3966 lines
121 KiB
C
3966 lines
121 KiB
C
/* Generic symbol file reading for the GNU debugger, GDB.
|
||
|
||
Copyright (C) 1990-2017 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "bfdlink.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "source.h"
|
||
#include "gdbcmd.h"
|
||
#include "breakpoint.h"
|
||
#include "language.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
#include "inferior.h"
|
||
#include "regcache.h"
|
||
#include "filenames.h" /* for DOSish file names */
|
||
#include "gdb-stabs.h"
|
||
#include "gdb_obstack.h"
|
||
#include "completer.h"
|
||
#include "bcache.h"
|
||
#include "hashtab.h"
|
||
#include "readline/readline.h"
|
||
#include "block.h"
|
||
#include "observer.h"
|
||
#include "exec.h"
|
||
#include "parser-defs.h"
|
||
#include "varobj.h"
|
||
#include "elf-bfd.h"
|
||
#include "solib.h"
|
||
#include "remote.h"
|
||
#include "stack.h"
|
||
#include "gdb_bfd.h"
|
||
#include "cli/cli-utils.h"
|
||
|
||
#include <sys/types.h>
|
||
#include <fcntl.h>
|
||
#include <sys/stat.h>
|
||
#include <ctype.h>
|
||
#include <chrono>
|
||
|
||
#include "psymtab.h"
|
||
|
||
int (*deprecated_ui_load_progress_hook) (const char *section,
|
||
unsigned long num);
|
||
void (*deprecated_show_load_progress) (const char *section,
|
||
unsigned long section_sent,
|
||
unsigned long section_size,
|
||
unsigned long total_sent,
|
||
unsigned long total_size);
|
||
void (*deprecated_pre_add_symbol_hook) (const char *);
|
||
void (*deprecated_post_add_symbol_hook) (void);
|
||
|
||
static void clear_symtab_users_cleanup (void *ignore);
|
||
|
||
/* Global variables owned by this file. */
|
||
int readnow_symbol_files; /* Read full symbols immediately. */
|
||
|
||
/* Functions this file defines. */
|
||
|
||
static void load_command (char *, int);
|
||
|
||
static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
|
||
objfile_flags flags);
|
||
|
||
static void add_symbol_file_command (char *, int);
|
||
|
||
static const struct sym_fns *find_sym_fns (bfd *);
|
||
|
||
static void overlay_invalidate_all (void);
|
||
|
||
static void overlay_auto_command (char *, int);
|
||
|
||
static void overlay_manual_command (char *, int);
|
||
|
||
static void overlay_off_command (char *, int);
|
||
|
||
static void overlay_load_command (char *, int);
|
||
|
||
static void overlay_command (char *, int);
|
||
|
||
static void simple_free_overlay_table (void);
|
||
|
||
static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
|
||
enum bfd_endian);
|
||
|
||
static int simple_read_overlay_table (void);
|
||
|
||
static int simple_overlay_update_1 (struct obj_section *);
|
||
|
||
static void info_ext_lang_command (char *args, int from_tty);
|
||
|
||
static void symfile_find_segment_sections (struct objfile *objfile);
|
||
|
||
/* List of all available sym_fns. On gdb startup, each object file reader
|
||
calls add_symtab_fns() to register information on each format it is
|
||
prepared to read. */
|
||
|
||
typedef struct
|
||
{
|
||
/* BFD flavour that we handle. */
|
||
enum bfd_flavour sym_flavour;
|
||
|
||
/* The "vtable" of symbol functions. */
|
||
const struct sym_fns *sym_fns;
|
||
} registered_sym_fns;
|
||
|
||
DEF_VEC_O (registered_sym_fns);
|
||
|
||
static VEC (registered_sym_fns) *symtab_fns = NULL;
|
||
|
||
/* Values for "set print symbol-loading". */
|
||
|
||
const char print_symbol_loading_off[] = "off";
|
||
const char print_symbol_loading_brief[] = "brief";
|
||
const char print_symbol_loading_full[] = "full";
|
||
static const char *print_symbol_loading_enums[] =
|
||
{
|
||
print_symbol_loading_off,
|
||
print_symbol_loading_brief,
|
||
print_symbol_loading_full,
|
||
NULL
|
||
};
|
||
static const char *print_symbol_loading = print_symbol_loading_full;
|
||
|
||
/* If non-zero, shared library symbols will be added automatically
|
||
when the inferior is created, new libraries are loaded, or when
|
||
attaching to the inferior. This is almost always what users will
|
||
want to have happen; but for very large programs, the startup time
|
||
will be excessive, and so if this is a problem, the user can clear
|
||
this flag and then add the shared library symbols as needed. Note
|
||
that there is a potential for confusion, since if the shared
|
||
library symbols are not loaded, commands like "info fun" will *not*
|
||
report all the functions that are actually present. */
|
||
|
||
int auto_solib_add = 1;
|
||
|
||
|
||
/* Return non-zero if symbol-loading messages should be printed.
|
||
FROM_TTY is the standard from_tty argument to gdb commands.
|
||
If EXEC is non-zero the messages are for the executable.
|
||
Otherwise, messages are for shared libraries.
|
||
If FULL is non-zero then the caller is printing a detailed message.
|
||
E.g., the message includes the shared library name.
|
||
Otherwise, the caller is printing a brief "summary" message. */
|
||
|
||
int
|
||
print_symbol_loading_p (int from_tty, int exec, int full)
|
||
{
|
||
if (!from_tty && !info_verbose)
|
||
return 0;
|
||
|
||
if (exec)
|
||
{
|
||
/* We don't check FULL for executables, there are few such
|
||
messages, therefore brief == full. */
|
||
return print_symbol_loading != print_symbol_loading_off;
|
||
}
|
||
if (full)
|
||
return print_symbol_loading == print_symbol_loading_full;
|
||
return print_symbol_loading == print_symbol_loading_brief;
|
||
}
|
||
|
||
/* True if we are reading a symbol table. */
|
||
|
||
int currently_reading_symtab = 0;
|
||
|
||
/* Increment currently_reading_symtab and return a cleanup that can be
|
||
used to decrement it. */
|
||
|
||
scoped_restore_tmpl<int>
|
||
increment_reading_symtab (void)
|
||
{
|
||
gdb_assert (currently_reading_symtab >= 0);
|
||
return make_scoped_restore (¤tly_reading_symtab,
|
||
currently_reading_symtab + 1);
|
||
}
|
||
|
||
/* Remember the lowest-addressed loadable section we've seen.
|
||
This function is called via bfd_map_over_sections.
|
||
|
||
In case of equal vmas, the section with the largest size becomes the
|
||
lowest-addressed loadable section.
|
||
|
||
If the vmas and sizes are equal, the last section is considered the
|
||
lowest-addressed loadable section. */
|
||
|
||
void
|
||
find_lowest_section (bfd *abfd, asection *sect, void *obj)
|
||
{
|
||
asection **lowest = (asection **) obj;
|
||
|
||
if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
|
||
return;
|
||
if (!*lowest)
|
||
*lowest = sect; /* First loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
|
||
*lowest = sect; /* A lower loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
|
||
&& (bfd_section_size (abfd, (*lowest))
|
||
<= bfd_section_size (abfd, sect)))
|
||
*lowest = sect;
|
||
}
|
||
|
||
/* Create a new section_addr_info, with room for NUM_SECTIONS. The
|
||
new object's 'num_sections' field is set to 0; it must be updated
|
||
by the caller. */
|
||
|
||
struct section_addr_info *
|
||
alloc_section_addr_info (size_t num_sections)
|
||
{
|
||
struct section_addr_info *sap;
|
||
size_t size;
|
||
|
||
size = (sizeof (struct section_addr_info)
|
||
+ sizeof (struct other_sections) * (num_sections - 1));
|
||
sap = (struct section_addr_info *) xmalloc (size);
|
||
memset (sap, 0, size);
|
||
|
||
return sap;
|
||
}
|
||
|
||
/* Build (allocate and populate) a section_addr_info struct from
|
||
an existing section table. */
|
||
|
||
extern struct section_addr_info *
|
||
build_section_addr_info_from_section_table (const struct target_section *start,
|
||
const struct target_section *end)
|
||
{
|
||
struct section_addr_info *sap;
|
||
const struct target_section *stp;
|
||
int oidx;
|
||
|
||
sap = alloc_section_addr_info (end - start);
|
||
|
||
for (stp = start, oidx = 0; stp != end; stp++)
|
||
{
|
||
struct bfd_section *asect = stp->the_bfd_section;
|
||
bfd *abfd = asect->owner;
|
||
|
||
if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
|
||
&& oidx < end - start)
|
||
{
|
||
sap->other[oidx].addr = stp->addr;
|
||
sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
|
||
sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
|
||
oidx++;
|
||
}
|
||
}
|
||
|
||
sap->num_sections = oidx;
|
||
|
||
return sap;
|
||
}
|
||
|
||
/* Create a section_addr_info from section offsets in ABFD. */
|
||
|
||
static struct section_addr_info *
|
||
build_section_addr_info_from_bfd (bfd *abfd)
|
||
{
|
||
struct section_addr_info *sap;
|
||
int i;
|
||
struct bfd_section *sec;
|
||
|
||
sap = alloc_section_addr_info (bfd_count_sections (abfd));
|
||
for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
|
||
{
|
||
sap->other[i].addr = bfd_get_section_vma (abfd, sec);
|
||
sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
|
||
sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
|
||
i++;
|
||
}
|
||
|
||
sap->num_sections = i;
|
||
|
||
return sap;
|
||
}
|
||
|
||
/* Create a section_addr_info from section offsets in OBJFILE. */
|
||
|
||
struct section_addr_info *
|
||
build_section_addr_info_from_objfile (const struct objfile *objfile)
|
||
{
|
||
struct section_addr_info *sap;
|
||
int i;
|
||
|
||
/* Before reread_symbols gets rewritten it is not safe to call:
|
||
gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
|
||
*/
|
||
sap = build_section_addr_info_from_bfd (objfile->obfd);
|
||
for (i = 0; i < sap->num_sections; i++)
|
||
{
|
||
int sectindex = sap->other[i].sectindex;
|
||
|
||
sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
|
||
}
|
||
return sap;
|
||
}
|
||
|
||
/* Free all memory allocated by build_section_addr_info_from_section_table. */
|
||
|
||
extern void
|
||
free_section_addr_info (struct section_addr_info *sap)
|
||
{
|
||
int idx;
|
||
|
||
for (idx = 0; idx < sap->num_sections; idx++)
|
||
xfree (sap->other[idx].name);
|
||
xfree (sap);
|
||
}
|
||
|
||
/* Initialize OBJFILE's sect_index_* members. */
|
||
|
||
static void
|
||
init_objfile_sect_indices (struct objfile *objfile)
|
||
{
|
||
asection *sect;
|
||
int i;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
||
if (sect)
|
||
objfile->sect_index_text = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".data");
|
||
if (sect)
|
||
objfile->sect_index_data = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".bss");
|
||
if (sect)
|
||
objfile->sect_index_bss = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
|
||
if (sect)
|
||
objfile->sect_index_rodata = sect->index;
|
||
|
||
/* This is where things get really weird... We MUST have valid
|
||
indices for the various sect_index_* members or gdb will abort.
