}
|
||
|
||
/* Whether GDB should display formals and return types for functions in the
|
||
overloads selection menu. */
|
||
static int print_signatures = 1;
|
||
|
||
/* Print the signature for SYM on STREAM according to the FLAGS options. For
|
||
all but functions, the signature is just the name of the symbol. For
|
||
functions, this is the name of the function, the list of types for formals
|
||
and the return type (if any). */
|
||
|
||
static void
|
||
ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
|
||
const struct type_print_options *flags)
|
||
{
|
||
struct type *type = SYMBOL_TYPE (sym);
|
||
|
||
fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
|
||
if (!print_signatures
|
||
|| type == NULL
|
||
|| TYPE_CODE (type) != TYPE_CODE_FUNC)
|
||
return;
|
||
|
||
if (TYPE_NFIELDS (type) > 0)
|
||
{
|
||
int i;
|
||
|
||
fprintf_filtered (stream, " (");
|
||
for (i = 0; i < TYPE_NFIELDS (type); ++i)
|
||
{
|
||
if (i > 0)
|
||
fprintf_filtered (stream, "; ");
|
||
ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
|
||
flags);
|
||
}
|
||
fprintf_filtered (stream, ")");
|
||
}
|
||
if (TYPE_TARGET_TYPE (type) != NULL
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
|
||
{
|
||
fprintf_filtered (stream, " return ");
|
||
ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
|
||
}
|
||
}
|
||
|
||
/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
|
||
by asking the user (if necessary), returning the number selected,
|
||
and setting the first elements of SYMS items. Error if no symbols
|
||
selected. */
|
||
|
||
/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
|
||
to be re-integrated one of these days. */
|
||
|
||
int
|
||
user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
|
||
{
|
||
int i;
|
||
int *chosen = XALLOCAVEC (int , nsyms);
|
||
int n_chosen;
|
||
int first_choice = (max_results == 1) ? 1 : 2;
|
||
const char *select_mode = multiple_symbols_select_mode ();
|
||
|
||
if (max_results < 1)
|
||
error (_("Request to select 0 symbols!"));
|
||
if (nsyms <= 1)
|
||
return nsyms;
|
||
|
||
if (select_mode == multiple_symbols_cancel)
|
||
error (_("\
|
||
canceled because the command is ambiguous\n\
|
||
See set/show multiple-symbol."));
|
||
|
||
/* If select_mode is "all", then return all possible symbols.
|
||
Only do that if more than one symbol can be selected, of course.
|
||
Otherwise, display the menu as usual. */
|
||
if (select_mode == multiple_symbols_all && max_results > 1)
|
||
return nsyms;
|
||
|
||
printf_unfiltered (_("[0] cancel\n"));
|
||
if (max_results > 1)
|
||
printf_unfiltered (_("[1] all\n"));
|
||
|
||
sort_choices (syms, nsyms);
|
||
|
||
for (i = 0; i < nsyms; i += 1)
|
||
{
|
||
if (syms[i].symbol == NULL)
|
||
continue;
|
||
|
||
if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
|
||
{
|
||
struct symtab_and_line sal =
|
||
find_function_start_sal (syms[i].symbol, 1);
|
||
|
||
printf_unfiltered ("[%d] ", i + first_choice);
|
||
ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
|
||
&type_print_raw_options);
|
||
if (sal.symtab == NULL)
|
||
printf_unfiltered (_(" at <no source file available>:%d\n"),
|
||
sal.line);
|
||
else
|
||
printf_unfiltered (_(" at %s:%d\n"),
|
||
symtab_to_filename_for_display (sal.symtab),
|
||
sal.line);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
int is_enumeral =
|
||
(SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
|
||
&& SYMBOL_TYPE (syms[i].symbol) != NULL
|
||
&& TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
|
||
struct symtab *symtab = NULL;
|
||
|
||
if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
|
||
symtab = symbol_symtab (syms[i].symbol);
|
||
|
||
if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
|
||
{
|
||
printf_unfiltered ("[%d] ", i + first_choice);
|
||
ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
|
||
&type_print_raw_options);
|
||
printf_unfiltered (_(" at %s:%d\n"),
|
||
symtab_to_filename_for_display (symtab),
|
||
SYMBOL_LINE (syms[i].symbol));
|
||
}
|
||
else if (is_enumeral
|
||
&& TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
|
||
{
|
||
printf_unfiltered (("[%d] "), i + first_choice);
|
||
ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
|
||
gdb_stdout, -1, 0, &type_print_raw_options);
|
||
printf_unfiltered (_("'(%s) (enumeral)\n"),
|
||
SYMBOL_PRINT_NAME (syms[i].symbol));
|
||
}
|
||
else
|
||
{
|
||
printf_unfiltered ("[%d] ", i + first_choice);
|
||
ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
|
||
&type_print_raw_options);
|
||
|
||
if (symtab != NULL)
|
||
printf_unfiltered (is_enumeral
|
||
? _(" in %s (enumeral)\n")
|
||
: _(" at %s:?\n"),
|
||
symtab_to_filename_for_display (symtab));
|
||
else
|
||
printf_unfiltered (is_enumeral
|
||
? _(" (enumeral)\n")
|
||
: _(" at ?\n"));
|
||
}
|
||
}
|
||
}
|
||
|
||
n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
|
||
"overload-choice");
|
||
|
||
for (i = 0; i < n_chosen; i += 1)
|
||
syms[i] = syms[chosen[i]];
|
||
|
||
return n_chosen;
|
||
}
|
||
|
||
/* Read and validate a set of numeric choices from the user in the
|
||
range 0 .. N_CHOICES-1. Place the results in increasing
|
||
order in CHOICES[0 .. N-1], and return N.
|
||
|
||
The user types choices as a sequence of numbers on one line
|
||
separated by blanks, encoding them as follows:
|
||
|
||
+ A choice of 0 means to cancel the selection, throwing an error.
|
||
+ If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
|
||
+ The user chooses k by typing k+IS_ALL_CHOICE+1.
|
||
|
||
The user is not allowed to choose more than MAX_RESULTS values.
|
||
|
||
ANNOTATION_SUFFIX, if present, is used to annotate the input
|
||
prompts (for use with the -f switch). */
|
||
|
||
int
|
||
get_selections (int *choices, int n_choices, int max_results,
|
||
int is_all_choice, char *annotation_suffix)
|
||
{
|
||
char *args;
|
||
char *prompt;
|
||
int n_chosen;
|
||
int first_choice = is_all_choice ? 2 : 1;
|
||
|
||
prompt = getenv ("PS2");
|
||
if (prompt == NULL)
|
||
prompt = "> ";
|
||
|
||
args = command_line_input (prompt, 0, annotation_suffix);
|
||
|
||
if (args == NULL)
|
||
error_no_arg (_("one or more choice numbers"));
|
||
|
||
n_chosen = 0;
|
||
|
||
/* Set choices[0 .. n_chosen-1] to the users' choices in ascending
|
||
order, as given in args. Choices are validated. */
|
||
while (1)
|
||
{
|
||
char *args2;
|
||
int choice, j;
|
||
|
||
args = skip_spaces (args);
|
||
if (*args == '\0' && n_chosen == 0)
|
||
error_no_arg (_("one or more choice numbers"));
|
||
else if (*args == '\0')
|
||
break;
|
||
|
||
choice = strtol (args, &args2, 10);
|
||
if (args == args2 || choice < 0
|
||
|| choice > n_choices + first_choice - 1)
|
||
error (_("Argument must be choice number"));
|
||
args = args2;
|
||
|
||
if (choice == 0)
|
||
error (_("cancelled"));
|
||
|
||
if (choice < first_choice)
|
||
{
|
||
n_chosen = n_choices;
|
||
for (j = 0; j < n_choices; j += 1)
|
||
choices[j] = j;
|
||
break;
|
||
}
|
||
choice -= first_choice;
|
||
|
||
for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
|
||
{
|
||
}
|
||
|
||
if (j < 0 || choice != choices[j])
|
||
{
|
||
int k;
|
||
|
||
for (k = n_chosen - 1; k > j; k -= 1)
|
||
choices[k + 1] = choices[k];
|
||
choices[j + 1] = choice;
|
||
n_chosen += 1;
|
||
}
|
||
}
|
||
|
||
if (n_chosen > max_results)
|
||
error (_("Select no more than %d of the above"), max_results);
|
||
|
||
return n_chosen;
|
||
}
|
||
|
||
/* Replace the operator of length OPLEN at position PC in *EXPP with a call
|
||
on the function identified by SYM and BLOCK, and taking NARGS
|
||
arguments. Update *EXPP as needed to hold more space. */
|
||
|
||
static void
|
||
replace_operator_with_call (struct expression **expp, int pc, int nargs,
|
||
int oplen, struct symbol *sym,
|
||
const struct block *block)
|
||
{
|
||
/* A new expression, with 6 more elements (3 for funcall, 4 for function
|
||
symbol, -oplen for operator being replaced). */
|
||
struct expression *newexp = (struct expression *)
|
||
xzalloc (sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
|
||
struct expression *exp = *expp;
|
||
|
||
newexp->nelts = exp->nelts + 7 - oplen;
|
||
newexp->language_defn = exp->language_defn;
|
||
newexp->gdbarch = exp->gdbarch;
|
||
memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
|
||
memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
|
||
EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
|
||
|
||
newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
|
||
newexp->elts[pc + 1].longconst = (LONGEST) nargs;
|
||
|
||
newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
|
||
newexp->elts[pc + 4].block = block;
|
||
newexp->elts[pc + 5].symbol = sym;
|
||
|
||
*expp = newexp;
|
||
xfree (exp);
|
||
}
|
||
|
||
/* Type-class predicates */
|
||
|
||
/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
|
||
or FLOAT). */
|
||
|
||
static int
|
||
numeric_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_FLT:
|
||
return 1;
|
||
case TYPE_CODE_RANGE:
|
||
return (type == TYPE_TARGET_TYPE (type)
|
||
|| numeric_type_p (TYPE_TARGET_TYPE (type)));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* True iff TYPE is integral (an INT or RANGE of INTs). */
|
||
|
||
static int
|
||
integer_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
return 1;
|
||
case TYPE_CODE_RANGE:
|
||
return (type == TYPE_TARGET_TYPE (type)
|
||
|| integer_type_p (TYPE_TARGET_TYPE (type)));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
|
||
|
||
static int
|
||
scalar_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLT:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* True iff TYPE is discrete (INT, RANGE, ENUM). */
|
||
|
||
static int
|
||
discrete_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_BOOL:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Returns non-zero if OP with operands in the vector ARGS could be
|
||
a user-defined function. Errs on the side of pre-defined operators
|
||
(i.e., result 0). */
|
||
|
||
static int
|
||
possible_user_operator_p (enum exp_opcode op, struct value *args[])
|
||
{
|
||
struct type *type0 =
|
||
(args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
|
||
struct type *type1 =
|
||
(args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
|
||
|
||
if (type0 == NULL)
|
||
return 0;
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
return 0;
|
||
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
return (!(numeric_type_p (type0) && numeric_type_p (type1)));
|
||
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
return (!(integer_type_p (type0) && integer_type_p (type1)));
|
||
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
case BINOP_LESS:
|
||
case BINOP_GTR:
|
||
case BINOP_LEQ:
|
||
case BINOP_GEQ:
|
||
return (!(scalar_type_p (type0) && scalar_type_p (type1)));
|
||
|
||
case BINOP_CONCAT:
|
||
return !ada_is_array_type (type0) || !ada_is_array_type (type1);
|
||
|
||
case BINOP_EXP:
|
||
return (!(numeric_type_p (type0) && integer_type_p (type1)));
|
||
|
||
case UNOP_NEG:
|
||
case UNOP_PLUS:
|
||
case UNOP_LOGICAL_NOT:
|
||
case UNOP_ABS:
|
||
return (!numeric_type_p (type0));
|
||
|
||
}
|
||
}
|
||
|
||
/* Renaming */
|
||
|
||
/* NOTES:
|
||
|
||
1. In the following, we assume that a renaming type's name may
|
||
have an ___XD suffix. It would be nice if this went away at some
|
||
point.
|
||
2. We handle both the (old) purely type-based representation of
|
||
renamings and the (new) variable-based encoding. At some point,
|
||
it is devoutly to be hoped that the former goes away
|
||
(FIXME: hilfinger-2007-07-09).
|
||
3. Subprogram renamings are not implemented, although the XRS
|
||
suffix is recognized (FIXME: hilfinger-2007-07-09). */
|
||
|
||
/* If SYM encodes a renaming,
|
||
|
||
<renaming> renames <renamed entity>,
|
||
|
||
sets *LEN to the length of the renamed entity's name,
|
||
*RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
|
||
the string describing the subcomponent selected from the renamed
|
||
entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
|
||
(in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
|
||
are undefined). Otherwise, returns a value indicating the category
|
||
of entity renamed: an object (ADA_OBJECT_RENAMING), exception
|
||
(ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
|
||
subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
|
||
strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
|
||
deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
|
||
may be NULL, in which case they are not assigned.
|
||
|
||
[Currently, however, GCC does not generate subprogram renamings.] */
|
||
|
||
enum ada_renaming_category
|
||
ada_parse_renaming (struct symbol *sym,
|
||
const char **renamed_entity, int *len,
|
||
const char **renaming_expr)
|
||
{
|
||
enum ada_renaming_category kind;
|
||
const char *info;
|
||
const char *suffix;
|
||
|
||
if (sym == NULL)
|
||
return ADA_NOT_RENAMING;
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
default:
|
||
return ADA_NOT_RENAMING;
|
||
case LOC_TYPEDEF:
|
||
return parse_old_style_renaming (SYMBOL_TYPE (sym),
|
||
renamed_entity, len, renaming_expr);
|
||
case LOC_LOCAL:
|
||
case LOC_STATIC:
|
||
case LOC_COMPUTED:
|
||
case LOC_OPTIMIZED_OUT:
|
||
info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
|
||
if (info == NULL)
|
||
return ADA_NOT_RENAMING;
|
||
switch (info[5])
|
||
{
|
||
case '_':
|
||
kind = ADA_OBJECT_RENAMING;
|
||
info += 6;
|
||
break;
|
||
case 'E':
|
||
kind = ADA_EXCEPTION_RENAMING;
|
||
info += 7;
|
||
break;
|
||
case 'P':
|
||
kind = ADA_PACKAGE_RENAMING;
|
||
info += 7;
|
||
break;
|
||
case 'S':
|
||
kind = ADA_SUBPROGRAM_RENAMING;
|
||
info += 7;
|
||
break;
|
||
default:
|
||
return ADA_NOT_RENAMING;
|
||
}
|
||
}
|
||
|
||
if (renamed_entity != NULL)
|
||
*renamed_entity = info;
|
||
suffix = strstr (info, "___XE");
|
||
if (suffix == NULL || suffix == info)
|
||
return ADA_NOT_RENAMING;
|
||
if (len != NULL)
|
||
*len = strlen (info) - strlen (suffix);
|
||
suffix += 5;
|
||
if (renaming_expr != NULL)
|
||
*renaming_expr = suffix;
|
||
return kind;
|
||
}
|
||
|
||
/* Assuming TYPE encodes a renaming according to the old encoding in
|
||
exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
|
||
*LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
|
||
ADA_NOT_RENAMING otherwise. */
|
||
static enum ada_renaming_category
|
||
parse_old_style_renaming (struct type *type,
|
||
const char **renamed_entity, int *len,
|
||
const char **renaming_expr)
|
||
{
|
||
enum ada_renaming_category kind;
|
||
const char *name;
|
||
const char *info;
|
||
const char *suffix;
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
|
||
|| TYPE_NFIELDS (type) != 1)
|
||
return ADA_NOT_RENAMING;
|
||
|
||
name = type_name_no_tag (type);
|
||
if (name == NULL)
|
||
return ADA_NOT_RENAMING;
|
||
|
||
name = strstr (name, "___XR");
|
||
if (name == NULL)
|
||
return ADA_NOT_RENAMING;
|
||
switch (name[5])
|
||
{
|
||
case '\0':
|
||
case '_':
|
||
kind = ADA_OBJECT_RENAMING;
|
||
break;
|
||
case 'E':
|
||
kind = ADA_EXCEPTION_RENAMING;
|
||
break;
|
||
case 'P':
|
||
kind = ADA_PACKAGE_RENAMING;
|
||
break;
|
||
case 'S':
|
||
kind = ADA_SUBPROGRAM_RENAMING;
|
||
break;
|
||
default:
|
||
return ADA_NOT_RENAMING;
|
||
}
|
||
|
||
info = TYPE_FIELD_NAME (type, 0);
|
||
if (info == NULL)
|
||
return ADA_NOT_RENAMING;
|
||
if (renamed_entity != NULL)
|
||
*renamed_entity = info;
|
||
suffix = strstr (info, "___XE");
|
||
if (renaming_expr != NULL)
|
||
*renaming_expr = suffix + 5;
|
||
if (suffix == NULL || suffix == info)
|
||
return ADA_NOT_RENAMING;
|
||
if (len != NULL)
|
||
*len = suffix - info;
|
||
return kind;
|
||
}
|
||
|
||
/* Compute the value of the given RENAMING_SYM, which is expected to
|
||
be a symbol encoding a renaming expression. BLOCK is the block
|
||
used to evaluate the renaming. */
|
||
|
||
static struct value *
|
||
ada_read_renaming_var_value (struct symbol *renaming_sym,
|
||
const struct block *block)
|
||
{
|
||
const char *sym_name;
|
||
struct expression *expr;
|
||
struct value *value;
|
||
struct cleanup *old_chain = NULL;
|
||
|
||
sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
|
||
expr = parse_exp_1 (&sym_name, 0, block, 0);
|
||
old_chain = make_cleanup (free_current_contents, &expr);
|
||
value = evaluate_expression (expr);
|
||
|
||
do_cleanups (old_chain);
|
||
return value;
|
||
}
|
||
|
||
|
||
/* Evaluation: Function Calls */
|
||
|
||
/* Return an lvalue containing the value VAL. This is the identity on
|
||
lvalues, and otherwise has the side-effect of allocating memory
|
||
in the inferior where a copy of the value contents is copied. */
|
||
|
||
static struct value *
|
||
ensure_lval (struct value *val)
|
||
{
|
||
if (VALUE_LVAL (val) == not_lval
|
||
|| VALUE_LVAL (val) == lval_internalvar)
|
||
{
|
||
int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
|
||
const CORE_ADDR addr =
|
||
value_as_long (value_allocate_space_in_inferior (len));
|
||
|
||
set_value_address (val, addr);
|
||
VALUE_LVAL (val) = lval_memory;
|
||
write_memory (addr, value_contents (val), len);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return the value ACTUAL, converted to be an appropriate value for a
|
||
formal of type FORMAL_TYPE. Use *SP as a stack pointer for
|
||
allocating any necessary descriptors (fat pointers), or copies of
|
||
values not residing in memory, updating it as needed. */
|
||
|
||
struct value *
|
||
ada_convert_actual (struct value *actual, struct type *formal_type0)
|
||
{
|
||
struct type *actual_type = ada_check_typedef (value_type (actual));
|
||
struct type *formal_type = ada_check_typedef (formal_type0);
|
||
struct type *formal_target =
|
||
TYPE_CODE (formal_type) == TYPE_CODE_PTR
|
||
? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
|
||
struct type *actual_target =
|
||
TYPE_CODE (actual_type) == TYPE_CODE_PTR
|
||
? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
|
||
|
||
if (ada_is_array_descriptor_type (formal_target)
|
||
&& TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
|
||
return make_array_descriptor (formal_type, actual);
|
||
else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (formal_type) == TYPE_CODE_REF)
|
||
{
|
||
struct value *result;
|
||
|
||
if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
|
||
&& ada_is_array_descriptor_type (actual_target))
|
||
result = desc_data (actual);
|
||
else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
|
||
{
|
||
if (VALUE_LVAL (actual) != lval_memory)
|
||
{
|
||
struct value *val;
|
||
|
||
actual_type = ada_check_typedef (value_type (actual));
|
||
val = allocate_value (actual_type);
|
||
memcpy ((char *) value_contents_raw (val),
|
||
(char *) value_contents (actual),
|
||
TYPE_LENGTH (actual_type));
|
||
actual = ensure_lval (val);
|
||
}
|
||
result = value_addr (actual);
|
||
}
|
||
else
|
||
return actual;
|
||
return value_cast_pointers (formal_type, result, 0);
|
||
}
|
||
else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
|
||
return ada_value_ind (actual);
|
||
else if (ada_is_aligner_type (formal_type))
|
||
{
|
||
/* We need to turn this parameter into an aligner type
|
||
as well. */
|
||
struct value *aligner = allocate_value (formal_type);
|
||
struct value *component = ada_value_struct_elt (aligner, "F", 0);
|
||
|
||
value_assign_to_component (aligner, component, actual);
|
||
return aligner;
|
||
}
|
||
|
||
return actual;
|
||
}
|
||
|
||
/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
|
||
type TYPE. This is usually an inefficient no-op except on some targets
|
||
(such as AVR) where the representation of a pointer and an address
|
||
differs. */
|
||
|
||
static CORE_ADDR
|
||
value_pointer (struct value *value, struct type *type)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
unsigned len = TYPE_LENGTH (type);
|
||
gdb_byte *buf = (gdb_byte *) alloca (len);
|
||
CORE_ADDR addr;
|
||
|
||
addr = value_address (value);
|
||
gdbarch_address_to_pointer (gdbarch, type, buf, addr);
|
||
addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
|
||
return addr;
|
||
}
|
||
|
||
|
||
/* Push a descriptor of type TYPE for array value ARR on the stack at
|
||
*SP, updating *SP to reflect the new descriptor. Return either
|
||
an lvalue representing the new descriptor, or (if TYPE is a pointer-
|
||
to-descriptor type rather than a descriptor type), a struct value *
|
||
representing a pointer to this descriptor. */
|
||
|
||
static struct value *
|
||
make_array_descriptor (struct type *type, struct value *arr)
|
||
{
|
||
struct type *bounds_type = desc_bounds_type (type);
|
||
struct type *desc_type = desc_base_type (type);
|
||
struct value *descriptor = allocate_value (desc_type);
|
||
struct value *bounds = allocate_value (bounds_type);
|
||
int i;
|
||
|
||
for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
|
||
i > 0; i -= 1)
|
||
{
|
||
modify_field (value_type (bounds), value_contents_writeable (bounds),
|
||
ada_array_bound (arr, i, 0),
|
||
desc_bound_bitpos (bounds_type, i, 0),
|
||
desc_bound_bitsize (bounds_type, i, 0));
|
||
modify_field (value_type (bounds), value_contents_writeable (bounds),
|
||
ada_array_bound (arr, i, 1),
|
||
desc_bound_bitpos (bounds_type, i, 1),
|
||
desc_bound_bitsize (bounds_type, i, 1));
|
||
}
|
||
|
||
bounds = ensure_lval (bounds);
|
||
|
||
modify_field (value_type (descriptor),
|
||
value_contents_writeable (descriptor),
|
||
value_pointer (ensure_lval (arr),
|
||
TYPE_FIELD_TYPE (desc_type, 0)),
|
||
fat_pntr_data_bitpos (desc_type),
|
||
fat_pntr_data_bitsize (desc_type));
|
||
|
||
modify_field (value_type (descriptor),
|
||
value_contents_writeable (descriptor),
|
||
value_pointer (bounds,
|
||
TYPE_FIELD_TYPE (desc_type, 1)),
|
||
fat_pntr_bounds_bitpos (desc_type),
|
||
fat_pntr_bounds_bitsize (desc_type));
|
||
|
||
descriptor = ensure_lval (descriptor);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
return value_addr (descriptor);
|
||
else
|
||
return descriptor;
|
||
}
|
||
|
||
/* Symbol Cache Module */
|
||
|
||
/* Performance measurements made as of 2010-01-15 indicate that
|
||
this cache does bring some noticeable improvements. Depending
|
||
on the type of entity being printed, the cache can make it as much
|
||
as an order of magnitude faster than without it.
|
||
|
||
The descriptive type DWARF extension has significantly reduced
|
||
the need for this cache, at least when DWARF is being used. However,
|
||
even in this case, some expensive name-based symbol searches are still
|
||
sometimes necessary - to find an XVZ variable, mostly. */
|
||
|
||
/* Initialize the contents of SYM_CACHE. */
|
||
|
||
static void
|
||
ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
|
||
{
|
||
obstack_init (&sym_cache->cache_space);
|
||
memset (sym_cache->root, '\000', sizeof (sym_cache->root));
|
||
}
|
||
|
||
/* Free the memory used by SYM_CACHE. */
|
||
|
||
static void
|
||
ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
|
||
{
|
||
obstack_free (&sym_cache->cache_space, NULL);
|
||
xfree (sym_cache);
|
||
}
|
||
|
||
/* Return the symbol cache associated to the given program space PSPACE.
|
||
If not allocated for this PSPACE yet, allocate and initialize one. */
|
||
|
||
static struct ada_symbol_cache *
|
||
ada_get_symbol_cache (struct program_space *pspace)
|
||
{
|
||
struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
|
||
|
||
if (pspace_data->sym_cache == NULL)
|
||
{
|
||
pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
|
||
ada_init_symbol_cache (pspace_data->sym_cache);
|
||
}
|
||
|
||
return pspace_data->sym_cache;
|
||
}
|
||
|
||
/* Clear all entries from the symbol cache. */
|
||
|
||
static void
|
||
ada_clear_symbol_cache (void)
|
||
{
|
||
struct ada_symbol_cache *sym_cache
|
||
= ada_get_symbol_cache (current_program_space);
|
||
|
||
obstack_free (&sym_cache->cache_space, NULL);
|
||
ada_init_symbol_cache (sym_cache);
|
||
}
|
||
|
||
/* Search our cache for an entry matching NAME and DOMAIN.
|
||
Return it if found, or NULL otherwise. */
|
||
|
||
static struct cache_entry **
|
||
find_entry (const char *name, domain_enum domain)
|
||
{
|
||
struct ada_symbol_cache *sym_cache
|
||
= ada_get_symbol_cache (current_program_space);
|
||
int h = msymbol_hash (name) % HASH_SIZE;
|
||
struct cache_entry **e;
|
||
|
||
for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
|
||
{
|
||
if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
|
||
return e;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Search the symbol cache for an entry matching NAME and DOMAIN.
|
||
Return 1 if found, 0 otherwise.
|
||
|
||
If an entry was found and SYM is not NULL, set *SYM to the entry's
|
||
SYM. Same principle for BLOCK if not NULL. */
|
||
|
||
static int
|
||
lookup_cached_symbol (const char *name, domain_enum domain,
|
||
struct symbol **sym, const struct block **block)
|
||
{
|
||
struct cache_entry **e = find_entry (name, domain);
|
||
|
||
if (e == NULL)
|
||
return 0;
|
||
if (sym != NULL)
|
||
*sym = (*e)->sym;
|
||
if (block != NULL)
|
||
*block = (*e)->block;
|
||
return 1;
|
||
}
|
||
|
||
/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
|
||
in domain DOMAIN, save this result in our symbol cache. */
|
||
|
||
static void
|
||
cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
|
||
const struct block *block)
|
||
{
|
||
struct ada_symbol_cache *sym_cache
|
||
= ada_get_symbol_cache (current_program_space);
|
||
int h;
|
||
char *copy;
|
||
struct cache_entry *e;
|
||
|
||
/* Symbols for builtin types don't have a block.
|
||
For now don't cache such symbols. */
|
||
if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
|
||
return;
|
||
|
||
/* If the symbol is a local symbol, then do not cache it, as a search
|
||
for that symbol depends on the context. To determine whether
|
||
the symbol is local or not, we check the block where we found it
|
||
against the global and static blocks of its associated symtab. */
|
||
if (sym
|
||
&& BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
|
||
GLOBAL_BLOCK) != block
|
||
&& BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
|
||
STATIC_BLOCK) != block)
|
||
return;
|
||
|
||
h = msymbol_hash (name) % HASH_SIZE;
|
||
e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
|
||
sizeof (*e));
|
||
e->next = sym_cache->root[h];
|
||
sym_cache->root[h] = e;
|
||
e->name = copy
|
||
= (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
|
||
strcpy (copy, name);
|
||
e->sym = sym;
|
||
e->domain = domain;
|
||
e->block = block;
|
||
}
|
||
|
||
/* Symbol Lookup */
|
||
|
||
/* Return nonzero if wild matching should be used when searching for
|
||
all symbols matching LOOKUP_NAME.
|
||
|
||
LOOKUP_NAME is expected to be a symbol name after transformation
|
||
for Ada lookups (see ada_name_for_lookup). */
|
||
|
||
static int
|
||
should_use_wild_match (const char *lookup_name)
|
||
{
|
||
return (strstr (lookup_name, "__") == NULL);
|
||
}
|
||
|
||
/* Return the result of a standard (literal, C-like) lookup of NAME in
|
||
given DOMAIN, visible from lexical block BLOCK. */
|
||
|
||
static struct symbol *
|
||
standard_lookup (const char *name, const struct block *block,
|
||
domain_enum domain)
|
||
{
|
||
/* Initialize it just to avoid a GCC false warning. */
|
||
struct block_symbol sym = {NULL, NULL};
|
||
|
||
if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
|
||
return sym.symbol;
|
||
sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
|
||
cache_symbol (name, domain, sym.symbol, sym.block);
|
||
return sym.symbol;
|
||
}
|
||
|
||
|
||
/* Non-zero iff there is at least one non-function/non-enumeral symbol
|
||
in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
|
||
since they contend in overloading in the same way. */
|
||
static int
|
||
is_nonfunction (struct block_symbol syms[], int n)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n; i += 1)
|
||
if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
|
||
&& (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
|
||
|| SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
|
||
struct types. Otherwise, they may not. */
|
||
|
||
static int
|
||
equiv_types (struct type *type0, struct type *type1)
|
||
{
|
||
if (type0 == type1)
|
||
return 1;
|
||
if (type0 == NULL || type1 == NULL
|
||
|| TYPE_CODE (type0) != TYPE_CODE (type1))
|
||
return 0;
|
||
if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type0) == TYPE_CODE_ENUM)
|
||
&& ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
|
||
&& strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* True iff SYM0 represents the same entity as SYM1, or one that is
|
||
no more defined than that of SYM1. */
|
||
|
||
static int
|
||
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
|
||
{
|
||
if (sym0 == sym1)
|
||
return 1;
|
||
if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
|
||
|| SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
|
||
return 0;
|
||
|
||
switch (SYMBOL_CLASS (sym0))
|
||
{
|
||
case LOC_UNDEF:
|
||
return 1;
|
||
case LOC_TYPEDEF:
|
||
{
|
||
struct type *type0 = SYMBOL_TYPE (sym0);
|
||
struct type *type1 = SYMBOL_TYPE (sym1);
|
||
const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
|
||
const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
|
||
int len0 = strlen (name0);
|
||
|
||
return
|
||
TYPE_CODE (type0) == TYPE_CODE (type1)
|
||
&& (equiv_types (type0, type1)
|
||
|| (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
|
||
&& startswith (name1 + len0, "___XV")));
|
||
}
|
||
case LOC_CONST:
|
||
return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
|
||
&& equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
|
||
records in OBSTACKP. Do nothing if SYM is a duplicate. */
|
||
|
||
static void
|
||
add_defn_to_vec (struct obstack *obstackp,
|
||
struct symbol *sym,
|
||
const struct block *block)
|
||
{
|
||
int i;
|
||
struct block_symbol *prevDefns = defns_collected (obstackp, 0);
|
||
|
||
/* Do not try to complete stub types, as the debugger is probably
|
||
already scanning all symbols matching a certain name at the
|
||
time when this function is called. Trying to replace the stub
|
||
type by its associated full type will cause us to restart a scan
|
||
which may lead to an infinite recursion. Instead, the client
|
||
collecting the matching symbols will end up collecting several
|
||
matches, with at least one of them complete. It can then filter
|
||
out the stub ones if needed. */
|
||
|
||
for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
|
||
{
|
||
if (lesseq_defined_than (sym, prevDefns[i].symbol))
|
||
return;
|
||
else if (lesseq_defined_than (prevDefns[i].symbol, sym))
|
||
{
|
||
prevDefns[i].symbol = sym;
|
||
prevDefns[i].block = block;
|
||
return;
|
||
}
|
||
}
|
||
|
||
{
|
||
struct block_symbol info;
|
||
|
||
info.symbol = sym;
|
||
info.block = block;
|
||
obstack_grow (obstackp, &info, sizeof (struct block_symbol));
|
||
}
|
||
}
|
||
|
||
/* Number of block_symbol structures currently collected in current vector in
|
||
OBSTACKP. */
|
||
|
||
static int
|
||
num_defns_collected (struct obstack *obstackp)
|
||
{
|
||
return obstack_object_size (obstackp) / sizeof (struct block_symbol);
|
||
}
|
||
|
||
/* Vector of block_symbol structures currently collected in current vector in
|
||
OBSTACKP. If FINISH, close off the vector and return its final address. */
|
||
|
||
static struct block_symbol *
|
||
defns_collected (struct obstack *obstackp, int finish)
|
||
{
|
||
if (finish)
|
||
return (struct block_symbol *) obstack_finish (obstackp);
|
||
else
|
||
return (struct block_symbol *) obstack_base (obstackp);
|
||
}
|
||
|
||
/* Return a bound minimal symbol matching NAME according to Ada
|
||
decoding rules. Returns an invalid symbol if there is no such
|
||
minimal symbol. Names prefixed with "standard__" are handled
|
||
specially: "standard__" is first stripped off, and only static and
|
||
global symbols are searched. */
|
||
|
||
struct bound_minimal_symbol
|
||
ada_lookup_simple_minsym (const char *name)
|
||
{
|
||
struct bound_minimal_symbol result;
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
const int wild_match_p = should_use_wild_match (name);
|
||
|
||
memset (&result, 0, sizeof (result));
|
||
|
||
/* Special case: If the user specifies a symbol name inside package
|
||
Standard, do a non-wild matching of the symbol name without
|
||
the "standard__" prefix. This was primarily introduced in order
|
||
to allow the user to specifically access the standard exceptions
|
||
using, for instance, Standard.Constraint_Error when Constraint_Error
|
||
is ambiguous (due to the user defining its own Constraint_Error
|
||
entity inside its program). */
|
||
if (startswith (name, "standard__"))
|
||
name += sizeof ("standard__") - 1;
|
||
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
|
||
&& MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
|
||
{
|
||
result.minsym = msymbol;
|
||
result.objfile = objfile;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* For all subprograms that statically enclose the subprogram of the
|
||
selected frame, add symbols matching identifier NAME in DOMAIN
|
||
and their blocks to the list of data in OBSTACKP, as for
|
||
ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
|
||
with a wildcard prefix. */
|
||
|
||
static void
|
||
add_symbols_from_enclosing_procs (struct obstack *obstackp,
|
||
const char *name, domain_enum domain,
|
||
int wild_match_p)
|
||
{
|
||
}
|
||
|
||
/* True if TYPE is definitely an artificial type supplied to a symbol
|
||
for which no debugging information was given in the symbol file. */
|
||
|
||
static int
|
||
is_nondebugging_type (struct type *type)
|
||
{
|
||
const char *name = ada_type_name (type);
|
||
|
||
return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
|
||
}
|
||
|
||
/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
|
||
that are deemed "identical" for practical purposes.
|
||
|
||
This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
|
||
types and that their number of enumerals is identical (in other
|
||
words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
|
||
|
||
static int
|
||
ada_identical_enum_types_p (struct type *type1, struct type *type2)
|
||
{
|
||
int i;
|
||
|
||
/* The heuristic we use here is fairly conservative. We consider
|
||
that 2 enumerate types are identical if they have the same
|
||
number of enumerals and that all enumerals have the same
|
||
underlying value and name. */
|
||
|
||
/* All enums in the type should have an identical underlying value. */
|
||
for (i = 0; i < TYPE_NFIELDS (type1); i++)
|
||
if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
|
||
return 0;
|
||
|
||
/* All enumerals should also have the same name (modulo any numerical
|
||
suffix). */
|
||
for (i = 0; i < TYPE_NFIELDS (type1); i++)
|
||
{
|
||
const char *name_1 = TYPE_FIELD_NAME (type1, i);
|
||
const char *name_2 = TYPE_FIELD_NAME (type2, i);
|
||
int len_1 = strlen (name_1);
|
||
int len_2 = strlen (name_2);
|
||
|
||
ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
|
||
ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
|
||
if (len_1 != len_2
|
||
|| strncmp (TYPE_FIELD_NAME (type1, i),
|
||
TYPE_FIELD_NAME (type2, i),
|
||
len_1) != 0)
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return nonzero if all the symbols in SYMS are all enumeral symbols
|
||
that are deemed "identical" for practical purposes. Sometimes,
|
||
enumerals are not strictly identical, but their types are so similar
|
||
that they can be considered identical.
|
||
|
||
For instance, consider the following code:
|
||
|
||
type Color is (Black, Red, Green, Blue, White);
|
||
type RGB_Color is new Color range Red .. Blue;
|
||
|
||
Type RGB_Color is a subrange of an implicit type which is a copy
|
||
of type Color. If we call that implicit type RGB_ColorB ("B" is
|
||
for "Base Type"), then type RGB_ColorB is a copy of type Color.
|
||
As a result, when an expression references any of the enumeral
|
||
by name (Eg. "print green"), the expression is technically
|
||
ambiguous and the user should be asked to disambiguate. But
|
||
doing so would only hinder the user, since it wouldn't matter
|
||
what choice he makes, the outcome would always be the same.
|
||
So, for practical purposes, we consider them as the same. */
|
||
|
||
static int
|
||
symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
|
||
{
|
||
int i;
|
||
|
||
/* Before performing a thorough comparison check of each type,
|
||
we perform a series of inexpensive checks. We expect that these
|
||
checks will quickly fail in the vast majority of cases, and thus
|
||
help prevent the unnecessary use of a more expensive comparison.
|
||
Said comparison also expects us to make some of these checks
|
||
(see ada_identical_enum_types_p). */
|
||
|
||
/* Quick check: All symbols should have an enum type. */
|
||
for (i = 0; i < nsyms; i++)
|
||
if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
|
||
return 0;
|
||
|
||
/* Quick check: They should all have the same value. */
|
||
for (i = 1; i < nsyms; i++)
|
||
if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
|
||
return 0;
|
||
|
||
/* Quick check: They should all have the same number of enumerals. */
|
||
for (i = 1; i < nsyms; i++)
|
||
if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
|
||
!= TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
|
||
return 0;
|
||
|
||
/* All the sanity checks passed, so we might have a set of
|
||
identical enumeration types. Perform a more complete
|
||
comparison of the type of each symbol. */
|
||
for (i = 1; i < nsyms; i++)
|
||
if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
|
||
SYMBOL_TYPE (syms[0].symbol)))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
|
||
duplicate other symbols in the list (The only case I know of where
|
||
this happens is when object files containing stabs-in-ecoff are
|
||
linked with files containing ordinary ecoff debugging symbols (or no
|
||
debugging symbols)). Modifies SYMS to squeeze out deleted entries.
|
||
Returns the number of items in the modified list. */
|
||
|
||
static int
|
||
remove_extra_symbols (struct block_symbol *syms, int nsyms)
|
||
{
|
||
int i, j;
|
||
|
||
/* We should never be called with less than 2 symbols, as there
|
||
cannot be any extra symbol in that case. But it's easy to
|
||
handle, since we have nothing to do in that case. */
|
||
if (nsyms < 2)
|
||
return nsyms;
|
||
|
||
i = 0;
|
||
while (i < nsyms)
|
||
{
|
||
int remove_p = 0;
|
||
|
||
/* If two symbols have the same name and one of them is a stub type,
|
||
the get rid of the stub. */
|
||
|
||
if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
|
||
&& SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
|
||
{
|
||
for (j = 0; j < nsyms; j++)
|
||
{
|
||
if (j != i
|
||
&& !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
|
||
&& SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
|
||
SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
|
||
remove_p = 1;
|
||
}
|
||
}
|
||
|
||
/* Two symbols with the same name, same class and same address
|
||
should be identical. */
|
||
|
||
else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
|
||
&& SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
|
||
&& is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
|
||
{
|
||
for (j = 0; j < nsyms; j += 1)
|
||
{
|
||
if (i != j
|
||
&& SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
|
||
SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
|
||
&& SYMBOL_CLASS (syms[i].symbol)
|
||
== SYMBOL_CLASS (syms[j].symbol)
|
||
&& SYMBOL_VALUE_ADDRESS (syms[i].symbol)
|
||
== SYMBOL_VALUE_ADDRESS (syms[j].symbol))
|
||
remove_p = 1;
|
||
}
|
||
}
|
||
|
||
if (remove_p)
|
||
{
|
||
for (j = i + 1; j < nsyms; j += 1)
|
||
syms[j - 1] = syms[j];
|
||
nsyms -= 1;
|
||
}
|
||
|
||
i += 1;
|
||
}
|
||
|
||
/* If all the remaining symbols are identical enumerals, then
|
||
just keep the first one and discard the rest.
|
||
|
||
Unlike what we did previously, we do not discard any entry
|
||
unless they are ALL identical. This is because the symbol
|
||
comparison is not a strict comparison, but rather a practical
|
||
comparison. If all symbols are considered identical, then
|
||
we can just go ahead and use the first one and discard the rest.