|
||
So if for example, there is no ".text" section, we have to
|
||
accomodate that. First, check for a file with the standard
|
||
one or two segments. */
|
||
|
||
symfile_find_segment_sections (objfile);
|
||
|
||
/* Except when explicitly adding symbol files at some address,
|
||
section_offsets contains nothing but zeros, so it doesn't matter
|
||
which slot in section_offsets the individual sect_index_* members
|
||
index into. So if they are all zero, it is safe to just point
|
||
all the currently uninitialized indices to the first slot. But
|
||
beware: if this is the main executable, it may be relocated
|
||
later, e.g. by the remote qOffsets packet, and then this will
|
||
be wrong! That's why we try segments first. */
|
||
|
||
for (i = 0; i < objfile->num_sections; i++)
|
||
{
|
||
if (ANOFFSET (objfile->section_offsets, i) != 0)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if (i == objfile->num_sections)
|
||
{
|
||
if (objfile->sect_index_text == -1)
|
||
objfile->sect_index_text = 0;
|
||
if (objfile->sect_index_data == -1)
|
||
objfile->sect_index_data = 0;
|
||
if (objfile->sect_index_bss == -1)
|
||
objfile->sect_index_bss = 0;
|
||
if (objfile->sect_index_rodata == -1)
|
||
objfile->sect_index_rodata = 0;
|
||
}
|
||
}
|
||
|
||
/* The arguments to place_section. */
|
||
|
||
struct place_section_arg
|
||
{
|
||
struct section_offsets *offsets;
|
||
CORE_ADDR lowest;
|
||
};
|
||
|
||
/* Find a unique offset to use for loadable section SECT if
|
||
the user did not provide an offset. */
|
||
|
||
static void
|
||
place_section (bfd *abfd, asection *sect, void *obj)
|
||
{
|
||
struct place_section_arg *arg = (struct place_section_arg *) obj;
|
||
CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
|
||
int done;
|
||
ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
|
||
|
||
/* We are only interested in allocated sections. */
|
||
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
||
return;
|
||
|
||
/* If the user specified an offset, honor it. */
|
||
if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
|
||
return;
|
||
|
||
/* Otherwise, let's try to find a place for the section. */
|
||
start_addr = (arg->lowest + align - 1) & -align;
|
||
|
||
do {
|
||
asection *cur_sec;
|
||
|
||
done = 1;
|
||
|
||
for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
|
||
{
|
||
int indx = cur_sec->index;
|
||
|
||
/* We don't need to compare against ourself. */
|
||
if (cur_sec == sect)
|
||
continue;
|
||
|
||
/* We can only conflict with allocated sections. */
|
||
if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If the section offset is 0, either the section has not been placed
|
||
yet, or it was the lowest section placed (in which case LOWEST
|
||
will be past its end). */
|
||
if (offsets[indx] == 0)
|
||
continue;
|
||
|
||
/* If this section would overlap us, then we must move up. */
|
||
if (start_addr + bfd_get_section_size (sect) > offsets[indx]
|
||
&& start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
|
||
{
|
||
start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
|
||
start_addr = (start_addr + align - 1) & -align;
|
||
done = 0;
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, we appear to be OK. So far. */
|
||
}
|
||
}
|
||
while (!done);
|
||
|
||
offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
|
||
arg->lowest = start_addr + bfd_get_section_size (sect);
|
||
}
|
||
|
||
/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
|
||
filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
|
||
entries. */
|
||
|
||
void
|
||
relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
|
||
int num_sections,
|
||
const struct section_addr_info *addrs)
|
||
{
|
||
int i;
|
||
|
||
memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
|
||
|
||
/* Now calculate offsets for section that were specified by the caller. */
|
||
for (i = 0; i < addrs->num_sections; i++)
|
||
{
|
||
const struct other_sections *osp;
|
||
|
||
osp = &addrs->other[i];
|
||
if (osp->sectindex == -1)
|
||
continue;
|
||
|
||
/* Record all sections in offsets. */
|
||
/* The section_offsets in the objfile are here filled in using
|
||
the BFD index. */
|
||
section_offsets->offsets[osp->sectindex] = osp->addr;
|
||
}
|
||
}
|
||
|
||
/* Transform section name S for a name comparison. prelink can split section
|
||
`.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
|
||
prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
|
||
of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
|
||
(`.sbss') section has invalid (increased) virtual address. */
|
||
|
||
static const char *
|
||
addr_section_name (const char *s)
|
||
{
|
||
if (strcmp (s, ".dynbss") == 0)
|
||
return ".bss";
|
||
if (strcmp (s, ".sdynbss") == 0)
|
||
return ".sbss";
|
||
|
||
return s;
|
||
}
|
||
|
||
/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
|
||
their (name, sectindex) pair. sectindex makes the sort by name stable. */
|
||
|
||
static int
|
||
addrs_section_compar (const void *ap, const void *bp)
|
||
{
|
||
const struct other_sections *a = *((struct other_sections **) ap);
|
||
const struct other_sections *b = *((struct other_sections **) bp);
|
||
int retval;
|
||
|
||
retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
|
||
if (retval)
|
||
return retval;
|
||
|
||
return a->sectindex - b->sectindex;
|
||
}
|
||
|
||
/* Provide sorted array of pointers to sections of ADDRS. The array is
|
||
terminated by NULL. Caller is responsible to call xfree for it. */
|
||
|
||
static struct other_sections **
|
||
addrs_section_sort (struct section_addr_info *addrs)
|
||
{
|
||
struct other_sections **array;
|
||
int i;
|
||
|
||
/* `+ 1' for the NULL terminator. */
|
||
array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
|
||
for (i = 0; i < addrs->num_sections; i++)
|
||
array[i] = &addrs->other[i];
|
||
array[i] = NULL;
|
||
|
||
qsort (array, i, sizeof (*array), addrs_section_compar);
|
||
|
||
return array;
|
||
}
|
||
|
||
/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
|
||
also SECTINDEXes specific to ABFD there. This function can be used to
|
||
rebase ADDRS to start referencing different BFD than before. */
|
||
|
||
void
|
||
addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
|
||
{
|
||
asection *lower_sect;
|
||
CORE_ADDR lower_offset;
|
||
int i;
|
||
struct cleanup *my_cleanup;
|
||
struct section_addr_info *abfd_addrs;
|
||
struct other_sections **addrs_sorted, **abfd_addrs_sorted;
|
||
struct other_sections **addrs_to_abfd_addrs;
|
||
|
||
/* Find lowest loadable section to be used as starting point for
|
||
continguous sections. */
|
||
lower_sect = NULL;
|
||
bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
|
||
if (lower_sect == NULL)
|
||
{
|
||
warning (_("no loadable sections found in added symbol-file %s"),
|
||
bfd_get_filename (abfd));
|
||
lower_offset = 0;
|
||
}
|
||
else
|
||
lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
|
||
|
||
/* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
|
||
in ABFD. Section names are not unique - there can be multiple sections of
|
||
the same name. Also the sections of the same name do not have to be
|
||
adjacent to each other. Some sections may be present only in one of the
|
||
files. Even sections present in both files do not have to be in the same
|
||
order.
|
||
|
||
Use stable sort by name for the sections in both files. Then linearly
|
||
scan both lists matching as most of the entries as possible. */
|
||
|
||
addrs_sorted = addrs_section_sort (addrs);
|
||
my_cleanup = make_cleanup (xfree, addrs_sorted);
|
||
|
||
abfd_addrs = build_section_addr_info_from_bfd (abfd);
|
||
make_cleanup_free_section_addr_info (abfd_addrs);
|
||
abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
|
||
make_cleanup (xfree, abfd_addrs_sorted);
|
||
|
||
/* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
|
||
ABFD_ADDRS_SORTED. */
|
||
|
||
addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
|
||
make_cleanup (xfree, addrs_to_abfd_addrs);
|
||
|
||
while (*addrs_sorted)
|
||
{
|
||
const char *sect_name = addr_section_name ((*addrs_sorted)->name);
|
||
|
||
while (*abfd_addrs_sorted
|
||
&& strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
|
||
sect_name) < 0)
|
||
abfd_addrs_sorted++;
|
||
|
||
if (*abfd_addrs_sorted
|
||
&& strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
|
||
sect_name) == 0)
|
||
{
|
||
int index_in_addrs;
|
||
|
||
/* Make the found item directly addressable from ADDRS. */
|
||
index_in_addrs = *addrs_sorted - addrs->other;
|
||
gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
|
||
addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
|
||
|
||
/* Never use the same ABFD entry twice. */
|
||
abfd_addrs_sorted++;
|
||
}
|
||
|
||
addrs_sorted++;
|
||
}
|
||
|
||
/* Calculate offsets for the loadable sections.
|
||
FIXME! Sections must be in order of increasing loadable section
|
||
so that contiguous sections can use the lower-offset!!!
|
||
|
||
Adjust offsets if the segments are not contiguous.
|
||
If the section is contiguous, its offset should be set to
|
||
the offset of the highest loadable section lower than it
|
||
(the loadable section directly below it in memory).
|
||
this_offset = lower_offset = lower_addr - lower_orig_addr */
|
||
|
||
for (i = 0; i < addrs->num_sections; i++)
|
||
{
|
||
struct other_sections *sect = addrs_to_abfd_addrs[i];
|
||
|
||
if (sect)
|
||
{
|
||
/* This is the index used by BFD. */
|
||
addrs->other[i].sectindex = sect->sectindex;
|
||
|
||
if (addrs->other[i].addr != 0)
|
||
{
|
||
addrs->other[i].addr -= sect->addr;
|
||
lower_offset = addrs->other[i].addr;
|
||
}
|
||
else
|
||
addrs->other[i].addr = lower_offset;
|
||
}
|
||
else
|
||
{
|
||
/* addr_section_name transformation is not used for SECT_NAME. */
|
||
const char *sect_name = addrs->other[i].name;
|
||
|
||
/* This section does not exist in ABFD, which is normally
|
||
unexpected and we want to issue a warning.
|
||
|
||
However, the ELF prelinker does create a few sections which are
|
||
marked in the main executable as loadable (they are loaded in
|
||
memory from the DYNAMIC segment) and yet are not present in
|
||
separate debug info files. This is fine, and should not cause
|
||
a warning. Shared libraries contain just the section
|
||
".gnu.liblist" but it is not marked as loadable there. There is
|
||
no other way to identify them than by their name as the sections
|
||
created by prelink have no special flags.
|
||
|
||
For the sections `.bss' and `.sbss' see addr_section_name. */
|
||
|
||
if (!(strcmp (sect_name, ".gnu.liblist") == 0
|
||
|| strcmp (sect_name, ".gnu.conflict") == 0
|
||
|| (strcmp (sect_name, ".bss") == 0
|
||
&& i > 0
|
||
&& strcmp (addrs->other[i - 1].name, ".dynbss") == 0
|
||
&& addrs_to_abfd_addrs[i - 1] != NULL)
|
||
|| (strcmp (sect_name, ".sbss") == 0
|
||
&& i > 0
|
||
&& strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
|
||
&& addrs_to_abfd_addrs[i - 1] != NULL)))
|
||
warning (_("section %s not found in %s"), sect_name,
|
||
bfd_get_filename (abfd));
|
||
|
||
addrs->other[i].addr = 0;
|
||
addrs->other[i].sectindex = -1;
|
||
}
|
||
}
|
||
|
||
do_cleanups (my_cleanup);
|
||
}
|
||
|
||
/* Parse the user's idea of an offset for dynamic linking, into our idea
|
||
of how to represent it for fast symbol reading. This is the default
|
||
version of the sym_fns.sym_offsets function for symbol readers that
|
||
don't need to do anything special. It allocates a section_offsets table
|
||
for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
|
||
|
||
void
|
||
default_symfile_offsets (struct objfile *objfile,
|
||
const struct section_addr_info *addrs)
|
||
{
|
||
objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
|
||
relative_addr_info_to_section_offsets (objfile->section_offsets,
|
||
objfile->num_sections, addrs);
|
||
|
||
/* For relocatable files, all loadable sections will start at zero.
|
||
The zero is meaningless, so try to pick arbitrary addresses such
|
||
that no loadable sections overlap. This algorithm is quadratic,
|
||
but the number of sections in a single object file is generally
|
||
small. */
|
||
if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
|
||
{
|
||
struct place_section_arg arg;
|
||
bfd *abfd = objfile->obfd;
|
||
asection *cur_sec;
|
||
|
||
for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
|
||
/* We do not expect this to happen; just skip this step if the
|
||
relocatable file has a section with an assigned VMA. */
|
||
if (bfd_section_vma (abfd, cur_sec) != 0)
|
||
break;
|
||
|
||
if (cur_sec == NULL)
|
||
{
|
||
CORE_ADDR *offsets = objfile->section_offsets->offsets;
|
||
|
||
/* Pick non-overlapping offsets for sections the user did not
|
||
place explicitly. */
|
||
arg.offsets = objfile->section_offsets;
|
||
arg.lowest = 0;
|
||
bfd_map_over_sections (objfile->obfd, place_section, &arg);
|
||
|
||
/* Correctly filling in the section offsets is not quite
|
||
enough. Relocatable files have two properties that
|
||
(most) shared objects do not:
|
||
|
||
- Their debug information will contain relocations. Some
|
||
shared libraries do also, but many do not, so this can not
|
||
be assumed.
|
||
|
||
- If there are multiple code sections they will be loaded
|
||
at different relative addresses in memory than they are
|
||
in the objfile, since all sections in the file will start
|
||
at address zero.
|
||
|
||
Because GDB has very limited ability to map from an
|
||
address in debug info to the correct code section,
|
||
it relies on adding SECT_OFF_TEXT to things which might be
|
||
code. If we clear all the section offsets, and set the
|
||
section VMAs instead, then symfile_relocate_debug_section
|
||
will return meaningful debug information pointing at the
|
||
correct sections.
|
||
|
||
GDB has too many different data structures for section
|
||
addresses - a bfd, objfile, and so_list all have section
|
||
tables, as does exec_ops. Some of these could probably
|
||
be eliminated. */
|
||
|
||
for (cur_sec = abfd->sections; cur_sec != NULL;
|
||
cur_sec = cur_sec->next)
|
||
{
|
||
if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
|
||
exec_set_section_address (bfd_get_filename (abfd),
|
||
cur_sec->index,
|
||
offsets[cur_sec->index]);
|
||
offsets[cur_sec->index] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remember the bfd indexes for the .text, .data, .bss and
|
||
.rodata sections. */
|
||
init_objfile_sect_indices (objfile);
|
||
}
|
||
|
||
/* Divide the file into segments, which are individual relocatable units.
|
||
This is the default version of the sym_fns.sym_segments function for
|
||
symbol readers that do not have an explicit representation of segments.
|
||
It assumes that object files do not have segments, and fully linked
|
||
files have a single segment. */
|
||
|
||
struct symfile_segment_data *
|
||
default_symfile_segments (bfd *abfd)
|
||
{
|
||
int num_sections, i;
|
||
asection *sect;
|
||
struct symfile_segment_data *data;
|
||
CORE_ADDR low, high;
|
||
|
||
/* Relocatable files contain enough information to position each
|
||
loadable section independently; they should not be relocated
|
||
in segments. */
|
||
if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
|
||
return NULL;
|
||
|
||
/* Make sure there is at least one loadable section in the file. */
|
||
for (sect = abfd->sections; sect != NULL; sect = sect->next)
|
||
{
|
||
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
break;
|
||
}
|
||
if (sect == NULL)
|
||
return NULL;
|
||
|
||
low = bfd_get_section_vma (abfd, sect);
|
||
high = low + bfd_get_section_size (sect);
|
||
|
||
data = XCNEW (struct symfile_segment_data);
|
||
data->num_segments = 1;
|
||
data->segment_bases = XCNEW (CORE_ADDR);
|
||
data->segment_sizes = XCNEW (CORE_ADDR);
|
||
|
||
num_sections = bfd_count_sections (abfd);
|
||
data->segment_info = XCNEWVEC (int, num_sections);
|
||
|
||
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
||
{
|
||
CORE_ADDR vma;
|
||
|
||
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
vma = bfd_get_section_vma (abfd, sect);
|
||
if (vma < low)
|
||
low = vma;
|
||
if (vma + bfd_get_section_size (sect) > high)
|
||
high = vma + bfd_get_section_size (sect);
|
||
|
||
data->segment_info[i] = 1;
|
||
}
|
||
|
||
data->segment_bases[0] = low;
|
||
data->segment_sizes[0] = high - low;
|
||
|
||
return data;
|
||
}
|
||
|
||
/* This is a convenience function to call sym_read for OBJFILE and
|
||
possibly force the partial symbols to be read. */
|
||
|
||
static void
|
||
read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
|
||
{
|
||
(*objfile->sf->sym_read) (objfile, add_flags);
|
||
objfile->per_bfd->minsyms_read = true;
|
||
|
||
/* find_separate_debug_file_in_section should be called only if there is
|
||
single binary with no existing separate debug info file. */
|
||
if (!objfile_has_partial_symbols (objfile)
|
||
&& objfile->separate_debug_objfile == NULL
|
||
&& objfile->separate_debug_objfile_backlink == NULL)
|
||
{
|
||
gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
|
||
|
||
if (abfd != NULL)
|
||
{
|
||
/* find_separate_debug_file_in_section uses the same filename for the
|
||
virtual section-as-bfd like the bfd filename containing the
|
||
section. Therefore use also non-canonical name form for the same
|
||
file containing the section. */
|
||
symbol_file_add_separate (abfd.get (), objfile->original_name,
|
||
add_flags, objfile);
|
||
}
|
||
}
|
||
if ((add_flags & SYMFILE_NO_READ) == 0)
|
||
require_partial_symbols (objfile, 0);
|
||
}
|
||
|
||
/* Initialize entry point information for this objfile. */
|
||
|
||
static void
|
||
init_entry_point_info (struct objfile *objfile)
|
||
{
|
||
struct entry_info *ei = &objfile->per_bfd->ei;
|
||
|
||
if (ei->initialized)
|
||
return;
|
||
ei->initialized = 1;
|
||
|
||
/* Save startup file's range of PC addresses to help blockframe.c
|
||
decide where the bottom of the stack is. */
|
||
|
||
if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
|
||
{
|
||
/* Executable file -- record its entry point so we'll recognize
|
||
the startup file because it contains the entry point. */
|
||
ei->entry_point = bfd_get_start_address (objfile->obfd);
|
||
ei->entry_point_p = 1;
|
||
}
|
||
else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
|
||
&& bfd_get_start_address (objfile->obfd) != 0)
|
||
{
|
||
/* Some shared libraries may have entry points set and be
|
||
runnable. There's no clear way to indicate this, so just check
|
||
for values other than zero. */
|
||
ei->entry_point = bfd_get_start_address (objfile->obfd);
|
||
ei->entry_point_p = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Examination of non-executable.o files. Short-circuit this stuff. */
|
||
ei->entry_point_p = 0;
|
||
}
|
||
|
||
if (ei->entry_point_p)
|
||
{
|
||
struct obj_section *osect;
|
||
CORE_ADDR entry_point = ei->entry_point;
|
||
int found;
|
||
|
||
/* Make certain that the address points at real code, and not a
|
||
function descriptor. */
|
||
entry_point
|
||
= gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
|
||
entry_point,
|
||
¤t_target);
|
||
|
||
/* Remove any ISA markers, so that this matches entries in the
|
||
symbol table. */
|
||
ei->entry_point
|
||
= gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
|
||
|
||
found = 0;
|
||
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
||
{
|
||
struct bfd_section *sect = osect->the_bfd_section;
|
||
|
||
if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
|
||
&& entry_point < (bfd_get_section_vma (objfile->obfd, sect)
|
||
+ bfd_get_section_size (sect)))
|
||
{
|
||
ei->the_bfd_section_index
|
||
= gdb_bfd_section_index (objfile->obfd, sect);
|
||
found = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
|
||
}
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
This function does not set the OBJFILE's entry-point info.