|
||
But if we cannot reduce the list to a single element, we have
|
||
to ask the user to disambiguate anyways. And if we have to
|
||
present a multiple-choice menu, it's less confusing if the list
|
||
isn't missing some choices that were identical and yet distinct. */
|
||
if (symbols_are_identical_enums (syms, nsyms))
|
||
nsyms = 1;
|
||
|
||
return nsyms;
|
||
}
|
||
|
||
/* Given a type that corresponds to a renaming entity, use the type name
|
||
to extract the scope (package name or function name, fully qualified,
|
||
and following the GNAT encoding convention) where this renaming has been
|
||
defined. The string returned needs to be deallocated after use. */
|
||
|
||
static char *
|
||
xget_renaming_scope (struct type *renaming_type)
|
||
{
|
||
/* The renaming types adhere to the following convention:
|
||
<scope>__<rename>___<XR extension>.
|
||
So, to extract the scope, we search for the "___XR" extension,
|
||
and then backtrack until we find the first "__". */
|
||
|
||
const char *name = type_name_no_tag (renaming_type);
|
||
const char *suffix = strstr (name, "___XR");
|
||
const char *last;
|
||
int scope_len;
|
||
char *scope;
|
||
|
||
/* Now, backtrack a bit until we find the first "__". Start looking
|
||
at suffix - 3, as the <rename> part is at least one character long. */
|
||
|
||
for (last = suffix - 3; last > name; last--)
|
||
if (last[0] == '_' && last[1] == '_')
|
||
break;
|
||
|
||
/* Make a copy of scope and return it. */
|
||
|
||
scope_len = last - name;
|
||
scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
|
||
|
||
strncpy (scope, name, scope_len);
|
||
scope[scope_len] = '\0';
|
||
|
||
return scope;
|
||
}
|
||
|
||
/* Return nonzero if NAME corresponds to a package name. */
|
||
|
||
static int
|
||
is_package_name (const char *name)
|
||
{
|
||
/* Here, We take advantage of the fact that no symbols are generated
|
||
for packages, while symbols are generated for each function.
|
||
So the condition for NAME represent a package becomes equivalent
|
||
to NAME not existing in our list of symbols. There is only one
|
||
small complication with library-level functions (see below). */
|
||
|
||
char *fun_name;
|
||
|
||
/* If it is a function that has not been defined at library level,
|
||
then we should be able to look it up in the symbols. */
|
||
if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
|
||
return 0;
|
||
|
||
/* Library-level function names start with "_ada_". See if function
|
||
"_ada_" followed by NAME can be found. */
|
||
|
||
/* Do a quick check that NAME does not contain "__", since library-level
|
||
functions names cannot contain "__" in them. */
|
||
if (strstr (name, "__") != NULL)
|
||
return 0;
|
||
|
||
fun_name = xstrprintf ("_ada_%s", name);
|
||
|
||
return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
|
||
}
|
||
|
||
/* Return nonzero if SYM corresponds to a renaming entity that is
|
||
not visible from FUNCTION_NAME. */
|
||
|
||
static int
|
||
old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
|
||
{
|
||
char *scope;
|
||
struct cleanup *old_chain;
|
||
|
||
if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
|
||
return 0;
|
||
|
||
scope = xget_renaming_scope (SYMBOL_TYPE (sym));
|
||
old_chain = make_cleanup (xfree, scope);
|
||
|
||
/* If the rename has been defined in a package, then it is visible. */
|
||
if (is_package_name (scope))
|
||
{
|
||
do_cleanups (old_chain);
|
||
return 0;
|
||
}
|
||
|
||
/* Check that the rename is in the current function scope by checking
|
||
that its name starts with SCOPE. */
|
||
|
||
/* If the function name starts with "_ada_", it means that it is
|
||
a library-level function. Strip this prefix before doing the
|
||
comparison, as the encoding for the renaming does not contain
|
||
this prefix. */
|
||
if (startswith (function_name, "_ada_"))
|
||
function_name += 5;
|
||
|
||
{
|
||
int is_invisible = !startswith (function_name, scope);
|
||
|
||
do_cleanups (old_chain);
|
||
return is_invisible;
|
||
}
|
||
}
|
||
|
||
/* Remove entries from SYMS that corresponds to a renaming entity that
|
||
is not visible from the function associated with CURRENT_BLOCK or
|
||
that is superfluous due to the presence of more specific renaming
|
||
information. Places surviving symbols in the initial entries of
|
||
SYMS and returns the number of surviving symbols.
|
||
|
||
Rationale:
|
||
First, in cases where an object renaming is implemented as a
|
||
reference variable, GNAT may produce both the actual reference
|
||
variable and the renaming encoding. In this case, we discard the
|
||
latter.
|
||
|
||
Second, GNAT emits a type following a specified encoding for each renaming
|
||
entity. Unfortunately, STABS currently does not support the definition
|
||
of types that are local to a given lexical block, so all renamings types
|
||
are emitted at library level. As a consequence, if an application
|
||
contains two renaming entities using the same name, and a user tries to
|
||
print the value of one of these entities, the result of the ada symbol
|
||
lookup will also contain the wrong renaming type.
|
||
|
||
This function partially covers for this limitation by attempting to
|
||
remove from the SYMS list renaming symbols that should be visible
|
||
from CURRENT_BLOCK. However, there does not seem be a 100% reliable
|
||
method with the current information available. The implementation
|
||
below has a couple of limitations (FIXME: brobecker-2003-05-12):
|
||
|
||
- When the user tries to print a rename in a function while there
|
||
is another rename entity defined in a package: Normally, the
|
||
rename in the function has precedence over the rename in the
|
||
package, so the latter should be removed from the list. This is
|
||
currently not the case.
|
||
|
||
- This function will incorrectly remove valid renames if
|
||
the CURRENT_BLOCK corresponds to a function which symbol name
|
||
has been changed by an "Export" pragma. As a consequence,
|
||
the user will be unable to print such rename entities. */
|
||
|
||
static int
|
||
remove_irrelevant_renamings (struct block_symbol *syms,
|
||
int nsyms, const struct block *current_block)
|
||
{
|
||
struct symbol *current_function;
|
||
const char *current_function_name;
|
||
int i;
|
||
int is_new_style_renaming;
|
||
|
||
/* If there is both a renaming foo___XR... encoded as a variable and
|
||
a simple variable foo in the same block, discard the latter.
|
||
First, zero out such symbols, then compress. */
|
||
is_new_style_renaming = 0;
|
||
for (i = 0; i < nsyms; i += 1)
|
||
{
|
||
struct symbol *sym = syms[i].symbol;
|
||
const struct block *block = syms[i].block;
|
||
const char *name;
|
||
const char *suffix;
|
||
|
||
if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
||
continue;
|
||
name = SYMBOL_LINKAGE_NAME (sym);
|
||
suffix = strstr (name, "___XR");
|
||
|
||
if (suffix != NULL)
|
||
{
|
||
int name_len = suffix - name;
|
||
int j;
|
||
|
||
is_new_style_renaming = 1;
|
||
for (j = 0; j < nsyms; j += 1)
|
||
if (i != j && syms[j].symbol != NULL
|
||
&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
|
||
name_len) == 0
|
||
&& block == syms[j].block)
|
||
syms[j].symbol = NULL;
|
||
}
|
||
}
|
||
if (is_new_style_renaming)
|
||
{
|
||
int j, k;
|
||
|
||
for (j = k = 0; j < nsyms; j += 1)
|
||
if (syms[j].symbol != NULL)
|
||
{
|
||
syms[k] = syms[j];
|
||
k += 1;
|
||
}
|
||
return k;
|
||
}
|
||
|
||
/* Extract the function name associated to CURRENT_BLOCK.
|
||
Abort if unable to do so. */
|
||
|
||
if (current_block == NULL)
|
||
return nsyms;
|
||
|
||
current_function = block_linkage_function (current_block);
|
||
if (current_function == NULL)
|
||
return nsyms;
|
||
|
||
current_function_name = SYMBOL_LINKAGE_NAME (current_function);
|
||
if (current_function_name == NULL)
|
||
return nsyms;
|
||
|
||
/* Check each of the symbols, and remove it from the list if it is
|
||
a type corresponding to a renaming that is out of the scope of
|
||
the current block. */
|
||
|
||
i = 0;
|
||
while (i < nsyms)
|
||
{
|
||
if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
|
||
== ADA_OBJECT_RENAMING
|
||
&& old_renaming_is_invisible (syms[i].symbol, current_function_name))
|
||
{
|
||
int j;
|
||
|
||
for (j = i + 1; j < nsyms; j += 1)
|
||
syms[j - 1] = syms[j];
|
||
nsyms -= 1;
|
||
}
|
||
else
|
||
i += 1;
|
||
}
|
||
|
||
return nsyms;
|
||
}
|
||
|
||
/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
|
||
whose name and domain match NAME and DOMAIN respectively.
|
||
If no match was found, then extend the search to "enclosing"
|
||
routines (in other words, if we're inside a nested function,
|
||
search the symbols defined inside the enclosing functions).
|
||
If WILD_MATCH_P is nonzero, perform the naming matching in
|
||
"wild" mode (see function "wild_match" for more info).
|
||
|
||
Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
|
||
|
||
static void
|
||
ada_add_local_symbols (struct obstack *obstackp, const char *name,
|
||
const struct block *block, domain_enum domain,
|
||
int wild_match_p)
|
||
{
|
||
int block_depth = 0;
|
||
|
||
while (block != NULL)
|
||
{
|
||
block_depth += 1;
|
||
ada_add_block_symbols (obstackp, block, name, domain, NULL,
|
||
wild_match_p);
|
||
|
||
/* If we found a non-function match, assume that's the one. */
|
||
if (is_nonfunction (defns_collected (obstackp, 0),
|
||
num_defns_collected (obstackp)))
|
||
return;
|
||
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
}
|
||
|
||
/* If no luck so far, try to find NAME as a local symbol in some lexically
|
||
enclosing subprogram. */
|
||
if (num_defns_collected (obstackp) == 0 && block_depth > 2)
|
||
add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
|
||
}
|
||
|
||
/* An object of this type is used as the user_data argument when
|
||
calling the map_matching_symbols method. */
|
||
|
||
struct match_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct obstack *obstackp;
|
||
struct symbol *arg_sym;
|
||
int found_sym;
|
||
};
|
||
|
||
/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
|
||
to a list of symbols. DATA0 is a pointer to a struct match_data *
|
||
containing the obstack that collects the symbol list, the file that SYM
|
||
must come from, a flag indicating whether a non-argument symbol has
|
||
been found in the current block, and the last argument symbol
|
||
passed in SYM within the current block (if any). When SYM is null,
|
||
marking the end of a block, the argument symbol is added if no
|
||
other has been found. */
|
||
|
||
static int
|
||
aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
|
||
{
|
||
struct match_data *data = (struct match_data *) data0;
|
||
|
||
if (sym == NULL)
|
||
{
|
||
if (!data->found_sym && data->arg_sym != NULL)
|
||
add_defn_to_vec (data->obstackp,
|
||
fixup_symbol_section (data->arg_sym, data->objfile),
|
||
block);
|
||
data->found_sym = 0;
|
||
data->arg_sym = NULL;
|
||
}
|
||
else
|
||
{
|
||
if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
|
||
return 0;
|
||
else if (SYMBOL_IS_ARGUMENT (sym))
|
||
data->arg_sym = sym;
|
||
else
|
||
{
|
||
data->found_sym = 1;
|
||
add_defn_to_vec (data->obstackp,
|
||
fixup_symbol_section (sym, data->objfile),
|
||
block);
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
|
||
by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
|
||
WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
|
||
function "wild_match" for more information). Return whether we found such
|
||
symbols. */
|
||
|
||
static int
|
||
ada_add_block_renamings (struct obstack *obstackp,
|
||
const struct block *block,
|
||
const char *name,
|
||
domain_enum domain,
|
||
int wild_match_p)
|
||
{
|
||
struct using_direct *renaming;
|
||
int defns_mark = num_defns_collected (obstackp);
|
||
|
||
for (renaming = block_using (block);
|
||
renaming != NULL;
|
||
renaming = renaming->next)
|
||
{
|
||
const char *r_name;
|
||
int name_match;
|
||
|
||
/* Avoid infinite recursions: skip this renaming if we are actually
|
||
already traversing it.
|
||
|
||
Currently, symbol lookup in Ada don't use the namespace machinery from
|
||
C++/Fortran support: skip namespace imports that use them. */
|
||
if (renaming->searched
|
||
|| (renaming->import_src != NULL
|
||
&& renaming->import_src[0] != '\0')
|
||
|| (renaming->import_dest != NULL
|
||
&& renaming->import_dest[0] != '\0'))
|
||
continue;
|
||
renaming->searched = 1;
|
||
|
||
/* TODO: here, we perform another name-based symbol lookup, which can
|
||
pull its own multiple overloads. In theory, we should be able to do
|
||
better in this case since, in DWARF, DW_AT_import is a DIE reference,
|
||
not a simple name. But in order to do this, we would need to enhance
|
||
the DWARF reader to associate a symbol to this renaming, instead of a
|
||
name. So, for now, we do something simpler: re-use the C++/Fortran
|
||
namespace machinery. */
|
||
r_name = (renaming->alias != NULL
|
||
? renaming->alias
|
||
: renaming->declaration);
|
||
name_match
|
||
= wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
|
||
if (name_match == 0)
|
||
ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
|
||
1, NULL);
|
||
renaming->searched = 0;
|
||
}
|
||
return num_defns_collected (obstackp) != defns_mark;
|
||
}
|
||
|
||
/* Implements compare_names, but only applying the comparision using
|
||
the given CASING. */
|
||
|
||
static int
|
||
compare_names_with_case (const char *string1, const char *string2,
|
||
enum case_sensitivity casing)
|
||
{
|
||
while (*string1 != '\0' && *string2 != '\0')
|
||
{
|
||
char c1, c2;
|
||
|
||
if (isspace (*string1) || isspace (*string2))
|
||
return strcmp_iw_ordered (string1, string2);
|
||
|
||
if (casing == case_sensitive_off)
|
||
{
|
||
c1 = tolower (*string1);
|
||
c2 = tolower (*string2);
|
||
}
|
||
else
|
||
{
|
||
c1 = *string1;
|
||
c2 = *string2;
|
||
}
|
||
if (c1 != c2)
|
||
break;
|
||
|
||
string1 += 1;
|
||
string2 += 1;
|
||
}
|
||
|
||
switch (*string1)
|
||
{
|
||
case '(':
|
||
return strcmp_iw_ordered (string1, string2);
|
||
case '_':
|
||
if (*string2 == '\0')
|
||
{
|
||
if (is_name_suffix (string1))
|
||
return 0;
|
||
else
|
||
return 1;
|
||
}
|
||
/* FALLTHROUGH */
|
||
default:
|
||
if (*string2 == '(')
|
||
return strcmp_iw_ordered (string1, string2);
|
||
else
|
||
{
|
||
if (casing == case_sensitive_off)
|
||
return tolower (*string1) - tolower (*string2);
|
||
else
|
||
return *string1 - *string2;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compare STRING1 to STRING2, with results as for strcmp.
|
||
Compatible with strcmp_iw_ordered in that...
|
||
|
||
strcmp_iw_ordered (STRING1, STRING2) <= 0
|
||
|
||
... implies...
|
||
|
||
compare_names (STRING1, STRING2) <= 0
|
||
|
||
(they may differ as to what symbols compare equal). */
|
||
|
||
static int
|
||
compare_names (const char *string1, const char *string2)
|
||
{
|
||
int result;
|
||
|
||
/* Similar to what strcmp_iw_ordered does, we need to perform
|
||
a case-insensitive comparison first, and only resort to
|
||
a second, case-sensitive, comparison if the first one was
|
||
not sufficient to differentiate the two strings. */
|
||
|
||
result = compare_names_with_case (string1, string2, case_sensitive_off);
|
||
if (result == 0)
|
||
result = compare_names_with_case (string1, string2, case_sensitive_on);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Add to OBSTACKP all non-local symbols whose name and domain match
|
||
NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
|
||
symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
|
||
|
||
static void
|
||
add_nonlocal_symbols (struct obstack *obstackp, const char *name,
|
||
domain_enum domain, int global,
|
||
int is_wild_match)
|
||
{
|
||
struct objfile *objfile;
|
||
struct compunit_symtab *cu;
|
||
struct match_data data;
|
||
|
||
memset (&data, 0, sizeof data);
|
||
data.obstackp = obstackp;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
data.objfile = objfile;
|
||
|
||
if (is_wild_match)
|
||
objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
|
||
aux_add_nonlocal_symbols, &data,
|
||
wild_match, NULL);
|
||
else
|
||
objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
|
||
aux_add_nonlocal_symbols, &data,
|
||
full_match, compare_names);
|
||
|
||
ALL_OBJFILE_COMPUNITS (objfile, cu)
|
||
{
|
||
const struct block *global_block
|
||
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
|
||
|
||
if (ada_add_block_renamings (obstackp, global_block , name, domain,
|
||
is_wild_match))
|
||
data.found_sym = 1;
|
||
}
|
||
}
|
||
|
||
if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
|
||
{
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
|
||
strcpy (name1, "_ada_");
|
||
strcpy (name1 + sizeof ("_ada_") - 1, name);
|
||
data.objfile = objfile;
|
||
objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
|
||
global,
|
||
aux_add_nonlocal_symbols,
|
||
&data,
|
||
full_match, compare_names);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
|
||
non-zero, enclosing scope and in global scopes, returning the number of
|
||
matches. Add these to OBSTACKP.
|
||
|
||
When FULL_SEARCH is non-zero, any non-function/non-enumeral
|
||
symbol match within the nest of blocks whose innermost member is BLOCK,
|
||
is the one match returned (no other matches in that or
|
||
enclosing blocks is returned). If there are any matches in or
|
||
surrounding BLOCK, then these alone are returned.
|
||
|
||
Names prefixed with "standard__" are handled specially: "standard__"
|
||
is first stripped off, and only static and global symbols are searched.
|
||
|
||
If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
|
||
to lookup global symbols. */
|
||
|
||
static void
|
||
ada_add_all_symbols (struct obstack *obstackp,
|
||
const struct block *block,
|
||
const char *name,
|
||
domain_enum domain,
|
||
int full_search,
|
||
int *made_global_lookup_p)
|
||
{
|
||
struct symbol *sym;
|
||
const int wild_match_p = should_use_wild_match (name);
|
||
|
||
if (made_global_lookup_p)
|
||
*made_global_lookup_p = 0;
|
||
|
||
/* Special case: If the user specifies a symbol name inside package
|
||
Standard, do a non-wild matching of the symbol name without
|
||
the "standard__" prefix. This was primarily introduced in order
|
||
to allow the user to specifically access the standard exceptions
|
||
using, for instance, Standard.Constraint_Error when Constraint_Error
|
||
is ambiguous (due to the user defining its own Constraint_Error
|
||
entity inside its program). */
|
||
if (startswith (name, "standard__"))
|
||
{
|
||
block = NULL;
|
||
name = name + sizeof ("standard__") - 1;
|
||
}
|
||
|
||
/* Check the non-global symbols. If we have ANY match, then we're done. */
|
||
|
||
if (block != NULL)
|
||
{
|
||
if (full_search)
|
||
ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
|
||
else
|
||
{
|
||
/* In the !full_search case we're are being called by
|
||
ada_iterate_over_symbols, and we don't want to search
|
||
superblocks. */
|
||
ada_add_block_symbols (obstackp, block, name, domain, NULL,
|
||
wild_match_p);
|
||
}
|
||
if (num_defns_collected (obstackp) > 0 || !full_search)
|
||
return;
|
||
}
|
||
|
||
/* No non-global symbols found. Check our cache to see if we have
|
||
already performed this search before. If we have, then return
|
||
the same result. */
|
||
|
||
if (lookup_cached_symbol (name, domain, &sym, &block))
|
||
{
|
||
if (sym != NULL)
|
||
add_defn_to_vec (obstackp, sym, block);
|
||
return;
|
||
}
|
||
|
||
if (made_global_lookup_p)
|
||
*made_global_lookup_p = 1;
|
||
|
||
/* Search symbols from all global blocks. */
|
||
|
||
add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
|
||
|
||
/* Now add symbols from all per-file blocks if we've gotten no hits
|
||
(not strictly correct, but perhaps better than an error). */
|
||
|
||
if (num_defns_collected (obstackp) == 0)
|
||
add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
|
||
}
|
||
|
||
/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
|
||
non-zero, enclosing scope and in global scopes, returning the number of
|
||
matches.
|
||
Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
|
||
indicating the symbols found and the blocks and symbol tables (if
|
||
any) in which they were found. This vector is transient---good only to
|
||
the next call of ada_lookup_symbol_list.
|
||
|
||
When full_search is non-zero, any non-function/non-enumeral
|
||
symbol match within the nest of blocks whose innermost member is BLOCK,
|
||
is the one match returned (no other matches in that or
|
||
enclosing blocks is returned). If there are any matches in or
|
||
surrounding BLOCK, then these alone are returned.
|
||
|
||
Names prefixed with "standard__" are handled specially: "standard__"
|
||
is first stripped off, and only static and global symbols are searched. */
|
||
|
||
static int
|
||
ada_lookup_symbol_list_worker (const char *name, const struct block *block,
|
||
domain_enum domain,
|
||
struct block_symbol **results,
|
||
int full_search)
|
||
{
|
||
const int wild_match_p = should_use_wild_match (name);
|
||
int syms_from_global_search;
|
||
int ndefns;
|
||
|
||
obstack_free (&symbol_list_obstack, NULL);
|
||
obstack_init (&symbol_list_obstack);
|
||
ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
|
||
full_search, &syms_from_global_search);
|
||
|
||
ndefns = num_defns_collected (&symbol_list_obstack);
|
||
*results = defns_collected (&symbol_list_obstack, 1);
|
||
|
||
ndefns = remove_extra_symbols (*results, ndefns);
|
||
|
||
if (ndefns == 0 && full_search && syms_from_global_search)
|
||
cache_symbol (name, domain, NULL, NULL);
|
||
|
||
if (ndefns == 1 && full_search && syms_from_global_search)
|
||
cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
|
||
|
||
ndefns = remove_irrelevant_renamings (*results, ndefns, block);
|
||
return ndefns;
|
||
}
|
||
|
||
/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
|
||
in global scopes, returning the number of matches, and setting *RESULTS
|
||
to a vector of (SYM,BLOCK) tuples.
|
||
See ada_lookup_symbol_list_worker for further details. */
|
||
|
||
int
|
||
ada_lookup_symbol_list (const char *name0, const struct block *block0,
|
||
domain_enum domain, struct block_symbol **results)
|
||
{
|
||
return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
|
||
}
|
||
|
||
/* Implementation of the la_iterate_over_symbols method. */
|
||
|
||
static void
|
||
ada_iterate_over_symbols (const struct block *block,
|
||
const char *name, domain_enum domain,
|
||
symbol_found_callback_ftype *callback,
|
||
void *data)
|
||
{
|
||
int ndefs, i;
|
||
struct block_symbol *results;
|
||
|
||
ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
|
||
for (i = 0; i < ndefs; ++i)
|
||
{
|
||
if (! (*callback) (results[i].symbol, data))
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If NAME is the name of an entity, return a string that should
|
||
be used to look that entity up in Ada units. This string should
|
||
be deallocated after use using xfree.
|
||
|
||
NAME can have any form that the "break" or "print" commands might
|
||
recognize. In other words, it does not have to be the "natural"
|
||
name, or the "encoded" name. */
|
||
|
||
char *
|
||
ada_name_for_lookup (const char *name)
|
||
{
|
||
char *canon;
|
||
int nlen = strlen (name);
|
||
|
||
if (name[0] == '<' && name[nlen - 1] == '>')
|
||
{
|
||
canon = (char *) xmalloc (nlen - 1);
|
||
memcpy (canon, name + 1, nlen - 2);
|
||
canon[nlen - 2] = '\0';
|
||
}
|
||
else
|
||
canon = xstrdup (ada_encode (ada_fold_name (name)));
|
||
return canon;
|
||
}
|
||
|
||
/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
|
||
to 1, but choosing the first symbol found if there are multiple
|
||
choices.
|
||
|
||
The result is stored in *INFO, which must be non-NULL.
|
||
If no match is found, INFO->SYM is set to NULL. */
|
||
|
||
void
|
||
ada_lookup_encoded_symbol (const char *name, const struct block *block,
|
||
domain_enum domain,
|
||
struct block_symbol *info)
|
||
{
|
||
struct block_symbol *candidates;
|
||
int n_candidates;
|
||
|
||
gdb_assert (info != NULL);
|
||
memset (info, 0, sizeof (struct block_symbol));
|
||
|
||
n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
|
||
if (n_candidates == 0)
|
||
return;
|
||
|
||
*info = candidates[0];
|
||
info->symbol = fixup_symbol_section (info->symbol, NULL);
|
||
}
|
||
|
||
/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
|
||
scope and in global scopes, or NULL if none. NAME is folded and
|
||
encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
|
||
choosing the first symbol if there are multiple choices.
|
||
If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
|
||
|
||
struct block_symbol
|
||
ada_lookup_symbol (const char *name, const struct block *block0,
|
||
domain_enum domain, int *is_a_field_of_this)
|
||
{
|
||
struct block_symbol info;
|
||
|
||
if (is_a_field_of_this != NULL)
|
||
*is_a_field_of_this = 0;
|
||
|
||
ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
|
||
block0, domain, &info);
|
||
return info;
|
||
}
|
||
|
||
static struct block_symbol
|
||
ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
|
||
const char *name,
|
||
const struct block *block,
|
||
const domain_enum domain)
|
||
{
|
||
struct block_symbol sym;
|
||
|
||
sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
|
||
if (sym.symbol != NULL)
|
||
return sym;
|
||
|
||
/* If we haven't found a match at this point, try the primitive
|
||
types. In other languages, this search is performed before
|
||
searching for global symbols in order to short-circuit that
|
||
global-symbol search if it happens that the name corresponds
|
||
to a primitive type. But we cannot do the same in Ada, because
|
||
it is perfectly legitimate for a program to declare a type which
|
||
has the same name as a standard type. If looking up a type in
|
||
that situation, we have traditionally ignored the primitive type
|
||
in favor of user-defined types. This is why, unlike most other
|
||
languages, we search the primitive types this late and only after
|
||
having searched the global symbols without success. */
|
||
|
||
if (domain == VAR_DOMAIN)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
|
||
if (block == NULL)
|
||
gdbarch = target_gdbarch ();
|
||
else
|
||
gdbarch = block_gdbarch (block);
|
||
sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
|
||
if (sym.symbol != NULL)
|
||
return sym;
|
||
}
|
||
|
||
return (struct block_symbol) {NULL, NULL};
|
||
}
|
||
|
||
|
||
/* True iff STR is a possible encoded suffix of a normal Ada name
|
||
that is to be ignored for matching purposes. Suffixes of parallel
|
||
names (e.g., XVE) are not included here. Currently, the possible suffixes
|
||
are given by any of the regular expressions:
|
||
|
||
[.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
|
||
___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
|
||
TKB [subprogram suffix for task bodies]
|
||
_E[0-9]+[bs]$ [protected object entry suffixes]
|
||
(X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
|
||
|
||
Also, any leading "__[0-9]+" sequence is skipped before the suffix
|
||
match is performed. This sequence is used to differentiate homonyms,
|
||
is an optional part of a valid name suffix. */
|
||
|
||
static int
|
||
is_name_suffix (const char *str)
|
||
{
|
||
int k;
|
||
const char *matching;
|
||
const int len = strlen (str);
|
||
|
||
/* Skip optional leading __[0-9]+. */
|
||
|
||
if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
|
||
{
|
||
str += 3;
|
||
while (isdigit (str[0]))
|
||
str += 1;
|
||
}
|
||
|
||
/* [.$][0-9]+ */
|
||
|
||
if (str[0] == '.' || str[0] == '$')
|
||
{
|
||
matching = str + 1;
|
||
while (isdigit (matching[0]))
|
||
matching += 1;
|
||
if (matching[0] == '\0')
|
||
return 1;
|
||
}
|
||
|
||
/* ___[0-9]+ */
|
||
|
||
if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
|
||
{
|
||
matching = str + 3;
|
||
while (isdigit (matching[0]))
|
||
matching += 1;
|
||
if (matching[0] == '\0')
|
||
return 1;
|
||
}
|
||
|
||
/* "TKB" suffixes are used for subprograms implementing task bodies. */
|
||
|
||
if (strcmp (str, "TKB") == 0)
|
||
return 1;
|
||
|
||
#if 0
|
||
/* FIXME: brobecker/2005-09-23: Protected Object subprograms end
|
||
with a N at the end. Unfortunately, the compiler uses the same
|
||
convention for other internal types it creates. So treating
|
||
all entity names that end with an "N" as a name suffix causes
|
||
some regressions. For instance, consider the case of an enumerated
|
||
type. To support the 'Image attribute, it creates an array whose
|
||
name ends with N.
|
||
Having a single character like this as a suffix carrying some
|
||
information is a bit risky. Perhaps we should change the encoding
|
||
to be something like "_N" instead. In the meantime, do not do
|
||
the following check. */
|
||
/* Protected Object Subprograms */
|
||
if (len == 1 && str [0] == 'N')
|
||
return 1;
|
||
#endif
|
||
|
||
/* _E[0-9]+[bs]$ */
|
||
if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
|
||
{
|
||
matching = str + 3;
|
||
while (isdigit (matching[0]))
|
||
matching += 1;
|
||
if ((matching[0] == 'b' || matching[0] == 's')
|
||
&& matching [1] == '\0')
|
||
return 1;
|
||
}
|
||
|
||
/* ??? We should not modify STR directly, as we are doing below. This
|
||
is fine in this case, but may become problematic later if we find
|
||
that this alternative did not work, and want to try matching
|
||
another one from the begining of STR. Since we modified it, we
|
||
won't be able to find the begining of the string anymore! */
|
||
if (str[0] == 'X')
|
||
{
|
||
str += 1;
|
||
while (str[0] != '_' && str[0] != '\0')
|
||
{
|
||
if (str[0] != 'n' && str[0] != 'b')
|
||
return 0;
|
||
str += 1;
|
||
}
|
||
}
|
||
|
||
if (str[0] == '\000')
|
||
return 1;
|
||
|
||
if (str[0] == '_')
|
||
{
|
||
if (str[1] != '_' || str[2] == '\000')
|
||
return 0;
|
||
if (str[2] == '_')
|
||
{
|
||
if (strcmp (str + 3, "JM") == 0)
|
||
return 1;
|
||
/* FIXME: brobecker/2004-09-30: GNAT will soon stop using
|
||
the LJM suffix in favor of the JM one. But we will
|
||
still accept LJM as a valid suffix for a reasonable
|
||
amount of time, just to allow ourselves to debug programs
|
||
compiled using an older version of GNAT. */
|
||
if (strcmp (str + 3, "LJM") == 0)
|
||
return 1;
|
||
if (str[3] != 'X')
|
||
return 0;
|
||
if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
|
||
|| str[4] == 'U' || str[4] == 'P')
|
||
return 1;
|
||
if (str[4] == 'R' && str[5] != 'T')
|
||
return 1;
|
||
return 0;
|
||
}
|
||
if (!isdigit (str[2]))
|
||
return 0;
|
||
for (k = 3; str[k] != '\0'; k += 1)
|
||
if (!isdigit (str[k]) && str[k] != '_')
|
||
return 0;
|
||
return 1;
|
||
}
|
||
if (str[0] == '$' && isdigit (str[1]))
|
||
{
|
||
for (k = 2; str[k] != '\0'; k += 1)
|
||
if (!isdigit (str[k]) && str[k] != '_')
|
||
return 0;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if the string starting at NAME and ending before
|
||
NAME_END contains no capital letters. */
|
||
|
||
static int
|
||
is_valid_name_for_wild_match (const char *name0)
|
||
{
|
||
const char *decoded_name = ada_decode (name0);
|
||
int i;
|
||
|
||
/* If the decoded name starts with an angle bracket, it means that
|
||
NAME0 does not follow the GNAT encoding format. It should then
|
||
not be allowed as a possible wild match. */
|
||
if (decoded_name[0] == '<')
|
||
return 0;
|
||
|
||
for (i=0; decoded_name[i] != '\0'; i++)
|
||
if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
|
||
that could start a simple name. Assumes that *NAMEP points into
|
||
the string beginning at NAME0. */
|
||
|
||
static int
|
||
advance_wild_match (const char **namep, const char *name0, int target0)
|
||
{
|
||
const char *name = *namep;
|
||
|
||
while (1)
|
||
{
|
||
int t0, t1;
|
||
|
||
t0 = *name;
|
||
if (t0 == '_')
|
||
{
|
||
t1 = name[1];
|
||
if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
|
||
{
|
||
name += 1;
|
||
if (name == name0 + 5 && startswith (name0, "_ada"))
|
||
break;
|
||
else
|
||
name += 1;
|
||
}
|
||
else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
|
||
|| name[2] == target0))
|
||
{
|
||
name += 2;
|
||
break;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
|
||
name += 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
*namep = name;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
|
||
informational suffixes of NAME (i.e., for which is_name_suffix is
|
||
true). Assumes that PATN is a lower-cased Ada simple name. */
|
||
|
||
static int
|
||
wild_match (const char *name, const char *patn)
|
||
{
|
||
const char *p;
|
||
const char *name0 = name;
|
||
|
||
while (1)
|
||
{
|
||
const char *match = name;
|
||
|
||
if (*name == *patn)
|
||
{
|
||
for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
|
||
if (*p != *name)
|
||
break;
|
||
if (*p == '\0' && is_name_suffix (name))
|
||
return match != name0 && !is_valid_name_for_wild_match (name0);
|
||
|
||
if (name[-1] == '_')
|
||
name -= 1;
|
||
}
|
||
if (!advance_wild_match (&name, name0, *patn))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
|
||
informational suffix. */
|
||
|
||
static int
|
||
full_match (const char *sym_name, const char *search_name)
|
||
{
|
||
return !match_name (sym_name, search_name, 0);
|
||
}
|
||
|
||
|
||
/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
|
||
vector *defn_symbols, updating the list of symbols in OBSTACKP
|
||
(if necessary). If WILD, treat as NAME with a wildcard prefix.
|
||
OBJFILE is the section containing BLOCK. */
|
||
|
||
static void
|
||
ada_add_block_symbols (struct obstack *obstackp,
|
||
const struct block *block, const char *name,
|
||
domain_enum domain, struct objfile *objfile,
|
||
int wild)
|
||
{
|
||
struct block_iterator iter;
|
||
int name_len = strlen (name);
|
||
/* A matching argument symbol, if any. */
|
||
struct symbol *arg_sym;
|
||
/* Set true when we find a matching non-argument symbol. */
|
||
int found_sym;
|
||
struct symbol *sym;
|
||
|
||
arg_sym = NULL;
|
||
found_sym = 0;
|
||
if (wild)
|
||
{
|
||
for (sym = block_iter_match_first (block, name, wild_match, &iter);
|
||
sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
|
||
{
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain)
|
||
&& wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
|
||
{
|
||
if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
|
||
continue;
|
||
else if (SYMBOL_IS_ARGUMENT (sym))
|
||
arg_sym = sym;
|
||
else
|
||
{
|
||
found_sym = 1;
|
||
add_defn_to_vec (obstackp,
|
||
fixup_symbol_section (sym, objfile),
|
||
block);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (sym = block_iter_match_first (block, name, full_match, &iter);
|
||
sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
|
||
{
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain))
|
||
{
|
||
if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
|
||
{
|
||
if (SYMBOL_IS_ARGUMENT (sym))
|
||
arg_sym = sym;
|
||
else
|
||
{
|
||
found_sym = 1;
|
||
add_defn_to_vec (obstackp,
|
||
fixup_symbol_section (sym, objfile),
|
||
block);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle renamings. */
|
||
|
||
if (ada_add_block_renamings (obstackp, block, name, domain, wild))
|
||
found_sym = 1;
|
||
|
||
if (!found_sym && arg_sym != NULL)
|
||
{
|
||
add_defn_to_vec (obstackp,
|
||
fixup_symbol_section (arg_sym, objfile),
|
||
block);
|
||
}
|
||
|
||
if (!wild)
|
||
{
|
||
arg_sym = NULL;
|
||
found_sym = 0;
|
||
|
||
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
||
{
|
||
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
||
SYMBOL_DOMAIN (sym), domain))
|
||
{
|
||
int cmp;
|
||
|
||
cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
|
||
if (cmp == 0)
|
||
{
|
||
cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
|
||
if (cmp == 0)
|
||
cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
|
||
name_len);
|
||
}
|
||
|
||
if (cmp == 0
|
||
&& is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
|
||
{
|
||
if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
|
||
{
|
||
if (SYMBOL_IS_ARGUMENT (sym))
|
||
arg_sym = sym;
|
||
else
|
||
{
|
||
found_sym = 1;
|
||
add_defn_to_vec (obstackp,
|
||
fixup_symbol_section (sym, objfile),
|
||
block);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* NOTE: This really shouldn't be needed for _ada_ symbols.
|
||
They aren't parameters, right? */
|
||
if (!found_sym && arg_sym != NULL)
|
||
{
|
||
add_defn_to_vec (obstackp,
|
||
fixup_symbol_section (arg_sym, objfile),
|
||
block);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Symbol Completion */
|
||
|
||
/* If SYM_NAME is a completion candidate for TEXT, return this symbol
|
||
name in a form that's appropriate for the completion. The result
|
||
does not need to be deallocated, but is only good until the next call.
|
||
|
||
TEXT_LEN is equal to the length of TEXT.
|
||
Perform a wild match if WILD_MATCH_P is set.
|
||
ENCODED_P should be set if TEXT represents the start of a symbol name
|
||
in its encoded form. */
|
||
|
||
static const char *
|
||
symbol_completion_match (const char *sym_name,
|
||
const char *text, int text_len,
|
||
int wild_match_p, int encoded_p)
|
||
{
|
||
const int verbatim_match = (text[0] == '<');
|
||
int match = 0;
|
||
|
||
if (verbatim_match)
|
||
{
|
||
/* Strip the leading angle bracket. */
|
||
text = text + 1;
|
||
text_len--;
|
||
}
|
||
|
||
/* First, test against the fully qualified name of the symbol. */
|
||
|
||
if (strncmp (sym_name, text, text_len) == 0)
|
||
match = 1;
|
||
|
||
if (match && !encoded_p)
|
||
{
|
||
/* One needed check before declaring a positive match is to verify
|
||
that iff we are doing a verbatim match, the decoded version
|
||
of the symbol name starts with '<'. Otherwise, this symbol name
|
||
is not a suitable completion. */
|
||
const char *sym_name_copy = sym_name;
|
||
int has_angle_bracket;
|
||
|
||
sym_name = ada_decode (sym_name);
|
||
has_angle_bracket = (sym_name[0] == '<');
|
||
match = (has_angle_bracket == verbatim_match);
|
||
sym_name = sym_name_copy;
|
||
}
|
||
|
||
if (match && !verbatim_match)
|
||
{
|
||
/* When doing non-verbatim match, another check that needs to
|
||
be done is to verify that the potentially matching symbol name
|
||
does not include capital letters, because the ada-mode would
|
||
not be able to understand these symbol names without the
|
||
angle bracket notation. */
|
||
const char *tmp;
|
||
|
||
for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
|
||
if (*tmp != '\0')
|
||
match = 0;
|
||
}
|
||
|
||
/* Second: Try wild matching... */
|
||
|
||
if (!match && wild_match_p)
|
||
{
|
||
/* Since we are doing wild matching, this means that TEXT
|
||
may represent an unqualified symbol name. We therefore must
|
||
also compare TEXT against the unqualified name of the symbol. */
|
||
sym_name = ada_unqualified_name (ada_decode (sym_name));
|
||
|
||
if (strncmp (sym_name, text, text_len) == 0)
|
||
match = 1;
|
||
}
|
||
|
||
/* Finally: If we found a mach, prepare the result to return. */
|
||
|
||
if (!match)
|
||
return NULL;
|
||
|
||
if (verbatim_match)
|
||
sym_name = add_angle_brackets (sym_name);
|
||
|
||
if (!encoded_p)
|
||
sym_name = ada_decode (sym_name);
|
||
|
||
return sym_name;
|
||
}
|
||
|
||
/* A companion function to ada_make_symbol_completion_list().
|
||
Check if SYM_NAME represents a symbol which name would be suitable
|
||
to complete TEXT (TEXT_LEN is the length of TEXT), in which case
|
||
it is appended at the end of the given string vector SV.
|
||
|
||
ORIG_TEXT is the string original string from the user command
|
||
that needs to be completed. WORD is the entire command on which
|
||
completion should be performed. These two parameters are used to
|
||
determine which part of the symbol name should be added to the
|
||
completion vector.
|
||
if WILD_MATCH_P is set, then wild matching is performed.