|
||
|
||
OBJFILE is where the symbols are to be read from.
|
||
|
||
ADDRS is the list of section load addresses. If the user has given
|
||
an 'add-symbol-file' command, then this is the list of offsets and
|
||
addresses he or she provided as arguments to the command; or, if
|
||
we're handling a shared library, these are the actual addresses the
|
||
sections are loaded at, according to the inferior's dynamic linker
|
||
(as gleaned by GDB's shared library code). We convert each address
|
||
into an offset from the section VMA's as it appears in the object
|
||
file, and then call the file's sym_offsets function to convert this
|
||
into a format-specific offset table --- a `struct section_offsets'.
|
||
|
||
ADD_FLAGS encodes verbosity level, whether this is main symbol or
|
||
an extra symbol file such as dynamically loaded code, and wether
|
||
breakpoint reset should be deferred. */
|
||
|
||
static void
|
||
syms_from_objfile_1 (struct objfile *objfile,
|
||
struct section_addr_info *addrs,
|
||
symfile_add_flags add_flags)
|
||
{
|
||
struct section_addr_info *local_addr = NULL;
|
||
struct cleanup *old_chain;
|
||
const int mainline = add_flags & SYMFILE_MAINLINE;
|
||
|
||
objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
|
||
|
||
if (objfile->sf == NULL)
|
||
{
|
||
/* No symbols to load, but we still need to make sure
|
||
that the section_offsets table is allocated. */
|
||
int num_sections = gdb_bfd_count_sections (objfile->obfd);
|
||
size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
|
||
|
||
objfile->num_sections = num_sections;
|
||
objfile->section_offsets
|
||
= (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
|
||
size);
|
||
memset (objfile->section_offsets, 0, size);
|
||
return;
|
||
}
|
||
|
||
/* Make sure that partially constructed symbol tables will be cleaned up
|
||
if an error occurs during symbol reading. */
|
||
old_chain = make_cleanup_free_objfile (objfile);
|
||
|
||
/* If ADDRS is NULL, put together a dummy address list.
|
||
We now establish the convention that an addr of zero means
|
||
no load address was specified. */
|
||
if (! addrs)
|
||
{
|
||
local_addr = alloc_section_addr_info (1);
|
||
make_cleanup (xfree, local_addr);
|
||
addrs = local_addr;
|
||
}
|
||
|
||
if (mainline)
|
||
{
|
||
/* We will modify the main symbol table, make sure that all its users
|
||
will be cleaned up if an error occurs during symbol reading. */
|
||
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
||
|
||
/* Since no error yet, throw away the old symbol table. */
|
||
|
||
if (symfile_objfile != NULL)
|
||
{
|
||
free_objfile (symfile_objfile);
|
||
gdb_assert (symfile_objfile == NULL);
|
||
}
|
||
|
||
/* Currently we keep symbols from the add-symbol-file command.
|
||
If the user wants to get rid of them, they should do "symbol-file"
|
||
without arguments first. Not sure this is the best behavior
|
||
(PR 2207). */
|
||
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
}
|
||
|
||
/* Convert addr into an offset rather than an absolute address.
|
||
We find the lowest address of a loaded segment in the objfile,
|
||
and assume that <addr> is where that got loaded.
|
||
|
||
We no longer warn if the lowest section is not a text segment (as
|
||
happens for the PA64 port. */
|
||
if (addrs->num_sections > 0)
|
||
addr_info_make_relative (addrs, objfile->obfd);
|
||
|
||
/* Initialize symbol reading routines for this objfile, allow complaints to
|
||
appear for this new file, and record how verbose to be, then do the
|
||
initial symbol reading for this file. */
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
|
||
|
||
(*objfile->sf->sym_offsets) (objfile, addrs);
|
||
|
||
read_symbols (objfile, add_flags);
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
|
||
discard_cleanups (old_chain);
|
||
xfree (local_addr);
|
||
}
|
||
|
||
/* Same as syms_from_objfile_1, but also initializes the objfile
|
||
entry-point info. */
|
||
|
||
static void
|
||
syms_from_objfile (struct objfile *objfile,
|
||
struct section_addr_info *addrs,
|
||
symfile_add_flags add_flags)
|
||
{
|
||
syms_from_objfile_1 (objfile, addrs, add_flags);
|
||
init_entry_point_info (objfile);
|
||
}
|
||
|
||
/* Perform required actions after either reading in the initial
|
||
symbols for a new objfile, or mapping in the symbols from a reusable
|
||
objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
|
||
|
||
static void
|
||
finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
|
||
{
|
||
/* If this is the main symbol file we have to clean up all users of the
|
||
old main symbol file. Otherwise it is sufficient to fixup all the
|
||
breakpoints that may have been redefined by this symbol file. */
|
||
if (add_flags & SYMFILE_MAINLINE)
|
||
{
|
||
/* OK, make it the "real" symbol file. */
|
||
symfile_objfile = objfile;
|
||
|
||
clear_symtab_users (add_flags);
|
||
}
|
||
else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
|
||
{
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
ABFD is a BFD already open on the file, as from symfile_bfd_open.
|
||
A new reference is acquired by this function.
|
||
|
||
For NAME description see allocate_objfile's definition.
|
||
|
||
ADD_FLAGS encodes verbosity, whether this is main symbol file or
|
||
extra, such as dynamically loaded code, and what to do with breakpoins.
|
||
|
||
ADDRS is as described for syms_from_objfile_1, above.
|
||
ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
|
||
|
||
PARENT is the original objfile if ABFD is a separate debug info file.
|
||
Otherwise PARENT is NULL.
|
||
|
||
Upon success, returns a pointer to the objfile that was added.
|
||
Upon failure, jumps back to command level (never returns). */
|
||
|
||
static struct objfile *
|
||
symbol_file_add_with_addrs (bfd *abfd, const char *name,
|
||
symfile_add_flags add_flags,
|
||
struct section_addr_info *addrs,
|
||
objfile_flags flags, struct objfile *parent)
|
||
{
|
||
struct objfile *objfile;
|
||
const int from_tty = add_flags & SYMFILE_VERBOSE;
|
||
const int mainline = add_flags & SYMFILE_MAINLINE;
|
||
const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
|
||
&& (readnow_symbol_files
|
||
|| (add_flags & SYMFILE_NO_READ) == 0));
|
||
|
||
if (readnow_symbol_files)
|
||
{
|
||
flags |= OBJF_READNOW;
|
||
add_flags &= ~SYMFILE_NO_READ;
|
||
}
|
||
|
||
/* Give user a chance to burp if we'd be
|
||
interactively wiping out any existing symbols. */
|
||
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& mainline
|
||
&& from_tty
|
||
&& !query (_("Load new symbol table from \"%s\"? "), name))
|
||
error (_("Not confirmed."));
|
||
|
||
if (mainline)
|
||
flags |= OBJF_MAINLINE;
|
||
objfile = allocate_objfile (abfd, name, flags);
|
||
|
||
if (parent)
|
||
add_separate_debug_objfile (objfile, parent);
|
||
|
||
/* We either created a new mapped symbol table, mapped an existing
|
||
symbol table file which has not had initial symbol reading
|
||
performed, or need to read an unmapped symbol table. */
|
||
if (should_print)
|
||
{
|
||
if (deprecated_pre_add_symbol_hook)
|
||
deprecated_pre_add_symbol_hook (name);
|
||
else
|
||
{
|
||
printf_unfiltered (_("Reading symbols from %s..."), name);
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
syms_from_objfile (objfile, addrs, add_flags);
|
||
|
||
/* We now have at least a partial symbol table. Check to see if the
|
||
user requested that all symbols be read on initial access via either
|
||
the gdb startup command line or on a per symbol file basis. Expand
|
||
all partial symbol tables for this objfile if so. */
|
||
|
||
if ((flags & OBJF_READNOW))
|
||
{
|
||
if (should_print)
|
||
{
|
||
printf_unfiltered (_("expanding to full symbols..."));
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
if (objfile->sf)
|
||
objfile->sf->qf->expand_all_symtabs (objfile);
|
||
}
|
||
|
||
if (should_print && !objfile_has_symbols (objfile))
|
||
{
|
||
wrap_here ("");
|
||
printf_unfiltered (_("(no debugging symbols found)..."));
|
||
wrap_here ("");
|
||
}
|
||
|
||
if (should_print)
|
||
{
|
||
if (deprecated_post_add_symbol_hook)
|
||
deprecated_post_add_symbol_hook ();
|
||
else
|
||
printf_unfiltered (_("done.\n"));
|
||
}
|
||
|
||
/* We print some messages regardless of whether 'from_tty ||
|
||
info_verbose' is true, so make sure they go out at the right
|
||
time. */
|
||
gdb_flush (gdb_stdout);
|
||
|
||
if (objfile->sf == NULL)
|
||
{
|
||
observer_notify_new_objfile (objfile);
|
||
return objfile; /* No symbols. */
|
||
}
|
||
|
||
finish_new_objfile (objfile, add_flags);
|
||
|
||
observer_notify_new_objfile (objfile);
|
||
|
||
bfd_cache_close_all ();
|
||
return (objfile);
|
||
}
|
||
|
||
/* Add BFD as a separate debug file for OBJFILE. For NAME description
|
||
see allocate_objfile's definition. */
|
||
|
||
void
|
||
symbol_file_add_separate (bfd *bfd, const char *name,
|
||
symfile_add_flags symfile_flags,
|
||
struct objfile *objfile)
|
||
{
|
||
struct section_addr_info *sap;
|
||
struct cleanup *my_cleanup;
|
||
|
||
/* Create section_addr_info. We can't directly use offsets from OBJFILE
|
||
because sections of BFD may not match sections of OBJFILE and because
|
||
vma may have been modified by tools such as prelink. */
|
||
sap = build_section_addr_info_from_objfile (objfile);
|
||
my_cleanup = make_cleanup_free_section_addr_info (sap);
|
||
|
||
symbol_file_add_with_addrs
|
||
(bfd, name, symfile_flags, sap,
|
||
objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
|
||
| OBJF_USERLOADED),
|
||
objfile);
|
||
|
||
do_cleanups (my_cleanup);
|
||
}
|
||
|
||
/* Process the symbol file ABFD, as either the main file or as a
|
||
dynamically loaded file.
|
||
See symbol_file_add_with_addrs's comments for details. */
|
||
|
||
struct objfile *
|
||
symbol_file_add_from_bfd (bfd *abfd, const char *name,
|
||
symfile_add_flags add_flags,
|
||
struct section_addr_info *addrs,
|
||
objfile_flags flags, struct objfile *parent)
|
||
{
|
||
return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
|
||
parent);
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file. See symbol_file_add_with_addrs's comments for details. */
|
||
|
||
struct objfile *
|
||
symbol_file_add (const char *name, symfile_add_flags add_flags,
|
||
struct section_addr_info *addrs, objfile_flags flags)
|
||
{
|
||
gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
|
||
|
||
return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
|
||
flags, NULL);
|
||
}
|
||
|
||
/* Call symbol_file_add() with default values and update whatever is
|
||
affected by the loading of a new main().
|
||
Used when the file is supplied in the gdb command line
|
||
and by some targets with special loading requirements.
|
||
The auxiliary function, symbol_file_add_main_1(), has the flags
|
||
argument for the switches that can only be specified in the symbol_file
|
||
command itself. */
|
||
|
||
void
|
||
symbol_file_add_main (const char *args, symfile_add_flags add_flags)
|
||
{
|
||
symbol_file_add_main_1 (args, add_flags, 0);
|
||
}
|
||
|
||
static void
|
||
symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
|
||
objfile_flags flags)
|
||
{
|
||
add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
|
||
|
||
symbol_file_add (args, add_flags, NULL, flags);
|
||
|
||
/* Getting new symbols may change our opinion about
|
||
what is frameless. */
|
||
reinit_frame_cache ();
|
||
|
||
if ((add_flags & SYMFILE_NO_READ) == 0)
|
||
set_initial_language ();
|
||
}
|
||
|
||
void
|
||
symbol_file_clear (int from_tty)
|
||
{
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& from_tty
|
||
&& (symfile_objfile
|
||
? !query (_("Discard symbol table from `%s'? "),
|
||
objfile_name (symfile_objfile))
|
||
: !query (_("Discard symbol table? "))))
|
||
error (_("Not confirmed."));
|
||
|
||
/* solib descriptors may have handles to objfiles. Wipe them before their
|
||
objfiles get stale by free_all_objfiles. */
|
||
no_shared_libraries (NULL, from_tty);
|
||
|
||
free_all_objfiles ();
|
||
|
||
gdb_assert (symfile_objfile == NULL);
|
||
if (from_tty)
|
||
printf_unfiltered (_("No symbol file now.\n"));
|
||
}
|
||
|
||
/* See symfile.h. */
|
||
|
||
int separate_debug_file_debug = 0;
|
||
|
||
static int
|
||
separate_debug_file_exists (const char *name, unsigned long crc,
|
||
struct objfile *parent_objfile)
|
||
{
|
||
unsigned long file_crc;
|
||
int file_crc_p;
|
||
struct stat parent_stat, abfd_stat;
|
||
int verified_as_different;
|
||
|
||
/* Find a separate debug info file as if symbols would be present in
|
||
PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
|
||
section can contain just the basename of PARENT_OBJFILE without any
|
||
".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
|
||
the separate debug infos with the same basename can exist. */
|
||
|
||
if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
|
||
return 0;
|
||
|
||
if (separate_debug_file_debug)
|
||
printf_unfiltered (_(" Trying %s\n"), name);
|
||
|
||
gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
|
||
|
||
if (abfd == NULL)
|
||
return 0;
|
||
|
||
/* Verify symlinks were not the cause of filename_cmp name difference above.
|
||
|
||
Some operating systems, e.g. Windows, do not provide a meaningful
|
||
st_ino; they always set it to zero. (Windows does provide a
|
||
meaningful st_dev.) Files accessed from gdbservers that do not
|
||
support the vFile:fstat packet will also have st_ino set to zero.
|
||
Do not indicate a duplicate library in either case. While there
|
||
is no guarantee that a system that provides meaningful inode
|
||
numbers will never set st_ino to zero, this is merely an
|
||
optimization, so we do not need to worry about false negatives. */
|
||
|
||
if (bfd_stat (abfd.get (), &abfd_stat) == 0
|
||
&& abfd_stat.st_ino != 0
|
||
&& bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
|
||
{
|
||
if (abfd_stat.st_dev == parent_stat.st_dev
|
||
&& abfd_stat.st_ino == parent_stat.st_ino)
|
||
return 0;
|
||
verified_as_different = 1;
|
||
}
|
||
else
|
||
verified_as_different = 0;
|
||
|
||
file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
|
||
|
||
if (!file_crc_p)
|
||
return 0;
|
||
|
||
if (crc != file_crc)
|
||
{
|
||
unsigned long parent_crc;
|
||
|
||
/* If the files could not be verified as different with
|
||
bfd_stat then we need to calculate the parent's CRC
|
||
to verify whether the files are different or not. */
|
||
|
||
if (!verified_as_different)
|
||
{
|
||
if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
|
||
return 0;
|
||
}
|
||
|
||
if (verified_as_different || parent_crc != file_crc)
|
||
warning (_("the debug information found in \"%s\""
|
||
" does not match \"%s\" (CRC mismatch).\n"),
|
||
name, objfile_name (parent_objfile));
|
||
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
char *debug_file_directory = NULL;
|
||
static void
|
||
show_debug_file_directory (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("The directory where separate debug "
|
||
"symbols are searched for is \"%s\".\n"),
|
||
value);
|
||
}
|
||
|
||
#if ! defined (DEBUG_SUBDIRECTORY)
|
||
#define DEBUG_SUBDIRECTORY ".debug"
|
||
#endif
|
||
|
||
/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
|
||
where the original file resides (may not be the same as
|
||
dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
|
||
looking for. CANON_DIR is the "realpath" form of DIR.
|
||
DIR must contain a trailing '/'.
|
||
Returns the path of the file with separate debug info, of NULL. */
|
||
|
||
static char *
|
||
find_separate_debug_file (const char *dir,
|
||
const char *canon_dir,
|
||
const char *debuglink,
|
||
unsigned long crc32, struct objfile *objfile)
|
||
{
|
||
char *debugdir;
|
||
char *debugfile;
|
||
int i;
|
||
VEC (char_ptr) *debugdir_vec;
|
||
struct cleanup *back_to;
|
||
int ix;
|
||
|
||
if (separate_debug_file_debug)
|
||
printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
|
||
"%s\n"), objfile_name (objfile));
|
||
|
||
/* Set I to std::max (strlen (canon_dir), strlen (dir)). */
|
||
i = strlen (dir);
|
||
if (canon_dir != NULL && strlen (canon_dir) > i)
|
||
i = strlen (canon_dir);
|
||
|
||
debugfile
|
||
= (char *) xmalloc (strlen (debug_file_directory) + 1
|
||
+ i
|
||
+ strlen (DEBUG_SUBDIRECTORY)
|
||
+ strlen ("/")
|
||
+ strlen (debuglink)
|
||
+ 1);
|
||
|
||
/* First try in the same directory as the original file. */
|
||
strcpy (debugfile, dir);
|
||
strcat (debugfile, debuglink);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
||
return debugfile;
|
||
|
||
/* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
|
||
strcpy (debugfile, dir);
|
||
strcat (debugfile, DEBUG_SUBDIRECTORY);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, debuglink);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
||
return debugfile;
|
||
|
||
/* Then try in the global debugfile directories.
|
||
|
||
Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
|
||
cause "/..." lookups. */
|
||
|
||
debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
|
||
back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
|
||
|
||
for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
|
||
{
|
||
strcpy (debugfile, debugdir);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, dir);
|
||
strcat (debugfile, debuglink);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
||
{
|
||
do_cleanups (back_to);
|
||
return debugfile;
|
||
}
|
||
|
||
/* If the file is in the sysroot, try using its base path in the
|
||
global debugfile directory. */
|
||
if (canon_dir != NULL
|
||
&& filename_ncmp (canon_dir, gdb_sysroot,
|
||
strlen (gdb_sysroot)) == 0
|
||
&& IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
|
||
{
|
||
strcpy (debugfile, debugdir);
|
||
strcat (debugfile, canon_dir + strlen (gdb_sysroot));
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, debuglink);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
||
{
|
||
do_cleanups (back_to);
|
||
return debugfile;
|
||
}
|
||
}
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
xfree (debugfile);
|
||
return NULL;
|
||
}
|
||
|
||
/* Modify PATH to contain only "[/]directory/" part of PATH.
|
||
If there were no directory separators in PATH, PATH will be empty
|
||
string on return. */
|
||
|
||
static void
|
||
terminate_after_last_dir_separator (char *path)
|
||
{
|
||
int i;
|
||
|
||
/* Strip off the final filename part, leaving the directory name,
|
||
followed by a slash. The directory can be relative or absolute. */
|
||
for (i = strlen(path) - 1; i >= 0; i--)
|
||
if (IS_DIR_SEPARATOR (path[i]))
|
||
break;
|
||
|
||
/* If I is -1 then no directory is present there and DIR will be "". */
|
||
path[i + 1] = '\0';
|
||
}
|
||
|
||
/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
|
||
Returns pathname, or NULL. */
|
||
|
||
char *
|
||
find_separate_debug_file_by_debuglink (struct objfile *objfile)
|
||
{
|
||
char *debuglink;
|
||
char *dir, *canon_dir;
|
||
char *debugfile;
|
||
unsigned long crc32;
|
||
struct cleanup *cleanups;
|
||
|
||
debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
|
||
|
||
if (debuglink == NULL)
|
||
{
|
||
/* There's no separate debug info, hence there's no way we could
|
||
load it => no warning. */
|
||
return NULL;
|
||
}
|
||
|
||
cleanups = make_cleanup (xfree, debuglink);
|
||
dir = xstrdup (objfile_name (objfile));
|
||
make_cleanup (xfree, dir);
|
||
terminate_after_last_dir_separator (dir);
|
||
canon_dir = lrealpath (dir);
|
||
|
||
debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
|
||
crc32, objfile);
|
||
xfree (canon_dir);
|
||
|
||
if (debugfile == NULL)
|
||
{
|
||
/* For PR gdb/9538, try again with realpath (if different from the
|
||
original). */
|
||
|
||
struct stat st_buf;
|
||
|
||
if (lstat (objfile_name (objfile), &st_buf) == 0
|
||
&& S_ISLNK (st_buf.st_mode))
|
||
{
|
||
char *symlink_dir;
|
||
|
||
symlink_dir = lrealpath (objfile_name (objfile));
|
||
if (symlink_dir != NULL)
|
||
{
|
||
make_cleanup (xfree, symlink_dir);
|
||
terminate_after_last_dir_separator (symlink_dir);
|
||
if (strcmp (dir, symlink_dir) != 0)
|
||
{
|
||
/* Different directory, so try using it. */
|
||
debugfile = find_separate_debug_file (symlink_dir,
|
||
symlink_dir,
|
||
debuglink,
|
||
crc32,
|
||
objfile);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
do_cleanups (cleanups);
|
||
return debugfile;
|
||
}
|
||
|
||
/* This is the symbol-file command. Read the file, analyze its
|
||
symbols, and add a struct symtab to a symtab list. The syntax of
|
||
the command is rather bizarre:
|
||
|
||
1. The function buildargv implements various quoting conventions
|
||
which are undocumented and have little or nothing in common with
|
||
the way things are quoted (or not quoted) elsewhere in GDB.