|
||
ENCODED_P should be set if TEXT represents a symbol name in its
|
||
encoded formed (in which case the completion should also be
|
||
encoded). */
|
||
|
||
static void
|
||
symbol_completion_add (VEC(char_ptr) **sv,
|
||
const char *sym_name,
|
||
const char *text, int text_len,
|
||
const char *orig_text, const char *word,
|
||
int wild_match_p, int encoded_p)
|
||
{
|
||
const char *match = symbol_completion_match (sym_name, text, text_len,
|
||
wild_match_p, encoded_p);
|
||
char *completion;
|
||
|
||
if (match == NULL)
|
||
return;
|
||
|
||
/* We found a match, so add the appropriate completion to the given
|
||
string vector. */
|
||
|
||
if (word == orig_text)
|
||
{
|
||
completion = (char *) xmalloc (strlen (match) + 5);
|
||
strcpy (completion, match);
|
||
}
|
||
else if (word > orig_text)
|
||
{
|
||
/* Return some portion of sym_name. */
|
||
completion = (char *) xmalloc (strlen (match) + 5);
|
||
strcpy (completion, match + (word - orig_text));
|
||
}
|
||
else
|
||
{
|
||
/* Return some of ORIG_TEXT plus sym_name. */
|
||
completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
|
||
strncpy (completion, word, orig_text - word);
|
||
completion[orig_text - word] = '\0';
|
||
strcat (completion, match);
|
||
}
|
||
|
||
VEC_safe_push (char_ptr, *sv, completion);
|
||
}
|
||
|
||
/* An object of this type is passed as the user_data argument to the
|
||
expand_symtabs_matching method. */
|
||
struct add_partial_datum
|
||
{
|
||
VEC(char_ptr) **completions;
|
||
const char *text;
|
||
int text_len;
|
||
const char *text0;
|
||
const char *word;
|
||
int wild_match;
|
||
int encoded;
|
||
};
|
||
|
||
/* A callback for expand_symtabs_matching. */
|
||
|
||
static int
|
||
ada_complete_symbol_matcher (const char *name, void *user_data)
|
||
{
|
||
struct add_partial_datum *data = (struct add_partial_datum *) user_data;
|
||
|
||
return symbol_completion_match (name, data->text, data->text_len,
|
||
data->wild_match, data->encoded) != NULL;
|
||
}
|
||
|
||
/* Return a list of possible symbol names completing TEXT0. WORD is
|
||
the entire command on which completion is made. */
|
||
|
||
static VEC (char_ptr) *
|
||
ada_make_symbol_completion_list (const char *text0, const char *word,
|
||
enum type_code code)
|
||
{
|
||
char *text;
|
||
int text_len;
|
||
int wild_match_p;
|
||
int encoded_p;
|
||
VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
|
||
struct symbol *sym;
|
||
struct compunit_symtab *s;
|
||
struct minimal_symbol *msymbol;
|
||
struct objfile *objfile;
|
||
const struct block *b, *surrounding_static_block = 0;
|
||
int i;
|
||
struct block_iterator iter;
|
||
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
||
|
||
gdb_assert (code == TYPE_CODE_UNDEF);
|
||
|
||
if (text0[0] == '<')
|
||
{
|
||
text = xstrdup (text0);
|
||
make_cleanup (xfree, text);
|
||
text_len = strlen (text);
|
||
wild_match_p = 0;
|
||
encoded_p = 1;
|
||
}
|
||
else
|
||
{
|
||
text = xstrdup (ada_encode (text0));
|
||
make_cleanup (xfree, text);
|
||
text_len = strlen (text);
|
||
for (i = 0; i < text_len; i++)
|
||
text[i] = tolower (text[i]);
|
||
|
||
encoded_p = (strstr (text0, "__") != NULL);
|
||
/* If the name contains a ".", then the user is entering a fully
|
||
qualified entity name, and the match must not be done in wild
|
||
mode. Similarly, if the user wants to complete what looks like
|
||
an encoded name, the match must not be done in wild mode. */
|
||
wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
|
||
}
|
||
|
||
/* First, look at the partial symtab symbols. */
|
||
{
|
||
struct add_partial_datum data;
|
||
|
||
data.completions = &completions;
|
||
data.text = text;
|
||
data.text_len = text_len;
|
||
data.text0 = text0;
|
||
data.word = word;
|
||
data.wild_match = wild_match_p;
|
||
data.encoded = encoded_p;
|
||
expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
|
||
ALL_DOMAIN, &data);
|
||
}
|
||
|
||
/* At this point scan through the misc symbol vectors and add each
|
||
symbol you find to the list. Eventually we want to ignore
|
||
anything that isn't a text symbol (everything else will be
|
||
handled by the psymtab code above). */
|
||
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
QUIT;
|
||
symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
|
||
text, text_len, text0, word, wild_match_p,
|
||
encoded_p);
|
||
}
|
||
|
||
/* Search upwards from currently selected frame (so that we can
|
||
complete on local vars. */
|
||
|
||
for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
|
||
{
|
||
if (!BLOCK_SUPERBLOCK (b))
|
||
surrounding_static_block = b; /* For elmin of dups */
|
||
|
||
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
||
{
|
||
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
|
||
text, text_len, text0, word,
|
||
wild_match_p, encoded_p);
|
||
}
|
||
}
|
||
|
||
/* Go through the symtabs and check the externs and statics for
|
||
symbols which match. */
|
||
|
||
ALL_COMPUNITS (objfile, s)
|
||
{
|
||
QUIT;
|
||
b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
|
||
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
||
{
|
||
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
|
||
text, text_len, text0, word,
|
||
wild_match_p, encoded_p);
|
||
}
|
||
}
|
||
|
||
ALL_COMPUNITS (objfile, s)
|
||
{
|
||
QUIT;
|
||
b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
|
||
/* Don't do this block twice. */
|
||
if (b == surrounding_static_block)
|
||
continue;
|
||
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
||
{
|
||
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
|
||
text, text_len, text0, word,
|
||
wild_match_p, encoded_p);
|
||
}
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
return completions;
|
||
}
|
||
|
||
/* Field Access */
|
||
|
||
/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
|
||
for tagged types. */
|
||
|
||
static int
|
||
ada_is_dispatch_table_ptr_type (struct type *type)
|
||
{
|
||
const char *name;
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR)
|
||
return 0;
|
||
|
||
name = TYPE_NAME (TYPE_TARGET_TYPE (type));
|
||
if (name == NULL)
|
||
return 0;
|
||
|
||
return (strcmp (name, "ada__tags__dispatch_table") == 0);
|
||
}
|
||
|
||
/* Return non-zero if TYPE is an interface tag. */
|
||
|
||
static int
|
||
ada_is_interface_tag (struct type *type)
|
||
{
|
||
const char *name = TYPE_NAME (type);
|
||
|
||
if (name == NULL)
|
||
return 0;
|
||
|
||
return (strcmp (name, "ada__tags__interface_tag") == 0);
|
||
}
|
||
|
||
/* True if field number FIELD_NUM in struct or union type TYPE is supposed
|
||
to be invisible to users. */
|
||
|
||
int
|
||
ada_is_ignored_field (struct type *type, int field_num)
|
||
{
|
||
if (field_num < 0 || field_num > TYPE_NFIELDS (type))
|
||
return 1;
|
||
|
||
/* Check the name of that field. */
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
|
||
/* Anonymous field names should not be printed.
|
||
brobecker/2007-02-20: I don't think this can actually happen
|
||
but we don't want to print the value of annonymous fields anyway. */
|
||
if (name == NULL)
|
||
return 1;
|
||
|
||
/* Normally, fields whose name start with an underscore ("_")
|
||
are fields that have been internally generated by the compiler,
|
||
and thus should not be printed. The "_parent" field is special,
|
||
however: This is a field internally generated by the compiler
|
||
for tagged types, and it contains the components inherited from
|
||
the parent type. This field should not be printed as is, but
|
||
should not be ignored either. */
|
||
if (name[0] == '_' && !startswith (name, "_parent"))
|
||
return 1;
|
||
}
|
||
|
||
/* If this is the dispatch table of a tagged type or an interface tag,
|
||
then ignore. */
|
||
if (ada_is_tagged_type (type, 1)
|
||
&& (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
|
||
|| ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
|
||
return 1;
|
||
|
||
/* Not a special field, so it should not be ignored. */
|
||
return 0;
|
||
}
|
||
|
||
/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
|
||
pointer or reference type whose ultimate target has a tag field. */
|
||
|
||
int
|
||
ada_is_tagged_type (struct type *type, int refok)
|
||
{
|
||
return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
|
||
}
|
||
|
||
/* True iff TYPE represents the type of X'Tag */
|
||
|
||
int
|
||
ada_is_tag_type (struct type *type)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
|
||
return 0;
|
||
else
|
||
{
|
||
const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
|
||
|
||
return (name != NULL
|
||
&& strcmp (name, "ada__tags__dispatch_table") == 0);
|
||
}
|
||
}
|
||
|
||
/* The type of the tag on VAL. */
|
||
|
||
struct type *
|
||
ada_tag_type (struct value *val)
|
||
{
|
||
return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
|
||
}
|
||
|
||
/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
|
||
retired at Ada 05). */
|
||
|
||
static int
|
||
is_ada95_tag (struct value *tag)
|
||
{
|
||
return ada_value_struct_elt (tag, "tsd", 1) != NULL;
|
||
}
|
||
|
||
/* The value of the tag on VAL. */
|
||
|
||
struct value *
|
||
ada_value_tag (struct value *val)
|
||
{
|
||
return ada_value_struct_elt (val, "_tag", 0);
|
||
}
|
||
|
||
/* The value of the tag on the object of type TYPE whose contents are
|
||
saved at VALADDR, if it is non-null, or is at memory address
|
||
ADDRESS. */
|
||
|
||
static struct value *
|
||
value_tag_from_contents_and_address (struct type *type,
|
||
const gdb_byte *valaddr,
|
||
CORE_ADDR address)
|
||
{
|
||
int tag_byte_offset;
|
||
struct type *tag_type;
|
||
|
||
if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
|
||
NULL, NULL, NULL))
|
||
{
|
||
const gdb_byte *valaddr1 = ((valaddr == NULL)
|
||
? NULL
|
||
: valaddr + tag_byte_offset);
|
||
CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
|
||
|
||
return value_from_contents_and_address (tag_type, valaddr1, address1);
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
static struct type *
|
||
type_from_tag (struct value *tag)
|
||
{
|
||
const char *type_name = ada_tag_name (tag);
|
||
|
||
if (type_name != NULL)
|
||
return ada_find_any_type (ada_encode (type_name));
|
||
return NULL;
|
||
}
|
||
|
||
/* Given a value OBJ of a tagged type, return a value of this
|
||
type at the base address of the object. The base address, as
|
||
defined in Ada.Tags, it is the address of the primary tag of
|
||
the object, and therefore where the field values of its full
|
||
view can be fetched. */
|
||
|
||
struct value *
|
||
ada_tag_value_at_base_address (struct value *obj)
|
||
{
|
||
struct value *val;
|
||
LONGEST offset_to_top = 0;
|
||
struct type *ptr_type, *obj_type;
|
||
struct value *tag;
|
||
CORE_ADDR base_address;
|
||
|
||
obj_type = value_type (obj);
|
||
|
||
/* It is the responsability of the caller to deref pointers. */
|
||
|
||
if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (obj_type) == TYPE_CODE_REF)
|
||
return obj;
|
||
|
||
tag = ada_value_tag (obj);
|
||
if (!tag)
|
||
return obj;
|
||
|
||
/* Base addresses only appeared with Ada 05 and multiple inheritance. */
|
||
|
||
if (is_ada95_tag (tag))
|
||
return obj;
|
||
|
||
ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
|
||
ptr_type = lookup_pointer_type (ptr_type);
|
||
val = value_cast (ptr_type, tag);
|
||
if (!val)
|
||
return obj;
|
||
|
||
/* It is perfectly possible that an exception be raised while
|
||
trying to determine the base address, just like for the tag;
|
||
see ada_tag_name for more details. We do not print the error
|
||
message for the same reason. */
|
||
|
||
TRY
|
||
{
|
||
offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
|
||
}
|
||
|
||
CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
return obj;
|
||
}
|
||
END_CATCH
|
||
|
||
/* If offset is null, nothing to do. */
|
||
|
||
if (offset_to_top == 0)
|
||
return obj;
|
||
|
||
/* -1 is a special case in Ada.Tags; however, what should be done
|
||
is not quite clear from the documentation. So do nothing for
|
||
now. */
|
||
|
||
if (offset_to_top == -1)
|
||
return obj;
|
||
|
||
base_address = value_address (obj) - offset_to_top;
|
||
tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
|
||
|
||
/* Make sure that we have a proper tag at the new address.
|
||
Otherwise, offset_to_top is bogus (which can happen when
|
||
the object is not initialized yet). */
|
||
|
||
if (!tag)
|
||
return obj;
|
||
|
||
obj_type = type_from_tag (tag);
|
||
|
||
if (!obj_type)
|
||
return obj;
|
||
|
||
return value_from_contents_and_address (obj_type, NULL, base_address);
|
||
}
|
||
|
||
/* Return the "ada__tags__type_specific_data" type. */
|
||
|
||
static struct type *
|
||
ada_get_tsd_type (struct inferior *inf)
|
||
{
|
||
struct ada_inferior_data *data = get_ada_inferior_data (inf);
|
||
|
||
if (data->tsd_type == 0)
|
||
data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
|
||
return data->tsd_type;
|
||
}
|
||
|
||
/* Return the TSD (type-specific data) associated to the given TAG.
|
||
TAG is assumed to be the tag of a tagged-type entity.
|
||
|
||
May return NULL if we are unable to get the TSD. */
|
||
|
||
static struct value *
|
||
ada_get_tsd_from_tag (struct value *tag)
|
||
{
|
||
struct value *val;
|
||
struct type *type;
|
||
|
||
/* First option: The TSD is simply stored as a field of our TAG.
|
||
Only older versions of GNAT would use this format, but we have
|
||
to test it first, because there are no visible markers for
|
||
the current approach except the absence of that field. */
|
||
|
||
val = ada_value_struct_elt (tag, "tsd", 1);
|
||
if (val)
|
||
return val;
|
||
|
||
/* Try the second representation for the dispatch table (in which
|
||
there is no explicit 'tsd' field in the referent of the tag pointer,
|
||
and instead the tsd pointer is stored just before the dispatch
|
||
table. */
|
||
|
||
type = ada_get_tsd_type (current_inferior());
|
||
if (type == NULL)
|
||
return NULL;
|
||
type = lookup_pointer_type (lookup_pointer_type (type));
|
||
val = value_cast (type, tag);
|
||
if (val == NULL)
|
||
return NULL;
|
||
return value_ind (value_ptradd (val, -1));
|
||
}
|
||
|
||
/* Given the TSD of a tag (type-specific data), return a string
|
||
containing the name of the associated type.
|
||
|
||
The returned value is good until the next call. May return NULL
|
||
if we are unable to determine the tag name. */
|
||
|
||
static char *
|
||
ada_tag_name_from_tsd (struct value *tsd)
|
||
{
|
||
static char name[1024];
|
||
char *p;
|
||
struct value *val;
|
||
|
||
val = ada_value_struct_elt (tsd, "expanded_name", 1);
|
||
if (val == NULL)
|
||
return NULL;
|
||
read_memory_string (value_as_address (val), name, sizeof (name) - 1);
|
||
for (p = name; *p != '\0'; p += 1)
|
||
if (isalpha (*p))
|
||
*p = tolower (*p);
|
||
return name;
|
||
}
|
||
|
||
/* The type name of the dynamic type denoted by the 'tag value TAG, as
|
||
a C string.
|
||
|
||
Return NULL if the TAG is not an Ada tag, or if we were unable to
|
||
determine the name of that tag. The result is good until the next
|
||
call. */
|
||
|
||
const char *
|
||
ada_tag_name (struct value *tag)
|
||
{
|
||
char *name = NULL;
|
||
|
||
if (!ada_is_tag_type (value_type (tag)))
|
||
return NULL;
|
||
|
||
/* It is perfectly possible that an exception be raised while trying
|
||
to determine the TAG's name, even under normal circumstances:
|
||
The associated variable may be uninitialized or corrupted, for
|
||
instance. We do not let any exception propagate past this point.
|
||
instead we return NULL.
|
||
|
||
We also do not print the error message either (which often is very
|
||
low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
|
||
the caller print a more meaningful message if necessary. */
|
||
TRY
|
||
{
|
||
struct value *tsd = ada_get_tsd_from_tag (tag);
|
||
|
||
if (tsd != NULL)
|
||
name = ada_tag_name_from_tsd (tsd);
|
||
}
|
||
CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
}
|
||
END_CATCH
|
||
|
||
return name;
|
||
}
|
||
|
||
/* The parent type of TYPE, or NULL if none. */
|
||
|
||
struct type *
|
||
ada_parent_type (struct type *type)
|
||
{
|
||
int i;
|
||
|
||
type = ada_check_typedef (type);
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
||
return NULL;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
if (ada_is_parent_field (type, i))
|
||
{
|
||
struct type *parent_type = TYPE_FIELD_TYPE (type, i);
|
||
|
||
/* If the _parent field is a pointer, then dereference it. */
|
||
if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
|
||
parent_type = TYPE_TARGET_TYPE (parent_type);
|
||
/* If there is a parallel XVS type, get the actual base type. */
|
||
parent_type = ada_get_base_type (parent_type);
|
||
|
||
return ada_check_typedef (parent_type);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* True iff field number FIELD_NUM of structure type TYPE contains the
|
||
parent-type (inherited) fields of a derived type. Assumes TYPE is
|
||
a structure type with at least FIELD_NUM+1 fields. */
|
||
|
||
int
|
||
ada_is_parent_field (struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
|
||
|
||
return (name != NULL
|
||
&& (startswith (name, "PARENT")
|
||
|| startswith (name, "_parent")));
|
||
}
|
||
|
||
/* True iff field number FIELD_NUM of structure type TYPE is a
|
||
transparent wrapper field (which should be silently traversed when doing
|
||
field selection and flattened when printing). Assumes TYPE is a
|
||
structure type with at least FIELD_NUM+1 fields. Such fields are always
|
||
structures. */
|
||
|
||
int
|
||
ada_is_wrapper_field (struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
|
||
if (name != NULL && strcmp (name, "RETVAL") == 0)
|
||
{
|
||
/* This happens in functions with "out" or "in out" parameters
|
||
which are passed by copy. For such functions, GNAT describes
|
||
the function's return type as being a struct where the return
|
||
value is in a field called RETVAL, and where the other "out"
|
||
or "in out" parameters are fields of that struct. This is not
|
||
a wrapper. */
|
||
return 0;
|
||
}
|
||
|
||
return (name != NULL
|
||
&& (startswith (name, "PARENT")
|
||
|| strcmp (name, "REP") == 0
|
||
|| startswith (name, "_parent")
|
||
|| name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
|
||
}
|
||
|
||
/* True iff field number FIELD_NUM of structure or union type TYPE
|
||
is a variant wrapper. Assumes TYPE is a structure type with at least
|
||
FIELD_NUM+1 fields. */
|
||
|
||
int
|
||
ada_is_variant_part (struct type *type, int field_num)
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
|
||
|
||
return (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
||
|| (is_dynamic_field (type, field_num)
|
||
&& (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
|
||
== TYPE_CODE_UNION)));
|
||
}
|
||
|
||
/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
|
||
whose discriminants are contained in the record type OUTER_TYPE,
|
||
returns the type of the controlling discriminant for the variant.
|
||
May return NULL if the type could not be found. */
|
||
|
||
struct type *
|
||
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
|
||
{
|
||
char *name = ada_variant_discrim_name (var_type);
|
||
|
||
return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
|
||
}
|
||
|
||
/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
|
||
valid field number within it, returns 1 iff field FIELD_NUM of TYPE
|
||
represents a 'when others' clause; otherwise 0. */
|
||
|
||
int
|
||
ada_is_others_clause (struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
|
||
return (name != NULL && name[0] == 'O');
|
||
}
|
||
|
||
/* Assuming that TYPE0 is the type of the variant part of a record,
|
||
returns the name of the discriminant controlling the variant.
|
||
The value is valid until the next call to ada_variant_discrim_name. */
|
||
|
||
char *
|
||
ada_variant_discrim_name (struct type *type0)
|
||
{
|
||
static char *result = NULL;
|
||
static size_t result_len = 0;
|
||
struct type *type;
|
||
const char *name;
|
||
const char *discrim_end;
|
||
const char *discrim_start;
|
||
|
||
if (TYPE_CODE (type0) == TYPE_CODE_PTR)
|
||
type = TYPE_TARGET_TYPE (type0);
|
||
else
|
||
type = type0;
|
||
|
||
name = ada_type_name (type);
|
||
|
||
if (name == NULL || name[0] == '\000')
|
||
return "";
|
||
|
||
for (discrim_end = name + strlen (name) - 6; discrim_end != name;
|
||
discrim_end -= 1)
|
||
{
|
||
if (startswith (discrim_end, "___XVN"))
|
||
break;
|
||
}
|
||
if (discrim_end == name)
|
||
return "";
|
||
|
||
for (discrim_start = discrim_end; discrim_start != name + 3;
|
||
discrim_start -= 1)
|
||
{
|
||
if (discrim_start == name + 1)
|
||
return "";
|
||
if ((discrim_start > name + 3
|
||
&& startswith (discrim_start - 3, "___"))
|
||
|| discrim_start[-1] == '.')
|
||
break;
|
||
}
|
||
|
||
GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
|
||
strncpy (result, discrim_start, discrim_end - discrim_start);
|
||
result[discrim_end - discrim_start] = '\0';
|
||
return result;
|
||
}
|
||
|
||
/* Scan STR for a subtype-encoded number, beginning at position K.
|
||
Put the position of the character just past the number scanned in
|
||
*NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
|
||
Return 1 if there was a valid number at the given position, and 0
|
||
otherwise. A "subtype-encoded" number consists of the absolute value
|
||
in decimal, followed by the letter 'm' to indicate a negative number.
|
||
Assumes 0m does not occur. */
|
||
|
||
int
|
||
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
|
||
{
|
||
ULONGEST RU;
|
||
|
||
if (!isdigit (str[k]))
|
||
return 0;
|
||
|
||
/* Do it the hard way so as not to make any assumption about
|
||
the relationship of unsigned long (%lu scan format code) and
|
||
LONGEST. */
|
||
RU = 0;
|
||
while (isdigit (str[k]))
|
||
{
|
||
RU = RU * 10 + (str[k] - '0');
|
||
k += 1;
|
||
}
|
||
|
||
if (str[k] == 'm')
|
||
{
|
||
if (R != NULL)
|
||
*R = (-(LONGEST) (RU - 1)) - 1;
|
||
k += 1;
|
||
}
|
||
else if (R != NULL)
|
||
*R = (LONGEST) RU;
|
||
|
||
/* NOTE on the above: Technically, C does not say what the results of
|
||
- (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
|
||
number representable as a LONGEST (although either would probably work
|
||
in most implementations). When RU>0, the locution in the then branch
|
||
above is always equivalent to the negative of RU. */
|
||
|
||
if (new_k != NULL)
|
||
*new_k = k;
|
||
return 1;
|
||
}
|
||
|
||
/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
|
||
and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
|
||
in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
|
||
|
||
int
|
||
ada_in_variant (LONGEST val, struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
int p;
|
||
|
||
p = 0;
|
||
while (1)
|
||
{
|
||
switch (name[p])
|
||
{
|
||
case '\0':
|
||
return 0;
|
||
case 'S':
|
||
{
|
||
LONGEST W;
|
||
|
||
if (!ada_scan_number (name, p + 1, &W, &p))
|
||
return 0;
|
||
if (val == W)
|
||
return 1;
|
||
break;
|
||
}
|
||
case 'R':
|
||
{
|
||
LONGEST L, U;
|
||
|
||
if (!ada_scan_number (name, p + 1, &L, &p)
|
||
|| name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
|
||
return 0;
|
||
if (val >= L && val <= U)
|
||
return 1;
|
||
break;
|
||
}
|
||
case 'O':
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* FIXME: Lots of redundancy below. Try to consolidate. */
|
||
|
||
/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
|
||
ARG_TYPE, extract and return the value of one of its (non-static)
|
||
fields. FIELDNO says which field. Differs from value_primitive_field
|
||
only in that it can handle packed values of arbitrary type. */
|
||
|
||
static struct value *
|
||
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
|
||
struct type *arg_type)
|
||
{
|
||
struct type *type;
|
||
|
||
arg_type = ada_check_typedef (arg_type);
|
||
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
||
|
||
/* Handle packed fields. */
|
||
|
||
if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
|
||
{
|
||
int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
|
||
int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
||
|
||
return ada_value_primitive_packed_val (arg1, value_contents (arg1),
|
||
offset + bit_pos / 8,
|
||
bit_pos % 8, bit_size, type);
|
||
}
|
||
else
|
||
return value_primitive_field (arg1, offset, fieldno, arg_type);
|
||
}
|
||
|
||
/* Find field with name NAME in object of type TYPE. If found,
|
||
set the following for each argument that is non-null:
|
||
- *FIELD_TYPE_P to the field's type;
|
||
- *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
|
||
an object of that type;
|
||
- *BIT_OFFSET_P to the bit offset modulo byte size of the field;
|
||
- *BIT_SIZE_P to its size in bits if the field is packed, and
|
||
0 otherwise;
|
||
If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
|
||
fields up to but not including the desired field, or by the total
|
||
number of fields if not found. A NULL value of NAME never
|
||
matches; the function just counts visible fields in this case.
|
||
|
||
Returns 1 if found, 0 otherwise. */
|
||
|
||
static int
|
||
find_struct_field (const char *name, struct type *type, int offset,
|
||
struct type **field_type_p,
|
||
int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
|
||
int *index_p)
|
||
{
|
||
int i;
|
||
|
||
type = ada_check_typedef (type);
|
||
|
||
if (field_type_p != NULL)
|
||
*field_type_p = NULL;
|
||
if (byte_offset_p != NULL)
|
||
*byte_offset_p = 0;
|
||
if (bit_offset_p != NULL)
|
||
*bit_offset_p = 0;
|
||
if (bit_size_p != NULL)
|
||
*bit_size_p = 0;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
{
|
||
int bit_pos = TYPE_FIELD_BITPOS (type, i);
|
||
int fld_offset = offset + bit_pos / 8;
|
||
const char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name == NULL)
|
||
continue;
|
||
|
||
else if (name != NULL && field_name_match (t_field_name, name))
|
||
{
|
||
int bit_size = TYPE_FIELD_BITSIZE (type, i);
|
||
|
||
if (field_type_p != NULL)
|
||
*field_type_p = TYPE_FIELD_TYPE (type, i);
|
||
if (byte_offset_p != NULL)
|
||
*byte_offset_p = fld_offset;
|
||
if (bit_offset_p != NULL)
|
||
*bit_offset_p = bit_pos % 8;
|
||
if (bit_size_p != NULL)
|
||
*bit_size_p = bit_size;
|
||
return 1;
|
||
}
|
||
else if (ada_is_wrapper_field (type, i))
|
||
{
|
||
if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
|
||
field_type_p, byte_offset_p, bit_offset_p,
|
||
bit_size_p, index_p))
|
||
return 1;
|
||
}
|
||
else if (ada_is_variant_part (type, i))
|
||
{
|
||
/* PNH: Wait. Do we ever execute this section, or is ARG always of
|
||
fixed type?? */
|
||
int j;
|
||
struct type *field_type
|
||
= ada_check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
|
||
for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
|
||
{
|
||
if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
|
||
fld_offset
|
||
+ TYPE_FIELD_BITPOS (field_type, j) / 8,
|
||
field_type_p, byte_offset_p,
|
||
bit_offset_p, bit_size_p, index_p))
|
||
return 1;
|
||
}
|
||
}
|
||
else if (index_p != NULL)
|
||
*index_p += 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Number of user-visible fields in record type TYPE. */
|
||
|
||
static int
|
||
num_visible_fields (struct type *type)
|
||
{
|
||
int n;
|
||
|
||
n = 0;
|
||
find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
|
||
return n;
|
||
}
|
||
|
||
/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
|
||
and search in it assuming it has (class) type TYPE.
|
||
If found, return value, else return NULL.
|
||
|
||
Searches recursively through wrapper fields (e.g., '_parent'). */
|
||
|
||
static struct value *
|
||
ada_search_struct_field (const char *name, struct value *arg, int offset,
|
||
struct type *type)
|
||
{
|
||
int i;
|
||
|
||
type = ada_check_typedef (type);
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
{
|
||
const char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name == NULL)
|
||
continue;
|
||
|
||
else if (field_name_match (t_field_name, name))
|
||
return ada_value_primitive_field (arg, offset, i, type);
|
||
|
||
else if (ada_is_wrapper_field (type, i))
|
||
{
|
||
struct value *v = /* Do not let indent join lines here. */
|
||
ada_search_struct_field (name, arg,
|
||
offset + TYPE_FIELD_BITPOS (type, i) / 8,
|
||
TYPE_FIELD_TYPE (type, i));
|
||
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
|
||
else if (ada_is_variant_part (type, i))
|
||
{
|
||
/* PNH: Do we ever get here? See find_struct_field. */
|
||
int j;
|
||
struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
|
||
i));
|
||
int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
|
||
|
||
for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
|
||
{
|
||
struct value *v = ada_search_struct_field /* Force line
|
||
break. */
|
||
(name, arg,
|
||
var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
|
||
TYPE_FIELD_TYPE (field_type, j));
|
||
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
static struct value *ada_index_struct_field_1 (int *, struct value *,
|
||
int, struct type *);
|
||
|
||
|
||
/* Return field #INDEX in ARG, where the index is that returned by
|
||
* find_struct_field through its INDEX_P argument. Adjust the address
|
||
* of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
|
||
* If found, return value, else return NULL. */
|
||
|
||
static struct value *
|
||
ada_index_struct_field (int index, struct value *arg, int offset,
|
||
struct type *type)
|
||
{
|
||
return ada_index_struct_field_1 (&index, arg, offset, type);
|
||
}
|
||
|
||
|
||
/* Auxiliary function for ada_index_struct_field. Like
|
||
* ada_index_struct_field, but takes index from *INDEX_P and modifies
|
||
* *INDEX_P. */
|
||
|
||
static struct value *
|
||
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
|
||
struct type *type)
|
||
{
|
||
int i;
|
||
type = ada_check_typedef (type);
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
{
|
||
if (TYPE_FIELD_NAME (type, i) == NULL)
|
||
continue;
|
||
else if (ada_is_wrapper_field (type, i))
|
||
{
|
||
struct value *v = /* Do not let indent join lines here. */
|
||
ada_index_struct_field_1 (index_p, arg,
|
||
offset + TYPE_FIELD_BITPOS (type, i) / 8,
|
||
TYPE_FIELD_TYPE (type, i));
|
||
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
|
||
else if (ada_is_variant_part (type, i))
|
||
{
|
||
/* PNH: Do we ever get here? See ada_search_struct_field,
|
||
find_struct_field. */
|
||
error (_("Cannot assign this kind of variant record"));
|
||
}
|
||
else if (*index_p == 0)
|
||
return ada_value_primitive_field (arg, offset, i, type);
|
||
else
|
||
*index_p -= 1;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Given ARG, a value of type (pointer or reference to a)*
|
||
structure/union, extract the component named NAME from the ultimate
|
||
target structure/union and return it as a value with its
|
||
appropriate type.
|
||
|
||
The routine searches for NAME among all members of the structure itself
|
||
and (recursively) among all members of any wrapper members
|
||
(e.g., '_parent').
|
||
|
||
If NO_ERR, then simply return NULL in case of error, rather than
|
||
calling error. */
|
||
|
||
struct value *
|
||
ada_value_struct_elt (struct value *arg, char *name, int no_err)
|
||
{
|
||
struct type *t, *t1;
|
||
struct value *v;
|
||
|
||
v = NULL;
|
||
t1 = t = ada_check_typedef (value_type (arg));
|
||
if (TYPE_CODE (t) == TYPE_CODE_REF)
|
||
{
|
||
t1 = TYPE_TARGET_TYPE (t);
|
||
if (t1 == NULL)
|
||
goto BadValue;
|
||
t1 = ada_check_typedef (t1);
|
||
if (TYPE_CODE (t1) == TYPE_CODE_PTR)
|
||
{
|
||
arg = coerce_ref (arg);
|
||
t = t1;
|
||
}
|
||
}
|
||
|
||
while (TYPE_CODE (t) == TYPE_CODE_PTR)
|
||
{
|
||
t1 = TYPE_TARGET_TYPE (t);
|
||
if (t1 == NULL)
|
||
goto BadValue;
|
||
t1 = ada_check_typedef (t1);
|
||
if (TYPE_CODE (t1) == TYPE_CODE_PTR)
|
||
{
|
||
arg = value_ind (arg);
|
||
t = t1;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
|
||
goto BadValue;
|
||
|
||
if (t1 == t)
|
||
v = ada_search_struct_field (name, arg, 0, t);
|
||
else
|
||
{
|
||
int bit_offset, bit_size, byte_offset;
|
||
struct type *field_type;
|
||
CORE_ADDR address;
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_PTR)
|
||
address = value_address (ada_value_ind (arg));
|
||
else
|
||
address = value_address (ada_coerce_ref (arg));
|
||
|
||
t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
|
||
if (find_struct_field (name, t1, 0,
|
||
&field_type, &byte_offset, &bit_offset,
|
||
&bit_size, NULL))
|
||
{
|
||
if (bit_size != 0)
|
||
{
|
||
if (TYPE_CODE (t) == TYPE_CODE_REF)
|
||
arg = ada_coerce_ref (arg);
|
||
else
|
||
arg = ada_value_ind (arg);
|
||
v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
|
||
bit_offset, bit_size,
|
||
field_type);
|
||
}
|
||
else
|
||
v = value_at_lazy (field_type, address + byte_offset);
|
||
}
|
||
}
|
||
|
||
if (v != NULL || no_err)
|
||
return v;
|
||
else
|
||
error (_("There is no member named %s."), name);
|
||
|
||
BadValue:
|
||
if (no_err)
|
||
return NULL;
|
||
else
|
||
error (_("Attempt to extract a component of "
|
||
"a value that is not a record."));
|
||
}
|
||
|
||
/* Return a string representation of type TYPE. Caller must free
|
||
result. */
|
||
|
||
static char *
|
||
type_as_string (struct type *type)
|
||
{
|
||
struct ui_file *tmp_stream = mem_fileopen ();
|
||
struct cleanup *old_chain;
|
||
char *str;
|
||
|
||
tmp_stream = mem_fileopen ();
|
||
old_chain = make_cleanup_ui_file_delete (tmp_stream);
|
||
|
||
type_print (type, "", tmp_stream, -1);
|
||
str = ui_file_xstrdup (tmp_stream, NULL);
|
||
|
||
do_cleanups (old_chain);
|
||
return str;
|
||
}
|
||
|
||
/* Return a string representation of type TYPE, and install a cleanup
|
||
that releases it. */
|
||
|
||
static char *
|
||
type_as_string_and_cleanup (struct type *type)
|
||
{
|
||
char *str;
|
||
|
||
str = type_as_string (type);
|
||
make_cleanup (xfree, str);
|
||
return str;
|
||
}
|
||
|
||
/* Given a type TYPE, look up the type of the component of type named NAME.
|
||
If DISPP is non-null, add its byte displacement from the beginning of a
|
||
structure (pointed to by a value) of type TYPE to *DISPP (does not
|
||
work for packed fields).
|
||
|
||
Matches any field whose name has NAME as a prefix, possibly
|
||
followed by "___".
|
||
|
||
TYPE can be either a struct or union. If REFOK, TYPE may also
|
||
be a (pointer or reference)+ to a struct or union, and the
|
||
ultimate target type will be searched.
|
||
|
||
Looks recursively into variant clauses and parent types.
|
||
|
||
If NOERR is nonzero, return NULL if NAME is not suitably defined or
|
||
TYPE is not a type of the right kind. */
|
||
|
||
static struct type *
|
||
ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
|
||
int noerr, int *dispp)
|
||
{
|
||
int i;
|
||
|
||
if (name == NULL)
|
||
goto BadName;
|
||
|
||
if (refok && type != NULL)
|
||
while (1)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_REF)
|
||
break;
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
|
||
if (type == NULL
|
||
|| (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_UNION))
|
||
{
|
||
const char *type_str;
|
||
|
||
if (noerr)
|
||
return NULL;
|
||
|
||
type_str = (type != NULL
|
||
? type_as_string_and_cleanup (type)
|
||
: _("(null)"));
|
||
error (_("Type %s is not a structure or union type"), type_str);
|
||
}
|
||
|
||
type = to_static_fixed_type (type);
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
{
|
||
const char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
struct type *t;
|
||
int disp;
|
||
|
||
if (t_field_name == NULL)
|
||
continue;
|
||
|
||
else if (field_name_match (t_field_name, name))
|
||
{
|
||
if (dispp != NULL)
|
||
*dispp += TYPE_FIELD_BITPOS (type, i) / 8;
|
||
return TYPE_FIELD_TYPE (type, i);
|
||
}
|
||
|
||
else if (ada_is_wrapper_field (type, i))
|
||
{
|
||
disp = 0;
|
||
t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
|
||
0, 1, &disp);
|
||
if (t != NULL)
|
||
{
|
||
if (dispp != NULL)
|
||
*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
|
||
return t;
|
||
}
|
||
}
|
||
|
||
else if (ada_is_variant_part (type, i))
|
||
{
|
||
int j;
|
||
struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
|
||
i));
|
||
|
||
for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
|
||
{
|
||
/* FIXME pnh 2008/01/26: We check for a field that is
|
||
NOT wrapped in a struct, since the compiler sometimes
|
||
generates these for unchecked variant types. Revisit
|
||
if the compiler changes this practice. */
|
||
const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
|
||
disp = 0;
|
||
if (v_field_name != NULL
|
||
&& field_name_match (v_field_name, name))
|
||
t = TYPE_FIELD_TYPE (field_type, j);
|
||
else
|
||
t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
|
||
j),
|
||
name, 0, 1, &disp);
|
||
|
||
if (t != NULL)
|
||
{
|
||
if (dispp != NULL)
|
||
*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
|
||
return t;
|
||
}
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
BadName:
|
||
if (!noerr)
|
||
{
|
||
const char *name_str = name != NULL ? name : _("<null>");
|
||
|
||
error (_("Type %s has no component named %s"),
|
||
type_as_string_and_cleanup (type), name_str);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
|
||
within a value of type OUTER_TYPE, return true iff VAR_TYPE
|
||
represents an unchecked union (that is, the variant part of a
|
||
record that is named in an Unchecked_Union pragma). */
|
||
|
||
static int
|
||
is_unchecked_variant (struct type *var_type, struct type *outer_type)
|
||
{
|
||
char *discrim_name = ada_variant_discrim_name (var_type);
|
||
|
||
return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
|
||
== NULL);
|
||
}
|
||
|
||
|
||
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
|
||
within a value of type OUTER_TYPE that is stored in GDB at
|
||
OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
|
||
numbering from 0) is applicable. Returns -1 if none are. */
|
||
|
||
int
|
||
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
|
||
const gdb_byte *outer_valaddr)
|
||
{
|
||
int others_clause;
|
||
int i;
|
||
char *discrim_name = ada_variant_discrim_name (var_type);
|
||
struct value *outer;
|
||
struct value *discrim;
|
||
LONGEST discrim_val;
|
||
|
||
/* Using plain value_from_contents_and_address here causes problems
|
||
because we will end up trying to resolve a type that is currently
|
||
being constructed. */
|
||
outer = value_from_contents_and_address_unresolved (outer_type,
|
||
outer_valaddr, 0);
|
||
discrim = ada_value_struct_elt (outer, discrim_name, 1);
|
||
if (discrim == NULL)
|
||
return -1;
|
||
discrim_val = value_as_long (discrim);
|
||
|
||
others_clause = -1;
|
||
for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
|
||
{
|
||
if (ada_is_others_clause (var_type, i))
|
||
others_clause = i;
|
||
else if (ada_in_variant (discrim_val, var_type, i))
|
||
return i;
|
||
}
|
||
|
||
return others_clause;
|
||
}
|
||
|
||
|
||
|
||
/* Dynamic-Sized Records */
|
||
|
||
/* Strategy: The type ostensibly attached to a value with dynamic size
|
||
(i.e., a size that is not statically recorded in the debugging
|
||
data) does not accurately reflect the size or layout of the value.
|
||
Our strategy is to convert these values to values with accurate,
|
||
conventional types that are constructed on the fly. */
|
||
|
||
/* There is a subtle and tricky problem here. In general, we cannot
|
||
determine the size of dynamic records without its data. However,
|
||
the 'struct value' data structure, which GDB uses to represent
|
||
quantities in the inferior process (the target), requires the size
|
||
of the type at the time of its allocation in order to reserve space
|
||
for GDB's internal copy of the data. That's why the
|
||
'to_fixed_xxx_type' routines take (target) addresses as parameters,
|
||
rather than struct value*s.
|
||
|
||
However, GDB's internal history variables ($1, $2, etc.) are
|
||
struct value*s containing internal copies of the data that are not, in
|
||
general, the same as the data at their corresponding addresses in
|
||
the target. Fortunately, the types we give to these values are all
|
||
conventional, fixed-size types (as per the strategy described
|
||
above), so that we don't usually have to perform the
|
||
'to_fixed_xxx_type' conversions to look at their values.
|
||
Unfortunately, there is one exception: if one of the internal
|
||
history variables is an array whose elements are unconstrained
|
||
records, then we will need to create distinct fixed types for each
|
||
element selected. */
|
||
|
||
/* The upshot of all of this is that many routines take a (type, host
|
||
address, target address) triple as arguments to represent a value.