|
||
|
||
2. Options are used, which are not generally used in GDB (perhaps
|
||
"set mapped on", "set readnow on" would be better)
|
||
|
||
3. The order of options matters, which is contrary to GNU
|
||
conventions (because it is confusing and inconvenient). */
|
||
|
||
void
|
||
symbol_file_command (char *args, int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
{
|
||
symbol_file_clear (from_tty);
|
||
}
|
||
else
|
||
{
|
||
objfile_flags flags = OBJF_USERLOADED;
|
||
symfile_add_flags add_flags = 0;
|
||
struct cleanup *cleanups;
|
||
char *name = NULL;
|
||
|
||
if (from_tty)
|
||
add_flags |= SYMFILE_VERBOSE;
|
||
|
||
gdb_argv built_argv (args);
|
||
for (char *arg : built_argv)
|
||
{
|
||
if (strcmp (arg, "-readnow") == 0)
|
||
flags |= OBJF_READNOW;
|
||
else if (*arg == '-')
|
||
error (_("unknown option `%s'"), arg);
|
||
else
|
||
{
|
||
symbol_file_add_main_1 (arg, add_flags, flags);
|
||
name = arg;
|
||
}
|
||
}
|
||
|
||
if (name == NULL)
|
||
error (_("no symbol file name was specified"));
|
||
}
|
||
}
|
||
|
||
/* Set the initial language.
|
||
|
||
FIXME: A better solution would be to record the language in the
|
||
psymtab when reading partial symbols, and then use it (if known) to
|
||
set the language. This would be a win for formats that encode the
|
||
language in an easily discoverable place, such as DWARF. For
|
||
stabs, we can jump through hoops looking for specially named
|
||
symbols or try to intuit the language from the specific type of
|
||
stabs we find, but we can't do that until later when we read in
|
||
full symbols. */
|
||
|
||
void
|
||
set_initial_language (void)
|
||
{
|
||
enum language lang = main_language ();
|
||
|
||
if (lang == language_unknown)
|
||
{
|
||
char *name = main_name ();
|
||
struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
|
||
|
||
if (sym != NULL)
|
||
lang = SYMBOL_LANGUAGE (sym);
|
||
}
|
||
|
||
if (lang == language_unknown)
|
||
{
|
||
/* Make C the default language */
|
||
lang = language_c;
|
||
}
|
||
|
||
set_language (lang);
|
||
expected_language = current_language; /* Don't warn the user. */
|
||
}
|
||
|
||
/* Open the file specified by NAME and hand it off to BFD for
|
||
preliminary analysis. Return a newly initialized bfd *, which
|
||
includes a newly malloc'd` copy of NAME (tilde-expanded and made
|
||
absolute). In case of trouble, error() is called. */
|
||
|
||
gdb_bfd_ref_ptr
|
||
symfile_bfd_open (const char *name)
|
||
{
|
||
int desc = -1;
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
|
||
if (!is_target_filename (name))
|
||
{
|
||
char *absolute_name;
|
||
|
||
gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
|
||
|
||
/* Look down path for it, allocate 2nd new malloc'd copy. */
|
||
desc = openp (getenv ("PATH"),
|
||
OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
|
||
expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
|
||
#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
|
||
if (desc < 0)
|
||
{
|
||
char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
|
||
|
||
strcat (strcpy (exename, expanded_name.get ()), ".exe");
|
||
desc = openp (getenv ("PATH"),
|
||
OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
|
||
exename, O_RDONLY | O_BINARY, &absolute_name);
|
||
}
|
||
#endif
|
||
if (desc < 0)
|
||
perror_with_name (expanded_name.get ());
|
||
|
||
make_cleanup (xfree, absolute_name);
|
||
name = absolute_name;
|
||
}
|
||
|
||
gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
|
||
if (sym_bfd == NULL)
|
||
error (_("`%s': can't open to read symbols: %s."), name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
|
||
bfd_set_cacheable (sym_bfd.get (), 1);
|
||
|
||
if (!bfd_check_format (sym_bfd.get (), bfd_object))
|
||
error (_("`%s': can't read symbols: %s."), name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
do_cleanups (back_to);
|
||
|
||
return sym_bfd;
|
||
}
|
||
|
||
/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
|
||
the section was not found. */
|
||
|
||
int
|
||
get_section_index (struct objfile *objfile, const char *section_name)
|
||
{
|
||
asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
|
||
|
||
if (sect)
|
||
return sect->index;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Link SF into the global symtab_fns list.
|
||
FLAVOUR is the file format that SF handles.
|
||
Called on startup by the _initialize routine in each object file format
|
||
reader, to register information about each format the reader is prepared
|
||
to handle. */
|
||
|
||
void
|
||
add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
|
||
{
|
||
registered_sym_fns fns = { flavour, sf };
|
||
|
||
VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
|
||
}
|
||
|
||
/* Initialize OBJFILE to read symbols from its associated BFD. It
|
||
either returns or calls error(). The result is an initialized
|
||
struct sym_fns in the objfile structure, that contains cached
|
||
information about the symbol file. */
|
||
|
||
static const struct sym_fns *
|
||
find_sym_fns (bfd *abfd)
|
||
{
|
||
registered_sym_fns *rsf;
|
||
enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
|
||
int i;
|
||
|
||
if (our_flavour == bfd_target_srec_flavour
|
||
|| our_flavour == bfd_target_ihex_flavour
|
||
|| our_flavour == bfd_target_tekhex_flavour)
|
||
return NULL; /* No symbols. */
|
||
|
||
for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
|
||
if (our_flavour == rsf->sym_flavour)
|
||
return rsf->sym_fns;
|
||
|
||
error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
|
||
bfd_get_target (abfd));
|
||
}
|
||
|
||
|
||
/* This function runs the load command of our current target. */
|
||
|
||
static void
|
||
load_command (char *arg, int from_tty)
|
||
{
|
||
struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
|
||
|
||
dont_repeat ();
|
||
|
||
/* The user might be reloading because the binary has changed. Take
|
||
this opportunity to check. */
|
||
reopen_exec_file ();
|
||
reread_symbols ();
|
||
|
||
if (arg == NULL)
|
||
{
|
||
char *parg;
|
||
int count = 0;
|
||
|
||
parg = arg = get_exec_file (1);
|
||
|
||
/* Count how many \ " ' tab space there are in the name. */
|
||
while ((parg = strpbrk (parg, "\\\"'\t ")))
|
||
{
|
||
parg++;
|
||
count++;
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
/* We need to quote this string so buildargv can pull it apart. */
|
||
char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
|
||
char *ptemp = temp;
|
||
char *prev;
|
||
|
||
make_cleanup (xfree, temp);
|
||
|
||
prev = parg = arg;
|
||
while ((parg = strpbrk (parg, "\\\"'\t ")))
|
||
{
|
||
strncpy (ptemp, prev, parg - prev);
|
||
ptemp += parg - prev;
|
||
prev = parg++;
|
||
*ptemp++ = '\\';
|
||
}
|
||
strcpy (ptemp, prev);
|
||
|
||
arg = temp;
|
||
}
|
||
}
|
||
|
||
target_load (arg, from_tty);
|
||
|
||
/* After re-loading the executable, we don't really know which
|
||
overlays are mapped any more. */
|
||
overlay_cache_invalid = 1;
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* This version of "load" should be usable for any target. Currently
|
||
it is just used for remote targets, not inftarg.c or core files,
|
||
on the theory that only in that case is it useful.
|
||
|
||
Avoiding xmodem and the like seems like a win (a) because we don't have
|
||
to worry about finding it, and (b) On VMS, fork() is very slow and so
|
||
we don't want to run a subprocess. On the other hand, I'm not sure how
|
||
performance compares. */
|
||
|
||
static int validate_download = 0;
|
||
|
||
/* Callback service function for generic_load (bfd_map_over_sections). */
|
||
|
||
static void
|
||
add_section_size_callback (bfd *abfd, asection *asec, void *data)
|
||
{
|
||
bfd_size_type *sum = (bfd_size_type *) data;
|
||
|
||
*sum += bfd_get_section_size (asec);
|
||
}
|
||
|
||
/* Opaque data for load_section_callback. */
|
||
struct load_section_data {
|
||
CORE_ADDR load_offset;
|
||
struct load_progress_data *progress_data;
|
||
VEC(memory_write_request_s) *requests;
|
||
};
|
||
|
||
/* Opaque data for load_progress. */
|
||
struct load_progress_data {
|
||
/* Cumulative data. */
|
||
unsigned long write_count;
|
||
unsigned long data_count;
|
||
bfd_size_type total_size;
|
||
};
|
||
|
||
/* Opaque data for load_progress for a single section. */
|
||
struct load_progress_section_data {
|
||
struct load_progress_data *cumulative;
|
||
|
||
/* Per-section data. */
|
||
const char *section_name;
|
||
ULONGEST section_sent;
|
||
ULONGEST section_size;
|
||
CORE_ADDR lma;
|
||
gdb_byte *buffer;
|
||
};
|
||
|
||
/* Target write callback routine for progress reporting. */
|
||
|
||
static void
|
||
load_progress (ULONGEST bytes, void *untyped_arg)
|
||
{
|
||
struct load_progress_section_data *args
|
||
= (struct load_progress_section_data *) untyped_arg;
|
||
struct load_progress_data *totals;
|
||
|
||
if (args == NULL)
|
||
/* Writing padding data. No easy way to get at the cumulative
|
||
stats, so just ignore this. */
|
||
return;
|
||
|
||
totals = args->cumulative;
|
||
|
||
if (bytes == 0 && args->section_sent == 0)
|
||
{
|
||
/* The write is just starting. Let the user know we've started
|
||
this section. */
|
||
current_uiout->message ("Loading section %s, size %s lma %s\n",
|
||
args->section_name,
|
||
hex_string (args->section_size),
|
||
paddress (target_gdbarch (), args->lma));
|
||
return;
|
||
}
|
||
|
||
if (validate_download)
|
||
{
|
||
/* Broken memories and broken monitors manifest themselves here
|
||
when bring new computers to life. This doubles already slow
|
||
downloads. */
|
||
/* NOTE: cagney/1999-10-18: A more efficient implementation
|
||
might add a verify_memory() method to the target vector and
|
||
then use that. remote.c could implement that method using
|
||
the ``qCRC'' packet. */
|
||
gdb_byte *check = (gdb_byte *) xmalloc (bytes);
|
||
struct cleanup *verify_cleanups = make_cleanup (xfree, check);
|
||
|
||
if (target_read_memory (args->lma, check, bytes) != 0)
|
||
error (_("Download verify read failed at %s"),
|
||
paddress (target_gdbarch (), args->lma));
|
||
if (memcmp (args->buffer, check, bytes) != 0)
|
||
error (_("Download verify compare failed at %s"),
|
||
paddress (target_gdbarch (), args->lma));
|
||
do_cleanups (verify_cleanups);
|
||
}
|
||
totals->data_count += bytes;
|
||
args->lma += bytes;
|
||
args->buffer += bytes;
|
||
totals->write_count += 1;
|
||
args->section_sent += bytes;
|
||
if (check_quit_flag ()
|
||
|| (deprecated_ui_load_progress_hook != NULL
|
||
&& deprecated_ui_load_progress_hook (args->section_name,
|
||
args->section_sent)))
|
||
error (_("Canceled the download"));
|
||
|
||
if (deprecated_show_load_progress != NULL)
|
||
deprecated_show_load_progress (args->section_name,
|
||
args->section_sent,
|
||
args->section_size,
|
||
totals->data_count,
|
||
totals->total_size);
|
||
}
|
||
|
||
/* Callback service function for generic_load (bfd_map_over_sections). */
|
||
|
||
static void
|
||
load_section_callback (bfd *abfd, asection *asec, void *data)
|
||
{
|
||
struct memory_write_request *new_request;
|
||
struct load_section_data *args = (struct load_section_data *) data;
|
||
struct load_progress_section_data *section_data;
|
||
bfd_size_type size = bfd_get_section_size (asec);
|
||
gdb_byte *buffer;
|
||
const char *sect_name = bfd_get_section_name (abfd, asec);
|
||
|
||
if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
|
||
return;
|
||
|
||
if (size == 0)
|
||
return;
|
||
|
||
new_request = VEC_safe_push (memory_write_request_s,
|
||
args->requests, NULL);
|
||
memset (new_request, 0, sizeof (struct memory_write_request));
|
||
section_data = XCNEW (struct load_progress_section_data);
|
||
new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
|
||
new_request->end = new_request->begin + size; /* FIXME Should size
|
||
be in instead? */
|
||
new_request->data = (gdb_byte *) xmalloc (size);
|
||
new_request->baton = section_data;
|
||
|
||
buffer = new_request->data;
|
||
|
||
section_data->cumulative = args->progress_data;
|
||
section_data->section_name = sect_name;
|
||
section_data->section_size = size;
|
||
section_data->lma = new_request->begin;
|
||
section_data->buffer = buffer;
|
||
|
||
bfd_get_section_contents (abfd, asec, buffer, 0, size);
|
||
}
|
||
|
||
/* Clean up an entire memory request vector, including load
|
||
data and progress records. */
|
||
|
||
static void
|
||
clear_memory_write_data (void *arg)
|
||
{
|
||
VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
|
||
VEC(memory_write_request_s) *vec = *vec_p;
|
||
int i;
|
||
struct memory_write_request *mr;
|
||
|
||
for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
|
||
{
|
||
xfree (mr->data);
|
||
xfree (mr->baton);
|
||
}
|
||
VEC_free (memory_write_request_s, vec);
|
||
}
|
||
|
||
static void print_transfer_performance (struct ui_file *stream,
|
||
unsigned long data_count,
|
||
unsigned long write_count,
|
||
std::chrono::steady_clock::duration d);
|
||
|
||
void
|
||
generic_load (const char *args, int from_tty)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
struct load_section_data cbdata;
|
||
struct load_progress_data total_progress;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
CORE_ADDR entry;
|
||
|
||
memset (&cbdata, 0, sizeof (cbdata));
|
||
memset (&total_progress, 0, sizeof (total_progress));
|
||
cbdata.progress_data = &total_progress;
|
||
|
||
old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
|
||
|
||
if (args == NULL)
|
||
error_no_arg (_("file to load"));
|
||
|
||
gdb_argv argv (args);
|
||
|
||
gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
|
||
|
||
if (argv[1] != NULL)
|
||
{
|
||
const char *endptr;
|
||
|
||
cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
|
||
|
||
/* If the last word was not a valid number then
|
||
treat it as a file name with spaces in. */
|
||
if (argv[1] == endptr)
|
||
error (_("Invalid download offset:%s."), argv[1]);
|
||
|
||
if (argv[2] != NULL)
|
||
error (_("Too many parameters."));
|
||
}
|
||
|
||
/* Open the file for loading. */
|
||
gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
|
||
if (loadfile_bfd == NULL)
|
||
perror_with_name (filename.get ());
|
||
|
||
if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
|
||
{
|
||
error (_("\"%s\" is not an object file: %s"), filename.get (),
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
|
||
(void *) &total_progress.total_size);
|
||
|
||
bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
|
||
|
||
using namespace std::chrono;
|
||
|
||
steady_clock::time_point start_time = steady_clock::now ();
|
||
|
||
if (target_write_memory_blocks (cbdata.requests, flash_discard,
|
||
load_progress) != 0)
|
||
error (_("Load failed"));
|
||
|
||
steady_clock::time_point end_time = steady_clock::now ();
|
||
|
||
entry = bfd_get_start_address (loadfile_bfd.get ());
|
||
entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
|
||
uiout->text ("Start address ");
|
||
uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
|
||
uiout->text (", load size ");
|
||
uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
|
||
uiout->text ("\n");
|
||
regcache_write_pc (get_current_regcache (), entry);
|
||
|
||
/* Reset breakpoints, now that we have changed the load image. For
|
||
instance, breakpoints may have been set (or reset, by
|
||
post_create_inferior) while connected to the target but before we
|
||
loaded the program. In that case, the prologue analyzer could
|
||
have read instructions from the target to find the right
|
||
breakpoint locations. Loading has changed the contents of that
|
||
memory. */
|
||
|
||
breakpoint_re_set ();
|
||
|
||
print_transfer_performance (gdb_stdout, total_progress.data_count,
|
||
total_progress.write_count,
|
||
end_time - start_time);
|
||
|
||
do_cleanups (old_cleanups);
|
||
}
|
||
|
||
/* Report on STREAM the performance of a memory transfer operation,
|
||
such as 'load'. DATA_COUNT is the number of bytes transferred.
|
||
WRITE_COUNT is the number of separate write operations, or 0, if
|
||
that information is not available. TIME is how long the operation
|
||
lasted. */
|
||
|
||
static void
|
||
print_transfer_performance (struct ui_file *stream,
|
||
unsigned long data_count,
|
||
unsigned long write_count,
|
||
std::chrono::steady_clock::duration time)
|
||
{
|
||
using namespace std::chrono;
|
||
struct ui_out *uiout = current_uiout;
|
||
|
||
milliseconds ms = duration_cast<milliseconds> (time);
|
||
|
||
uiout->text ("Transfer rate: ");
|
||
if (ms.count () > 0)
|
||
{
|
||
unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
|
||
|
||
if (uiout->is_mi_like_p ())
|
||
{
|
||
uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
|
||
uiout->text (" bits/sec");
|
||
}
|
||
else if (rate < 1024)
|
||
{
|
||
uiout->field_fmt ("transfer-rate", "%lu", rate);
|
||
uiout->text (" bytes/sec");
|
||
}
|
||
else
|
||
{
|
||
uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
|
||
uiout->text (" KB/sec");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
|
||
uiout->text (" bits in <1 sec");
|
||
}
|
||
if (write_count > 0)
|
||
{
|
||
uiout->text (", ");
|
||
uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
|
||
uiout->text (" bytes/write");
|
||
}
|
||
uiout->text (".\n");
|
||
}
|
||
|
||
/* This function allows the addition of incrementally linked object files.