|
||
The host address, if non-null, is supposed to contain an internal
|
||
copy of the relevant data; otherwise, the program is to consult the
|
||
target at the target address. */
|
||
|
||
/* Assuming that VAL0 represents a pointer value, the result of
|
||
dereferencing it. Differs from value_ind in its treatment of
|
||
dynamic-sized types. */
|
||
|
||
struct value *
|
||
ada_value_ind (struct value *val0)
|
||
{
|
||
struct value *val = value_ind (val0);
|
||
|
||
if (ada_is_tagged_type (value_type (val), 0))
|
||
val = ada_tag_value_at_base_address (val);
|
||
|
||
return ada_to_fixed_value (val);
|
||
}
|
||
|
||
/* The value resulting from dereferencing any "reference to"
|
||
qualifiers on VAL0. */
|
||
|
||
static struct value *
|
||
ada_coerce_ref (struct value *val0)
|
||
{
|
||
if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
|
||
{
|
||
struct value *val = val0;
|
||
|
||
val = coerce_ref (val);
|
||
|
||
if (ada_is_tagged_type (value_type (val), 0))
|
||
val = ada_tag_value_at_base_address (val);
|
||
|
||
return ada_to_fixed_value (val);
|
||
}
|
||
else
|
||
return val0;
|
||
}
|
||
|
||
/* Return OFF rounded upward if necessary to a multiple of
|
||
ALIGNMENT (a power of 2). */
|
||
|
||
static unsigned int
|
||
align_value (unsigned int off, unsigned int alignment)
|
||
{
|
||
return (off + alignment - 1) & ~(alignment - 1);
|
||
}
|
||
|
||
/* Return the bit alignment required for field #F of template type TYPE. */
|
||
|
||
static unsigned int
|
||
field_alignment (struct type *type, int f)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, f);
|
||
int len;
|
||
int align_offset;
|
||
|
||
/* The field name should never be null, unless the debugging information
|
||
is somehow malformed. In this case, we assume the field does not
|
||
require any alignment. */
|
||
if (name == NULL)
|
||
return 1;
|
||
|
||
len = strlen (name);
|
||
|
||
if (!isdigit (name[len - 1]))
|
||
return 1;
|
||
|
||
if (isdigit (name[len - 2]))
|
||
align_offset = len - 2;
|
||
else
|
||
align_offset = len - 1;
|
||
|
||
if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
|
||
return TARGET_CHAR_BIT;
|
||
|
||
return atoi (name + align_offset) * TARGET_CHAR_BIT;
|
||
}
|
||
|
||
/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
|
||
|
||
static struct symbol *
|
||
ada_find_any_type_symbol (const char *name)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
|
||
if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
||
return sym;
|
||
|
||
sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
|
||
return sym;
|
||
}
|
||
|
||
/* Find a type named NAME. Ignores ambiguity. This routine will look
|
||
solely for types defined by debug info, it will not search the GDB
|
||
primitive types. */
|
||
|
||
static struct type *
|
||
ada_find_any_type (const char *name)
|
||
{
|
||
struct symbol *sym = ada_find_any_type_symbol (name);
|
||
|
||
if (sym != NULL)
|
||
return SYMBOL_TYPE (sym);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
|
||
associated with NAME_SYM's name. NAME_SYM may itself be a renaming
|
||
symbol, in which case it is returned. Otherwise, this looks for
|
||
symbols whose name is that of NAME_SYM suffixed with "___XR".
|
||
Return symbol if found, and NULL otherwise. */
|
||
|
||
struct symbol *
|
||
ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
|
||
{
|
||
const char *name = SYMBOL_LINKAGE_NAME (name_sym);
|
||
struct symbol *sym;
|
||
|
||
if (strstr (name, "___XR") != NULL)
|
||
return name_sym;
|
||
|
||
sym = find_old_style_renaming_symbol (name, block);
|
||
|
||
if (sym != NULL)
|
||
return sym;
|
||
|
||
/* Not right yet. FIXME pnh 7/20/2007. */
|
||
sym = ada_find_any_type_symbol (name);
|
||
if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
|
||
return sym;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
static struct symbol *
|
||
find_old_style_renaming_symbol (const char *name, const struct block *block)
|
||
{
|
||
const struct symbol *function_sym = block_linkage_function (block);
|
||
char *rename;
|
||
|
||
if (function_sym != NULL)
|
||
{
|
||
/* If the symbol is defined inside a function, NAME is not fully
|
||
qualified. This means we need to prepend the function name
|
||
as well as adding the ``___XR'' suffix to build the name of
|
||
the associated renaming symbol. */
|
||
const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
|
||
/* Function names sometimes contain suffixes used
|
||
for instance to qualify nested subprograms. When building
|
||
the XR type name, we need to make sure that this suffix is
|
||
not included. So do not include any suffix in the function
|
||
name length below. */
|
||
int function_name_len = ada_name_prefix_len (function_name);
|
||
const int rename_len = function_name_len + 2 /* "__" */
|
||
+ strlen (name) + 6 /* "___XR\0" */ ;
|
||
|
||
/* Strip the suffix if necessary. */
|
||
ada_remove_trailing_digits (function_name, &function_name_len);
|
||
ada_remove_po_subprogram_suffix (function_name, &function_name_len);
|
||
ada_remove_Xbn_suffix (function_name, &function_name_len);
|
||
|
||
/* Library-level functions are a special case, as GNAT adds
|
||
a ``_ada_'' prefix to the function name to avoid namespace
|
||
pollution. However, the renaming symbols themselves do not
|
||
have this prefix, so we need to skip this prefix if present. */
|
||
if (function_name_len > 5 /* "_ada_" */
|
||
&& strstr (function_name, "_ada_") == function_name)
|
||
{
|
||
function_name += 5;
|
||
function_name_len -= 5;
|
||
}
|
||
|
||
rename = (char *) alloca (rename_len * sizeof (char));
|
||
strncpy (rename, function_name, function_name_len);
|
||
xsnprintf (rename + function_name_len, rename_len - function_name_len,
|
||
"__%s___XR", name);
|
||
}
|
||
else
|
||
{
|
||
const int rename_len = strlen (name) + 6;
|
||
|
||
rename = (char *) alloca (rename_len * sizeof (char));
|
||
xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
|
||
}
|
||
|
||
return ada_find_any_type_symbol (rename);
|
||
}
|
||
|
||
/* Because of GNAT encoding conventions, several GDB symbols may match a
|
||
given type name. If the type denoted by TYPE0 is to be preferred to
|
||
that of TYPE1 for purposes of type printing, return non-zero;
|
||
otherwise return 0. */
|
||
|
||
int
|
||
ada_prefer_type (struct type *type0, struct type *type1)
|
||
{
|
||
if (type1 == NULL)
|
||
return 1;
|
||
else if (type0 == NULL)
|
||
return 0;
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
|
||
return 1;
|
||
else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
|
||
return 0;
|
||
else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
|
||
return 1;
|
||
else if (ada_is_constrained_packed_array_type (type0))
|
||
return 1;
|
||
else if (ada_is_array_descriptor_type (type0)
|
||
&& !ada_is_array_descriptor_type (type1))
|
||
return 1;
|
||
else
|
||
{
|
||
const char *type0_name = type_name_no_tag (type0);
|
||
const char *type1_name = type_name_no_tag (type1);
|
||
|
||
if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
|
||
&& (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* The name of TYPE, which is either its TYPE_NAME, or, if that is
|
||
null, its TYPE_TAG_NAME. Null if TYPE is null. */
|
||
|
||
const char *
|
||
ada_type_name (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return NULL;
|
||
else if (TYPE_NAME (type) != NULL)
|
||
return TYPE_NAME (type);
|
||
else
|
||
return TYPE_TAG_NAME (type);
|
||
}
|
||
|
||
/* Search the list of "descriptive" types associated to TYPE for a type
|
||
whose name is NAME. */
|
||
|
||
static struct type *
|
||
find_parallel_type_by_descriptive_type (struct type *type, const char *name)
|
||
{
|
||
struct type *result, *tmp;
|
||
|
||
if (ada_ignore_descriptive_types_p)
|
||
return NULL;
|
||
|
||
/* If there no descriptive-type info, then there is no parallel type
|
||
to be found. */
|
||
if (!HAVE_GNAT_AUX_INFO (type))
|
||
return NULL;
|
||
|
||
result = TYPE_DESCRIPTIVE_TYPE (type);
|
||
while (result != NULL)
|
||
{
|
||
const char *result_name = ada_type_name (result);
|
||
|
||
if (result_name == NULL)
|
||
{
|
||
warning (_("unexpected null name on descriptive type"));
|
||
return NULL;
|
||
}
|
||
|
||
/* If the names match, stop. */
|
||
if (strcmp (result_name, name) == 0)
|
||
break;
|
||
|
||
/* Otherwise, look at the next item on the list, if any. */
|
||
if (HAVE_GNAT_AUX_INFO (result))
|
||
tmp = TYPE_DESCRIPTIVE_TYPE (result);
|
||
else
|
||
tmp = NULL;
|
||
|
||
/* If not found either, try after having resolved the typedef. */
|
||
if (tmp != NULL)
|
||
result = tmp;
|
||
else
|
||
{
|
||
result = check_typedef (result);
|
||
if (HAVE_GNAT_AUX_INFO (result))
|
||
result = TYPE_DESCRIPTIVE_TYPE (result);
|
||
else
|
||
result = NULL;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find a match, see whether this is a packed array. With
|
||
older compilers, the descriptive type information is either absent or
|
||
irrelevant when it comes to packed arrays so the above lookup fails.
|
||
Fall back to using a parallel lookup by name in this case. */
|
||
if (result == NULL && ada_is_constrained_packed_array_type (type))
|
||
return ada_find_any_type (name);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Find a parallel type to TYPE with the specified NAME, using the
|
||
descriptive type taken from the debugging information, if available,
|
||
and otherwise using the (slower) name-based method. */
|
||
|
||
static struct type *
|
||
ada_find_parallel_type_with_name (struct type *type, const char *name)
|
||
{
|
||
struct type *result = NULL;
|
||
|
||
if (HAVE_GNAT_AUX_INFO (type))
|
||
result = find_parallel_type_by_descriptive_type (type, name);
|
||
else
|
||
result = ada_find_any_type (name);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Same as above, but specify the name of the parallel type by appending
|
||
SUFFIX to the name of TYPE. */
|
||
|
||
struct type *
|
||
ada_find_parallel_type (struct type *type, const char *suffix)
|
||
{
|
||
char *name;
|
||
const char *type_name = ada_type_name (type);
|
||
int len;
|
||
|
||
if (type_name == NULL)
|
||
return NULL;
|
||
|
||
len = strlen (type_name);
|
||
|
||
name = (char *) alloca (len + strlen (suffix) + 1);
|
||
|
||
strcpy (name, type_name);
|
||
strcpy (name + len, suffix);
|
||
|
||
return ada_find_parallel_type_with_name (type, name);
|
||
}
|
||
|
||
/* If TYPE is a variable-size record type, return the corresponding template
|
||
type describing its fields. Otherwise, return NULL. */
|
||
|
||
static struct type *
|
||
dynamic_template_type (struct type *type)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
|| ada_type_name (type) == NULL)
|
||
return NULL;
|
||
else
|
||
{
|
||
int len = strlen (ada_type_name (type));
|
||
|
||
if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
|
||
return type;
|
||
else
|
||
return ada_find_parallel_type (type, "___XVE");
|
||
}
|
||
}
|
||
|
||
/* Assuming that TEMPL_TYPE is a union or struct type, returns
|
||
non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
|
||
|
||
static int
|
||
is_dynamic_field (struct type *templ_type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (templ_type, field_num);
|
||
|
||
return name != NULL
|
||
&& TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
|
||
&& strstr (name, "___XVL") != NULL;
|
||
}
|
||
|
||
/* The index of the variant field of TYPE, or -1 if TYPE does not
|
||
represent a variant record type. */
|
||
|
||
static int
|
||
variant_field_index (struct type *type)
|
||
{
|
||
int f;
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
||
return -1;
|
||
|
||
for (f = 0; f < TYPE_NFIELDS (type); f += 1)
|
||
{
|
||
if (ada_is_variant_part (type, f))
|
||
return f;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* A record type with no fields. */
|
||
|
||
static struct type *
|
||
empty_record (struct type *templ)
|
||
{
|
||
struct type *type = alloc_type_copy (templ);
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
TYPE_NFIELDS (type) = 0;
|
||
TYPE_FIELDS (type) = NULL;
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
TYPE_NAME (type) = "<empty>";
|
||
TYPE_TAG_NAME (type) = NULL;
|
||
TYPE_LENGTH (type) = 0;
|
||
return type;
|
||
}
|
||
|
||
/* An ordinary record type (with fixed-length fields) that describes
|
||
the value of type TYPE at VALADDR or ADDRESS (see comments at
|
||
the beginning of this section) VAL according to GNAT conventions.
|
||
DVAL0 should describe the (portion of a) record that contains any
|
||
necessary discriminants. It should be NULL if value_type (VAL) is
|
||
an outer-level type (i.e., as opposed to a branch of a variant.) A
|
||
variant field (unless unchecked) is replaced by a particular branch
|
||
of the variant.
|
||
|
||
If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
|
||
length are not statically known are discarded. As a consequence,
|
||
VALADDR, ADDRESS and DVAL0 are ignored.
|
||
|
||
NOTE: Limitations: For now, we assume that dynamic fields and
|
||
variants occupy whole numbers of bytes. However, they need not be
|
||
byte-aligned. */
|
||
|
||
struct type *
|
||
ada_template_to_fixed_record_type_1 (struct type *type,
|
||
const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval0,
|
||
int keep_dynamic_fields)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
struct value *dval;
|
||
struct type *rtype;
|
||
int nfields, bit_len;
|
||
int variant_field;
|
||
long off;
|
||
int fld_bit_len;
|
||
int f;
|
||
|
||
/* Compute the number of fields in this record type that are going
|
||
to be processed: unless keep_dynamic_fields, this includes only
|
||
fields whose position and length are static will be processed. */
|
||
if (keep_dynamic_fields)
|
||
nfields = TYPE_NFIELDS (type);
|
||
else
|
||
{
|
||
nfields = 0;
|
||
while (nfields < TYPE_NFIELDS (type)
|
||
&& !ada_is_variant_part (type, nfields)
|
||
&& !is_dynamic_field (type, nfields))
|
||
nfields++;
|
||
}
|
||
|
||
rtype = alloc_type_copy (type);
|
||
TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
|
||
INIT_CPLUS_SPECIFIC (rtype);
|
||
TYPE_NFIELDS (rtype) = nfields;
|
||
TYPE_FIELDS (rtype) = (struct field *)
|
||
TYPE_ALLOC (rtype, nfields * sizeof (struct field));
|
||
memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
|
||
TYPE_NAME (rtype) = ada_type_name (type);
|
||
TYPE_TAG_NAME (rtype) = NULL;
|
||
TYPE_FIXED_INSTANCE (rtype) = 1;
|
||
|
||
off = 0;
|
||
bit_len = 0;
|
||
variant_field = -1;
|
||
|
||
for (f = 0; f < nfields; f += 1)
|
||
{
|
||
off = align_value (off, field_alignment (type, f))
|
||
+ TYPE_FIELD_BITPOS (type, f);
|
||
SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
|
||
TYPE_FIELD_BITSIZE (rtype, f) = 0;
|
||
|
||
if (ada_is_variant_part (type, f))
|
||
{
|
||
variant_field = f;
|
||
fld_bit_len = 0;
|
||
}
|
||
else if (is_dynamic_field (type, f))
|
||
{
|
||
const gdb_byte *field_valaddr = valaddr;
|
||
CORE_ADDR field_address = address;
|
||
struct type *field_type =
|
||
TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
|
||
|
||
if (dval0 == NULL)
|
||
{
|
||
/* rtype's length is computed based on the run-time
|
||
value of discriminants. If the discriminants are not
|
||
initialized, the type size may be completely bogus and
|
||
GDB may fail to allocate a value for it. So check the
|
||
size first before creating the value. */
|
||
ada_ensure_varsize_limit (rtype);
|
||
/* Using plain value_from_contents_and_address here
|
||
causes problems because we will end up trying to
|
||
resolve a type that is currently being
|
||
constructed. */
|
||
dval = value_from_contents_and_address_unresolved (rtype,
|
||
valaddr,
|
||
address);
|
||
rtype = value_type (dval);
|
||
}
|
||
else
|
||
dval = dval0;
|
||
|
||
/* If the type referenced by this field is an aligner type, we need
|
||
to unwrap that aligner type, because its size might not be set.
|
||
Keeping the aligner type would cause us to compute the wrong
|
||
size for this field, impacting the offset of the all the fields
|
||
that follow this one. */
|
||
if (ada_is_aligner_type (field_type))
|
||
{
|
||
long field_offset = TYPE_FIELD_BITPOS (field_type, f);
|
||
|
||
field_valaddr = cond_offset_host (field_valaddr, field_offset);
|
||
field_address = cond_offset_target (field_address, field_offset);
|
||
field_type = ada_aligned_type (field_type);
|
||
}
|
||
|
||
field_valaddr = cond_offset_host (field_valaddr,
|
||
off / TARGET_CHAR_BIT);
|
||
field_address = cond_offset_target (field_address,
|
||
off / TARGET_CHAR_BIT);
|
||
|
||
/* Get the fixed type of the field. Note that, in this case,
|
||
we do not want to get the real type out of the tag: if
|
||
the current field is the parent part of a tagged record,
|
||
we will get the tag of the object. Clearly wrong: the real
|
||
type of the parent is not the real type of the child. We
|
||
would end up in an infinite loop. */
|
||
field_type = ada_get_base_type (field_type);
|
||
field_type = ada_to_fixed_type (field_type, field_valaddr,
|
||
field_address, dval, 0);
|
||
/* If the field size is already larger than the maximum
|
||
object size, then the record itself will necessarily
|
||
be larger than the maximum object size. We need to make
|
||
this check now, because the size might be so ridiculously
|
||
large (due to an uninitialized variable in the inferior)
|
||
that it would cause an overflow when adding it to the
|
||
record size. */
|
||
ada_ensure_varsize_limit (field_type);
|
||
|
||
TYPE_FIELD_TYPE (rtype, f) = field_type;
|
||
TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
|
||
/* The multiplication can potentially overflow. But because
|
||
the field length has been size-checked just above, and
|
||
assuming that the maximum size is a reasonable value,
|
||
an overflow should not happen in practice. So rather than
|
||
adding overflow recovery code to this already complex code,
|
||
we just assume that it's not going to happen. */
|
||
fld_bit_len =
|
||
TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
/* Note: If this field's type is a typedef, it is important
|
||
to preserve the typedef layer.
|
||
|
||
Otherwise, we might be transforming a typedef to a fat
|
||
pointer (encoding a pointer to an unconstrained array),
|
||
into a basic fat pointer (encoding an unconstrained
|
||
array). As both types are implemented using the same
|
||
structure, the typedef is the only clue which allows us
|
||
to distinguish between the two options. Stripping it
|
||
would prevent us from printing this field appropriately. */
|
||
TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
|
||
TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
|
||
if (TYPE_FIELD_BITSIZE (type, f) > 0)
|
||
fld_bit_len =
|
||
TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
|
||
else
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, f);
|
||
|
||
/* We need to be careful of typedefs when computing
|
||
the length of our field. If this is a typedef,
|
||
get the length of the target type, not the length
|
||
of the typedef. */
|
||
if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
|
||
field_type = ada_typedef_target_type (field_type);
|
||
|
||
fld_bit_len =
|
||
TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
|
||
}
|
||
}
|
||
if (off + fld_bit_len > bit_len)
|
||
bit_len = off + fld_bit_len;
|
||
off += fld_bit_len;
|
||
TYPE_LENGTH (rtype) =
|
||
align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
|
||
}
|
||
|
||
/* We handle the variant part, if any, at the end because of certain
|
||
odd cases in which it is re-ordered so as NOT to be the last field of
|
||
the record. This can happen in the presence of representation
|
||
clauses. */
|
||
if (variant_field >= 0)
|
||
{
|
||
struct type *branch_type;
|
||
|
||
off = TYPE_FIELD_BITPOS (rtype, variant_field);
|
||
|
||
if (dval0 == NULL)
|
||
{
|
||
/* Using plain value_from_contents_and_address here causes
|
||
problems because we will end up trying to resolve a type
|
||
that is currently being constructed. */
|
||
dval = value_from_contents_and_address_unresolved (rtype, valaddr,
|
||
address);
|
||
rtype = value_type (dval);
|
||
}
|
||
else
|
||
dval = dval0;
|
||
|
||
branch_type =
|
||
to_fixed_variant_branch_type
|
||
(TYPE_FIELD_TYPE (type, variant_field),
|
||
cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
|
||
cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
|
||
if (branch_type == NULL)
|
||
{
|
||
for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
|
||
TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
|
||
TYPE_NFIELDS (rtype) -= 1;
|
||
}
|
||
else
|
||
{
|
||
TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
|
||
TYPE_FIELD_NAME (rtype, variant_field) = "S";
|
||
fld_bit_len =
|
||
TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
|
||
TARGET_CHAR_BIT;
|
||
if (off + fld_bit_len > bit_len)
|
||
bit_len = off + fld_bit_len;
|
||
TYPE_LENGTH (rtype) =
|
||
align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
|
||
}
|
||
}
|
||
|
||
/* According to exp_dbug.ads, the size of TYPE for variable-size records
|
||
should contain the alignment of that record, which should be a strictly
|
||
positive value. If null or negative, then something is wrong, most
|
||
probably in the debug info. In that case, we don't round up the size
|
||
of the resulting type. If this record is not part of another structure,
|
||
the current RTYPE length might be good enough for our purposes. */
|
||
if (TYPE_LENGTH (type) <= 0)
|
||
{
|
||
if (TYPE_NAME (rtype))
|
||
warning (_("Invalid type size for `%s' detected: %d."),
|
||
TYPE_NAME (rtype), TYPE_LENGTH (type));
|
||
else
|
||
warning (_("Invalid type size for <unnamed> detected: %d."),
|
||
TYPE_LENGTH (type));
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
value_free_to_mark (mark);
|
||
if (TYPE_LENGTH (rtype) > varsize_limit)
|
||
error (_("record type with dynamic size is larger than varsize-limit"));
|
||
return rtype;
|
||
}
|
||
|
||
/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
|
||
of 1. */
|
||
|
||
static struct type *
|
||
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval0)
|
||
{
|
||
return ada_template_to_fixed_record_type_1 (type, valaddr,
|
||
address, dval0, 1);
|
||
}
|
||
|
||
/* An ordinary record type in which ___XVL-convention fields and
|
||
___XVU- and ___XVN-convention field types in TYPE0 are replaced with
|
||
static approximations, containing all possible fields. Uses
|
||
no runtime values. Useless for use in values, but that's OK,
|
||
since the results are used only for type determinations. Works on both
|
||
structs and unions. Representation note: to save space, we memorize
|
||
the result of this function in the TYPE_TARGET_TYPE of the
|
||
template type. */
|
||
|
||
static struct type *
|
||
template_to_static_fixed_type (struct type *type0)
|
||
{
|
||
struct type *type;
|
||
int nfields;
|
||
int f;
|
||
|
||
/* No need no do anything if the input type is already fixed. */
|
||
if (TYPE_FIXED_INSTANCE (type0))
|
||
return type0;
|
||
|
||
/* Likewise if we already have computed the static approximation. */
|
||
if (TYPE_TARGET_TYPE (type0) != NULL)
|
||
return TYPE_TARGET_TYPE (type0);
|
||
|
||
/* Don't clone TYPE0 until we are sure we are going to need a copy. */
|
||
type = type0;
|
||
nfields = TYPE_NFIELDS (type0);
|
||
|
||
/* Whether or not we cloned TYPE0, cache the result so that we don't do
|
||
recompute all over next time. */
|
||
TYPE_TARGET_TYPE (type0) = type;
|
||
|
||
for (f = 0; f < nfields; f += 1)
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type0, f);
|
||
struct type *new_type;
|
||
|
||
if (is_dynamic_field (type0, f))
|
||
{
|
||
field_type = ada_check_typedef (field_type);
|
||
new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
|
||
}
|
||
else
|
||
new_type = static_unwrap_type (field_type);
|
||
|
||
if (new_type != field_type)
|
||
{
|
||
/* Clone TYPE0 only the first time we get a new field type. */
|
||
if (type == type0)
|
||
{
|
||
TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
|
||
TYPE_CODE (type) = TYPE_CODE (type0);
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
TYPE_ALLOC (type, nfields * sizeof (struct field));
|
||
memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
|
||
sizeof (struct field) * nfields);
|
||
TYPE_NAME (type) = ada_type_name (type0);
|
||
TYPE_TAG_NAME (type) = NULL;
|
||
TYPE_FIXED_INSTANCE (type) = 1;
|
||
TYPE_LENGTH (type) = 0;
|
||
}
|
||
TYPE_FIELD_TYPE (type, f) = new_type;
|
||
TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
|
||
}
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Given an object of type TYPE whose contents are at VALADDR and
|
||
whose address in memory is ADDRESS, returns a revision of TYPE,
|
||
which should be a non-dynamic-sized record, in which the variant
|
||
part, if any, is replaced with the appropriate branch. Looks
|
||
for discriminant values in DVAL0, which can be NULL if the record
|
||
contains the necessary discriminant values. */
|
||
|
||
static struct type *
|
||
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval0)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
struct value *dval;
|
||
struct type *rtype;
|
||
struct type *branch_type;
|
||
int nfields = TYPE_NFIELDS (type);
|
||
int variant_field = variant_field_index (type);
|
||
|
||
if (variant_field == -1)
|
||
return type;
|
||
|
||
if (dval0 == NULL)
|
||
{
|
||
dval = value_from_contents_and_address (type, valaddr, address);
|
||
type = value_type (dval);
|
||
}
|
||
else
|
||
dval = dval0;
|
||
|
||
rtype = alloc_type_copy (type);
|
||
TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
|
||
INIT_CPLUS_SPECIFIC (rtype);
|
||
TYPE_NFIELDS (rtype) = nfields;
|
||
TYPE_FIELDS (rtype) =
|
||
(struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
|
||
memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
|
||
sizeof (struct field) * nfields);
|
||
TYPE_NAME (rtype) = ada_type_name (type);
|
||
TYPE_TAG_NAME (rtype) = NULL;
|
||
TYPE_FIXED_INSTANCE (rtype) = 1;
|
||
TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
|
||
|
||
branch_type = to_fixed_variant_branch_type
|
||
(TYPE_FIELD_TYPE (type, variant_field),
|
||
cond_offset_host (valaddr,
|
||
TYPE_FIELD_BITPOS (type, variant_field)
|
||
/ TARGET_CHAR_BIT),
|
||
cond_offset_target (address,
|
||
TYPE_FIELD_BITPOS (type, variant_field)
|
||
/ TARGET_CHAR_BIT), dval);
|
||
if (branch_type == NULL)
|
||
{
|
||
int f;
|
||
|
||
for (f = variant_field + 1; f < nfields; f += 1)
|
||
TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
|
||
TYPE_NFIELDS (rtype) -= 1;
|
||
}
|
||
else
|
||
{
|
||
TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
|
||
TYPE_FIELD_NAME (rtype, variant_field) = "S";
|
||
TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
|
||
TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
|
||
}
|
||
TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
|
||
|
||
value_free_to_mark (mark);
|
||
return rtype;
|
||
}
|
||
|
||
/* An ordinary record type (with fixed-length fields) that describes
|
||
the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
|
||
beginning of this section]. Any necessary discriminants' values
|
||
should be in DVAL, a record value; it may be NULL if the object
|
||
at ADDR itself contains any necessary discriminant values.
|
||
Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
|
||
values from the record are needed. Except in the case that DVAL,
|
||
VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
|
||
unchecked) is replaced by a particular branch of the variant.
|
||
|
||
NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
|
||
is questionable and may be removed. It can arise during the
|
||
processing of an unconstrained-array-of-record type where all the
|
||
variant branches have exactly the same size. This is because in
|
||
such cases, the compiler does not bother to use the XVS convention
|
||
when encoding the record. I am currently dubious of this
|
||
shortcut and suspect the compiler should be altered. FIXME. */
|
||
|
||
static struct type *
|
||
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval)
|
||
{
|
||
struct type *templ_type;
|
||
|
||
if (TYPE_FIXED_INSTANCE (type0))
|
||
return type0;
|
||
|
||
templ_type = dynamic_template_type (type0);
|
||
|
||
if (templ_type != NULL)
|
||
return template_to_fixed_record_type (templ_type, valaddr, address, dval);
|
||
else if (variant_field_index (type0) >= 0)
|
||
{
|
||
if (dval == NULL && valaddr == NULL && address == 0)
|
||
return type0;
|
||
return to_record_with_fixed_variant_part (type0, valaddr, address,
|
||
dval);
|
||
}
|
||
else
|
||
{
|
||
TYPE_FIXED_INSTANCE (type0) = 1;
|
||
return type0;
|
||
}
|
||
|
||
}
|
||
|
||
/* An ordinary record type (with fixed-length fields) that describes
|
||
the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
|
||
union type. Any necessary discriminants' values should be in DVAL,
|
||
a record value. That is, this routine selects the appropriate
|
||
branch of the union at ADDR according to the discriminant value
|
||
indicated in the union's type name. Returns VAR_TYPE0 itself if
|
||
it represents a variant subject to a pragma Unchecked_Union. */
|
||
|
||
static struct type *
|
||
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval)
|
||
{
|
||
int which;
|
||
struct type *templ_type;
|
||
struct type *var_type;
|
||
|
||
if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
|
||
var_type = TYPE_TARGET_TYPE (var_type0);
|
||
else
|
||
var_type = var_type0;
|
||
|
||
templ_type = ada_find_parallel_type (var_type, "___XVU");
|
||
|
||
if (templ_type != NULL)
|
||
var_type = templ_type;
|
||
|
||
if (is_unchecked_variant (var_type, value_type (dval)))
|
||
return var_type0;
|
||
which =
|
||
ada_which_variant_applies (var_type,
|
||
value_type (dval), value_contents (dval));
|
||
|
||
if (which < 0)
|
||
return empty_record (var_type);
|
||
else if (is_dynamic_field (var_type, which))
|
||
return to_fixed_record_type
|
||
(TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
|
||
valaddr, address, dval);
|
||
else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
|
||
return
|
||
to_fixed_record_type
|
||
(TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
|
||
else
|
||
return TYPE_FIELD_TYPE (var_type, which);
|
||
}
|
||
|
||
/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
|
||
ENCODING_TYPE, a type following the GNAT conventions for discrete
|
||
type encodings, only carries redundant information. */
|
||
|
||
static int
|
||
ada_is_redundant_range_encoding (struct type *range_type,
|
||
struct type *encoding_type)
|
||
{
|
||
struct type *fixed_range_type;
|
||
const char *bounds_str;
|
||
int n;
|
||
LONGEST lo, hi;
|
||
|
||
gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
|
||
|
||
if (TYPE_CODE (get_base_type (range_type))
|
||
!= TYPE_CODE (get_base_type (encoding_type)))
|
||
{
|
||
/* The compiler probably used a simple base type to describe
|
||
the range type instead of the range's actual base type,
|
||
expecting us to get the real base type from the encoding
|
||
anyway. In this situation, the encoding cannot be ignored
|
||
as redundant. */
|
||
return 0;
|
||
}
|
||
|
||
if (is_dynamic_type (range_type))
|
||
return 0;
|
||
|
||
if (TYPE_NAME (encoding_type) == NULL)
|
||
return 0;
|
||
|
||
bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
|
||
if (bounds_str == NULL)
|
||
return 0;
|
||
|
||
n = 8; /* Skip "___XDLU_". */
|
||
if (!ada_scan_number (bounds_str, n, &lo, &n))
|
||
return 0;
|
||
if (TYPE_LOW_BOUND (range_type) != lo)
|
||
return 0;
|
||
|
||
n += 2; /* Skip the "__" separator between the two bounds. */
|
||
if (!ada_scan_number (bounds_str, n, &hi, &n))
|
||
return 0;
|
||
if (TYPE_HIGH_BOUND (range_type) != hi)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
|
||
a type following the GNAT encoding for describing array type
|
||
indices, only carries redundant information. */
|
||
|
||
static int
|
||
ada_is_redundant_index_type_desc (struct type *array_type,
|
||
struct type *desc_type)
|
||
{
|
||
struct type *this_layer = check_typedef (array_type);
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
|
||
{
|
||
if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
|
||
TYPE_FIELD_TYPE (desc_type, i)))
|
||
return 0;
|
||
this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Assuming that TYPE0 is an array type describing the type of a value
|
||
at ADDR, and that DVAL describes a record containing any
|
||
discriminants used in TYPE0, returns a type for the value that
|
||
contains no dynamic components (that is, no components whose sizes
|
||
are determined by run-time quantities). Unless IGNORE_TOO_BIG is
|
||
true, gives an error message if the resulting type's size is over
|
||
varsize_limit. */
|
||
|
||
static struct type *
|
||
to_fixed_array_type (struct type *type0, struct value *dval,
|
||
int ignore_too_big)
|
||
{
|
||
struct type *index_type_desc;
|
||
struct type *result;
|
||
int constrained_packed_array_p;
|
||
static const char *xa_suffix = "___XA";
|
||
|
||
type0 = ada_check_typedef (type0);
|
||
if (TYPE_FIXED_INSTANCE (type0))
|
||
return type0;
|
||
|
||
constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
|
||
if (constrained_packed_array_p)
|
||
type0 = decode_constrained_packed_array_type (type0);
|
||
|
||
index_type_desc = ada_find_parallel_type (type0, xa_suffix);
|
||
|
||
/* As mentioned in exp_dbug.ads, for non bit-packed arrays an
|
||
encoding suffixed with 'P' may still be generated. If so,
|
||
it should be used to find the XA type. */
|
||
|
||
if (index_type_desc == NULL)
|
||
{
|
||
const char *type_name = ada_type_name (type0);
|
||
|
||
if (type_name != NULL)
|
||
{
|
||
const int len = strlen (type_name);
|
||
char *name = (char *) alloca (len + strlen (xa_suffix));
|
||
|
||
if (type_name[len - 1] == 'P')
|
||
{
|
||
strcpy (name, type_name);
|
||
strcpy (name + len - 1, xa_suffix);
|
||
index_type_desc = ada_find_parallel_type_with_name (type0, name);
|
||
}
|
||
}
|
||
}
|
||
|
||
ada_fixup_array_indexes_type (index_type_desc);
|
||
if (index_type_desc != NULL
|
||
&& ada_is_redundant_index_type_desc (type0, index_type_desc))
|
||
{
|
||
/* Ignore this ___XA parallel type, as it does not bring any
|
||
useful information. This allows us to avoid creating fixed
|
||
versions of the array's index types, which would be identical
|
||
to the original ones. This, in turn, can also help avoid
|
||
the creation of fixed versions of the array itself. */
|
||
index_type_desc = NULL;
|
||
}
|
||
|
||
if (index_type_desc == NULL)
|
||
{
|
||
struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
|
||
|
||
/* NOTE: elt_type---the fixed version of elt_type0---should never
|
||
depend on the contents of the array in properly constructed
|
||
debugging data. */
|
||
/* Create a fixed version of the array element type.
|
||
We're not providing the address of an element here,
|
||
and thus the actual object value cannot be inspected to do
|
||
the conversion. This should not be a problem, since arrays of
|
||
unconstrained objects are not allowed. In particular, all
|
||
the elements of an array of a tagged type should all be of
|
||
the same type specified in the debugging info. No need to
|
||
consult the object tag. */
|
||
struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
|
||
|
||
/* Make sure we always create a new array type when dealing with
|
||
packed array types, since we're going to fix-up the array
|
||
type length and element bitsize a little further down. */
|
||
if (elt_type0 == elt_type && !constrained_packed_array_p)
|
||
result = type0;
|
||
else
|
||
result = create_array_type (alloc_type_copy (type0),
|
||
elt_type, TYPE_INDEX_TYPE (type0));
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
struct type *elt_type0;
|
||
|
||
elt_type0 = type0;
|
||
for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
|
||
elt_type0 = TYPE_TARGET_TYPE (elt_type0);
|
||
|
||
/* NOTE: result---the fixed version of elt_type0---should never
|
||
depend on the contents of the array in properly constructed
|
||
debugging data. */
|
||
/* Create a fixed version of the array element type.
|
||
We're not providing the address of an element here,
|
||
and thus the actual object value cannot be inspected to do
|
||
the conversion. This should not be a problem, since arrays of
|
||
unconstrained objects are not allowed. In particular, all
|
||
the elements of an array of a tagged type should all be of
|
||
the same type specified in the debugging info. No need to
|
||
consult the object tag. */
|
||
result =
|
||
ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
|
||
|
||
elt_type0 = type0;
|
||
for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
|
||
{
|
||
struct type *range_type =
|
||
to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
|
||
|
||
result = create_array_type (alloc_type_copy (elt_type0),
|
||
result, range_type);
|
||
elt_type0 = TYPE_TARGET_TYPE (elt_type0);
|
||
}
|
||
if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
|
||
error (_("array type with dynamic size is larger than varsize-limit"));
|
||
}
|
||
|
||
/* We want to preserve the type name. This can be useful when
|
||
trying to get the type name of a value that has already been
|
||
printed (for instance, if the user did "print VAR; whatis $". */
|
||
TYPE_NAME (result) = TYPE_NAME (type0);
|
||
|
||
if (constrained_packed_array_p)
|
||
{
|
||
/* So far, the resulting type has been created as if the original
|
||
type was a regular (non-packed) array type. As a result, the
|
||
bitsize of the array elements needs to be set again, and the array
|
||
length needs to be recomputed based on that bitsize. */
|
||
int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
|
||
int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
|
||
|
||
TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
|
||
TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
|
||
if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
|
||
TYPE_LENGTH (result)++;
|
||
}
|
||
|
||
TYPE_FIXED_INSTANCE (result) = 1;
|
||
return result;
|
||
}
|
||
|
||
|
||
/* A standard type (containing no dynamically sized components)
|
||
corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
|
||
DVAL describes a record containing any discriminants used in TYPE0,
|
||
and may be NULL if there are none, or if the object of type TYPE at
|
||
ADDRESS or in VALADDR contains these discriminants.
|
||
|
||
If CHECK_TAG is not null, in the case of tagged types, this function
|
||
attempts to locate the object's tag and use it to compute the actual
|
||
type. However, when ADDRESS is null, we cannot use it to determine the
|
||
location of the tag, and therefore compute the tagged type's actual type.
|
||
So we return the tagged type without consulting the tag. */
|
||
|
||
static struct type *
|
||
ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval, int check_tag)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
default:
|
||
return type;
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
struct type *static_type = to_static_fixed_type (type);
|
||
struct type *fixed_record_type =
|
||
to_fixed_record_type (type, valaddr, address, NULL);
|
||
|
||
/* If STATIC_TYPE is a tagged type and we know the object's address,
|
||
then we can determine its tag, and compute the object's actual
|
||
type from there. Note that we have to use the fixed record
|
||
type (the parent part of the record may have dynamic fields
|
||
and the way the location of _tag is expressed may depend on
|
||
them). */
|
||
|
||
if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
|
||
{
|
||
struct value *tag =
|
||
value_tag_from_contents_and_address
|
||
(fixed_record_type,
|
||
valaddr,
|
||
address);
|
||
struct type *real_type = type_from_tag (tag);
|
||
struct value *obj =
|
||
value_from_contents_and_address (fixed_record_type,
|
||
valaddr,
|
||
address);
|
||
fixed_record_type = value_type (obj);
|
||
if (real_type != NULL)
|
||
return to_fixed_record_type
|
||
(real_type, NULL,
|
||
value_address (ada_tag_value_at_base_address (obj)), NULL);
|
||
}
|
||
|
||
/* Check to see if there is a parallel ___XVZ variable.
|
||
If there is, then it provides the actual size of our type. */
|
||
else if (ada_type_name (fixed_record_type) != NULL)
|
||
{
|
||
const char *name = ada_type_name (fixed_record_type);
|
||
char *xvz_name
|
||
= (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
|
||
int xvz_found = 0;
|
||
LONGEST size;
|
||
|
||
xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
|
||
size = get_int_var_value (xvz_name, &xvz_found);
|
||
if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
|
||
{
|
||
fixed_record_type = copy_type (fixed_record_type);
|
||
TYPE_LENGTH (fixed_record_type) = size;
|
||
|
||
/* The FIXED_RECORD_TYPE may have be a stub. We have
|
||
observed this when the debugging info is STABS, and
|
||
apparently it is something that is hard to fix.
|
||
|
||
In practice, we don't need the actual type definition
|
||
at all, because the presence of the XVZ variable allows us
|
||
to assume that there must be a XVS type as well, which we
|
||
should be able to use later, when we need the actual type
|
||
definition.
|
||
|
||
In the meantime, pretend that the "fixed" type we are
|
||
returning is NOT a stub, because this can cause trouble
|
||
when using this type to create new types targeting it.
|
||
Indeed, the associated creation routines often check
|
||
whether the target type is a stub and will try to replace
|
||
it, thus using a type with the wrong size. This, in turn,
|
||
might cause the new type to have the wrong size too.
|
||
Consider the case of an array, for instance, where the size
|
||
of the array is computed from the number of elements in
|
||
our array multiplied by the size of its element. */
|
||
TYPE_STUB (fixed_record_type) = 0;
|
||
}
|
||
}
|
||
return fixed_record_type;
|
||
}
|
||
case TYPE_CODE_ARRAY:
|
||
return to_fixed_array_type (type, dval, 1);
|
||
case TYPE_CODE_UNION:
|
||
if (dval == NULL)
|
||
return type;
|
||
else
|
||
return to_fixed_variant_branch_type (type, valaddr, address, dval);
|
||
}
|
||
}
|
||
|
||
/* The same as ada_to_fixed_type_1, except that it preserves the type
|
||
if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
|
||
|
||
The typedef layer needs be preserved in order to differentiate between
|
||
arrays and array pointers when both types are implemented using the same
|
||
fat pointer. In the array pointer case, the pointer is encoded as
|
||
a typedef of the pointer type. For instance, considering:
|
||
|
||
type String_Access is access String;
|
||
S1 : String_Access := null;
|
||
|
||
To the debugger, S1 is defined as a typedef of type String. But
|
||
to the user, it is a pointer. So if the user tries to print S1,
|
||
we should not dereference the array, but print the array address
|
||
instead.
|
||
|
||
If we didn't preserve the typedef layer, we would lose the fact that
|
||
the type is to be presented as a pointer (needs de-reference before
|
||
being printed). And we would also use the source-level type name. */
|
||
|
||
struct type *
|
||
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct value *dval, int check_tag)
|
||
|
||
{
|
||
struct type *fixed_type =
|
||
ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
|
||
|
||
/* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
|
||
then preserve the typedef layer.
|
||
|
||
Implementation note: We can only check the main-type portion of
|
||
the TYPE and FIXED_TYPE, because eliminating the typedef layer
|
||
from TYPE now returns a type that has the same instance flags
|
||
as TYPE. For instance, if TYPE is a "typedef const", and its
|
||
target type is a "struct", then the typedef elimination will return
|
||
a "const" version of the target type. See check_typedef for more
|
||
details about how the typedef layer elimination is done.
|
||
|
||
brobecker/2010-11-19: It seems to me that the only case where it is
|
||
useful to preserve the typedef layer is when dealing with fat pointers.
|
||
Perhaps, we could add a check for that and preserve the typedef layer
|
||
only in that situation. But this seems unecessary so far, probably
|
||
because we call check_typedef/ada_check_typedef pretty much everywhere.
|
||
*/
|
||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
|
||
&& (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
|
||
== TYPE_MAIN_TYPE (fixed_type)))
|
||
return type;
|
||
|
||
return fixed_type;
|
||
}
|
||
|
||
/* A standard (static-sized) type corresponding as well as possible to
|
||
TYPE0, but based on no runtime data. */
|
||
|
||
static struct type *
|
||
to_static_fixed_type (struct type *type0)
|
||
{
|
||
struct type *type;
|
||
|
||
if (type0 == NULL)
|
||
return NULL;
|
||
|
||
if (TYPE_FIXED_INSTANCE (type0))
|
||
return type0;
|
||
|
||
type0 = ada_check_typedef (type0);
|
||
|
||
switch (TYPE_CODE (type0))
|
||
{
|
||
default:
|
||
return type0;
|
||
case TYPE_CODE_STRUCT:
|
||
type = dynamic_template_type (type0);
|
||
if (type != NULL)
|
||
return template_to_static_fixed_type (type);
|
||
else
|
||
return template_to_static_fixed_type (type0);
|
||
case TYPE_CODE_UNION:
|
||
type = ada_find_parallel_type (type0, "___XVU");
|
||
if (type != NULL)
|
||
return template_to_static_fixed_type (type);
|
||
else
|
||
return template_to_static_fixed_type (type0);
|
||
}
|
||
}
|
||
|
||
/* A static approximation of TYPE with all type wrappers removed. */
|
||
|
||
static struct type *
|
||
static_unwrap_type (struct type *type)
|
||
{
|
||
if (ada_is_aligner_type (type))
|
||
{
|
||
struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
|
||
if (ada_type_name (type1) == NULL)
|
||
TYPE_NAME (type1) = ada_type_name (type);
|
||
|
||
return static_unwrap_type (type1);
|
||
}
|
||
else
|
||
{
|
||
struct type *raw_real_type = ada_get_base_type (type);
|
||
|
||
if (raw_real_type == type)
|
||
return type;
|
||
else
|
||
return to_static_fixed_type (raw_real_type);
|
||
}
|
||
}
|
||
|
||
/* In some cases, incomplete and private types require
|
||
cross-references that are not resolved as records (for example,
|
||
type Foo;
|
||
type FooP is access Foo;
|
||
V: FooP;
|
||
type Foo is array ...;
|
||
). In these cases, since there is no mechanism for producing
|
||
cross-references to such types, we instead substitute for FooP a
|
||
stub enumeration type that is nowhere resolved, and whose tag is
|
||
the name of the actual type. Call these types "non-record stubs". */
|
||
|
||
/* A type equivalent to TYPE that is not a non-record stub, if one
|
||
exists, otherwise TYPE. */
|
||
|
||
struct type *
|
||
ada_check_typedef (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return NULL;
|
||
|
||
/* If our type is a typedef type of a fat pointer, then we're done.
|
||
We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
|
||
what allows us to distinguish between fat pointers that represent
|
||
array types, and fat pointers that represent array access types
|
||
(in both cases, the compiler implements them as fat pointers). */
|
||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
|
||
&& is_thick_pntr (ada_typedef_target_type (type)))
|
||
return type;
|
||
|
||
type = check_typedef (type);
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
|
||
|| !TYPE_STUB (type)
|
||
|| TYPE_TAG_NAME (type) == NULL)
|
||
return type;
|
||
else
|
||
{
|
||
const char *name = TYPE_TAG_NAME (type);
|
||
struct type *type1 = ada_find_any_type (name);
|
||
|
||
if (type1 == NULL)
|
||
return type;
|
||
|
||
/* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
|
||
stubs pointing to arrays, as we don't create symbols for array
|
||
types, only for the typedef-to-array types). If that's the case,
|
||
strip the typedef layer. */
|
||
if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
|
||
type1 = ada_check_typedef (type1);
|
||
|
||
return type1;
|
||
}
|
||
}
|
||
|
||
/* A value representing the data at VALADDR/ADDRESS as described by
|
||
type TYPE0, but with a standard (static-sized) type that correctly
|
||
describes it. If VAL0 is not NULL and TYPE0 already is a standard
|
||
type, then return VAL0 [this feature is simply to avoid redundant
|
||
creation of struct values]. */
|
||
|
||
static struct value *
|
||
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
|
||
struct value *val0)
|
||
{
|
||
struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
|
||
|
||
if (type == type0 && val0 != NULL)
|
||
return val0;
|
||
else
|
||
return value_from_contents_and_address (type, 0, address);
|
||
}
|
||
|
||
/* A value representing VAL, but with a standard (static-sized) type
|
||
that correctly describes it. Does not necessarily create a new
|
||
value. */
|
||
|
||
struct value *
|
||
ada_to_fixed_value (struct value *val)
|
||
{
|
||
val = unwrap_value (val);
|
||
val = ada_to_fixed_value_create (value_type (val),
|
||
value_address (val),
|
||
val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Attributes */
|
||
|
||
/* Table mapping attribute numbers to names.
|
||
NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
|
||
|
||
static const char *attribute_names[] = {
|
||
"<?>",
|
||
|
||
"first",
|
||
"last",
|
||
"length",
|
||
"image",
|
||
"max",
|
||
"min",
|
||
"modulus",
|
||
"pos",
|
||
"size",
|
||
"tag",
|
||
"val",
|
||
0
|
||
};
|
||
|
||
const char *
|
||
ada_attribute_name (enum exp_opcode n)
|
||
{
|
||
if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
|
||
return attribute_names[n - OP_ATR_FIRST + 1];
|
||
else
|
||
return attribute_names[0];
|
||
}
|
||
|
||
/* Evaluate the 'POS attribute applied to ARG. */
|
||
|
||
static LONGEST
|
||
pos_atr (struct value *arg)
|
||
{
|
||
struct value *val = coerce_ref (arg);
|
||
struct type *type = value_type (val);
|
||
LONGEST result;
|
||
|
||
if (!discrete_type_p (type))
|
||
error (_("'POS only defined on discrete types"));
|
||
|
||
if (!discrete_position (type, value_as_long (val), &result))
|
||
error (_("enumeration value is invalid: can't find 'POS"));
|
||
|
||
return result;
|
||
}
|
||
|
||
static struct value *
|
||
value_pos_atr (struct type *type, struct value *arg)
|
||
{
|
||
return value_from_longest (type, pos_atr (arg));
|
||
}
|
||
|
||
/* Evaluate the TYPE'VAL attribute applied to ARG. */
|
||
|
||
static struct value *
|
||
value_val_atr (struct type *type, struct value *arg)
|
||
{
|
||
if (!discrete_type_p (type))
|
||
error (_("'VAL only defined on discrete types"));
|
||
if (!integer_type_p (value_type (arg)))
|
||
error (_("'VAL requires integral argument"));
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ENUM)
|
||
{
|
||
long pos = value_as_long (arg);
|
||
|
||
if (pos < 0 || pos >= TYPE_NFIELDS (type))
|
||
error (_("argument to 'VAL out of range"));
|
||
return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
|
||
}
|
||
else
|
||
return value_from_longest (type, value_as_long (arg));
|
||
}
|
||
|
||
|
||
/* Evaluation */
|
||
|
||
/* True if TYPE appears to be an Ada character type.
|
||
[At the moment, this is true only for Character and Wide_Character;
|
||
It is a heuristic test that could stand improvement]. */
|
||
|
||
int
|
||
ada_is_character_type (struct type *type)
|
||
{
|
||
const char *name;
|
||
|
||
/* If the type code says it's a character, then assume it really is,
|
||
and don't check any further. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_CHAR)
|
||
return 1;
|
||
|
||
/* Otherwise, assume it's a character type iff it is a discrete type
|
||
with a known character type name. */
|
||
name = ada_type_name (type);
|
||
return (name != NULL
|
||
&& (TYPE_CODE (type) == TYPE_CODE_INT
|
||
|| TYPE_CODE (type) == TYPE_CODE_RANGE)
|
||
&& (strcmp (name, "character") == 0
|
||
|| strcmp (name, "wide_character") == 0
|
||
|| strcmp (name, "wide_wide_character") == 0
|
||
|| strcmp (name, "unsigned char") == 0));
|
||
}
|
||
|
||
/* True if TYPE appears to be an Ada string type. */
|
||
|
||
int
|
||
ada_is_string_type (struct type *type)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
if (type != NULL
|
||
&& TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& (ada_is_simple_array_type (type)
|
||
|| ada_is_array_descriptor_type (type))
|
||
&& ada_array_arity (type) == 1)
|
||
{
|
||
struct type *elttype = ada_array_element_type (type, 1);
|
||
|
||
return ada_is_character_type (elttype);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* The compiler sometimes provides a parallel XVS type for a given
|
||
PAD type. Normally, it is safe to follow the PAD type directly,
|
||
but older versions of the compiler have a bug that causes the offset
|
||
of its "F" field to be wrong. Following that field in that case
|
||
would lead to incorrect results, but this can be worked around
|
||
by ignoring the PAD type and using the associated XVS type instead.
|
||
|
||
Set to True if the debugger should trust the contents of PAD types.
|
||
Otherwise, ignore the PAD type if there is a parallel XVS type. */
|
||
static int trust_pad_over_xvs = 1;
|
||
|
||
/* True if TYPE is a struct type introduced by the compiler to force the
|
||
alignment of a value. Such types have a single field with a
|
||
distinctive name. */
|
||
|
||
int
|
||
ada_is_aligner_type (struct type *type)
|
||
{
|
||
type = ada_check_typedef (type);
|
||
|
||
if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
|
||
return 0;
|
||
|
||
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& TYPE_NFIELDS (type) == 1
|
||
&& strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
|
||
}
|
||
|
||
/* If there is an ___XVS-convention type parallel to SUBTYPE, return
|
||
the parallel type. */
|
||
|
||
struct type *
|
||
ada_get_base_type (struct type *raw_type)
|
||
{
|
||
struct type *real_type_namer;
|
||
struct type *raw_real_type;
|
||
|
||
if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
|
||
return raw_type;
|
||
|
||
if (ada_is_aligner_type (raw_type))
|
||
/* The encoding specifies that we should always use the aligner type.
|
||
So, even if this aligner type has an associated XVS type, we should
|
||
simply ignore it.
|
||
|
||
According to the compiler gurus, an XVS type parallel to an aligner
|
||
type may exist because of a stabs limitation. In stabs, aligner
|
||
types are empty because the field has a variable-sized type, and
|
||
thus cannot actually be used as an aligner type. As a result,
|
||
we need the associated parallel XVS type to decode the type.
|
||
Since the policy in the compiler is to not change the internal
|
||
representation based on the debugging info format, we sometimes
|
||
end up having a redundant XVS type parallel to the aligner type. */
|
||
return raw_type;
|
||
|
||
real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
|
||
if (real_type_namer == NULL
|
||
|| TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
|
||
|| TYPE_NFIELDS (real_type_namer) != 1)
|
||
return raw_type;
|
||
|
||
if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
|
||
{
|
||
/* This is an older encoding form where the base type needs to be
|
||
looked up by name. We prefer the newer enconding because it is
|
||
more efficient. */
|
||
raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
|
||
if (raw_real_type == NULL)
|
||
return raw_type;
|
||
else
|
||
return raw_real_type;
|
||
}
|
||
|
||
/* The field in our XVS type is a reference to the base type. */
|
||
return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
|
||
}
|
||
|
||
/* The type of value designated by TYPE, with all aligners removed. */
|
||
|
||
struct type *
|
||
ada_aligned_type (struct type *type)
|
||
{
|
||
if (ada_is_aligner_type (type))
|
||
return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
|
||
else
|
||
return ada_get_base_type (type);
|
||
}
|
||
|
||
|
||
/* The address of the aligned value in an object at address VALADDR
|
||
having type TYPE. Assumes ada_is_aligner_type (TYPE). */
|
||
|
||
const gdb_byte *
|
||
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
|
||
{
|
||
if (ada_is_aligner_type (type))
|
||
return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
|
||
valaddr +
|
||
TYPE_FIELD_BITPOS (type,
|
||
0) / TARGET_CHAR_BIT);
|
||
else
|
||
return valaddr;
|
||
}
|
||
|
||
|
||
|
||
/* The printed representation of an enumeration literal with encoded
|
||
name NAME. The value is good to the next call of ada_enum_name. */
|
||
const char *
|
||
ada_enum_name (const char *name)
|
||
{
|
||
static char *result;
|
||
static size_t result_len = 0;
|
||
const char *tmp;
|
||
|
||
/* First, unqualify the enumeration name:
|
||
1. Search for the last '.' character. If we find one, then skip
|
||
all the preceding characters, the unqualified name starts
|
||
right after that dot.
|
||
2. Otherwise, we may be debugging on a target where the compiler
|
||
translates dots into "__". Search forward for double underscores,
|
||
but stop searching when we hit an overloading suffix, which is
|
||
of the form "__" followed by digits. */
|
||
|
||
tmp = strrchr (name, '.');
|
||
if (tmp != NULL)
|
||
name = tmp + 1;
|
||
else
|
||
{
|
||
while ((tmp = strstr (name, "__")) != NULL)
|
||
{
|
||
if (isdigit (tmp[2]))
|
||
break;
|
||
else
|
||
name = tmp + 2;
|
||
}
|
||
}
|
||
|
||
if (name[0] == 'Q')
|
||
{
|
||
int v;
|
||
|
||
if (name[1] == 'U' || name[1] == 'W')
|
||
{
|
||
if (sscanf (name + 2, "%x", &v) != 1)
|
||
return name;
|
||
}
|
||
else
|
||
return name;
|
||
|
||
GROW_VECT (result, result_len, 16);
|
||
if (isascii (v) && isprint (v))
|
||
xsnprintf (result, result_len, "'%c'", v);
|
||
else if (name[1] == 'U')
|
||
xsnprintf (result, result_len, "[\"%02x\"]", v);
|
||
else
|
||
xsnprintf (result, result_len, "[\"%04x\"]", v);
|
||
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
tmp = strstr (name, "__");
|
||
if (tmp == NULL)
|
||
tmp = strstr (name, "$");
|
||
if (tmp != NULL)
|
||
{
|
||
GROW_VECT (result, result_len, tmp - name + 1);
|
||
strncpy (result, name, tmp - name);
|
||
result[tmp - name] = '\0';
|
||
return result;
|
||
}
|
||
|
||
return name;
|
||
}
|
||
}
|
||
|
||
/* Evaluate the subexpression of EXP starting at *POS as for
|
||
evaluate_type, updating *POS to point just past the evaluated
|
||
expression. */
|
||
|
||
static struct value *
|
||
evaluate_subexp_type (struct expression *exp, int *pos)
|
||
{
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
}
|
||
|
||
/* If VAL is wrapped in an aligner or subtype wrapper, return the
|
||
value it wraps. */
|
||
|
||
static struct value *
|
||
unwrap_value (struct value *val)
|
||
{
|
||
struct type *type = ada_check_typedef (value_type (val));
|
||
|
||
if (ada_is_aligner_type (type))
|
||
{
|
||
struct value *v = ada_value_struct_elt (val, "F", 0);
|
||
struct type *val_type = ada_check_typedef (value_type (v));
|
||
|
||
if (ada_type_name (val_type) == NULL)
|
||
TYPE_NAME (val_type) = ada_type_name (type);
|
||
|
||
return unwrap_value (v);
|
||
}
|
||
else
|
||
{
|
||
struct type *raw_real_type =
|
||
ada_check_typedef (ada_get_base_type (type));
|
||
|
||
/* If there is no parallel XVS or XVE type, then the value is
|
||
already unwrapped. Return it without further modification. */
|
||
if ((type == raw_real_type)
|
||
&& ada_find_parallel_type (type, "___XVE") == NULL)
|
||
return val;
|
||
|
||
return
|
||
coerce_unspec_val_to_type
|
||
(val, ada_to_fixed_type (raw_real_type, 0,
|
||
value_address (val),
|
||
NULL, 1));
|
||
}
|
||
}
|
||
|
||
static struct value *
|
||
cast_to_fixed (struct type *type, struct value *arg)
|
||
{
|
||
LONGEST val;
|
||
|
||
if (type == value_type (arg))
|
||
return arg;
|
||
else if (ada_is_fixed_point_type (value_type (arg)))
|
||
val = ada_float_to_fixed (type,
|
||
ada_fixed_to_float (value_type (arg),
|
||
value_as_long (arg)));
|
||
else
|
||
{
|
||
DOUBLEST argd = value_as_double (arg);
|
||
|
||
val = ada_float_to_fixed (type, argd);
|
||
}
|
||
|
||
return value_from_longest (type, val);
|
||
}
|
||
|
||
static struct value *
|
||
cast_from_fixed (struct type *type, struct value *arg)
|
||
{
|
||
DOUBLEST val = ada_fixed_to_float (value_type (arg),
|
||
value_as_long (arg));
|
||
|
||
return value_from_double (type, val);
|
||
}
|
||
|
||
/* Given two array types T1 and T2, return nonzero iff both arrays
|
||
contain the same number of elements. */
|
||
|
||
static int
|
||
ada_same_array_size_p (struct type *t1, struct type *t2)
|
||
{
|
||
LONGEST lo1, hi1, lo2, hi2;
|
||
|
||
/* Get the array bounds in order to verify that the size of
|
||
the two arrays match. */
|
||
if (!get_array_bounds (t1, &lo1, &hi1)
|
||
|| !get_array_bounds (t2, &lo2, &hi2))
|
||
error (_("unable to determine array bounds"));
|
||
|
||
/* To make things easier for size comparison, normalize a bit
|
||
the case of empty arrays by making sure that the difference
|
||
between upper bound and lower bound is always -1. */
|
||
if (lo1 > hi1)
|
||
hi1 = lo1 - 1;
|
||
if (lo2 > hi2)
|
||
hi2 = lo2 - 1;
|
||
|
||
return (hi1 - lo1 == hi2 - lo2);
|
||
}
|
||
|
||
/* Assuming that VAL is an array of integrals, and TYPE represents
|
||
an array with the same number of elements, but with wider integral
|
||
elements, return an array "casted" to TYPE. In practice, this
|
||
means that the returned array is built by casting each element
|
||
of the original array into TYPE's (wider) element type. */
|
||
|
||
static struct value *
|
||
ada_promote_array_of_integrals (struct type *type, struct value *val)
|
||
{
|
||
struct type *elt_type = TYPE_TARGET_TYPE (type);
|
||
LONGEST lo, hi;
|
||
struct value *res;
|
||
LONGEST i;
|
||
|
||
/* Verify that both val and type are arrays of scalars, and
|
||
that the size of val's elements is smaller than the size
|
||
of type's element. */
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
|
||
gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
|
||
gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
|
||
gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
|
||
gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
|
||
> TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
|
||
|
||
if (!get_array_bounds (type, &lo, &hi))
|
||
error (_("unable to determine array bounds"));
|
||
|
||
res = allocate_value (type);
|
||
|
||
/* Promote each array element. */
|
||
for (i = 0; i < hi - lo + 1; i++)
|
||
{
|
||
struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
|
||
|
||
memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
|
||
value_contents_all (elt), TYPE_LENGTH (elt_type));
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
|
||
return the converted value. */
|
||
|
||
static struct value *
|
||
coerce_for_assign (struct type *type, struct value *val)
|
||
{
|
||
struct type *type2 = value_type (val);
|
||
|
||
if (type == type2)
|
||
return val;
|
||
|
||
type2 = ada_check_typedef (type2);
|
||
type = ada_check_typedef (type);
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
val = ada_value_ind (val);
|
||
type2 = value_type (val);
|
||
}
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
|
||
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
if (!ada_same_array_size_p (type, type2))
|
||
error (_("cannot assign arrays of different length"));
|
||
|
||
if (is_integral_type (TYPE_TARGET_TYPE (type))
|
||
&& is_integral_type (TYPE_TARGET_TYPE (type2))
|
||
&& TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
|
||
< TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
|
||
{
|
||
/* Allow implicit promotion of the array elements to
|
||
a wider type. */
|
||
return ada_promote_array_of_integrals (type, val);
|
||
}
|
||
|
||
if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
|
||
!= TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
|
||
error (_("Incompatible types in assignment"));
|
||
deprecated_set_value_type (val, type);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
static struct value *
|
||
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
||
{
|
||
struct value *val;
|
||
struct type *type1, *type2;
|
||
LONGEST v, v1, v2;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
arg2 = coerce_ref (arg2);
|
||
type1 = get_base_type (ada_check_typedef (value_type (arg1)));
|
||
type2 = get_base_type (ada_check_typedef (value_type (arg2)));
|
||
|
||
if (TYPE_CODE (type1) != TYPE_CODE_INT
|
||
|| TYPE_CODE (type2) != TYPE_CODE_INT)
|
||
return value_binop (arg1, arg2, op);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_MOD:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
break;
|
||
default:
|
||
return value_binop (arg1, arg2, op);
|
||
}
|
||
|
||
v2 = value_as_long (arg2);
|
||
if (v2 == 0)
|
||
error (_("second operand of %s must not be zero."), op_string (op));
|
||
|
||
if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
|
||
return value_binop (arg1, arg2, op);
|
||
|
||
v1 = value_as_long (arg1);
|
||
switch (op)
|
||
{
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
|
||
v += v > 0 ? -1 : 1;
|
||
break;
|
||
case BINOP_REM:
|
||
v = v1 % v2;
|
||
if (v * v1 < 0)
|
||
v -= v2;
|
||
break;
|
||
default:
|
||
/* Should not reach this point. */
|
||
v = 0;
|
||
}
|
||
|
||
val = allocate_value (type1);
|
||
store_unsigned_integer (value_contents_raw (val),
|
||
TYPE_LENGTH (value_type (val)),
|
||
gdbarch_byte_order (get_type_arch (type1)), v);
|
||
return val;
|
||
}
|
||
|
||
static int
|
||
ada_value_equal (struct value *arg1, struct value *arg2)
|
||
{
|
||
if (ada_is_direct_array_type (value_type (arg1))
|
||
|| ada_is_direct_array_type (value_type (arg2)))
|
||
{
|
||
/* Automatically dereference any array reference before
|
||
we attempt to perform the comparison. */
|
||
arg1 = ada_coerce_ref (arg1);
|
||
arg2 = ada_coerce_ref (arg2);
|
||
|
||
arg1 = ada_coerce_to_simple_array (arg1);
|
||
arg2 = ada_coerce_to_simple_array (arg2);
|
||
if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
|
||
error (_("Attempt to compare array with non-array"));
|
||
/* FIXME: The following works only for types whose
|
||
representations use all bits (no padding or undefined bits)
|
||
and do not have user-defined equality. */
|
||
return
|
||
TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
|
||
&& memcmp (value_contents (arg1), value_contents (arg2),
|
||
TYPE_LENGTH (value_type (arg1))) == 0;
|
||
}
|
||
return value_equal (arg1, arg2);
|
||
}
|
||
|
||
/* Total number of component associations in the aggregate starting at
|
||
index PC in EXP. Assumes that index PC is the start of an
|
||
OP_AGGREGATE. */
|
||
|
||
static int
|
||
num_component_specs (struct expression *exp, int pc)
|
||
{
|
||
int n, m, i;
|
||
|
||
m = exp->elts[pc + 1].longconst;
|
||
pc += 3;
|
||
n = 0;
|
||
for (i = 0; i < m; i += 1)
|
||
{
|
||
switch (exp->elts[pc].opcode)
|
||
{
|
||
default:
|
||
n += 1;
|
||
break;
|
||
case OP_CHOICES:
|
||
n += exp->elts[pc + 1].longconst;
|
||
break;
|
||
}
|
||
ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
|
||
}
|
||
return n;
|
||
}
|
||
|
||
/* Assign the result of evaluating EXP starting at *POS to the INDEXth
|
||
component of LHS (a simple array or a record), updating *POS past
|
||
the expression, assuming that LHS is contained in CONTAINER. Does
|
||
not modify the inferior's memory, nor does it modify LHS (unless
|
||
LHS == CONTAINER). */
|
||
|
||
static void
|
||
assign_component (struct value *container, struct value *lhs, LONGEST index,
|
||
struct expression *exp, int *pos)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
struct value *elt;
|
||
|
||
if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
struct value *index_val = value_from_longest (index_type, index);
|
||
|
||
elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
|
||
}
|
||
else
|
||
{
|
||
elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
|
||
elt = ada_to_fixed_value (elt);
|
||
}
|
||
|
||
if (exp->elts[*pos].opcode == OP_AGGREGATE)
|
||
assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
|
||
else
|
||
value_assign_to_component (container, elt,
|
||
ada_evaluate_subexp (NULL, exp, pos,
|
||
EVAL_NORMAL));
|
||
|
||
value_free_to_mark (mark);
|
||
}
|
||
|
||
/* Assuming that LHS represents an lvalue having a record or array
|
||
type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
|
||
of that aggregate's value to LHS, advancing *POS past the
|
||
aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
|
||
lvalue containing LHS (possibly LHS itself). Does not modify
|
||
the inferior's memory, nor does it modify the contents of
|
||
LHS (unless == CONTAINER). Returns the modified CONTAINER. */
|
||
|
||
static struct value *
|
||
assign_aggregate (struct value *container,
|
||
struct value *lhs, struct expression *exp,
|
||
int *pos, enum noside noside)
|
||
{
|
||
struct type *lhs_type;
|
||
int n = exp->elts[*pos+1].longconst;
|
||
LONGEST low_index, high_index;
|
||
int num_specs;
|
||
LONGEST *indices;
|
||
int max_indices, num_indices;
|
||
int i;
|
||
|
||
*pos += 3;
|
||
if (noside != EVAL_NORMAL)
|
||
{
|
||
for (i = 0; i < n; i += 1)
|
||
ada_evaluate_subexp (NULL, exp, pos, noside);
|
||
return container;
|
||
}
|
||
|
||
container = ada_coerce_ref (container);
|
||
if (ada_is_direct_array_type (value_type (container)))
|
||
container = ada_coerce_to_simple_array (container);
|
||
lhs = ada_coerce_ref (lhs);
|
||
if (!deprecated_value_modifiable (lhs))
|
||
error (_("Left operand of assignment is not a modifiable lvalue."));
|
||
|
||
lhs_type = value_type (lhs);
|
||
if (ada_is_direct_array_type (lhs_type))
|
||
{
|
||
lhs = ada_coerce_to_simple_array (lhs);
|
||
lhs_type = value_type (lhs);
|
||
low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
|
||
high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
|
||
}
|
||
else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
|
||
{
|
||
low_index = 0;
|
||
high_index = num_visible_fields (lhs_type) - 1;
|
||
}
|
||
else
|
||
error (_("Left-hand side must be array or record."));
|
||
|
||
num_specs = num_component_specs (exp, *pos - 3);
|
||
max_indices = 4 * num_specs + 4;
|
||
indices = XALLOCAVEC (LONGEST, max_indices);
|
||
indices[0] = indices[1] = low_index - 1;
|
||
indices[2] = indices[3] = high_index + 1;
|
||
num_indices = 4;
|
||
|
||
for (i = 0; i < n; i += 1)
|
||
{
|
||
switch (exp->elts[*pos].opcode)
|
||
{
|
||
case OP_CHOICES:
|
||
aggregate_assign_from_choices (container, lhs, exp, pos, indices,
|
||
&num_indices, max_indices,
|
||
low_index, high_index);
|
||
break;
|
||
case OP_POSITIONAL:
|
||
aggregate_assign_positional (container, lhs, exp, pos, indices,
|
||
&num_indices, max_indices,
|
||
low_index, high_index);
|
||
break;
|
||
case OP_OTHERS:
|
||
if (i != n-1)
|
||
error (_("Misplaced 'others' clause"));
|
||
aggregate_assign_others (container, lhs, exp, pos, indices,
|
||
num_indices, low_index, high_index);
|
||
break;
|
||
default:
|
||
error (_("Internal error: bad aggregate clause"));
|
||
}
|
||
}
|
||
|
||
return container;
|
||
}
|
||
|
||
/* Assign into the component of LHS indexed by the OP_POSITIONAL
|
||
construct at *POS, updating *POS past the construct, given that
|
||
the positions are relative to lower bound LOW, where HIGH is the
|
||
upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
|
||
updating *NUM_INDICES as needed. CONTAINER is as for
|
||
assign_aggregate. */
|
||
static void
|
||
aggregate_assign_positional (struct value *container,
|
||
struct value *lhs, struct expression *exp,
|
||
int *pos, LONGEST *indices, int *num_indices,
|
||
int max_indices, LONGEST low, LONGEST high)
|
||
{
|
||
LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
|
||
|
||
if (ind - 1 == high)
|
||
warning (_("Extra components in aggregate ignored."));
|
||
if (ind <= high)
|
||
{
|
||
add_component_interval (ind, ind, indices, num_indices, max_indices);
|
||
*pos += 3;
|
||
assign_component (container, lhs, ind, exp, pos);
|
||
}
|
||
else
|
||
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
||
}
|
||
|
||
/* Assign into the components of LHS indexed by the OP_CHOICES
|
||
construct at *POS, updating *POS past the construct, given that
|
||
the allowable indices are LOW..HIGH. Record the indices assigned
|
||
to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
|
||
needed. CONTAINER is as for assign_aggregate. */
|
||
static void
|
||
aggregate_assign_from_choices (struct value *container,
|
||
struct value *lhs, struct expression *exp,
|
||
int *pos, LONGEST *indices, int *num_indices,
|
||
int max_indices, LONGEST low, LONGEST high)
|
||
{
|
||
int j;
|
||
int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
|
||
int choice_pos, expr_pc;
|
||
int is_array = ada_is_direct_array_type (value_type (lhs));
|
||
|
||
choice_pos = *pos += 3;
|
||
|
||
for (j = 0; j < n_choices; j += 1)
|
||
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
||
expr_pc = *pos;
|
||
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
||
|
||
for (j = 0; j < n_choices; j += 1)
|
||
{
|
||
LONGEST lower, upper;
|
||
enum exp_opcode op = exp->elts[choice_pos].opcode;
|
||
|
||
if (op == OP_DISCRETE_RANGE)
|
||
{
|
||
choice_pos += 1;
|
||
lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
|
||
EVAL_NORMAL));
|
||
upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
|
||
EVAL_NORMAL));
|
||
}
|
||
else if (is_array)
|
||
{
|
||
lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
|
||
EVAL_NORMAL));
|
||
upper = lower;
|
||
}
|
||
else
|
||
{
|
||
int ind;
|
||
const char *name;
|
||
|
||
switch (op)
|
||
{
|
||
case OP_NAME:
|
||
name = &exp->elts[choice_pos + 2].string;
|
||
break;
|
||
case OP_VAR_VALUE:
|
||
name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
|
||
break;
|
||
default:
|
||
error (_("Invalid record component association."));
|
||
}
|
||
ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
|
||
ind = 0;
|
||
if (! find_struct_field (name, value_type (lhs), 0,
|
||
NULL, NULL, NULL, NULL, &ind))
|
||
error (_("Unknown component name: %s."), name);
|
||
lower = upper = ind;
|
||
}
|
||
|
||
if (lower <= upper && (lower < low || upper > high))
|
||
error (_("Index in component association out of bounds."));
|
||
|
||
add_component_interval (lower, upper, indices, num_indices,
|
||
max_indices);
|
||
while (lower <= upper)
|
||
{
|
||
int pos1;
|
||
|
||
pos1 = expr_pc;
|
||
assign_component (container, lhs, lower, exp, &pos1);
|
||
lower += 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Assign the value of the expression in the OP_OTHERS construct in
|
||
EXP at *POS into the components of LHS indexed from LOW .. HIGH that
|
||
have not been previously assigned. The index intervals already assigned
|
||
are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
|
||
OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
|
||
static void
|
||
aggregate_assign_others (struct value *container,
|
||
struct value *lhs, struct expression *exp,
|
||
int *pos, LONGEST *indices, int num_indices,
|
||
LONGEST low, LONGEST high)
|
||
{
|
||
int i;
|
||
int expr_pc = *pos + 1;
|
||
|
||
for (i = 0; i < num_indices - 2; i += 2)
|
||
{
|
||
LONGEST ind;
|
||
|
||
for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
|
||
{
|
||
int localpos;
|
||
|
||
localpos = expr_pc;
|
||
assign_component (container, lhs, ind, exp, &localpos);
|
||
}
|
||
}
|
||
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
||
}
|
||
|
||
/* Add the interval [LOW .. HIGH] to the sorted set of intervals
|
||
[ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
|
||
modifying *SIZE as needed. It is an error if *SIZE exceeds
|
||
MAX_SIZE. The resulting intervals do not overlap. */
|
||
static void
|
||
add_component_interval (LONGEST low, LONGEST high,
|
||
LONGEST* indices, int *size, int max_size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < *size; i += 2) {
|
||
if (high >= indices[i] && low <= indices[i + 1])
|
||
{
|
||
int kh;
|
||
|
||
for (kh = i + 2; kh < *size; kh += 2)
|
||
if (high < indices[kh])
|
||
break;
|
||
if (low < indices[i])
|
||
indices[i] = low;
|
||
indices[i + 1] = indices[kh - 1];
|
||
if (high > indices[i + 1])
|
||
indices[i + 1] = high;
|
||
memcpy (indices + i + 2, indices + kh, *size - kh);
|
||
*size -= kh - i - 2;
|
||
return;
|
||
}
|
||
else if (high < indices[i])
|
||
break;
|
||
}
|
||
|
||
if (*size == max_size)
|
||
error (_("Internal error: miscounted aggregate components."));
|
||
*size += 2;
|
||
for (j = *size-1; j >= i+2; j -= 1)
|
||
indices[j] = indices[j - 2];
|
||
indices[i] = low;
|
||
indices[i + 1] = high;
|
||
}
|
||
|
||
/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
|
||
is different. */
|
||
|
||
static struct value *
|
||
ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
|
||
{
|
||
if (type == ada_check_typedef (value_type (arg2)))
|
||
return arg2;
|
||
|
||
if (ada_is_fixed_point_type (type))
|
||
return (cast_to_fixed (type, arg2));
|
||
|
||
if (ada_is_fixed_point_type (value_type (arg2)))
|
||
return cast_from_fixed (type, arg2);
|
||
|
||
return value_cast (type, arg2);
|
||
}
|
||
|
||
/* Evaluating Ada expressions, and printing their result.
|
||
------------------------------------------------------
|
||
|
||
1. Introduction:
|
||
----------------
|
||
|
||
We usually evaluate an Ada expression in order to print its value.
|
||
We also evaluate an expression in order to print its type, which
|
||
happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
|
||
but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
|
||
EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
|
||
the evaluation compared to the EVAL_NORMAL, but is otherwise very
|
||
similar.
|
||
|
||
Evaluating expressions is a little more complicated for Ada entities
|
||
than it is for entities in languages such as C. The main reason for
|
||
this is that Ada provides types whose definition might be dynamic.
|
||
One example of such types is variant records. Or another example
|
||
would be an array whose bounds can only be known at run time.
|
||
|
||
The following description is a general guide as to what should be
|
||
done (and what should NOT be done) in order to evaluate an expression
|
||
involving such types, and when. This does not cover how the semantic
|
||
information is encoded by GNAT as this is covered separatly. For the
|
||
document used as the reference for the GNAT encoding, see exp_dbug.ads
|
||
in the GNAT sources.
|
||
|
||
Ideally, we should embed each part of this description next to its
|
||
associated code. Unfortunately, the amount of code is so vast right
|
||
now that it's hard to see whether the code handling a particular
|
||
situation might be duplicated or not. One day, when the code is
|
||
cleaned up, this guide might become redundant with the comments
|
||
inserted in the code, and we might want to remove it.
|
||
|
||
2. ``Fixing'' an Entity, the Simple Case:
|
||
-----------------------------------------
|
||
|
||
When evaluating Ada expressions, the tricky issue is that they may
|
||
reference entities whose type contents and size are not statically
|
||
known. Consider for instance a variant record:
|
||
|
||
type Rec (Empty : Boolean := True) is record
|
||
case Empty is
|
||
when True => null;
|
||
when False => Value : Integer;
|
||
end case;
|
||
end record;
|
||
Yes : Rec := (Empty => False, Value => 1);
|
||
No : Rec := (empty => True);
|
||
|
||
The size and contents of that record depends on the value of the
|
||
descriminant (Rec.Empty). At this point, neither the debugging
|
||
information nor the associated type structure in GDB are able to
|
||
express such dynamic types. So what the debugger does is to create
|
||
"fixed" versions of the type that applies to the specific object.
|
||
We also informally refer to this opperation as "fixing" an object,
|
||
which means creating its associated fixed type.
|
||
|
||
Example: when printing the value of variable "Yes" above, its fixed
|
||
type would look like this:
|
||
|
||
type Rec is record
|
||
Empty : Boolean;
|
||
Value : Integer;
|
||
end record;
|
||
|
||
On the other hand, if we printed the value of "No", its fixed type
|
||
would become:
|
||
|
||
type Rec is record
|
||
Empty : Boolean;
|
||
end record;
|
||
|
||
Things become a little more complicated when trying to fix an entity
|
||
with a dynamic type that directly contains another dynamic type,
|
||
such as an array of variant records, for instance. There are
|
||
two possible cases: Arrays, and records.
|
||
|
||
3. ``Fixing'' Arrays:
|
||
---------------------
|
||
|
||
The type structure in GDB describes an array in terms of its bounds,
|
||
and the type of its elements. By design, all elements in the array
|
||
have the same type and we cannot represent an array of variant elements
|
||
using the current type structure in GDB. When fixing an array,
|
||
we cannot fix the array element, as we would potentially need one
|
||
fixed type per element of the array. As a result, the best we can do
|
||
when fixing an array is to produce an array whose bounds and size
|
||
are correct (allowing us to read it from memory), but without having
|
||
touched its element type. Fixing each element will be done later,
|
||
when (if) necessary.
|
||
|
||
Arrays are a little simpler to handle than records, because the same
|
||
amount of memory is allocated for each element of the array, even if
|
||
the amount of space actually used by each element differs from element
|
||
to element. Consider for instance the following array of type Rec:
|
||
|
||
type Rec_Array is array (1 .. 2) of Rec;
|
||
|
||
The actual amount of memory occupied by each element might be different
|
||
from element to element, depending on the value of their discriminant.
|
||
But the amount of space reserved for each element in the array remains
|
||
fixed regardless. So we simply need to compute that size using
|
||
the debugging information available, from which we can then determine
|
||
the array size (we multiply the number of elements of the array by
|
||
the size of each element).
|
||
|
||
The simplest case is when we have an array of a constrained element
|
||
type. For instance, consider the following type declarations:
|
||
|
||
type Bounded_String (Max_Size : Integer) is
|
||
Length : Integer;
|
||
Buffer : String (1 .. Max_Size);
|
||
end record;
|
||
type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
|
||
|
||
In this case, the compiler describes the array as an array of
|
||
variable-size elements (identified by its XVS suffix) for which
|
||
the size can be read in the parallel XVZ variable.
|
||
|
||
In the case of an array of an unconstrained element type, the compiler
|
||
wraps the array element inside a private PAD type. This type should not
|
||
be shown to the user, and must be "unwrap"'ed before printing. Note
|
||
that we also use the adjective "aligner" in our code to designate
|
||
these wrapper types.
|
||
|
||
In some cases, the size allocated for each element is statically
|
||
known. In that case, the PAD type already has the correct size,
|
||
and the array element should remain unfixed.
|
||
|
||
But there are cases when this size is not statically known.
|
||
For instance, assuming that "Five" is an integer variable:
|
||
|
||
type Dynamic is array (1 .. Five) of Integer;
|
||
type Wrapper (Has_Length : Boolean := False) is record
|
||
Data : Dynamic;
|
||
case Has_Length is
|
||
when True => Length : Integer;
|
||
when False => null;
|
||
end case;
|
||
end record;
|
||
type Wrapper_Array is array (1 .. 2) of Wrapper;
|
||
|
||
Hello : Wrapper_Array := (others => (Has_Length => True,
|
||
Data => (others => 17),
|
||
Length => 1));
|
||
|
||
|
||
The debugging info would describe variable Hello as being an
|
||
array of a PAD type. The size of that PAD type is not statically
|
||
known, but can be determined using a parallel XVZ variable.
|
||
In that case, a copy of the PAD type with the correct size should
|
||
be used for the fixed array.
|
||
|
||
3. ``Fixing'' record type objects:
|
||
----------------------------------
|
||
|
||
Things are slightly different from arrays in the case of dynamic
|
||
record types. In this case, in order to compute the associated
|
||
fixed type, we need to determine the size and offset of each of
|
||
its components. This, in turn, requires us to compute the fixed
|
||
type of each of these components.
|
||
|
||
Consider for instance the example:
|
||
|
||
type Bounded_String (Max_Size : Natural) is record
|
||
Str : String (1 .. Max_Size);
|
||
Length : Natural;
|
||
end record;
|
||
My_String : Bounded_String (Max_Size => 10);
|
||
|
||
In that case, the position of field "Length" depends on the size
|
||
of field Str, which itself depends on the value of the Max_Size
|
||
discriminant. In order to fix the type of variable My_String,
|
||
we need to fix the type of field Str. Therefore, fixing a variant
|
||
record requires us to fix each of its components.
|
||
|
||
However, if a component does not have a dynamic size, the component
|
||
should not be fixed. In particular, fields that use a PAD type
|
||
should not fixed. Here is an example where this might happen
|
||
(assuming type Rec above):
|
||
|
||
type Container (Big : Boolean) is record
|
||
First : Rec;
|
||
After : Integer;
|
||
case Big is
|
||
when True => Another : Integer;
|
||
when False => null;
|
||
end case;
|
||
end record;
|
||
My_Container : Container := (Big => False,
|
||
First => (Empty => True),
|
||
After => 42);
|
||
|
||
In that example, the compiler creates a PAD type for component First,
|
||
whose size is constant, and then positions the component After just
|
||
right after it. The offset of component After is therefore constant
|
||
in this case.
|
||
|
||
The debugger computes the position of each field based on an algorithm
|
||
that uses, among other things, the actual position and size of the field
|
||
preceding it. Let's now imagine that the user is trying to print
|
||
the value of My_Container. If the type fixing was recursive, we would
|
||
end up computing the offset of field After based on the size of the
|
||
fixed version of field First. And since in our example First has
|
||
only one actual field, the size of the fixed type is actually smaller
|
||
than the amount of space allocated to that field, and thus we would
|
||
compute the wrong offset of field After.
|
||
|
||
To make things more complicated, we need to watch out for dynamic
|
||
components of variant records (identified by the ___XVL suffix in
|
||
the component name). Even if the target type is a PAD type, the size
|
||
of that type might not be statically known. So the PAD type needs
|
||
to be unwrapped and the resulting type needs to be fixed. Otherwise,
|
||
we might end up with the wrong size for our component. This can be
|
||
observed with the following type declarations:
|
||
|
||
type Octal is new Integer range 0 .. 7;
|
||
type Octal_Array is array (Positive range <>) of Octal;
|
||
pragma Pack (Octal_Array);
|
||
|
||
type Octal_Buffer (Size : Positive) is record
|
||
Buffer : Octal_Array (1 .. Size);
|
||
Length : Integer;
|
||
end record;
|
||
|
||
In that case, Buffer is a PAD type whose size is unset and needs
|
||
to be computed by fixing the unwrapped type.
|
||
|
||
4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
|
||
----------------------------------------------------------
|
||
|
||
Lastly, when should the sub-elements of an entity that remained unfixed
|
||
thus far, be actually fixed?
|
||
|
||
The answer is: Only when referencing that element. For instance
|
||
when selecting one component of a record, this specific component
|
||
should be fixed at that point in time. Or when printing the value
|
||
of a record, each component should be fixed before its value gets
|
||
printed. Similarly for arrays, the element of the array should be
|
||
fixed when printing each element of the array, or when extracting
|
||
one element out of that array. On the other hand, fixing should
|
||
not be performed on the elements when taking a slice of an array!
|
||
|
||
Note that one of the side-effects of miscomputing the offset and
|
||
size of each field is that we end up also miscomputing the size
|
||
of the containing type. This can have adverse results when computing
|
||
the value of an entity. GDB fetches the value of an entity based
|
||
on the size of its type, and thus a wrong size causes GDB to fetch
|
||
the wrong amount of memory. In the case where the computed size is
|
||
too small, GDB fetches too little data to print the value of our
|
||
entiry. Results in this case as unpredicatble, as we usually read
|
||
past the buffer containing the data =:-o. */
|
||
|
||
/* Implement the evaluate_exp routine in the exp_descriptor structure
|
||
for the Ada language. */
|
||
|
||
static struct value *
|
||
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
|
||
int *pos, enum noside noside)
|
||
{
|
||
enum exp_opcode op;
|
||
int tem;
|
||
int pc;
|
||
int preeval_pos;
|
||
struct value *arg1 = NULL, *arg2 = NULL, *arg3;
|
||
struct type *type;
|
||
int nargs, oplen;
|
||
struct value **argvec;
|
||
|
||
pc = *pos;
|
||
*pos += 1;
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
*pos -= 1;
|
||
arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
||
|
||
if (noside == EVAL_NORMAL)
|
||
arg1 = unwrap_value (arg1);
|
||
|
||
/* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
|
||
then we need to perform the conversion manually, because
|
||
evaluate_subexp_standard doesn't do it. This conversion is
|
||
necessary in Ada because the different kinds of float/fixed
|
||
types in Ada have different representations.
|
||
|
||
Similarly, we need to perform the conversion from OP_LONG
|
||
ourselves. */
|
||
if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
|
||
arg1 = ada_value_cast (expect_type, arg1, noside);
|
||
|
||
return arg1;
|
||
|
||
case OP_STRING:
|
||
{
|
||
struct value *result;
|
||
|
||
*pos -= 1;
|
||
result = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
||
/* The result type will have code OP_STRING, bashed there from
|
||
OP_ARRAY. Bash it back. */
|
||
if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
|
||
TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
|
||
return result;
|
||
}
|
||
|
||
case UNOP_CAST:
|
||
(*pos) += 2;
|
||
type = exp->elts[pc + 1].type;
|
||
arg1 = evaluate_subexp (type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
arg1 = ada_value_cast (type, arg1, noside);
|
||
return arg1;
|
||
|
||
case UNOP_QUAL:
|
||
(*pos) += 2;
|
||
type = exp->elts[pc + 1].type;
|
||
return ada_evaluate_subexp (type, exp, pos, noside);
|
||
|
||
case BINOP_ASSIGN:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (exp->elts[*pos].opcode == OP_AGGREGATE)
|
||
{
|
||
arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
return ada_value_assign (arg1, arg1);
|
||
}
|
||
/* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
|
||
except if the lhs of our assignment is a convenience variable.
|
||
In the case of assigning to a convenience variable, the lhs
|
||
should be exactly the result of the evaluation of the rhs. */
|
||
type = value_type (arg1);
|
||
if (VALUE_LVAL (arg1) == lval_internalvar)
|
||
type = NULL;
|
||
arg2 = evaluate_subexp (type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
if (ada_is_fixed_point_type (value_type (arg1)))
|
||
arg2 = cast_to_fixed (value_type (arg1), arg2);
|
||
else if (ada_is_fixed_point_type (value_type (arg2)))
|
||
error
|
||
(_("Fixed-point values must be assigned to fixed-point variables"));
|
||
else
|
||
arg2 = coerce_for_assign (value_type (arg1), arg2);
|
||
return ada_value_assign (arg1, arg2);
|
||
|
||
case BINOP_ADD:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
|
||
return (value_from_longest
|
||
(value_type (arg1),
|
||
value_as_long (arg1) + value_as_long (arg2)));
|
||
if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
|
||
return (value_from_longest
|
||
(value_type (arg2),
|
||
value_as_long (arg1) + value_as_long (arg2)));
|
||
if ((ada_is_fixed_point_type (value_type (arg1))
|
||
|| ada_is_fixed_point_type (value_type (arg2)))
|
||
&& value_type (arg1) != value_type (arg2))
|
||
error (_("Operands of fixed-point addition must have the same type"));
|
||
/* Do the addition, and cast the result to the type of the first
|
||
argument. We cannot cast the result to a reference type, so if
|
||
ARG1 is a reference type, find its underlying type. */
|
||
type = value_type (arg1);
|
||
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
|
||
|
||
case BINOP_SUB:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
|
||
return (value_from_longest
|
||
(value_type (arg1),
|
||
value_as_long (arg1) - value_as_long (arg2)));
|
||
if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
|
||
return (value_from_longest
|
||
(value_type (arg2),
|
||
value_as_long (arg1) - value_as_long (arg2)));
|
||
if ((ada_is_fixed_point_type (value_type (arg1))
|
||
|| ada_is_fixed_point_type (value_type (arg2)))
|
||
&& value_type (arg1) != value_type (arg2))
|
||
error (_("Operands of fixed-point subtraction "
|
||
"must have the same type"));
|
||
/* Do the substraction, and cast the result to the type of the first
|
||
argument. We cannot cast the result to a reference type, so if
|
||
ARG1 is a reference type, find its underlying type. */
|
||
type = value_type (arg1);
|
||
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
|
||
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_zero (value_type (arg1), not_lval);
|
||
}
|
||
else
|
||
{
|
||
type = builtin_type (exp->gdbarch)->builtin_double;
|
||
if (ada_is_fixed_point_type (value_type (arg1)))
|
||
arg1 = cast_from_fixed (type, arg1);
|
||
if (ada_is_fixed_point_type (value_type (arg2)))
|
||
arg2 = cast_from_fixed (type, arg2);
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return ada_value_binop (arg1, arg2, op);
|
||
}
|
||
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
tem = 0;
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = ada_value_equal (arg1, arg2);
|
||
}
|
||
if (op == BINOP_NOTEQUAL)
|
||
tem = !tem;
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
|
||
case UNOP_NEG:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (ada_is_fixed_point_type (value_type (arg1)))
|
||
return value_cast (value_type (arg1), value_neg (arg1));
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_neg (arg1);
|
||
}
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
case BINOP_LOGICAL_OR:
|
||
case UNOP_LOGICAL_NOT:
|
||
{
|
||
struct value *val;
|
||
|
||
*pos -= 1;
|
||
val = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_cast (type, val);
|
||
}
|
||
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
{
|
||
struct value *val;
|
||
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
*pos = pc;
|
||
val = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
||
|
||
return value_cast (value_type (arg1), val);
|
||
}
|
||
|
||
case OP_VAR_VALUE:
|
||
*pos -= 1;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
*pos += 4;
|
||
goto nosideret;
|
||
}
|
||
|
||
if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
|
||
/* Only encountered when an unresolved symbol occurs in a
|
||
context other than a function call, in which case, it is
|
||
invalid. */
|
||
error (_("Unexpected unresolved symbol, %s, during evaluation"),
|
||
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
|
||
/* Check to see if this is a tagged type. We also need to handle
|
||
the case where the type is a reference to a tagged type, but
|
||
we have to be careful to exclude pointers to tagged types.
|
||
The latter should be shown as usual (as a pointer), whereas
|
||
a reference should mostly be transparent to the user. */
|
||
if (ada_is_tagged_type (type, 0)
|
||
|| (TYPE_CODE (type) == TYPE_CODE_REF
|
||
&& ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
|
||
{
|
||
/* Tagged types are a little special in the fact that the real
|
||
type is dynamic and can only be determined by inspecting the
|
||
object's tag. This means that we need to get the object's
|
||
value first (EVAL_NORMAL) and then extract the actual object
|
||
type from its tag.
|
||
|
||
Note that we cannot skip the final step where we extract
|
||
the object type from its tag, because the EVAL_NORMAL phase
|
||
results in dynamic components being resolved into fixed ones.
|
||
This can cause problems when trying to print the type
|
||
description of tagged types whose parent has a dynamic size:
|
||
We use the type name of the "_parent" component in order
|
||
to print the name of the ancestor type in the type description.
|
||
If that component had a dynamic size, the resolution into
|
||
a fixed type would result in the loss of that type name,
|
||
thus preventing us from printing the name of the ancestor
|
||
type in the type description. */
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_REF)
|
||
{
|
||
struct type *actual_type;
|
||
|
||
actual_type = type_from_tag (ada_value_tag (arg1));
|
||
if (actual_type == NULL)
|
||
/* If, for some reason, we were unable to determine
|
||
the actual type from the tag, then use the static
|
||
approximation that we just computed as a fallback.
|
||
This can happen if the debugging information is
|
||
incomplete, for instance. */
|
||
actual_type = type;
|
||
return value_zero (actual_type, not_lval);
|
||
}
|
||
else
|
||
{
|
||
/* In the case of a ref, ada_coerce_ref takes care
|
||
of determining the actual type. But the evaluation
|
||
should return a ref as it should be valid to ask
|
||
for its address; so rebuild a ref after coerce. */
|
||
arg1 = ada_coerce_ref (arg1);
|
||
return value_ref (arg1);
|
||
}
|
||
}
|
||
|
||
/* Records and unions for which GNAT encodings have been
|
||
generated need to be statically fixed as well.
|
||
Otherwise, non-static fixing produces a type where
|
||
all dynamic properties are removed, which prevents "ptype"
|
||
from being able to completely describe the type.
|
||
For instance, a case statement in a variant record would be
|
||
replaced by the relevant components based on the actual
|
||
value of the discriminants. */
|
||
if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& dynamic_template_type (type) != NULL)
|
||
|| (TYPE_CODE (type) == TYPE_CODE_UNION
|
||
&& ada_find_parallel_type (type, "___XVU") != NULL))
|
||
{
|
||
*pos += 4;
|
||
return value_zero (to_static_fixed_type (type), not_lval);
|
||
}
|
||
}
|
||
|
||
arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
||
return ada_to_fixed_value (arg1);
|
||
|
||
case OP_FUNCALL:
|
||
(*pos) += 2;
|
||
|
||
/* Allocate arg vector, including space for the function to be
|
||
called in argvec[0] and a terminating NULL. */
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
argvec = XALLOCAVEC (struct value *, nargs + 2);
|
||
|
||
if (exp->elts[*pos].opcode == OP_VAR_VALUE
|
||
&& SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
|
||
error (_("Unexpected unresolved symbol, %s, during evaluation"),
|
||
SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
|
||
else
|
||
{
|
||
for (tem = 0; tem <= nargs; tem += 1)
|
||
argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
argvec[tem] = 0;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
}
|
||
|
||
if (ada_is_constrained_packed_array_type
|
||
(desc_base_type (value_type (argvec[0]))))
|
||
argvec[0] = ada_coerce_to_simple_array (argvec[0]);
|
||
else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
|
||
&& TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
|
||
/* This is a packed array that has already been fixed, and
|
||
therefore already coerced to a simple array. Nothing further
|
||
to do. */
|
||
;
|
||
else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
|
||
{
|
||
/* Make sure we dereference references so that all the code below
|
||
feels like it's really handling the referenced value. Wrapping
|
||
types (for alignment) may be there, so make sure we strip them as
|
||
well. */
|
||
argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
|
||
}
|
||
else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
|
||
&& VALUE_LVAL (argvec[0]) == lval_memory)
|
||
argvec[0] = value_addr (argvec[0]);
|
||
|
||
type = ada_check_typedef (value_type (argvec[0]));
|
||
|
||
/* Ada allows us to implicitly dereference arrays when subscripting
|
||
them. So, if this is an array typedef (encoding use for array
|
||
access types encoded as fat pointers), strip it now. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||
type = ada_typedef_target_type (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
{
|
||
switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
|
||
{
|
||
case TYPE_CODE_FUNC:
|
||
type = ada_check_typedef (TYPE_TARGET_TYPE (type));
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
break;
|
||
case TYPE_CODE_STRUCT:
|
||
if (noside != EVAL_AVOID_SIDE_EFFECTS)
|
||
argvec[0] = ada_value_ind (argvec[0]);
|
||
type = ada_check_typedef (TYPE_TARGET_TYPE (type));
|
||
break;
|
||
default:
|
||
error (_("cannot subscript or call something of type `%s'"),
|
||
ada_type_name (value_type (argvec[0])));
|
||
break;
|
||
}
|
||
}
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_FUNC:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *rtype = TYPE_TARGET_TYPE (type);
|
||
|
||
if (TYPE_GNU_IFUNC (type))
|
||
return allocate_value (TYPE_TARGET_TYPE (rtype));
|
||
return allocate_value (rtype);
|
||
}
|
||
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
||
case TYPE_CODE_INTERNAL_FUNCTION:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
/* We don't know anything about what the internal
|
||
function might return, but we have to return
|
||
something. */
|
||
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
||
not_lval);
|
||
else
|
||
return call_internal_function (exp->gdbarch, exp->language_defn,
|
||
argvec[0], nargs, argvec + 1);
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
int arity;
|
||
|
||
arity = ada_array_arity (type);
|
||
type = ada_array_element_type (type, nargs);
|
||
if (type == NULL)
|
||
error (_("cannot subscript or call a record"));
|
||
if (arity != nargs)
|
||
error (_("wrong number of subscripts; expecting %d"), arity);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (ada_aligned_type (type), lval_memory);
|
||
return
|
||
unwrap_value (ada_value_subscript
|
||
(argvec[0], nargs, argvec + 1));
|
||
}
|
||
case TYPE_CODE_ARRAY:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = ada_array_element_type (type, nargs);
|
||
if (type == NULL)
|
||
error (_("element type of array unknown"));
|
||
else
|
||
return value_zero (ada_aligned_type (type), lval_memory);
|
||
}
|
||
return
|
||
unwrap_value (ada_value_subscript
|
||
(ada_coerce_to_simple_array (argvec[0]),
|
||
nargs, argvec + 1));
|
||
case TYPE_CODE_PTR: /* Pointer to array */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
|
||
type = ada_array_element_type (type, nargs);
|
||
if (type == NULL)
|
||
error (_("element type of array unknown"));
|
||
else
|
||
return value_zero (ada_aligned_type (type), lval_memory);
|
||
}
|
||
return
|
||
unwrap_value (ada_value_ptr_subscript (argvec[0],
|
||
nargs, argvec + 1));
|
||
|
||
default:
|
||
error (_("Attempt to index or call something other than an "
|
||
"array or function"));
|
||
}
|
||
|
||
case TERNOP_SLICE:
|
||
{
|
||
struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
struct value *low_bound_val =
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
struct value *high_bound_val =
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
LONGEST low_bound;
|
||
LONGEST high_bound;
|
||
|
||
low_bound_val = coerce_ref (low_bound_val);
|
||
high_bound_val = coerce_ref (high_bound_val);
|
||
low_bound = value_as_long (low_bound_val);
|
||
high_bound = value_as_long (high_bound_val);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
/* If this is a reference to an aligner type, then remove all
|
||
the aligners. */
|
||
if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
|
||
&& ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
|
||
TYPE_TARGET_TYPE (value_type (array)) =
|
||
ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
|
||
|
||
if (ada_is_constrained_packed_array_type (value_type (array)))
|
||
error (_("cannot slice a packed array"));
|
||
|
||
/* If this is a reference to an array or an array lvalue,
|
||
convert to a pointer. */
|
||
if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
|
||
|| (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
|
||
&& VALUE_LVAL (array) == lval_memory))
|
||
array = value_addr (array);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
&& ada_is_array_descriptor_type (ada_check_typedef
|
||
(value_type (array))))
|
||
return empty_array (ada_type_of_array (array, 0), low_bound);
|
||
|
||
array = ada_coerce_to_simple_array_ptr (array);
|
||
|
||
/* If we have more than one level of pointer indirection,
|
||
dereference the value until we get only one level. */
|
||
while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
|
||
&& (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
|
||
== TYPE_CODE_PTR))
|
||
array = value_ind (array);
|
||
|
||
/* Make sure we really do have an array type before going further,
|
||
to avoid a SEGV when trying to get the index type or the target
|
||
type later down the road if the debug info generated by
|
||
the compiler is incorrect or incomplete. */
|
||
if (!ada_is_simple_array_type (value_type (array)))
|
||
error (_("cannot take slice of non-array"));
|
||
|
||
if (TYPE_CODE (ada_check_typedef (value_type (array)))
|
||
== TYPE_CODE_PTR)
|
||
{
|
||
struct type *type0 = ada_check_typedef (value_type (array));
|
||
|
||
if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
|
||
else
|
||
{
|
||
struct type *arr_type0 =
|
||
to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
|
||
|
||
return ada_value_slice_from_ptr (array, arr_type0,
|
||
longest_to_int (low_bound),
|
||
longest_to_int (high_bound));
|
||
}
|
||
}
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return array;
|
||
else if (high_bound < low_bound)
|
||
return empty_array (value_type (array), low_bound);
|
||
else
|
||
return ada_value_slice (array, longest_to_int (low_bound),
|
||
longest_to_int (high_bound));
|
||
}
|
||
|
||
case UNOP_IN_RANGE:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type = check_typedef (exp->elts[pc + 1].type);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
default:
|
||
lim_warning (_("Membership test incompletely implemented; "
|
||
"always returns true"));
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) 1);
|
||
|
||
case TYPE_CODE_RANGE:
|
||
arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
|
||
arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return
|
||
value_from_longest (type,
|
||
(value_less (arg1, arg3)
|
||
|| value_equal (arg1, arg3))
|
||
&& (value_less (arg2, arg1)
|
||
|| value_equal (arg2, arg1)));
|
||
}
|
||
|
||
case BINOP_IN_BOUNDS:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_zero (type, not_lval);
|
||
}
|
||
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
|
||
type = ada_index_type (value_type (arg2), tem, "range");
|
||
if (!type)
|
||
type = value_type (arg1);
|
||
|
||
arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
|
||
arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
|
||
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return
|
||
value_from_longest (type,
|
||
(value_less (arg1, arg3)
|
||
|| value_equal (arg1, arg3))
|
||
&& (value_less (arg2, arg1)
|
||
|| value_equal (arg2, arg1)));
|
||
|
||
case TERNOP_IN_RANGE:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return
|
||
value_from_longest (type,
|
||
(value_less (arg1, arg3)
|
||
|| value_equal (arg1, arg3))
|
||
&& (value_less (arg2, arg1)
|
||
|| value_equal (arg2, arg1)));
|
||
|
||
case OP_ATR_FIRST:
|
||
case OP_ATR_LAST:
|
||
case OP_ATR_LENGTH:
|
||
{
|
||
struct type *type_arg;
|
||
|
||
if (exp->elts[*pos].opcode == OP_TYPE)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = NULL;
|
||
type_arg = check_typedef (exp->elts[pc + 2].type);
|
||
}
|
||
else
|
||
{
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type_arg = NULL;
|
||
}
|
||
|
||
if (exp->elts[*pos].opcode != OP_LONG)
|
||
error (_("Invalid operand to '%s"), ada_attribute_name (op));
|
||
tem = longest_to_int (exp->elts[*pos + 2].longconst);
|
||
*pos += 4;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (type_arg == NULL)
|
||
{
|
||
arg1 = ada_coerce_ref (arg1);
|
||
|
||
if (ada_is_constrained_packed_array_type (value_type (arg1)))
|
||
arg1 = ada_coerce_to_simple_array (arg1);
|
||
|
||
if (op == OP_ATR_LENGTH)
|
||
type = builtin_type (exp->gdbarch)->builtin_int;
|
||
else
|
||
{
|
||
type = ada_index_type (value_type (arg1), tem,
|
||
ada_attribute_name (op));
|
||
if (type == NULL)
|
||
type = builtin_type (exp->gdbarch)->builtin_int;
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (type);
|
||
|
||
switch (op)
|
||
{
|
||
default: /* Should never happen. */
|
||
error (_("unexpected attribute encountered"));
|
||
case OP_ATR_FIRST:
|
||
return value_from_longest
|
||
(type, ada_array_bound (arg1, tem, 0));
|
||
case OP_ATR_LAST:
|
||
return value_from_longest
|
||
(type, ada_array_bound (arg1, tem, 1));
|
||
case OP_ATR_LENGTH:
|
||
return value_from_longest
|
||
(type, ada_array_length (arg1, tem));
|
||
}
|
||
}
|
||
else if (discrete_type_p (type_arg))
|
||
{
|
||
struct type *range_type;
|
||
const char *name = ada_type_name (type_arg);
|
||
|
||
range_type = NULL;
|
||
if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
|
||
range_type = to_fixed_range_type (type_arg, NULL);
|
||
if (range_type == NULL)
|
||
range_type = type_arg;
|
||
switch (op)
|
||
{
|
||
default:
|
||
error (_("unexpected attribute encountered"));
|
||
case OP_ATR_FIRST:
|
||
return value_from_longest
|
||
(range_type, ada_discrete_type_low_bound (range_type));
|
||
case OP_ATR_LAST:
|
||
return value_from_longest
|
||
(range_type, ada_discrete_type_high_bound (range_type));
|
||
case OP_ATR_LENGTH:
|
||
error (_("the 'length attribute applies only to array types"));
|
||
}
|
||
}
|
||
else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
|
||
error (_("unimplemented type attribute"));
|
||
else
|
||
{
|
||
LONGEST low, high;
|
||
|
||
if (ada_is_constrained_packed_array_type (type_arg))
|
||
type_arg = decode_constrained_packed_array_type (type_arg);
|
||
|
||
if (op == OP_ATR_LENGTH)
|
||
type = builtin_type (exp->gdbarch)->builtin_int;
|
||
else
|
||
{
|
||
type = ada_index_type (type_arg, tem, ada_attribute_name (op));
|
||
if (type == NULL)
|
||
type = builtin_type (exp->gdbarch)->builtin_int;
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (type);
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
error (_("unexpected attribute encountered"));
|
||
case OP_ATR_FIRST:
|
||
low = ada_array_bound_from_type (type_arg, tem, 0);
|
||
return value_from_longest (type, low);
|
||
case OP_ATR_LAST:
|
||
high = ada_array_bound_from_type (type_arg, tem, 1);
|
||
return value_from_longest (type, high);
|
||
case OP_ATR_LENGTH:
|
||
low = ada_array_bound_from_type (type_arg, tem, 0);
|
||
high = ada_array_bound_from_type (type_arg, tem, 1);
|
||
return value_from_longest (type, high - low + 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
case OP_ATR_TAG:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (ada_tag_type (arg1), not_lval);
|
||
|
||
return ada_value_tag (arg1);
|
||
|
||
case OP_ATR_MIN:
|
||
case OP_ATR_MAX:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (value_type (arg1), not_lval);
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_binop (arg1, arg2,
|
||
op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
|
||
}
|
||
|
||
case OP_ATR_MODULUS:
|
||
{
|
||
struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
|
||
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (!ada_is_modular_type (type_arg))
|
||
error (_("'modulus must be applied to modular type"));
|
||
|
||
return value_from_longest (TYPE_TARGET_TYPE (type_arg),
|
||
ada_modulus (type_arg));
|
||
}
|
||
|
||
|
||
case OP_ATR_POS:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
type = builtin_type (exp->gdbarch)->builtin_int;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (type, not_lval);
|
||
else
|
||
return value_pos_atr (type, arg1);
|
||
|
||
case OP_ATR_SIZE:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type = value_type (arg1);
|
||
|
||
/* If the argument is a reference, then dereference its type, since
|
||
the user is really asking for the size of the actual object,
|
||
not the size of the pointer. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
|
||
else
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type));
|
||
|
||
case OP_ATR_VAL:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type = exp->elts[pc + 2].type;
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (type, not_lval);
|
||
else
|
||
return value_val_atr (type, arg1);
|
||
|
||
case BINOP_EXP:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (value_type (arg1), not_lval);
|
||
else
|
||
{
|
||
/* For integer exponentiation operations,
|
||
only promote the first argument. */
|
||
if (is_integral_type (value_type (arg2)))
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
else
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
|
||
return value_binop (arg1, arg2, op);
|
||
}
|
||
|
||
case UNOP_PLUS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else
|
||
return arg1;
|
||
|
||
case UNOP_ABS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
|
||
return value_neg (arg1);
|
||
else
|
||
return arg1;
|
||
|
||
case UNOP_IND:
|
||
preeval_pos = *pos;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
type = ada_check_typedef (value_type (arg1));
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
if (ada_is_array_descriptor_type (type))
|
||
/* GDB allows dereferencing GNAT array descriptors. */
|
||
{
|
||
struct type *arrType = ada_type_of_array (arg1, 0);
|
||
|
||
if (arrType == NULL)
|
||
error (_("Attempt to dereference null array pointer."));
|
||
return value_at_lazy (arrType, 0);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (type) == TYPE_CODE_REF
|
||
/* In C you can dereference an array to get the 1st elt. */
|
||
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
/* As mentioned in the OP_VAR_VALUE case, tagged types can
|
||
only be determined by inspecting the object's tag.
|
||
This means that we need to evaluate completely the
|
||
expression in order to get its type. */
|
||
|
||
if ((TYPE_CODE (type) == TYPE_CODE_REF
|
||
|| TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
&& ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
|
||
{
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
|
||
EVAL_NORMAL);
|
||
type = value_type (ada_value_ind (arg1));
|
||
}
|
||
else
|
||
{
|
||
type = to_static_fixed_type
|
||
(ada_aligned_type
|
||
(ada_check_typedef (TYPE_TARGET_TYPE (type))));
|
||
}
|
||
ada_ensure_varsize_limit (type);
|
||
return value_zero (type, lval_memory);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
||
{
|
||
/* GDB allows dereferencing an int. */
|
||
if (expect_type == NULL)
|
||
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
||
lval_memory);
|
||
else
|
||
{
|
||
expect_type =
|
||
to_static_fixed_type (ada_aligned_type (expect_type));
|
||
return value_zero (expect_type, lval_memory);
|
||
}
|
||
}
|
||
else
|
||
error (_("Attempt to take contents of a non-pointer value."));
|
||
}
|
||
arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
|
||
type = ada_check_typedef (value_type (arg1));
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_INT)
|
||
/* GDB allows dereferencing an int. If we were given
|
||
the expect_type, then use that as the target type.
|
||
Otherwise, assume that the target type is an int. */
|
||
{
|
||
if (expect_type != NULL)
|
||
return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
|
||
arg1));
|
||
else
|
||
return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
|
||
(CORE_ADDR) value_as_address (arg1));
|
||
}
|
||
|
||
if (ada_is_array_descriptor_type (type))
|
||
/* GDB allows dereferencing GNAT array descriptors. */
|
||
return ada_coerce_to_simple_array (arg1);
|
||
else
|
||
return ada_value_ind (arg1);
|
||
|
||
case STRUCTOP_STRUCT:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
preeval_pos = *pos;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type1 = value_type (arg1);
|
||
|
||
if (ada_is_tagged_type (type1, 1))
|
||
{
|
||
type = ada_lookup_struct_elt_type (type1,
|
||
&exp->elts[pc + 2].string,
|
||
1, 1, NULL);
|
||
|
||
/* If the field is not found, check if it exists in the
|
||
extension of this object's type. This means that we
|
||
need to evaluate completely the expression. */
|
||
|
||
if (type == NULL)
|
||
{
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
|
||
EVAL_NORMAL);
|
||
arg1 = ada_value_struct_elt (arg1,
|
||
&exp->elts[pc + 2].string,
|
||
0);
|
||
arg1 = unwrap_value (arg1);
|
||
type = value_type (ada_to_fixed_value (arg1));
|
||
}
|
||
}
|
||
else
|
||
type =
|
||
ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
|
||
0, NULL);
|
||
|
||
return value_zero (ada_aligned_type (type), lval_memory);
|
||
}
|
||
else
|
||
{
|
||
arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
|
||
arg1 = unwrap_value (arg1);
|
||
return ada_to_fixed_value (arg1);
|
||
}
|
||
|
||
case OP_TYPE:
|
||
/* The value is not supposed to be used. This is here to make it
|
||
easier to accommodate expressions that contain types. */
|
||
(*pos) += 2;
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (exp->elts[pc + 1].type);
|
||
else
|
||
error (_("Attempt to use a type name as an expression"));
|
||
|
||
case OP_AGGREGATE:
|
||
case OP_CHOICES:
|
||
case OP_OTHERS:
|
||
case OP_DISCRETE_RANGE:
|
||
case OP_POSITIONAL:
|
||
case OP_NAME:
|
||
if (noside == EVAL_NORMAL)
|
||
switch (op)
|
||
{
|
||
case OP_NAME:
|
||
error (_("Undefined name, ambiguous name, or renaming used in "
|
||
"component association: %s."), &exp->elts[pc+2].string);
|
||
case OP_AGGREGATE:
|
||
error (_("Aggregates only allowed on the right of an assignment"));
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("aggregate apparently mangled"));
|
||
}
|
||
|
||
ada_forward_operator_length (exp, pc, &oplen, &nargs);
|
||
*pos += oplen - 1;
|
||
for (tem = 0; tem < nargs; tem += 1)
|
||
ada_evaluate_subexp (NULL, exp, pos, noside);
|
||
goto nosideret;
|
||
}
|
||
|
||
nosideret:
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
|
||
}
|
||
|
||
|
||
/* Fixed point */
|
||
|
||
/* If TYPE encodes an Ada fixed-point type, return the suffix of the
|
||
type name that encodes the 'small and 'delta information.
|
||
Otherwise, return NULL. */
|
||
|
||
static const char *
|
||
fixed_type_info (struct type *type)
|
||
{
|
||
const char *name = ada_type_name (type);
|
||
enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
|
||
|
||
if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
|
||
{
|
||
const char *tail = strstr (name, "___XF_");
|
||
|
||
if (tail == NULL)
|
||
return NULL;
|
||
else
|
||
return tail + 5;
|
||
}
|
||
else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
|
||
return fixed_type_info (TYPE_TARGET_TYPE (type));
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
|
||
|
||
int
|
||
ada_is_fixed_point_type (struct type *type)
|
||
{
|
||
return fixed_type_info (type) != NULL;
|
||
}
|
||
|
||
/* Return non-zero iff TYPE represents a System.Address type. */
|
||
|
||
int
|
||
ada_is_system_address_type (struct type *type)
|
||
{
|
||
return (TYPE_NAME (type)
|
||
&& strcmp (TYPE_NAME (type), "system__address") == 0);
|
||
}
|
||
|
||
/* Assuming that TYPE is the representation of an Ada fixed-point
|
||
type, return its delta, or -1 if the type is malformed and the
|
||
delta cannot be determined. */
|
||
|
||
DOUBLEST
|
||
ada_delta (struct type *type)
|
||
{
|
||
const char *encoding = fixed_type_info (type);
|
||
DOUBLEST num, den;
|
||
|
||
/* Strictly speaking, num and den are encoded as integer. However,
|
||
they may not fit into a long, and they will have to be converted
|
||
to DOUBLEST anyway. So scan them as DOUBLEST. */
|
||
if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
|
||
&num, &den) < 2)
|
||
return -1.0;
|
||
else
|
||
return num / den;
|
||
}
|
||
|
||
/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
|
||
factor ('SMALL value) associated with the type. */
|
||
|
||
static DOUBLEST
|
||
scaling_factor (struct type *type)
|
||
{
|
||
const char *encoding = fixed_type_info (type);
|
||
DOUBLEST num0, den0, num1, den1;
|
||
int n;
|
||
|
||
/* Strictly speaking, num's and den's are encoded as integer. However,
|
||
they may not fit into a long, and they will have to be converted
|
||
to DOUBLEST anyway. So scan them as DOUBLEST. */
|
||
n = sscanf (encoding,
|
||
"_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
|
||
"_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
|
||
&num0, &den0, &num1, &den1);
|
||
|
||
if (n < 2)
|
||
return 1.0;
|
||
else if (n == 4)
|
||
return num1 / den1;
|
||
else
|
||
return num0 / den0;
|
||
}
|
||
|
||
|
||
/* Assuming that X is the representation of a value of fixed-point
|
||
type TYPE, return its floating-point equivalent. */
|
||
|
||
DOUBLEST
|
||
ada_fixed_to_float (struct type *type, LONGEST x)
|
||
{
|
||
return (DOUBLEST) x *scaling_factor (type);
|
||
}
|
||
|
||
/* The representation of a fixed-point value of type TYPE
|
||
corresponding to the value X. */
|
||
|
||
LONGEST
|
||
ada_float_to_fixed (struct type *type, DOUBLEST x)
|
||
{
|
||
return (LONGEST) (x / scaling_factor (type) + 0.5);
|
||
}
|
||
|
||
|
||
|
||
/* Range types */
|
||
|
||
/* Scan STR beginning at position K for a discriminant name, and
|
||
return the value of that discriminant field of DVAL in *PX. If
|
||
PNEW_K is not null, put the position of the character beyond the
|
||
name scanned in *PNEW_K. Return 1 if successful; return 0 and do
|
||
not alter *PX and *PNEW_K if unsuccessful. */
|
||
|
||
static int
|
||
scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
|
||
int *pnew_k)
|
||
{
|
||
static char *bound_buffer = NULL;
|
||
static size_t bound_buffer_len = 0;
|
||
const char *pstart, *pend, *bound;
|
||
struct value *bound_val;
|
||
|
||
if (dval == NULL || str == NULL || str[k] == '\0')
|
||
return 0;
|
||
|
||
pstart = str + k;
|
||
pend = strstr (pstart, "__");
|
||
if (pend == NULL)
|
||
{
|
||
bound = pstart;
|
||
k += strlen (bound);
|
||
}
|
||
else
|
||
{
|
||
int len = pend - pstart;
|
||
|
||
/* Strip __ and beyond. */
|
||
GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
|
||
strncpy (bound_buffer, pstart, len);
|
||
bound_buffer[len] = '\0';
|
||
|
||
bound = bound_buffer;
|
||
k = pend - str;
|
||
}
|
||
|
||
bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
|
||
if (bound_val == NULL)
|
||
return 0;
|
||
|
||
*px = value_as_long (bound_val);
|
||
if (pnew_k != NULL)
|
||
*pnew_k = k;
|
||
return 1;
|
||
}
|
||
|
||
/* Value of variable named NAME in the current environment. If
|
||
no such variable found, then if ERR_MSG is null, returns 0, and
|
||
otherwise causes an error with message ERR_MSG. */
|
||
|
||
static struct value *
|
||
get_var_value (char *name, char *err_msg)
|
||
{
|
||
struct block_symbol *syms;
|
||
int nsyms;
|
||
|
||
nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
|
||
&syms);
|
||
|
||
if (nsyms != 1)
|
||
{
|
||
if (err_msg == NULL)
|
||
return 0;
|
||
else
|
||
error (("%s"), err_msg);
|
||
}
|
||
|
||
return value_of_variable (syms[0].symbol, syms[0].block);
|
||
}
|
||
|
||
/* Value of integer variable named NAME in the current environment. If
|
||
no such variable found, returns 0, and sets *FLAG to 0. If
|
||
successful, sets *FLAG to 1. */
|
||
|
||
LONGEST
|
||
get_int_var_value (char *name, int *flag)
|
||
{
|
||
struct value *var_val = get_var_value (name, 0);
|
||
|
||
if (var_val == 0)
|
||
{
|
||
if (flag != NULL)
|
||
*flag = 0;
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (flag != NULL)
|
||
*flag = 1;
|
||
return value_as_long (var_val);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return a range type whose base type is that of the range type named
|
||
NAME in the current environment, and whose bounds are calculated
|
||
from NAME according to the GNAT range encoding conventions.
|
||
Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
|
||
corresponding range type from debug information; fall back to using it
|
||
if symbol lookup fails. If a new type must be created, allocate it
|
||
like ORIG_TYPE was. The bounds information, in general, is encoded
|
||
in NAME, the base type given in the named range type. */
|
||
|
||
static struct type *
|
||
to_fixed_range_type (struct type *raw_type, struct value *dval)
|
||
{
|
||
const char *name;
|
||
struct type *base_type;
|
||
const char *subtype_info;
|
||
|
||
gdb_assert (raw_type != NULL);
|
||
gdb_assert (TYPE_NAME (raw_type) != NULL);
|
||
|
||
if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
|
||
base_type = TYPE_TARGET_TYPE (raw_type);
|
||
else
|
||
base_type = raw_type;
|
||
|
||
name = TYPE_NAME (raw_type);
|
||
subtype_info = strstr (name, "___XD");
|
||
if (subtype_info == NULL)
|
||
{
|
||
LONGEST L = ada_discrete_type_low_bound (raw_type);
|
||
LONGEST U = ada_discrete_type_high_bound (raw_type);
|
||
|
||
if (L < INT_MIN || U > INT_MAX)
|
||
return raw_type;
|
||
else
|
||
return create_static_range_type (alloc_type_copy (raw_type), raw_type,
|
||
L, U);
|
||
}
|
||
else
|
||
{
|
||
static char *name_buf = NULL;
|
||
static size_t name_len = 0;
|
||
int prefix_len = subtype_info - name;
|
||
LONGEST L, U;
|
||
struct type *type;
|
||
const char *bounds_str;
|
||
int n;
|
||
|
||
GROW_VECT (name_buf, name_len, prefix_len + 5);
|
||
strncpy (name_buf, name, prefix_len);
|
||
name_buf[prefix_len] = '\0';
|
||
|
||
subtype_info += 5;
|
||
bounds_str = strchr (subtype_info, '_');
|
||
n = 1;
|
||
|
||
if (*subtype_info == 'L')
|
||
{
|
||
if (!ada_scan_number (bounds_str, n, &L, &n)
|
||
&& !scan_discrim_bound (bounds_str, n, dval, &L, &n))
|
||
return raw_type;
|
||
if (bounds_str[n] == '_')
|
||
n += 2;
|
||
else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
|
||
n += 1;
|
||
subtype_info += 1;
|
||
}
|
||
else
|
||
{
|
||
int ok;
|
||
|
||
strcpy (name_buf + prefix_len, "___L");
|
||
L = get_int_var_value (name_buf, &ok);
|
||
if (!ok)
|
||
{
|
||
lim_warning (_("Unknown lower bound, using 1."));
|
||
L = 1;
|
||
}
|
||
}
|
||
|
||
if (*subtype_info == 'U')
|
||
{
|
||
if (!ada_scan_number (bounds_str, n, &U, &n)
|
||
&& !scan_discrim_bound (bounds_str, n, dval, &U, &n))
|
||
return raw_type;
|
||
}
|
||
else
|
||
{
|
||
int ok;
|
||
|
||
strcpy (name_buf + prefix_len, "___U");
|
||
U = get_int_var_value (name_buf, &ok);
|
||
if (!ok)
|
||
{
|
||
lim_warning (_("Unknown upper bound, using %ld."), (long) L);
|
||
U = L;
|
||
}
|
||
}
|
||
|
||
type = create_static_range_type (alloc_type_copy (raw_type),
|
||
base_type, L, U);
|
||
TYPE_NAME (type) = name;
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* True iff NAME is the name of a range type. */
|
||
|
||
int
|
||
ada_is_range_type_name (const char *name)
|
||
{
|
||
return (name != NULL && strstr (name, "___XD"));
|
||
}
|
||
|
||
|
||
/* Modular types */
|
||
|
||
/* True iff TYPE is an Ada modular type. */
|
||
|
||
int
|
||
ada_is_modular_type (struct type *type)
|
||
{
|
||
struct type *subranged_type = get_base_type (type);
|
||
|
||
return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
|
||
&& TYPE_CODE (subranged_type) == TYPE_CODE_INT
|
||
&& TYPE_UNSIGNED (subranged_type));
|
||
}
|
||
|
||
/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
|
||
|
||
ULONGEST
|
||
ada_modulus (struct type *type)
|
||
{
|
||
return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
|
||
}
|
||
|
||
|
||
/* Ada exception catchpoint support:
|
||
---------------------------------
|
||
|
||
We support 3 kinds of exception catchpoints:
|
||
. catchpoints on Ada exceptions
|
||
. catchpoints on unhandled Ada exceptions
|
||
. catchpoints on failed assertions
|
||
|
||
Exceptions raised during failed assertions, or unhandled exceptions
|
||
could perfectly be caught with the general catchpoint on Ada exceptions.
|
||
However, we can easily differentiate these two special cases, and having
|
||
the option to distinguish these two cases from the rest can be useful
|
||
to zero-in on certain situations.
|
||
|
||
Exception catchpoints are a specialized form of breakpoint,
|
||
since they rely on inserting breakpoints inside known routines
|
||
of the GNAT runtime. The implementation therefore uses a standard
|
||
breakpoint structure of the BP_BREAKPOINT type, but with its own set
|
||
of breakpoint_ops.
|
||
|
||
Support in the runtime for exception catchpoints have been changed
|
||
a few times already, and these changes affect the implementation
|
||
of these catchpoints. In order to be able to support several
|
||
variants of the runtime, we use a sniffer that will determine
|
||
the runtime variant used by the program being debugged. */
|
||
|
||
/* Ada's standard exceptions.
|
||
|
||
The Ada 83 standard also defined Numeric_Error. But there so many
|
||
situations where it was unclear from the Ada 83 Reference Manual
|
||
(RM) whether Constraint_Error or Numeric_Error should be raised,
|
||
that the ARG (Ada Rapporteur Group) eventually issued a Binding
|
||
Interpretation saying that anytime the RM says that Numeric_Error
|
||
should be raised, the implementation may raise Constraint_Error.
|
||
Ada 95 went one step further and pretty much removed Numeric_Error
|
||
from the list of standard exceptions (it made it a renaming of
|
||
Constraint_Error, to help preserve compatibility when compiling
|
||
an Ada83 compiler). As such, we do not include Numeric_Error from
|
||
this list of standard exceptions. */
|
||
|
||
static char *standard_exc[] = {
|
||
"constraint_error",
|
||
"program_error",
|
||
"storage_error",
|
||
"tasking_error"
|
||
};
|
||
|
||
typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
|
||
|
||
/* A structure that describes how to support exception catchpoints
|
||
for a given executable. */
|
||
|
||
struct exception_support_info
|
||
{
|
||
/* The name of the symbol to break on in order to insert
|
||
a catchpoint on exceptions. */
|
||
const char *catch_exception_sym;
|
||
|
||
/* The name of the symbol to break on in order to insert
|
||
a catchpoint on unhandled exceptions. */
|
||
const char *catch_exception_unhandled_sym;
|
||
|
||
/* The name of the symbol to break on in order to insert
|
||
a catchpoint on failed assertions. */
|
||
const char *catch_assert_sym;
|
||
|
||
/* Assuming that the inferior just triggered an unhandled exception
|
||
catchpoint, this function is responsible for returning the address
|
||
in inferior memory where the name of that exception is stored.
|
||
Return zero if the address could not be computed. */
|
||
ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
|
||
};
|
||
|
||
static CORE_ADDR ada_unhandled_exception_name_addr (void);
|
||
static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
|
||
|
||
/* The following exception support info structure describes how to
|
||
implement exception catchpoints with the latest version of the
|
||
Ada runtime (as of 2007-03-06). */
|
||
|
||
static const struct exception_support_info default_exception_support_info =
|
||
{
|
||
"__gnat_debug_raise_exception", /* catch_exception_sym */
|
||
"__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
|
||
"__gnat_debug_raise_assert_failure", /* catch_assert_sym */
|
||
ada_unhandled_exception_name_addr
|
||
};
|
||
|
||
/* The following exception support info structure describes how to
|
||
implement exception catchpoints with a slightly older version
|
||
of the Ada runtime. */
|
||
|
||
static const struct exception_support_info exception_support_info_fallback =
|
||
{
|
||
"__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
|
||
"__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
|
||
"system__assertions__raise_assert_failure", /* catch_assert_sym */
|
||
ada_unhandled_exception_name_addr_from_raise
|
||
};
|
||
|
||
/* Return nonzero if we can detect the exception support routines
|
||
described in EINFO.
|
||
|
||
This function errors out if an abnormal situation is detected
|
||
(for instance, if we find the exception support routines, but
|
||
that support is found to be incomplete). */
|
||
|
||
static int
|
||
ada_has_this_exception_support (const struct exception_support_info *einfo)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
/* The symbol we're looking up is provided by a unit in the GNAT runtime
|
||
that should be compiled with debugging information. As a result, we
|
||
expect to find that symbol in the symtabs. */
|
||
|
||
sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
|
||
if (sym == NULL)
|
||
{
|
||
/* Perhaps we did not find our symbol because the Ada runtime was
|
||
compiled without debugging info, or simply stripped of it.
|
||
It happens on some GNU/Linux distributions for instance, where
|
||
users have to install a separate debug package in order to get
|
||
the runtime's debugging info. In that situation, let the user
|
||
know why we cannot insert an Ada exception catchpoint.
|
||
|
||
Note: Just for the purpose of inserting our Ada exception
|
||
catchpoint, we could rely purely on the associated minimal symbol.
|
||
But we would be operating in degraded mode anyway, since we are
|
||
still lacking the debugging info needed later on to extract
|
||
the name of the exception being raised (this name is printed in
|
||
the catchpoint message, and is also used when trying to catch
|
||
a specific exception). We do not handle this case for now. */
|
||
struct bound_minimal_symbol msym
|
||
= lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
|
||
|
||
if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
|
||
error (_("Your Ada runtime appears to be missing some debugging "
|
||
"information.\nCannot insert Ada exception catchpoint "
|
||
"in this configuration."));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Make sure that the symbol we found corresponds to a function. */
|
||
|
||
if (SYMBOL_CLASS (sym) != LOC_BLOCK)
|
||
error (_("Symbol \"%s\" is not a function (class = %d)"),
|
||
SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Inspect the Ada runtime and determine which exception info structure
|
||
should be used to provide support for exception catchpoints.
|
||
|
||
This function will always set the per-inferior exception_info,
|
||
or raise an error. */
|
||
|
||
static void
|
||
ada_exception_support_info_sniffer (void)
|
||
{
|
||
struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
|
||
|
||
/* If the exception info is already known, then no need to recompute it. */
|
||
if (data->exception_info != NULL)
|
||
return;
|
||
|
||
/* Check the latest (default) exception support info. */
|
||
if (ada_has_this_exception_support (&default_exception_support_info))
|
||
{
|
||
data->exception_info = &default_exception_support_info;
|
||
return;
|
||
}
|
||
|
||
/* Try our fallback exception suport info. */
|
||
if (ada_has_this_exception_support (&exception_support_info_fallback))
|
||
{
|
||
data->exception_info = &exception_support_info_fallback;
|
||
return;
|
||
}
|
||
|
||
/* Sometimes, it is normal for us to not be able to find the routine
|
||
we are looking for. This happens when the program is linked with
|
||
the shared version of the GNAT runtime, and the program has not been
|
||
started yet. Inform the user of these two possible causes if
|
||
applicable. */
|
||
|
||
if (ada_update_initial_language (language_unknown) != language_ada)
|
||
error (_("Unable to insert catchpoint. Is this an Ada main program?"));
|
||
|
||
/* If the symbol does not exist, then check that the program is
|
||
already started, to make sure that shared libraries have been
|
||
loaded. If it is not started, this may mean that the symbol is
|
||
in a shared library. */
|
||
|
||
if (ptid_get_pid (inferior_ptid) == 0)
|
||
error (_("Unable to insert catchpoint. Try to start the program first."));
|
||
|
||
/* At this point, we know that we are debugging an Ada program and
|
||
that the inferior has been started, but we still are not able to
|
||
find the run-time symbols. That can mean that we are in
|
||
configurable run time mode, or that a-except as been optimized
|
||
out by the linker... In any case, at this point it is not worth
|
||
supporting this feature. */
|
||
|
||
error (_("Cannot insert Ada exception catchpoints in this configuration."));
|
||
}
|
||
|
||
/* True iff FRAME is very likely to be that of a function that is
|
||
part of the runtime system. This is all very heuristic, but is
|
||
intended to be used as advice as to what frames are uninteresting
|
||
to most users. */
|
||
|
||
static int
|
||
is_known_support_routine (struct frame_info *frame)
|
||
{
|
||
struct symtab_and_line sal;
|
||
char *func_name;
|
||
enum language func_lang;
|
||
int i;
|
||
const char *fullname;
|
||
|
||
/* If this code does not have any debugging information (no symtab),
|
||
This cannot be any user code. */
|
||
|
||
find_frame_sal (frame, &sal);
|
||
if (sal.symtab == NULL)
|
||
return 1;
|
||
|
||
/* If there is a symtab, but the associated source file cannot be
|
||
located, then assume this is not user code: Selecting a frame
|
||
for which we cannot display the code would not be very helpful
|
||
for the user. This should also take care of case such as VxWorks
|
||
where the kernel has some debugging info provided for a few units. */
|
||
|
||
fullname = symtab_to_fullname (sal.symtab);
|
||
if (access (fullname, R_OK) != 0)
|
||
return 1;
|
||
|
||
/* Check the unit filename againt the Ada runtime file naming.
|
||
We also check the name of the objfile against the name of some
|
||
known system libraries that sometimes come with debugging info
|
||
too. */
|
||
|
||
for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
|
||
{
|
||
re_comp (known_runtime_file_name_patterns[i]);
|
||
if (re_exec (lbasename (sal.symtab->filename)))
|
||
return 1;
|
||
if (SYMTAB_OBJFILE (sal.symtab) != NULL
|
||
&& re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
|
||
return 1;
|
||
}
|
||
|
||
/* Check whether the function is a GNAT-generated entity. */
|
||
|
||
find_frame_funname (frame, &func_name, &func_lang, NULL);
|
||
if (func_name == NULL)
|
||
return 1;
|
||
|
||
for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
|
||
{
|
||
re_comp (known_auxiliary_function_name_patterns[i]);
|
||
if (re_exec (func_name))
|
||
{
|
||
xfree (func_name);
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
xfree (func_name);
|
||
return 0;
|
||
}
|
||
|
||
/* Find the first frame that contains debugging information and that is not
|
||
part of the Ada run-time, starting from FI and moving upward. */
|
||
|
||
void
|
||
ada_find_printable_frame (struct frame_info *fi)
|
||
{
|
||
for (; fi != NULL; fi = get_prev_frame (fi))
|
||
{
|
||
if (!is_known_support_routine (fi))
|
||
{
|
||
select_frame (fi);
|
||
break;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* Assuming that the inferior just triggered an unhandled exception
|
||
catchpoint, return the address in inferior memory where the name
|
||
of the exception is stored.
|
||
|
||
Return zero if the address could not be computed. */
|
||
|
||
static CORE_ADDR
|
||
ada_unhandled_exception_name_addr (void)
|
||
{
|
||
return parse_and_eval_address ("e.full_name");
|
||
}
|
||
|
||
/* Same as ada_unhandled_exception_name_addr, except that this function
|
||
should be used when the inferior uses an older version of the runtime,
|
||
where the exception name needs to be extracted from a specific frame
|
||
several frames up in the callstack. */
|
||
|
||
static CORE_ADDR
|
||
ada_unhandled_exception_name_addr_from_raise (void)
|
||
{
|
||
int frame_level;
|
||
struct frame_info *fi;
|
||
struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
|
||
struct cleanup *old_chain;
|
||
|
||
/* To determine the name of this exception, we need to select
|
||
the frame corresponding to RAISE_SYM_NAME. This frame is
|
||
at least 3 levels up, so we simply skip the first 3 frames
|
||
without checking the name of their associated function. */
|
||
fi = get_current_frame ();
|
||
for (frame_level = 0; frame_level < 3; frame_level += 1)
|
||
if (fi != NULL)
|
||
fi = get_prev_frame (fi);
|
||
|
||
old_chain = make_cleanup (null_cleanup, NULL);
|
||
while (fi != NULL)
|
||
{
|
||
char *func_name;
|
||
enum language func_lang;
|
||
|
||
find_frame_funname (fi, &func_name, &func_lang, NULL);
|
||
if (func_name != NULL)
|
||
{
|
||
make_cleanup (xfree, func_name);
|
||
|
||
if (strcmp (func_name,
|
||
data->exception_info->catch_exception_sym) == 0)
|
||
break; /* We found the frame we were looking for... */
|
||
fi = get_prev_frame (fi);
|
||
}
|
||
}
|
||
do_cleanups (old_chain);
|
||
|
||
if (fi == NULL)
|
||
return 0;
|
||
|
||
select_frame (fi);
|
||
return parse_and_eval_address ("id.full_name");
|
||
}
|
||
|
||
/* Assuming the inferior just triggered an Ada exception catchpoint
|
||
(of any type), return the address in inferior memory where the name
|
||
of the exception is stored, if applicable.
|
||
|
||
Assumes the selected frame is the current frame.
|
||
|
||
Return zero if the address could not be computed, or if not relevant. */
|
||
|
||
static CORE_ADDR
|
||
ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
|
||
struct breakpoint *b)
|
||
{
|
||
struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
|
||
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
return (parse_and_eval_address ("e.full_name"));
|
||
break;
|
||
|
||
case ada_catch_exception_unhandled:
|
||
return data->exception_info->unhandled_exception_name_addr ();
|
||
break;
|
||
|
||
case ada_catch_assert:
|
||
return 0; /* Exception name is not relevant in this case. */
|
||
break;
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
||
break;
|
||
}
|
||
|
||
return 0; /* Should never be reached. */
|
||
}
|
||
|
||
/* Same as ada_exception_name_addr_1, except that it intercepts and contains
|
||
any error that ada_exception_name_addr_1 might cause to be thrown.
|
||
When an error is intercepted, a warning with the error message is printed,
|
||
and zero is returned. */
|
||
|
||
static CORE_ADDR
|
||
ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
|
||
struct breakpoint *b)
|
||
{
|
||
CORE_ADDR result = 0;
|
||
|
||
TRY
|
||
{
|
||
result = ada_exception_name_addr_1 (ex, b);
|
||
}
|
||
|
||
CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
warning (_("failed to get exception name: %s"), e.message);
|
||
return 0;
|
||
}
|
||
END_CATCH
|
||
|
||
return result;
|
||
}
|
||
|
||
static char *ada_exception_catchpoint_cond_string (const char *excep_string);
|
||
|
||
/* Ada catchpoints.
|
||
|
||
In the case of catchpoints on Ada exceptions, the catchpoint will
|
||
stop the target on every exception the program throws. When a user
|
||
specifies the name of a specific exception, we translate this
|
||
request into a condition expression (in text form), and then parse
|
||
it into an expression stored in each of the catchpoint's locations.
|
||
We then use this condition to check whether the exception that was
|
||
raised is the one the user is interested in. If not, then the
|
||
target is resumed again. We store the name of the requested
|
||
exception, in order to be able to re-set the condition expression
|
||
when symbols change. */
|
||
|
||
/* An instance of this type is used to represent an Ada catchpoint
|
||
breakpoint location. It includes a "struct bp_location" as a kind
|
||
of base class; users downcast to "struct bp_location *" when
|
||
needed. */
|
||
|
||
struct ada_catchpoint_location
|
||
{
|
||
/* The base class. */
|
||
struct bp_location base;
|
||
|
||
/* The condition that checks whether the exception that was raised
|
||
is the specific exception the user specified on catchpoint
|
||
creation. */
|
||
struct expression *excep_cond_expr;
|
||
};
|
||
|
||
/* Implement the DTOR method in the bp_location_ops structure for all
|
||
Ada exception catchpoint kinds. */
|
||
|
||
static void
|
||
ada_catchpoint_location_dtor (struct bp_location *bl)
|
||
{
|
||
struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
|
||
|
||
xfree (al->excep_cond_expr);
|
||
}
|
||
|
||
/* The vtable to be used in Ada catchpoint locations. */
|
||
|
||
static const struct bp_location_ops ada_catchpoint_location_ops =
|
||
{
|
||
ada_catchpoint_location_dtor
|
||
};
|
||
|
||
/* An instance of this type is used to represent an Ada catchpoint.
|
||
It includes a "struct breakpoint" as a kind of base class; users
|
||
downcast to "struct breakpoint *" when needed. */
|
||
|
||
struct ada_catchpoint
|
||
{
|
||
/* The base class. */
|
||
struct breakpoint base;
|
||
|
||
/* The name of the specific exception the user specified. */
|
||
char *excep_string;
|
||
};
|
||
|
||
/* Parse the exception condition string in the context of each of the
|
||
catchpoint's locations, and store them for later evaluation. */
|
||
|
||
static void
|
||
create_excep_cond_exprs (struct ada_catchpoint *c)
|
||
{
|
||
struct cleanup *old_chain;
|
||
struct bp_location *bl;
|
||
char *cond_string;
|
||
|
||
/* Nothing to do if there's no specific exception to catch. */
|
||
if (c->excep_string == NULL)
|
||
return;
|
||
|
||
/* Same if there are no locations... */
|
||
if (c->base.loc == NULL)
|
||
return;
|
||
|
||
/* Compute the condition expression in text form, from the specific
|
||
expection we want to catch. */
|
||
cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
|
||
old_chain = make_cleanup (xfree, cond_string);
|
||
|
||
/* Iterate over all the catchpoint's locations, and parse an
|
||
expression for each. */
|
||
for (bl = c->base.loc; bl != NULL; bl = bl->next)
|
||
{
|
||
struct ada_catchpoint_location *ada_loc
|
||
= (struct ada_catchpoint_location *) bl;
|
||
struct expression *exp = NULL;
|
||
|
||
if (!bl->shlib_disabled)
|
||
{
|
||
const char *s;
|
||
|
||
s = cond_string;
|
||
TRY
|
||
{
|
||
exp = parse_exp_1 (&s, bl->address,
|
||
block_for_pc (bl->address), 0);
|
||
}
|
||
CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
warning (_("failed to reevaluate internal exception condition "
|
||
"for catchpoint %d: %s"),
|
||
c->base.number, e.message);
|
||
/* There is a bug in GCC on sparc-solaris when building with
|
||
optimization which causes EXP to change unexpectedly
|
||
(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
|
||
The problem should be fixed starting with GCC 4.9.
|
||
In the meantime, work around it by forcing EXP back
|
||
to NULL. */
|
||
exp = NULL;
|
||
}
|
||
END_CATCH
|
||
}
|
||
|
||
ada_loc->excep_cond_expr = exp;
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* Implement the DTOR method in the breakpoint_ops structure for all
|
||
exception catchpoint kinds. */
|
||
|
||
static void
|
||
dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
|
||
{
|
||
struct ada_catchpoint *c = (struct ada_catchpoint *) b;
|
||
|
||
xfree (c->excep_string);
|
||
|
||
bkpt_breakpoint_ops.dtor (b);
|
||
}
|
||
|
||
/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
|
||
structure for all exception catchpoint kinds. */
|
||
|
||
static struct bp_location *
|
||
allocate_location_exception (enum ada_exception_catchpoint_kind ex,
|
||
struct breakpoint *self)
|
||
{
|
||
struct ada_catchpoint_location *loc;
|
||
|
||
loc = XNEW (struct ada_catchpoint_location);
|
||
init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
|
||
loc->excep_cond_expr = NULL;
|
||
return &loc->base;
|
||
}
|
||
|
||
/* Implement the RE_SET method in the breakpoint_ops structure for all
|
||
exception catchpoint kinds. */
|
||
|
||
static void
|
||
re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
|
||
{
|
||
struct ada_catchpoint *c = (struct ada_catchpoint *) b;
|
||
|
||
/* Call the base class's method. This updates the catchpoint's
|
||
locations. */
|
||
bkpt_breakpoint_ops.re_set (b);
|
||
|
||
/* Reparse the exception conditional expressions. One for each
|
||
location. */
|
||
create_excep_cond_exprs (c);
|
||
}
|
||
|
||
/* Returns true if we should stop for this breakpoint hit. If the
|
||
user specified a specific exception, we only want to cause a stop
|
||
if the program thrown that exception. */
|
||
|
||
static int
|
||
should_stop_exception (const struct bp_location *bl)
|
||
{
|
||
struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
|
||
const struct ada_catchpoint_location *ada_loc
|
||
= (const struct ada_catchpoint_location *) bl;
|
||
int stop;
|
||
|
||
/* With no specific exception, should always stop. */
|
||
if (c->excep_string == NULL)
|
||
return 1;
|
||
|
||
if (ada_loc->excep_cond_expr == NULL)
|
||
{
|
||
/* We will have a NULL expression if back when we were creating
|
||
the expressions, this location's had failed to parse. */
|
||
return 1;
|
||
}
|
||
|
||
stop = 1;
|
||
TRY
|
||
{
|
||
struct value *mark;
|
||
|
||
mark = value_mark ();
|
||
stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
|
||
value_free_to_mark (mark);
|
||
}
|
||
CATCH (ex, RETURN_MASK_ALL)
|
||
{
|
||
exception_fprintf (gdb_stderr, ex,
|
||
_("Error in testing exception condition:\n"));
|
||
}
|
||
END_CATCH
|
||
|
||
return stop;
|
||
}
|
||
|
||
/* Implement the CHECK_STATUS method in the breakpoint_ops structure
|
||
for all exception catchpoint kinds. */
|
||
|
||
static void
|
||
check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
|
||
{
|
||
bs->stop = should_stop_exception (bs->bp_location_at);
|
||
}
|
||
|
||
/* Implement the PRINT_IT method in the breakpoint_ops structure
|
||
for all exception catchpoint kinds. */
|
||
|
||
static enum print_stop_action
|
||
print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
|
||
{
|
||
struct ui_out *uiout = current_uiout;
|
||
struct breakpoint *b = bs->breakpoint_at;
|
||
|
||
annotate_catchpoint (b->number);
|
||
|
||
if (ui_out_is_mi_like_p (uiout))
|
||
{
|
||
ui_out_field_string (uiout, "reason",
|
||
async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
|
||
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
|
||
}
|
||
|
||
ui_out_text (uiout,
|
||
b->disposition == disp_del ? "\nTemporary catchpoint "
|
||
: "\nCatchpoint ");
|
||
ui_out_field_int (uiout, "bkptno", b->number);
|
||
ui_out_text (uiout, ", ");
|
||
|
||
/* ada_exception_name_addr relies on the selected frame being the
|
||
current frame. Need to do this here because this function may be
|
||
called more than once when printing a stop, and below, we'll
|
||
select the first frame past the Ada run-time (see
|
||
ada_find_printable_frame). */
|
||
select_frame (get_current_frame ());
|
||
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
case ada_catch_exception_unhandled:
|
||
{
|
||
const CORE_ADDR addr = ada_exception_name_addr (ex, b);
|
||
char exception_name[256];
|
||
|
||
if (addr != 0)
|
||
{
|
||
read_memory (addr, (gdb_byte *) exception_name,
|
||
sizeof (exception_name) - 1);
|
||
exception_name [sizeof (exception_name) - 1] = '\0';
|
||
}
|
||
else
|
||
{
|
||
/* For some reason, we were unable to read the exception
|
||
name. This could happen if the Runtime was compiled
|
||
without debugging info, for instance. In that case,
|
||
just replace the exception name by the generic string
|
||
"exception" - it will read as "an exception" in the
|
||
notification we are about to print. */
|
||
memcpy (exception_name, "exception", sizeof ("exception"));
|
||
}
|
||
/* In the case of unhandled exception breakpoints, we print
|
||
the exception name as "unhandled EXCEPTION_NAME", to make
|
||
it clearer to the user which kind of catchpoint just got
|
||
hit. We used ui_out_text to make sure that this extra
|
||
info does not pollute the exception name in the MI case. */
|
||
if (ex == ada_catch_exception_unhandled)
|
||
ui_out_text (uiout, "unhandled ");
|
||
ui_out_field_string (uiout, "exception-name", exception_name);
|
||
}
|
||
break;
|
||
case ada_catch_assert:
|
||
/* In this case, the name of the exception is not really
|
||
important. Just print "failed assertion" to make it clearer
|
||
that his program just hit an assertion-failure catchpoint.
|
||
We used ui_out_text because this info does not belong in
|
||
the MI output. */
|
||
ui_out_text (uiout, "failed assertion");
|
||
break;
|
||
}
|
||
ui_out_text (uiout, " at ");
|
||
ada_find_printable_frame (get_current_frame ());
|
||
|
||
return PRINT_SRC_AND_LOC;
|
||
}
|
||
|
||
/* Implement the PRINT_ONE method in the breakpoint_ops structure
|
||
for all exception catchpoint kinds. */
|
||
|
||
static void
|
||
print_one_exception (enum ada_exception_catchpoint_kind ex,
|
||
struct breakpoint *b, struct bp_location **last_loc)
|
||
{
|
||
struct ui_out *uiout = current_uiout;
|
||
struct ada_catchpoint *c = (struct ada_catchpoint *) b;
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
if (opts.addressprint)
|
||
{
|
||
annotate_field (4);
|
||
ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
|
||
}
|
||
|
||
annotate_field (5);
|
||
*last_loc = b->loc;
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
if (c->excep_string != NULL)
|
||
{
|
||
char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
|
||
|
||
ui_out_field_string (uiout, "what", msg);
|
||
xfree (msg);
|
||
}
|
||
else
|
||
ui_out_field_string (uiout, "what", "all Ada exceptions");
|
||
|
||
break;
|
||
|
||
case ada_catch_exception_unhandled:
|
||
ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
|
||
break;
|
||
|
||
case ada_catch_assert:
|
||
ui_out_field_string (uiout, "what", "failed Ada assertions");
|
||
break;
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Implement the PRINT_MENTION method in the breakpoint_ops structure
|
||
for all exception catchpoint kinds. */
|
||
|
||
static void
|
||
print_mention_exception (enum ada_exception_catchpoint_kind ex,
|
||
struct breakpoint *b)
|
||
{
|
||
struct ada_catchpoint *c = (struct ada_catchpoint *) b;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
|
||
: _("Catchpoint "));
|
||
ui_out_field_int (uiout, "bkptno", b->number);
|
||
ui_out_text (uiout, ": ");
|
||
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
if (c->excep_string != NULL)
|
||
{
|
||
char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
|
||
struct cleanup *old_chain = make_cleanup (xfree, info);
|
||
|
||
ui_out_text (uiout, info);
|
||
do_cleanups (old_chain);
|
||
}
|
||
else
|
||
ui_out_text (uiout, _("all Ada exceptions"));
|
||
break;
|
||
|
||
case ada_catch_exception_unhandled:
|
||
ui_out_text (uiout, _("unhandled Ada exceptions"));
|
||
break;
|
||
|
||
case ada_catch_assert:
|
||
ui_out_text (uiout, _("failed Ada assertions"));
|
||
break;
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
|
||
for all exception catchpoint kinds. */
|
||
|
||
static void
|
||
print_recreate_exception (enum ada_exception_catchpoint_kind ex,
|
||
struct breakpoint *b, struct ui_file *fp)
|
||
{
|
||
struct ada_catchpoint *c = (struct ada_catchpoint *) b;
|
||
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
fprintf_filtered (fp, "catch exception");
|
||
if (c->excep_string != NULL)
|
||
fprintf_filtered (fp, " %s", c->excep_string);
|
||
break;
|
||
|
||
case ada_catch_exception_unhandled:
|
||
fprintf_filtered (fp, "catch exception unhandled");
|
||
break;
|
||
|
||
case ada_catch_assert:
|
||
fprintf_filtered (fp, "catch assert");
|
||
break;
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
||
}
|
||
print_recreate_thread (b, fp);
|
||
}
|
||
|
||
/* Virtual table for "catch exception" breakpoints. */
|
||
|
||
static void
|
||
dtor_catch_exception (struct breakpoint *b)
|
||
{
|
||
dtor_exception (ada_catch_exception, b);
|
||
}
|
||
|
||
static struct bp_location *
|
||
allocate_location_catch_exception (struct breakpoint *self)
|
||
{
|
||
return allocate_location_exception (ada_catch_exception, self);
|
||
}
|
||
|
||
static void
|
||
re_set_catch_exception (struct breakpoint *b)
|
||
{
|
||
re_set_exception (ada_catch_exception, b);
|
||
}
|
||
|
||
static void
|
||
check_status_catch_exception (bpstat bs)
|
||
{
|
||
check_status_exception (ada_catch_exception, bs);
|
||
}
|
||
|
||
static enum print_stop_action
|
||
print_it_catch_exception (bpstat bs)
|
||
{
|
||
return print_it_exception (ada_catch_exception, bs);
|
||
}
|
||
|
||
static void
|
||
print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
|
||
{
|
||
print_one_exception (ada_catch_exception, b, last_loc);
|
||
}
|
||
|
||
static void
|
||
print_mention_catch_exception (struct breakpoint *b)
|
||
{
|
||
print_mention_exception (ada_catch_exception, b);
|
||
}
|
||
|
||
static void
|
||
print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
|
||
{
|
||
print_recreate_exception (ada_catch_exception, b, fp);
|
||
}
|
||
|
||
static struct breakpoint_ops catch_exception_breakpoint_ops;
|
||
|
||
/* Virtual table for "catch exception unhandled" breakpoints. */
|
||
|
||
static void
|
||
dtor_catch_exception_unhandled (struct breakpoint *b)
|
||
{
|
||
dtor_exception (ada_catch_exception_unhandled, b);
|
||
}
|
||
|
||
static struct bp_location *
|
||
allocate_location_catch_exception_unhandled (struct breakpoint *self)
|
||
{
|
||
return allocate_location_exception (ada_catch_exception_unhandled, self);
|
||
}
|
||
|
||
static void
|
||
re_set_catch_exception_unhandled (struct breakpoint *b)
|
||
{
|
||
re_set_exception (ada_catch_exception_unhandled, b);
|
||
}
|
||
|
||
static void
|
||
check_status_catch_exception_unhandled (bpstat bs)
|
||
{
|
||
check_status_exception (ada_catch_exception_unhandled, bs);
|
||
}
|
||
|
||
static enum print_stop_action
|
||
print_it_catch_exception_unhandled (bpstat bs)
|
||
{
|
||
return print_it_exception (ada_catch_exception_unhandled, bs);
|
||
}
|
||
|
||
static void
|
||
print_one_catch_exception_unhandled (struct breakpoint *b,
|
||
struct bp_location **last_loc)
|
||
{
|
||
print_one_exception (ada_catch_exception_unhandled, b, last_loc);
|
||
}
|
||
|
||
static void
|
||
print_mention_catch_exception_unhandled (struct breakpoint *b)
|
||
{
|
||
print_mention_exception (ada_catch_exception_unhandled, b);
|
||
}
|
||
|
||
static void
|
||
print_recreate_catch_exception_unhandled (struct breakpoint *b,
|
||
struct ui_file *fp)
|
||
{
|
||
print_recreate_exception (ada_catch_exception_unhandled, b, fp);
|
||
}
|
||
|
||
static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
|
||
|
||
/* Virtual table for "catch assert" breakpoints. */
|
||
|
||
static void
|
||
dtor_catch_assert (struct breakpoint *b)
|
||
{
|
||
dtor_exception (ada_catch_assert, b);
|
||
}
|
||
|
||
static struct bp_location *
|
||
allocate_location_catch_assert (struct breakpoint *self)
|
||
{
|
||
return allocate_location_exception (ada_catch_assert, self);
|
||
}
|
||
|
||
static void
|
||
re_set_catch_assert (struct breakpoint *b)
|
||
{
|
||
re_set_exception (ada_catch_assert, b);
|
||
}
|
||
|
||
static void
|
||
check_status_catch_assert (bpstat bs)
|
||
{
|
||
check_status_exception (ada_catch_assert, bs);
|
||
}
|
||
|
||
static enum print_stop_action
|
||
print_it_catch_assert (bpstat bs)
|
||
{
|
||
return print_it_exception (ada_catch_assert, bs);
|
||
}
|
||
|
||
static void
|
||
print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
|
||
{
|
||
print_one_exception (ada_catch_assert, b, last_loc);
|
||
}
|
||
|
||
static void
|
||
print_mention_catch_assert (struct breakpoint *b)
|
||
{
|
||
print_mention_exception (ada_catch_assert, b);
|
||
}
|
||
|
||
static void
|
||
print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
|
||
{
|
||
print_recreate_exception (ada_catch_assert, b, fp);
|
||
}
|
||
|
||
static struct breakpoint_ops catch_assert_breakpoint_ops;
|
||
|
||
/* Return a newly allocated copy of the first space-separated token
|
||
in ARGSP, and then adjust ARGSP to point immediately after that
|
||
token.
|
||
|
||
Return NULL if ARGPS does not contain any more tokens. */
|
||
|
||
static char *
|
||
ada_get_next_arg (char **argsp)
|
||
{
|
||
char *args = *argsp;
|
||
char *end;
|
||
char *result;
|
||
|
||
args = skip_spaces (args);
|
||
if (args[0] == '\0')
|
||
return NULL; /* No more arguments. */
|
||
|
||
/* Find the end of the current argument. */
|
||
|
||
end = skip_to_space (args);
|
||
|
||
/* Adjust ARGSP to point to the start of the next argument. */
|
||
|
||
*argsp = end;
|
||
|
||
/* Make a copy of the current argument and return it. */
|
||
|
||
result = (char *) xmalloc (end - args + 1);
|
||
strncpy (result, args, end - args);
|
||
result[end - args] = '\0';
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Split the arguments specified in a "catch exception" command.
|
||
Set EX to the appropriate catchpoint type.
|
||
Set EXCEP_STRING to the name of the specific exception if
|
||
specified by the user.
|
||
If a condition is found at the end of the arguments, the condition
|
||
expression is stored in COND_STRING (memory must be deallocated
|
||
after use). Otherwise COND_STRING is set to NULL. */
|
||
|
||
static void
|
||
catch_ada_exception_command_split (char *args,
|
||
enum ada_exception_catchpoint_kind *ex,
|
||
char **excep_string,
|
||
char **cond_string)
|
||
{
|
||
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
||
char *exception_name;
|
||
char *cond = NULL;
|
||
|
||
exception_name = ada_get_next_arg (&args);
|
||
if (exception_name != NULL && strcmp (exception_name, "if") == 0)
|
||
{
|
||
/* This is not an exception name; this is the start of a condition
|
||
expression for a catchpoint on all exceptions. So, "un-get"
|
||
this token, and set exception_name to NULL. */
|
||
xfree (exception_name);
|
||
exception_name = NULL;
|
||
args -= 2;
|
||
}
|
||
make_cleanup (xfree, exception_name);
|
||
|
||
/* Check to see if we have a condition. */
|
||
|
||
args = skip_spaces (args);
|
||
if (startswith (args, "if")
|
||
&& (isspace (args[2]) || args[2] == '\0'))
|
||
{
|
||
args += 2;
|
||
args = skip_spaces (args);
|
||
|
||
if (args[0] == '\0')
|
||
error (_("Condition missing after `if' keyword"));
|
||
cond = xstrdup (args);
|
||
make_cleanup (xfree, cond);
|
||
|
||
args += strlen (args);
|
||
}
|
||
|
||
/* Check that we do not have any more arguments. Anything else
|
||
is unexpected. */
|
||
|
||
if (args[0] != '\0')
|
||
error (_("Junk at end of expression"));
|
||
|
||
discard_cleanups (old_chain);
|
||
|
||
if (exception_name == NULL)
|
||
{
|
||
/* Catch all exceptions. */
|
||
*ex = ada_catch_exception;
|
||
*excep_string = NULL;
|
||
}
|
||
else if (strcmp (exception_name, "unhandled") == 0)
|
||
{
|
||
/* Catch unhandled exceptions. */
|
||
*ex = ada_catch_exception_unhandled;
|
||
*excep_string = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* Catch a specific exception. */
|
||
*ex = ada_catch_exception;
|
||
*excep_string = exception_name;
|
||
}
|
||
*cond_string = cond;
|
||
}
|
||
|
||
/* Return the name of the symbol on which we should break in order to
|
||
implement a catchpoint of the EX kind. */
|
||
|
||
static const char *
|
||
ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
|
||
{
|
||
struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
|
||
|
||
gdb_assert (data->exception_info != NULL);
|
||
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
return (data->exception_info->catch_exception_sym);
|
||
break;
|
||
case ada_catch_exception_unhandled:
|
||
return (data->exception_info->catch_exception_unhandled_sym);
|
||
break;
|
||
case ada_catch_assert:
|
||
return (data->exception_info->catch_assert_sym);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("unexpected catchpoint kind (%d)"), ex);
|
||
}
|
||
}
|
||
|
||
/* Return the breakpoint ops "virtual table" used for catchpoints
|
||
of the EX kind. */
|
||
|
||
static const struct breakpoint_ops *
|
||
ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
|
||
{
|
||
switch (ex)
|
||
{
|
||
case ada_catch_exception:
|
||
return (&catch_exception_breakpoint_ops);
|
||
break;
|
||
case ada_catch_exception_unhandled:
|
||
return (&catch_exception_unhandled_breakpoint_ops);
|
||
break;
|
||
case ada_catch_assert:
|
||
return (&catch_assert_breakpoint_ops);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("unexpected catchpoint kind (%d)"), ex);
|
||
}
|
||
}
|
||
|
||
/* Return the condition that will be used to match the current exception
|
||
being raised with the exception that the user wants to catch. This
|
||
assumes that this condition is used when the inferior just triggered
|
||
an exception catchpoint.
|
||
|
||
The string returned is a newly allocated string that needs to be
|
||
deallocated later. */
|
||
|
||
static char *
|
||
ada_exception_catchpoint_cond_string (const char *excep_string)
|
||
{
|
||
int i;
|
||
|
||
/* The standard exceptions are a special case. They are defined in
|
||
runtime units that have been compiled without debugging info; if
|
||
EXCEP_STRING is the not-fully-qualified name of a standard
|
||
exception (e.g. "constraint_error") then, during the evaluation
|
||
of the condition expression, the symbol lookup on this name would
|
||
*not* return this standard exception. The catchpoint condition
|
||
may then be set only on user-defined exceptions which have the
|
||
same not-fully-qualified name (e.g. my_package.constraint_error).
|
||
|
||
To avoid this unexcepted behavior, these standard exceptions are
|
||
systematically prefixed by "standard". This means that "catch
|
||
exception constraint_error" is rewritten into "catch exception
|
||
standard.constraint_error".
|
||
|
||
If an exception named contraint_error is defined in another package of
|
||
the inferior program, then the only way to specify this exception as a
|
||
breakpoint condition is to use its fully-qualified named:
|
||
e.g. my_package.constraint_error. */
|
||
|
||
for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
|
||
{
|
||
if (strcmp (standard_exc [i], excep_string) == 0)
|
||
{
|
||
return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
|
||
excep_string);
|
||
}
|
||
}
|
||
return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
|
||
}
|
||
|
||
/* Return the symtab_and_line that should be used to insert an exception
|
||
catchpoint of the TYPE kind.
|
||
|
||
EXCEP_STRING should contain the name of a specific exception that
|
||
the catchpoint should catch, or NULL otherwise.
|
||
|
||
ADDR_STRING returns the name of the function where the real
|
||
breakpoint that implements the catchpoints is set, depending on the
|
||
type of catchpoint we need to create. */
|
||
|
||
static struct symtab_and_line
|
||
ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
|
||
char **addr_string, const struct breakpoint_ops **ops)
|
||
{
|
||
const char *sym_name;
|
||
struct symbol *sym;
|
||
|
||
/* First, find out which exception support info to use. */
|
||
ada_exception_support_info_sniffer ();
|
||
|
||
/* Then lookup the function on which we will break in order to catch
|
||
the Ada exceptions requested by the user. */
|
||
sym_name = ada_exception_sym_name (ex);
|
||
sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
|
||
|
||
/* We can assume that SYM is not NULL at this stage. If the symbol
|
||
did not exist, ada_exception_support_info_sniffer would have
|
||
raised an exception.
|
||
|
||
Also, ada_exception_support_info_sniffer should have already
|
||
verified that SYM is a function symbol. */
|
||
gdb_assert (sym != NULL);
|
||
gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
|
||
|
||
/* Set ADDR_STRING. */
|
||
*addr_string = xstrdup (sym_name);
|
||
|
||
/* Set OPS. */
|
||
*ops = ada_exception_breakpoint_ops (ex);
|
||
|
||
return find_function_start_sal (sym, 1);
|
||
}
|
||
|
||
/* Create an Ada exception catchpoint.
|
||
|
||
EX_KIND is the kind of exception catchpoint to be created.
|
||
|
||
If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
|
||
for all exceptions. Otherwise, EXCEPT_STRING indicates the name
|
||
of the exception to which this catchpoint applies. When not NULL,
|
||
the string must be allocated on the heap, and its deallocation
|
||
is no longer the responsibility of the caller.
|
||
|
||
COND_STRING, if not NULL, is the catchpoint condition. This string
|
||
must be allocated on the heap, and its deallocation is no longer
|
||
the responsibility of the caller.
|
||
|
||
TEMPFLAG, if nonzero, means that the underlying breakpoint
|
||
should be temporary.
|
||
|
||
FROM_TTY is the usual argument passed to all commands implementations. */
|
||
|
||
void
|
||
create_ada_exception_catchpoint (struct gdbarch *gdbarch,
|
||
enum ada_exception_catchpoint_kind ex_kind,
|
||
char *excep_string,
|
||
char *cond_string,
|
||
int tempflag,
|
||
int disabled,
|
||
int from_tty)
|
||
{
|
||
struct ada_catchpoint *c;
|
||
char *addr_string = NULL;
|
||
const struct breakpoint_ops *ops = NULL;
|
||
struct symtab_and_line sal
|
||
= ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
|
||
|
||
c = XNEW (struct ada_catchpoint);
|
||
init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
|
||
ops, tempflag, disabled, from_tty);
|
||
c->excep_string = excep_string;
|
||
create_excep_cond_exprs (c);
|
||
if (cond_string != NULL)
|
||
set_breakpoint_condition (&c->base, cond_string, from_tty);
|
||
install_breakpoint (0, &c->base, 1);
|
||
}
|
||
|
||
/* Implement the "catch exception" command. */
|
||
|
||
static void
|
||
catch_ada_exception_command (char *arg, int from_tty,
|
||
struct cmd_list_element *command)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
int tempflag;
|
||
enum ada_exception_catchpoint_kind ex_kind;
|
||
char *excep_string = NULL;
|
||
char *cond_string = NULL;
|
||
|
||
tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
|
||
|
||
if (!arg)
|
||
arg = "";
|
||
catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
|
||
&cond_string);
|
||
create_ada_exception_catchpoint (gdbarch, ex_kind,
|
||
excep_string, cond_string,
|
||
tempflag, 1 /* enabled */,
|
||
from_tty);
|
||
}
|
||
|
||
/* Split the arguments specified in a "catch assert" command.
|
||
|
||
ARGS contains the command's arguments (or the empty string if
|
||
no arguments were passed).
|
||
|
||
If ARGS contains a condition, set COND_STRING to that condition
|
||
(the memory needs to be deallocated after use). */
|
||
|
||
static void
|
||
catch_ada_assert_command_split (char *args, char **cond_string)
|
||
{
|
||
args = skip_spaces (args);
|
||
|
||
/* Check whether a condition was provided. */
|
||
if (startswith (args, "if")
|
||
&& (isspace (args[2]) || args[2] == '\0'))
|
||
{
|
||
args += 2;
|
||
args = skip_spaces (args);
|
||
if (args[0] == '\0')
|
||
error (_("condition missing after `if' keyword"));
|
||
*cond_string = xstrdup (args);
|
||
}
|
||
|
||
/* Otherwise, there should be no other argument at the end of
|
||
the command. */
|
||
else if (args[0] != '\0')
|
||
error (_("Junk at end of arguments."));
|
||
}
|
||
|
||
/* Implement the "catch assert" command. */
|
||
|
||
static void
|
||
catch_assert_command (char *arg, int from_tty,
|
||
struct cmd_list_element *command)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
int tempflag;
|
||
char *cond_string = NULL;
|
||
|
||
tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
|
||
|
||
if (!arg)
|
||
arg = "";
|
||
catch_ada_assert_command_split (arg, &cond_string);
|
||
create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
|
||
NULL, cond_string,
|
||
tempflag, 1 /* enabled */,
|
||
from_tty);
|
||
}
|
||
|
||
/* Return non-zero if the symbol SYM is an Ada exception object. */
|
||
|
||
static int
|
||
ada_is_exception_sym (struct symbol *sym)
|
||
{
|
||
const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
|
||
|
||
return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
|
||
&& SYMBOL_CLASS (sym) != LOC_BLOCK
|
||
&& SYMBOL_CLASS (sym) != LOC_CONST
|
||
&& SYMBOL_CLASS (sym) != LOC_UNRESOLVED
|
||
&& type_name != NULL && strcmp (type_name, "exception") == 0);
|
||
}
|
||
|
||
/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
|
||
Ada exception object. This matches all exceptions except the ones
|
||
defined by the Ada language. */
|
||
|
||
static int
|
||
ada_is_non_standard_exception_sym (struct symbol *sym)
|
||
{
|
||
int i;
|
||
|
||
if (!ada_is_exception_sym (sym))
|
||
return 0;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
|
||
if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
|
||
return 0; /* A standard exception. */
|
||
|
||
/* Numeric_Error is also a standard exception, so exclude it.
|
||
See the STANDARD_EXC description for more details as to why
|
||
this exception is not listed in that array. */
|
||
if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A helper function for qsort, comparing two struct ada_exc_info
|
||
objects.
|
||
|
||
The comparison is determined first by exception name, and then
|
||
by exception address. */
|
||
|
||
static int
|
||
compare_ada_exception_info (const void *a, const void *b)
|
||
{
|
||
const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
|
||
const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
|
||
int result;
|
||
|
||
result = strcmp (exc_a->name, exc_b->name);
|
||
if (result != 0)
|
||
return result;
|
||
|
||
if (exc_a->addr < exc_b->addr)
|
||
return -1;
|
||
if (exc_a->addr > exc_b->addr)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
|
||
routine, but keeping the first SKIP elements untouched.
|
||
|
||
All duplicates are also removed. */
|
||
|
||
static void
|
||
sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
|
||
int skip)
|
||
{
|
||
struct ada_exc_info *to_sort
|
||
= VEC_address (ada_exc_info, *exceptions) + skip;
|
||
int to_sort_len
|
||
= VEC_length (ada_exc_info, *exceptions) - skip;
|
||
int i, j;
|
||
|
||
qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
|
||
compare_ada_exception_info);
|
||
|
||
for (i = 1, j = 1; i < to_sort_len; i++)
|
||
if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
|
||
to_sort[j++] = to_sort[i];
|
||
to_sort_len = j;
|
||
VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
|
||
}
|
||
|
||
/* A function intended as the "name_matcher" callback in the struct
|
||
quick_symbol_functions' expand_symtabs_matching method.
|
||
|
||
SEARCH_NAME is the symbol's search name.
|
||
|
||
If USER_DATA is not NULL, it is a pointer to a regext_t object
|
||
used to match the symbol (by natural name). Otherwise, when USER_DATA
|
||
is null, no filtering is performed, and all symbols are a positive
|
||
match. */
|
||
|
||
static int
|
||
ada_exc_search_name_matches (const char *search_name, void *user_data)
|
||
{
|
||
regex_t *preg = (regex_t *) user_data;
|
||
|
||
if (preg == NULL)
|
||
return 1;
|
||
|
||
/* In Ada, the symbol "search name" is a linkage name, whereas
|
||
the regular expression used to do the matching refers to
|
||
the natural name. So match against the decoded name. */
|
||
return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
|
||
}
|
||
|
||
/* Add all exceptions defined by the Ada standard whose name match
|
||
a regular expression.
|
||
|
||
If PREG is not NULL, then this regexp_t object is used to
|
||
perform the symbol name matching. Otherwise, no name-based
|
||
filtering is performed.
|
||
|
||
EXCEPTIONS is a vector of exceptions to which matching exceptions
|
||
gets pushed. */
|
||
|
||
static void
|
||
ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
|
||
{
|
||
if (preg == NULL
|
||
|| regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
|
||
{
|
||
struct bound_minimal_symbol msymbol
|
||
= ada_lookup_simple_minsym (standard_exc[i]);
|
||
|
||
if (msymbol.minsym != NULL)
|
||
{
|
||
struct ada_exc_info info
|
||
= {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
|
||
|
||
VEC_safe_push (ada_exc_info, *exceptions, &info);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add all Ada exceptions defined locally and accessible from the given
|
||
FRAME.
|
||
|
||
If PREG is not NULL, then this regexp_t object is used to
|
||
perform the symbol name matching. Otherwise, no name-based
|
||
filtering is performed.
|
||
|
||
EXCEPTIONS is a vector of exceptions to which matching exceptions
|
||
gets pushed. */
|
||
|
||
static void
|
||
ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
|
||
VEC(ada_exc_info) **exceptions)
|
||
{
|
||
const struct block *block = get_frame_block (frame, 0);
|
||
|
||
while (block != 0)
|
||
{
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
|
||
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
||
{
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_TYPEDEF:
|
||
case LOC_BLOCK:
|
||
case LOC_CONST:
|
||
break;
|
||
default:
|
||
if (ada_is_exception_sym (sym))
|
||
{
|
||
struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
|
||
SYMBOL_VALUE_ADDRESS (sym)};
|
||
|
||
VEC_safe_push (ada_exc_info, *exceptions, &info);
|
||
}
|
||
}
|
||
}
|
||
if (BLOCK_FUNCTION (block) != NULL)
|
||
break;
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
}
|
||
}
|
||
|
||
/* Add all exceptions defined globally whose name name match
|
||
a regular expression, excluding standard exceptions.
|
||
|
||
The reason we exclude standard exceptions is that they need
|
||
to be handled separately: Standard exceptions are defined inside
|
||
a runtime unit which is normally not compiled with debugging info,
|
||
and thus usually do not show up in our symbol search. However,
|
||
if the unit was in fact built with debugging info, we need to
|
||
exclude them because they would duplicate the entry we found
|
||
during the special loop that specifically searches for those
|
||
standard exceptions.
|
||
|
||
If PREG is not NULL, then this regexp_t object is used to
|
||
perform the symbol name matching. Otherwise, no name-based
|
||
filtering is performed.
|
||
|
||
EXCEPTIONS is a vector of exceptions to which matching exceptions
|
||
gets pushed. */
|
||
|
||
static void
|
||
ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
|
||
{
|
||
struct objfile *objfile;
|
||
struct compunit_symtab *s;
|
||
|
||
expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
|
||
VARIABLES_DOMAIN, preg);
|
||
|
||
ALL_COMPUNITS (objfile, s)
|
||
{
|
||
const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
|
||
int i;
|
||
|
||
for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
|
||
{
|
||
struct block *b = BLOCKVECTOR_BLOCK (bv, i);
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
|
||
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
||
if (ada_is_non_standard_exception_sym (sym)
|
||
&& (preg == NULL
|
||
|| regexec (preg, SYMBOL_NATURAL_NAME (sym),
|
||
0, NULL, 0) == 0))
|
||
{
|
||
struct ada_exc_info info
|
||
= {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
|
||
|
||
VEC_safe_push (ada_exc_info, *exceptions, &info);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Implements ada_exceptions_list with the regular expression passed
|
||
as a regex_t, rather than a string.
|
||
|
||
If not NULL, PREG is used to filter out exceptions whose names
|
||
do not match. Otherwise, all exceptions are listed. */
|
||
|
||
static VEC(ada_exc_info) *
|
||
ada_exceptions_list_1 (regex_t *preg)
|
||
{
|
||
VEC(ada_exc_info) *result = NULL;
|
||
struct cleanup *old_chain
|
||
= make_cleanup (VEC_cleanup (ada_exc_info), &result);
|
||
int prev_len;
|
||
|
||
/* First, list the known standard exceptions. These exceptions
|
||
need to be handled separately, as they are usually defined in
|
||
runtime units that have been compiled without debugging info. */
|
||
|
||
ada_add_standard_exceptions (preg, &result);
|
||
|
||
/* Next, find all exceptions whose scope is local and accessible
|
||
from the currently selected frame. */
|
||
|
||
if (has_stack_frames ())
|
||
{
|
||
prev_len = VEC_length (ada_exc_info, result);
|
||
ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
|
||
&result);
|
||
if (VEC_length (ada_exc_info, result) > prev_len)
|
||
sort_remove_dups_ada_exceptions_list (&result, prev_len);
|
||
}
|
||
|
||
/* Add all exceptions whose scope is global. */
|
||
|
||
prev_len = VEC_length (ada_exc_info, result);
|
||
ada_add_global_exceptions (preg, &result);
|
||
if (VEC_length (ada_exc_info, result) > prev_len)
|
||
sort_remove_dups_ada_exceptions_list (&result, prev_len);
|
||
|
||
discard_cleanups (old_chain);
|
||
return result;
|
||
}
|
||
|
||
/* Return a vector of ada_exc_info.
|
||
|
||
If REGEXP is NULL, all exceptions are included in the result.
|
||
Otherwise, it should contain a valid regular expression,
|
||
and only the exceptions whose names match that regular expression
|
||
are included in the result.
|
||
|
||
The exceptions are sorted in the following order:
|
||
- Standard exceptions (defined by the Ada language), in
|
||
alphabetical order;
|
||
- Exceptions only visible from the current frame, in
|
||
alphabetical order;
|
||
- Exceptions whose scope is global, in alphabetical order. */
|
||
|
||
VEC(ada_exc_info) *
|
||
ada_exceptions_list (const char *regexp)
|
||
{
|
||
VEC(ada_exc_info) *result = NULL;
|
||
struct cleanup *old_chain = NULL;
|
||
regex_t reg;
|
||
|
||
if (regexp != NULL)
|
||
old_chain = compile_rx_or_error (®, regexp,
|
||
_("invalid regular expression"));
|
||
|
||
result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL);
|
||
|
||
if (old_chain != NULL)
|
||
do_cleanups (old_chain);
|
||
return result;
|
||
}
|
||
|
||
/* Implement the "info exceptions" command. */
|
||
|
||
static void
|
||
info_exceptions_command (char *regexp, int from_tty)
|
||
{
|
||
VEC(ada_exc_info) *exceptions;
|
||
struct cleanup *cleanup;
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
int ix;
|
||
struct ada_exc_info *info;
|
||
|
||
exceptions = ada_exceptions_list (regexp);
|
||
cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
|
||
|
||
if (regexp != NULL)
|
||
printf_filtered
|
||
(_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
|
||
else
|
||
printf_filtered (_("All defined Ada exceptions:\n"));
|
||
|
||
for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
|
||
printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* Operators */
|
||
/* Information about operators given special treatment in functions
|
||
below. */
|
||
/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
|
||
|
||
#define ADA_OPERATORS \
|
||
OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
|
||
OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
|
||
OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
|
||
OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
|
||
OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
|
||
OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
|
||
OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
|
||
OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
|
||
OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
|
||
OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
|
||
OP_DEFN (OP_ATR_POS, 1, 2, 0) \
|
||
OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
|
||
OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
|
||
OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
|
||
OP_DEFN (UNOP_QUAL, 3, 1, 0) \
|
||
OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
|
||
OP_DEFN (OP_OTHERS, 1, 1, 0) \
|
||
OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
|
||
OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
|
||
|
||
static void
|
||
ada_operator_length (const struct expression *exp, int pc, int *oplenp,
|
||
int *argsp)
|
||
{
|
||
switch (exp->elts[pc - 1].opcode)
|
||
{
|
||
default:
|
||
operator_length_standard (exp, pc, oplenp, argsp);
|
||
break;
|
||
|
||
#define OP_DEFN(op, len, args, binop) \
|
||
case op: *oplenp = len; *argsp = args; break;
|
||
ADA_OPERATORS;
|
||
#undef OP_DEFN
|
||
|
||
case OP_AGGREGATE:
|
||
*oplenp = 3;
|
||
*argsp = longest_to_int (exp->elts[pc - 2].longconst);
|
||
break;
|
||
|
||
case OP_CHOICES:
|
||
*oplenp = 3;
|
||
*argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Implementation of the exp_descriptor method operator_check. */
|
||
|
||
static int
|
||
ada_operator_check (struct expression *exp, int pos,
|
||
int (*objfile_func) (struct objfile *objfile, void *data),
|
||
void *data)
|
||
{
|
||
const union exp_element *const elts = exp->elts;
|
||
struct type *type = NULL;
|
||
|
||
switch (elts[pos].opcode)
|
||
{
|
||
case UNOP_IN_RANGE:
|
||
case UNOP_QUAL:
|
||
type = elts[pos + 1].type;
|
||
break;
|
||
|
||
default:
|
||
return operator_check_standard (exp, pos, objfile_func, data);
|
||
}
|
||
|
||
/* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
|
||
|
||
if (type && TYPE_OBJFILE (type)
|
||
&& (*objfile_func) (TYPE_OBJFILE (type), data))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static char *
|
||
ada_op_name (enum exp_opcode opcode)
|
||
{
|
||
switch (opcode)
|
||
{
|
||
default:
|
||
return op_name_standard (opcode);
|
||
|
||
#define OP_DEFN(op, len, args, binop) case op: return #op;
|
||
ADA_OPERATORS;
|
||
#undef OP_DEFN
|
||
|
||
case OP_AGGREGATE:
|
||
return "OP_AGGREGATE";
|
||
case OP_CHOICES:
|
||
return "OP_CHOICES";
|
||
case OP_NAME:
|
||
return "OP_NAME";
|
||
}
|
||
}
|
||
|
||
/* As for operator_length, but assumes PC is pointing at the first
|
||
element of the operator, and gives meaningful results only for the
|
||
Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
|
||
|
||
static void
|
||
ada_forward_operator_length (struct expression *exp, int pc,
|
||
int *oplenp, int *argsp)
|
||
{
|
||
switch (exp->elts[pc].opcode)
|
||
{
|
||
default:
|
||
*oplenp = *argsp = 0;
|
||
break;
|
||
|
||
#define OP_DEFN(op, len, args, binop) \
|
||
case op: *oplenp = len; *argsp = args; break;
|
||
ADA_OPERATORS;
|
||
#undef OP_DEFN
|
||
|
||
case OP_AGGREGATE:
|
||
*oplenp = 3;
|
||
*argsp = longest_to_int (exp->elts[pc + 1].longconst);
|
||
break;
|
||
|
||
case OP_CHOICES:
|
||
*oplenp = 3;
|
||
*argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
|
||
break;
|
||
|
||
case OP_STRING:
|
||
case OP_NAME:
|
||
{
|
||
int len = longest_to_int (exp->elts[pc + 1].longconst);
|
||
|
||
*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
|
||
*argsp = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
|
||
{
|
||
enum exp_opcode op = exp->elts[elt].opcode;
|
||
int oplen, nargs;
|
||
int pc = elt;
|
||
int i;
|
||
|
||
ada_forward_operator_length (exp, elt, &oplen, &nargs);
|
||
|
||
switch (op)
|
||
{
|
||
/* Ada attributes ('Foo). */
|
||
case OP_ATR_FIRST:
|
||
case OP_ATR_LAST:
|
||
case OP_ATR_LENGTH:
|
||
case OP_ATR_IMAGE:
|
||
case OP_ATR_MAX:
|
||
case OP_ATR_MIN:
|
||
case OP_ATR_MODULUS:
|
||
case OP_ATR_POS:
|
||
case OP_ATR_SIZE:
|
||
case OP_ATR_TAG:
|
||
case OP_ATR_VAL:
|
||
break;
|
||
|
||
case UNOP_IN_RANGE:
|
||
case UNOP_QUAL:
|
||
/* XXX: gdb_sprint_host_address, type_sprint */
|
||
fprintf_filtered (stream, _("Type @"));
|
||
gdb_print_host_address (exp->elts[pc + 1].type, stream);
|
||
fprintf_filtered (stream, " (");
|
||
type_print (exp->elts[pc + 1].type, NULL, stream, 0);
|
||
fprintf_filtered (stream, ")");
|
||
break;
|
||
case BINOP_IN_BOUNDS:
|
||
fprintf_filtered (stream, " (%d)",
|
||
longest_to_int (exp->elts[pc + 2].longconst));
|
||
break;
|
||
case TERNOP_IN_RANGE:
|
||
break;
|
||
|
||
case OP_AGGREGATE:
|
||
case OP_OTHERS:
|
||
case OP_DISCRETE_RANGE:
|
||
case OP_POSITIONAL:
|
||
case OP_CHOICES:
|
||
break;
|
||
|
||
case OP_NAME:
|
||
case OP_STRING:
|
||
{
|
||
char *name = &exp->elts[elt + 2].string;
|
||
int len = longest_to_int (exp->elts[elt + 1].longconst);
|
||
|
||
fprintf_filtered (stream, "Text: `%.*s'", len, name);
|
||
break;
|
||
}
|
||
|
||
default:
|
||
return dump_subexp_body_standard (exp, stream, elt);
|
||
}
|
||
|
||
elt += oplen;
|
||
for (i = 0; i < nargs; i += 1)
|
||
elt = dump_subexp (exp, stream, elt);
|
||
|
||
return elt;
|
||
}
|
||
|
||
/* The Ada extension of print_subexp (q.v.). */
|
||
|
||
static void
|
||
ada_print_subexp (struct expression *exp, int *pos,
|
||
struct ui_file *stream, enum precedence prec)
|
||
{
|
||
int oplen, nargs, i;
|
||
int pc = *pos;
|
||
enum exp_opcode op = exp->elts[pc].opcode;
|
||
|
||
ada_forward_operator_length (exp, pc, &oplen, &nargs);
|
||
|
||
*pos += oplen;
|
||
switch (op)
|
||
{
|
||
default:
|
||
*pos -= oplen;
|
||
print_subexp_standard (exp, pos, stream, prec);
|
||
return;
|
||
|
||
case OP_VAR_VALUE:
|
||
fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
|
||
return;
|
||
|
||
case BINOP_IN_BOUNDS:
|
||
/* XXX: sprint_subexp */
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered (" in ", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered ("'range", stream);
|
||
if (exp->elts[pc + 1].longconst > 1)
|
||
fprintf_filtered (stream, "(%ld)",
|
||
(long) exp->elts[pc + 1].longconst);
|
||
return;
|
||
|
||
case TERNOP_IN_RANGE:
|
||
if (prec >= PREC_EQUAL)
|
||
fputs_filtered ("(", stream);
|
||
/* XXX: sprint_subexp */
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered (" in ", stream);
|
||
print_subexp (exp, pos, stream, PREC_EQUAL);
|
||
fputs_filtered (" .. ", stream);
|
||
print_subexp (exp, pos, stream, PREC_EQUAL);
|
||
if (prec >= PREC_EQUAL)
|
||
fputs_filtered (")", stream);
|
||
return;
|
||
|
||
case OP_ATR_FIRST:
|
||
case OP_ATR_LAST:
|
||
case OP_ATR_LENGTH:
|
||
case OP_ATR_IMAGE:
|
||
case OP_ATR_MAX:
|
||
case OP_ATR_MIN:
|
||
case OP_ATR_MODULUS:
|
||
case OP_ATR_POS:
|
||
case OP_ATR_SIZE:
|
||
case OP_ATR_TAG:
|
||
case OP_ATR_VAL:
|
||
if (exp->elts[*pos].opcode == OP_TYPE)
|
||
{
|
||
if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
|
||
LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
|
||
&type_print_raw_options);
|
||
*pos += 3;
|
||
}
|
||
else
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fprintf_filtered (stream, "'%s", ada_attribute_name (op));
|
||
if (nargs > 1)
|
||
{
|
||
int tem;
|
||
|
||
for (tem = 1; tem < nargs; tem += 1)
|
||
{
|
||
fputs_filtered ((tem == 1) ? " (" : ", ", stream);
|
||
print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
|
||
}
|
||
fputs_filtered (")", stream);
|
||
}
|
||
return;
|
||
|
||
case UNOP_QUAL:
|
||
type_print (exp->elts[pc + 1].type, "", stream, 0);
|
||
fputs_filtered ("'(", stream);
|
||
print_subexp (exp, pos, stream, PREC_PREFIX);
|
||
fputs_filtered (")", stream);
|
||
return;
|
||
|
||
case UNOP_IN_RANGE:
|
||
/* XXX: sprint_subexp */
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered (" in ", stream);
|
||
LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
|
||
&type_print_raw_options);
|
||
return;
|
||
|
||
case OP_DISCRETE_RANGE:
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
fputs_filtered ("..", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
return;
|
||
|
||
case OP_OTHERS:
|
||
fputs_filtered ("others => ", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
return;
|
||
|
||
case OP_CHOICES:
|
||
for (i = 0; i < nargs-1; i += 1)
|
||
{
|
||
if (i > 0)
|
||
fputs_filtered ("|", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
}
|
||
fputs_filtered (" => ", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
return;
|
||
|
||
case OP_POSITIONAL:
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
return;
|
||
|
||
case OP_AGGREGATE:
|
||
fputs_filtered ("(", stream);
|
||
for (i = 0; i < nargs; i += 1)
|
||
{
|
||
if (i > 0)
|
||
fputs_filtered (", ", stream);
|
||
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
||
}
|
||
fputs_filtered (")", stream);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Table mapping opcodes into strings for printing operators
|
||
and precedences of the operators. */
|
||
|
||
static const struct op_print ada_op_print_tab[] = {
|
||
{":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
|
||
{"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
|
||
{"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
|
||
{"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
|
||
{"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
|
||
{"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
|
||
{"=", BINOP_EQUAL, PREC_EQUAL, 0},
|
||
{"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
|
||
{"<=", BINOP_LEQ, PREC_ORDER, 0},
|
||
{">=", BINOP_GEQ, PREC_ORDER, 0},
|
||
{">", BINOP_GTR, PREC_ORDER, 0},
|
||
{"<", BINOP_LESS, PREC_ORDER, 0},
|
||
{">>", BINOP_RSH, PREC_SHIFT, 0},
|
||
{"<<", BINOP_LSH, PREC_SHIFT, 0},
|
||
{"+", BINOP_ADD, PREC_ADD, 0},
|
||
{"-", BINOP_SUB, PREC_ADD, 0},
|
||
{"&", BINOP_CONCAT, PREC_ADD, 0},
|
||
{"*", BINOP_MUL, PREC_MUL, 0},
|
||
{"/", BINOP_DIV, PREC_MUL, 0},
|
||
{"rem", BINOP_REM, PREC_MUL, 0},
|
||
{"mod", BINOP_MOD, PREC_MUL, 0},
|
||
{"**", BINOP_EXP, PREC_REPEAT, 0},
|
||
{"@", BINOP_REPEAT, PREC_REPEAT, 0},
|
||
{"-", UNOP_NEG, PREC_PREFIX, 0},
|
||
{"+", UNOP_PLUS, PREC_PREFIX, 0},
|
||
{"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
|
||
{"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
|
||
{"abs ", UNOP_ABS, PREC_PREFIX, 0},
|
||
{".all", UNOP_IND, PREC_SUFFIX, 1},
|
||
{"'access", UNOP_ADDR, PREC_SUFFIX, 1},
|
||
{"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
|
||
{NULL, OP_NULL, PREC_SUFFIX, 0}
|
||
};
|
||
|
||
enum ada_primitive_types {
|
||
ada_primitive_type_int,
|
||
ada_primitive_type_long,
|
||
ada_primitive_type_short,
|
||
ada_primitive_type_char,
|
||
ada_primitive_type_float,
|
||
ada_primitive_type_double,
|
||
ada_primitive_type_void,
|
||
ada_primitive_type_long_long,
|
||
ada_primitive_type_long_double,
|
||
ada_primitive_type_natural,
|
||
ada_primitive_type_positive,
|
||
ada_primitive_type_system_address,
|
||
nr_ada_primitive_types
|
||
};
|
||
|
||
static void
|
||
ada_language_arch_info (struct gdbarch *gdbarch,
|
||
struct language_arch_info *lai)
|
||
{
|
||
const struct builtin_type *builtin = builtin_type (gdbarch);
|
||
|
||
lai->primitive_type_vector
|
||
= GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
|
||
struct type *);
|
||
|
||
lai->primitive_type_vector [ada_primitive_type_int]
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
||
0, "integer");
|
||
lai->primitive_type_vector [ada_primitive_type_long]
|
||
= arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
|
||
0, "long_integer");
|
||
lai->primitive_type_vector [ada_primitive_type_short]
|
||
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
|
||
0, "short_integer");
|
||
lai->string_char_type
|
||
= lai->primitive_type_vector [ada_primitive_type_char]
|
||
= arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
|
||
lai->primitive_type_vector [ada_primitive_type_float]
|
||
= arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
|
||
"float", NULL);
|
||
lai->primitive_type_vector [ada_primitive_type_double]
|
||
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
||
"long_float", NULL);
|
||
lai->primitive_type_vector [ada_primitive_type_long_long]
|
||
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
|
||
0, "long_long_integer");
|
||
lai->primitive_type_vector [ada_primitive_type_long_double]
|
||
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
||
"long_long_float", NULL);
|
||
lai->primitive_type_vector [ada_primitive_type_natural]
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
||
0, "natural");
|
||
lai->primitive_type_vector [ada_primitive_type_positive]
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
||
0, "positive");
|
||
lai->primitive_type_vector [ada_primitive_type_void]
|
||
= builtin->builtin_void;
|
||
|
||
lai->primitive_type_vector [ada_primitive_type_system_address]
|
||
= lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
|
||
TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
|
||
= "system__address";
|
||
|
||
lai->bool_type_symbol = NULL;
|
||
lai->bool_type_default = builtin->builtin_bool;
|
||
}
|
||
|
||
/* Language vector */
|
||
|
||
/* Not really used, but needed in the ada_language_defn. */
|
||
|
||
static void
|
||
emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
|
||
{
|
||
ada_emit_char (c, type, stream, quoter, 1);
|
||
}
|
||
|
||
static int
|
||
parse (struct parser_state *ps)
|
||
{
|
||
warnings_issued = 0;
|
||
return ada_parse (ps);
|
||
}
|
||
|
||
static const struct exp_descriptor ada_exp_descriptor = {
|
||
ada_print_subexp,
|
||
ada_operator_length,
|
||
ada_operator_check,
|
||
ada_op_name,
|
||
ada_dump_subexp_body,
|
||
ada_evaluate_subexp
|
||
};
|
||
|
||
/* Implement the "la_get_symbol_name_cmp" language_defn method
|
||
for Ada. */
|
||
|
||
static symbol_name_cmp_ftype
|
||
ada_get_symbol_name_cmp (const char *lookup_name)
|
||
{
|
||
if (should_use_wild_match (lookup_name))
|
||
return wild_match;
|
||
else
|
||
return compare_names;
|
||
}
|
||
|
||
/* Implement the "la_read_var_value" language_defn method for Ada. */
|
||
|
||
static struct value *
|
||
ada_read_var_value (struct symbol *var, const struct block *var_block,
|
||
struct frame_info *frame)
|
||
{
|
||
const struct block *frame_block = NULL;
|
||
struct symbol *renaming_sym = NULL;
|
||
|
||
/* The only case where default_read_var_value is not sufficient
|
||
is when VAR is a renaming... */
|
||
if (frame)
|
||
frame_block = get_frame_block (frame, NULL);
|
||
if (frame_block)
|
||
renaming_sym = ada_find_renaming_symbol (var, frame_block);
|
||
if (renaming_sym != NULL)
|
||
return ada_read_renaming_var_value (renaming_sym, frame_block);
|
||
|
||
/* This is a typical case where we expect the default_read_var_value
|
||
function to work. */
|
||
return default_read_var_value (var, var_block, frame);
|
||
}
|
||
|
||
static const char *ada_extensions[] =
|
||
{
|
||
".adb", ".ads", ".a", ".ada", ".dg", NULL
|
||
};
|
||
|
||
const struct language_defn ada_language_defn = {
|
||
"ada", /* Language name */
|
||
"Ada",
|
||
language_ada,
|
||
range_check_off,
|
||
case_sensitive_on, /* Yes, Ada is case-insensitive, but
|
||
that's not quite what this means. */
|
||
array_row_major,
|
||
macro_expansion_no,
|
||
ada_extensions,
|
||
&ada_exp_descriptor,
|
||
parse,
|
||
ada_yyerror,
|
||
resolve,
|
||
ada_printchar, /* Print a character constant */
|
||
ada_printstr, /* Function to print string constant */
|
||
emit_char, /* Function to print single char (not used) */
|
||
ada_print_type, /* Print a type using appropriate syntax */
|
||
ada_print_typedef, /* Print a typedef using appropriate syntax */
|
||
ada_val_print, /* Print a value using appropriate syntax */
|
||
ada_value_print, /* Print a top-level value */
|
||
ada_read_var_value, /* la_read_var_value */
|
||
NULL, /* Language specific skip_trampoline */
|
||
NULL, /* name_of_this */
|
||
ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
|
||
basic_lookup_transparent_type, /* lookup_transparent_type */
|
||
ada_la_decode, /* Language specific symbol demangler */
|
||
ada_sniff_from_mangled_name,
|
||
NULL, /* Language specific
|
||
class_name_from_physname */
|
||
ada_op_print_tab, /* expression operators for printing */
|
||
0, /* c-style arrays */
|
||
1, /* String lower bound */
|
||
ada_get_gdb_completer_word_break_characters,
|
||
ada_make_symbol_completion_list,
|
||
ada_language_arch_info,
|
||
ada_print_array_index,
|
||
default_pass_by_reference,
|
||
c_get_string,
|
||
ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
|
||
ada_iterate_over_symbols,
|
||
&ada_varobj_ops,
|
||
NULL,
|
||
NULL,
|
||
LANG_MAGIC
|
||
};
|
||
|
||
/* Provide a prototype to silence -Wmissing-prototypes. */
|
||
extern initialize_file_ftype _initialize_ada_language;
|
||
|
||
/* Command-list for the "set/show ada" prefix command. */
|
||
static struct cmd_list_element *set_ada_list;
|
||
static struct cmd_list_element *show_ada_list;
|
||
|
||
/* Implement the "set ada" prefix command. */
|
||
|
||
static void
|
||
set_ada_command (char *arg, int from_tty)
|
||
{
|
||
printf_unfiltered (_(\
|
||
"\"set ada\" must be followed by the name of a setting.\n"));
|
||
help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
/* Implement the "show ada" prefix command. */
|
||
|
||
static void
|
||
show_ada_command (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (show_ada_list, from_tty, "");
|
||
}
|
||
|
||
static void
|
||
initialize_ada_catchpoint_ops (void)
|
||
{
|
||
struct breakpoint_ops *ops;
|
||
|
||
initialize_breakpoint_ops ();
|
||
|
||
ops = &catch_exception_breakpoint_ops;
|
||
*ops = bkpt_breakpoint_ops;
|
||
ops->dtor = dtor_catch_exception;
|
||
ops->allocate_location = allocate_location_catch_exception;
|
||
ops->re_set = re_set_catch_exception;
|
||
ops->check_status = check_status_catch_exception;
|
||
ops->print_it = print_it_catch_exception;
|
||
ops->print_one = print_one_catch_exception;
|
||
ops->print_mention = print_mention_catch_exception;
|
||
ops->print_recreate = print_recreate_catch_exception;
|
||
|
||
ops = &catch_exception_unhandled_breakpoint_ops;
|
||
*ops = bkpt_breakpoint_ops;
|
||
ops->dtor = dtor_catch_exception_unhandled;
|
||
ops->allocate_location = allocate_location_catch_exception_unhandled;
|
||
ops->re_set = re_set_catch_exception_unhandled;
|
||
ops->check_status = check_status_catch_exception_unhandled;
|
||
ops->print_it = print_it_catch_exception_unhandled;
|
||
ops->print_one = print_one_catch_exception_unhandled;
|
||
ops->print_mention = print_mention_catch_exception_unhandled;
|
||
ops->print_recreate = print_recreate_catch_exception_unhandled;
|
||
|
||
ops = &catch_assert_breakpoint_ops;
|
||
*ops = bkpt_breakpoint_ops;
|
||
ops->dtor = dtor_catch_assert;
|
||
ops->allocate_location = allocate_location_catch_assert;
|
||
ops->re_set = re_set_catch_assert;
|
||
ops->check_status = check_status_catch_assert;
|
||
ops->print_it = print_it_catch_assert;
|
||
ops->print_one = print_one_catch_assert;
|
||
ops->print_mention = print_mention_catch_assert;
|
||
ops->print_recreate = print_recreate_catch_assert;
|
||
}
|
||
|
||
/* This module's 'new_objfile' observer. */
|
||
|
||
static void
|
||
ada_new_objfile_observer (struct objfile *objfile)
|
||
{
|
||
ada_clear_symbol_cache ();
|
||
}
|
||
|
||
/* This module's 'free_objfile' observer. */
|
||
|
||
static void
|
||
ada_free_objfile_observer (struct objfile *objfile)
|
||
{
|
||
ada_clear_symbol_cache ();
|
||
}
|
||
|
||
void
|
||
_initialize_ada_language (void)
|
||
{
|
||
add_language (&ada_language_defn);
|
||
|
||
initialize_ada_catchpoint_ops ();
|
||
|
||
add_prefix_cmd ("ada", no_class, set_ada_command,
|
||
_("Prefix command for changing Ada-specfic settings"),
|
||
&set_ada_list, "set ada ", 0, &setlist);
|
||
|
||
add_prefix_cmd ("ada", no_class, show_ada_command,
|
||
_("Generic command for showing Ada-specific settings."),
|
||
&show_ada_list, "show ada ", 0, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
|
||
&trust_pad_over_xvs, _("\
|
||
Enable or disable an optimization trusting PAD types over XVS types"), _("\
|
||
Show whether an optimization trusting PAD types over XVS types is activated"),
|
||
_("\
|
||
This is related to the encoding used by the GNAT compiler. The debugger\n\
|
||
should normally trust the contents of PAD types, but certain older versions\n\
|
||
of GNAT have a bug that sometimes causes the information in the PAD type\n\
|
||
to be incorrect. Turning this setting \"off\" allows the debugger to\n\
|
||
work around this bug. It is always safe to turn this option \"off\", but\n\
|
||
this incurs a slight performance penalty, so it is recommended to NOT change\n\
|
||
this option to \"off\" unless necessary."),
|
||
NULL, NULL, &set_ada_list, &show_ada_list);
|
||
|
||
add_setshow_boolean_cmd ("print-signatures", class_vars,
|
||
&print_signatures, _("\
|
||
Enable or disable the output of formal and return types for functions in the \
|
||
overloads selection menu"), _("\
|
||
Show whether the output of formal and return types for functions in the \
|
||
overloads selection menu is activated"),
|
||
NULL, NULL, NULL, &set_ada_list, &show_ada_list);
|
||
|
||
add_catch_command ("exception", _("\
|
||
Catch Ada exceptions, when raised.\n\
|
||
With an argument, catch only exceptions with the given name."),
|
||
catch_ada_exception_command,
|
||
NULL,
|
||
CATCH_PERMANENT,
|
||
CATCH_TEMPORARY);
|
||
add_catch_command ("assert", _("\
|
||
Catch failed Ada assertions, when raised.\n\
|
||
With an argument, catch only exceptions with the given name."),
|
||
catch_assert_command,
|
||
NULL,
|
||
CATCH_PERMANENT,
|
||
CATCH_TEMPORARY);
|
||
|
||
varsize_limit = 65536;
|
||
|
||
add_info ("exceptions", info_exceptions_command,
|
||
_("\
|
||
List all Ada exception names.\n\
|
||
If a regular expression is passed as an argument, only those matching\n\
|
||
the regular expression are listed."));
|
||
|
||
add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
|
||
_("Set Ada maintenance-related variables."),
|
||
&maint_set_ada_cmdlist, "maintenance set ada ",
|
||
0/*allow-unknown*/, &maintenance_set_cmdlist);
|
||
|
||
add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
|
||
_("Show Ada maintenance-related variables"),
|
||
&maint_show_ada_cmdlist, "maintenance show ada ",
|
||
0/*allow-unknown*/, &maintenance_show_cmdlist);
|
||
|
||
add_setshow_boolean_cmd
|
||
("ignore-descriptive-types", class_maintenance,
|
||
&ada_ignore_descriptive_types_p,
|
||
_("Set whether descriptive types generated by GNAT should be ignored."),
|
||
_("Show whether descriptive types generated by GNAT should be ignored."),
|
||
_("\
|
||
When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
|
||
DWARF attribute."),
|
||
NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
|
||
|
||
obstack_init (&symbol_list_obstack);
|
||
|
||
decoded_names_store = htab_create_alloc
|
||
(256, htab_hash_string, (int (*)(const void *, const void *)) streq,
|
||
NULL, xcalloc, xfree);
|
||
|
||
/* The ada-lang observers. */
|
||
observer_attach_new_objfile (ada_new_objfile_observer);
|
||
observer_attach_free_objfile (ada_free_objfile_observer);
|
||
observer_attach_inferior_exit (ada_inferior_exit);
|
||
|
||
/* Setup various context-specific data. */
|
||
ada_inferior_data
|
||
= register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
|
||
ada_pspace_data_handle
|
||
= register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
|
||
}
|