|
||
It does not modify any state in the target, only in the debugger. */
|
||
/* Note: ezannoni 2000-04-13 This function/command used to have a
|
||
special case syntax for the rombug target (Rombug is the boot
|
||
monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
|
||
rombug case, the user doesn't need to supply a text address,
|
||
instead a call to target_link() (in target.c) would supply the
|
||
value to use. We are now discontinuing this type of ad hoc syntax. */
|
||
|
||
static void
|
||
add_symbol_file_command (char *args, int from_tty)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
gdb::unique_xmalloc_ptr<char> filename;
|
||
char *arg;
|
||
int argcnt = 0;
|
||
int sec_num = 0;
|
||
int expecting_sec_name = 0;
|
||
int expecting_sec_addr = 0;
|
||
struct objfile *objf;
|
||
objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
|
||
symfile_add_flags add_flags = 0;
|
||
|
||
if (from_tty)
|
||
add_flags |= SYMFILE_VERBOSE;
|
||
|
||
struct sect_opt
|
||
{
|
||
const char *name;
|
||
const char *value;
|
||
};
|
||
|
||
struct section_addr_info *section_addrs;
|
||
std::vector<sect_opt> sect_opts;
|
||
struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
error (_("add-symbol-file takes a file name and an address"));
|
||
|
||
gdb_argv argv (args);
|
||
|
||
for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
|
||
{
|
||
/* Process the argument. */
|
||
if (argcnt == 0)
|
||
{
|
||
/* The first argument is the file name. */
|
||
filename.reset (tilde_expand (arg));
|
||
}
|
||
else if (argcnt == 1)
|
||
{
|
||
/* The second argument is always the text address at which
|
||
to load the program. */
|
||
sect_opt sect = { ".text", arg };
|
||
sect_opts.push_back (sect);
|
||
}
|
||
else
|
||
{
|
||
/* It's an option (starting with '-') or it's an argument
|
||
to an option. */
|
||
if (expecting_sec_name)
|
||
{
|
||
sect_opt sect = { arg, NULL };
|
||
sect_opts.push_back (sect);
|
||
expecting_sec_name = 0;
|
||
}
|
||
else if (expecting_sec_addr)
|
||
{
|
||
sect_opts.back ().value = arg;
|
||
expecting_sec_addr = 0;
|
||
}
|
||
else if (strcmp (arg, "-readnow") == 0)
|
||
flags |= OBJF_READNOW;
|
||
else if (strcmp (arg, "-s") == 0)
|
||
{
|
||
expecting_sec_name = 1;
|
||
expecting_sec_addr = 1;
|
||
}
|
||
else
|
||
error (_("USAGE: add-symbol-file <filename> <textaddress>"
|
||
" [-readnow] [-s <secname> <addr>]*"));
|
||
}
|
||
}
|
||
|
||
/* This command takes at least two arguments. The first one is a
|
||
filename, and the second is the address where this file has been
|
||
loaded. Abort now if this address hasn't been provided by the
|
||
user. */
|
||
if (sect_opts.empty ())
|
||
error (_("The address where %s has been loaded is missing"),
|
||
filename.get ());
|
||
|
||
/* Print the prompt for the query below. And save the arguments into
|
||
a sect_addr_info structure to be passed around to other
|
||
functions. We have to split this up into separate print
|
||
statements because hex_string returns a local static
|
||
string. */
|
||
|
||
printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
|
||
filename.get ());
|
||
section_addrs = alloc_section_addr_info (sect_opts.size ());
|
||
make_cleanup (xfree, section_addrs);
|
||
for (sect_opt § : sect_opts)
|
||
{
|
||
CORE_ADDR addr;
|
||
const char *val = sect.value;
|
||
const char *sec = sect.name;
|
||
|
||
addr = parse_and_eval_address (val);
|
||
|
||
/* Here we store the section offsets in the order they were
|
||
entered on the command line. */
|
||
section_addrs->other[sec_num].name = (char *) sec;
|
||
section_addrs->other[sec_num].addr = addr;
|
||
printf_unfiltered ("\t%s_addr = %s\n", sec,
|
||
paddress (gdbarch, addr));
|
||
sec_num++;
|
||
|
||
/* The object's sections are initialized when a
|
||
call is made to build_objfile_section_table (objfile).
|
||
This happens in reread_symbols.
|
||
At this point, we don't know what file type this is,
|
||
so we can't determine what section names are valid. */
|
||
}
|
||
section_addrs->num_sections = sec_num;
|
||
|
||
if (from_tty && (!query ("%s", "")))
|
||
error (_("Not confirmed."));
|
||
|
||
objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
|
||
|
||
add_target_sections_of_objfile (objf);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
reinit_frame_cache ();
|
||
do_cleanups (my_cleanups);
|
||
}
|
||
|
||
|
||
/* This function removes a symbol file that was added via add-symbol-file. */
|
||
|
||
static void
|
||
remove_symbol_file_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objf = NULL;
|
||
struct program_space *pspace = current_program_space;
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
error (_("remove-symbol-file: no symbol file provided"));
|
||
|
||
gdb_argv argv (args);
|
||
|
||
if (strcmp (argv[0], "-a") == 0)
|
||
{
|
||
/* Interpret the next argument as an address. */
|
||
CORE_ADDR addr;
|
||
|
||
if (argv[1] == NULL)
|
||
error (_("Missing address argument"));
|
||
|
||
if (argv[2] != NULL)
|
||
error (_("Junk after %s"), argv[1]);
|
||
|
||
addr = parse_and_eval_address (argv[1]);
|
||
|
||
ALL_OBJFILES (objf)
|
||
{
|
||
if ((objf->flags & OBJF_USERLOADED) != 0
|
||
&& (objf->flags & OBJF_SHARED) != 0
|
||
&& objf->pspace == pspace && is_addr_in_objfile (addr, objf))
|
||
break;
|
||
}
|
||
}
|
||
else if (argv[0] != NULL)
|
||
{
|
||
/* Interpret the current argument as a file name. */
|
||
|
||
if (argv[1] != NULL)
|
||
error (_("Junk after %s"), argv[0]);
|
||
|
||
gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
|
||
|
||
ALL_OBJFILES (objf)
|
||
{
|
||
if ((objf->flags & OBJF_USERLOADED) != 0
|
||
&& (objf->flags & OBJF_SHARED) != 0
|
||
&& objf->pspace == pspace
|
||
&& filename_cmp (filename.get (), objfile_name (objf)) == 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (objf == NULL)
|
||
error (_("No symbol file found"));
|
||
|
||
if (from_tty
|
||
&& !query (_("Remove symbol table from file \"%s\"? "),
|
||
objfile_name (objf)))
|
||
error (_("Not confirmed."));
|
||
|
||
free_objfile (objf);
|
||
clear_symtab_users (0);
|
||
}
|
||
|
||
/* Re-read symbols if a symbol-file has changed. */
|
||
|
||
void
|
||
reread_symbols (void)
|
||
{
|
||
struct objfile *objfile;
|
||
long new_modtime;
|
||
struct stat new_statbuf;
|
||
int res;
|
||
std::vector<struct objfile *> new_objfiles;
|
||
|
||
/* With the addition of shared libraries, this should be modified,
|
||
the load time should be saved in the partial symbol tables, since
|
||
different tables may come from different source files. FIXME.
|
||
This routine should then walk down each partial symbol table
|
||
and see if the symbol table that it originates from has been changed. */
|
||
|
||
for (objfile = object_files; objfile; objfile = objfile->next)
|
||
{
|
||
if (objfile->obfd == NULL)
|
||
continue;
|
||
|
||
/* Separate debug objfiles are handled in the main objfile. */
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
continue;
|
||
|
||
/* If this object is from an archive (what you usually create with
|
||
`ar', often called a `static library' on most systems, though
|
||
a `shared library' on AIX is also an archive), then you should
|
||
stat on the archive name, not member name. */
|
||
if (objfile->obfd->my_archive)
|
||
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
|
||
else
|
||
res = stat (objfile_name (objfile), &new_statbuf);
|
||
if (res != 0)
|
||
{
|
||
/* FIXME, should use print_sys_errmsg but it's not filtered. */
|
||
printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
|
||
objfile_name (objfile));
|
||
continue;
|
||
}
|
||
new_modtime = new_statbuf.st_mtime;
|
||
if (new_modtime != objfile->mtime)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
struct section_offsets *offsets;
|
||
int num_offsets;
|
||
char *original_name;
|
||
|
||
printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
|
||
objfile_name (objfile));
|
||
|
||
/* There are various functions like symbol_file_add,
|
||
symfile_bfd_open, syms_from_objfile, etc., which might
|
||
appear to do what we want. But they have various other
|
||
effects which we *don't* want. So we just do stuff
|
||
ourselves. We don't worry about mapped files (for one thing,
|
||
any mapped file will be out of date). */
|
||
|
||
/* If we get an error, blow away this objfile (not sure if
|
||
that is the correct response for things like shared
|
||
libraries). */
|
||
old_cleanups = make_cleanup_free_objfile (objfile);
|
||
/* We need to do this whenever any symbols go away. */
|
||
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
||
|
||
if (exec_bfd != NULL
|
||
&& filename_cmp (bfd_get_filename (objfile->obfd),
|
||
bfd_get_filename (exec_bfd)) == 0)
|
||
{
|
||
/* Reload EXEC_BFD without asking anything. */
|
||
|
||
exec_file_attach (bfd_get_filename (objfile->obfd), 0);
|
||
}
|
||
|
||
/* Keep the calls order approx. the same as in free_objfile. */
|
||
|
||
/* Free the separate debug objfiles. It will be
|
||
automatically recreated by sym_read. */
|
||
free_objfile_separate_debug (objfile);
|
||
|
||
/* Remove any references to this objfile in the global
|
||
value lists. */
|
||
preserve_values (objfile);
|
||
|
||
/* Nuke all the state that we will re-read. Much of the following
|
||
code which sets things to NULL really is necessary to tell
|
||
other parts of GDB that there is nothing currently there.
|
||
|
||
Try to keep the freeing order compatible with free_objfile. */
|
||
|
||
if (objfile->sf != NULL)
|
||
{
|
||
(*objfile->sf->sym_finish) (objfile);
|
||
}
|
||
|
||
clear_objfile_data (objfile);
|
||
|
||
/* Clean up any state BFD has sitting around. */
|
||
{
|
||
gdb_bfd_ref_ptr obfd (objfile->obfd);
|
||
char *obfd_filename;
|
||
|
||
obfd_filename = bfd_get_filename (objfile->obfd);
|
||
/* Open the new BFD before freeing the old one, so that
|
||
the filename remains live. */
|
||
gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
|
||
objfile->obfd = temp.release ();
|
||
if (objfile->obfd == NULL)
|
||
error (_("Can't open %s to read symbols."), obfd_filename);
|
||
}
|
||
|
||
original_name = xstrdup (objfile->original_name);
|
||
make_cleanup (xfree, original_name);
|
||
|
||
/* bfd_openr sets cacheable to true, which is what we want. */
|
||
if (!bfd_check_format (objfile->obfd, bfd_object))
|
||
error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
/* Save the offsets, we will nuke them with the rest of the
|
||
objfile_obstack. */
|
||
num_offsets = objfile->num_sections;
|
||
offsets = ((struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
|
||
memcpy (offsets, objfile->section_offsets,
|
||
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
||
|
||
/* FIXME: Do we have to free a whole linked list, or is this
|
||
enough? */
|
||
if (objfile->global_psymbols.list)
|
||
xfree (objfile->global_psymbols.list);
|
||
memset (&objfile->global_psymbols, 0,
|
||
sizeof (objfile->global_psymbols));
|
||
if (objfile->static_psymbols.list)
|
||
xfree (objfile->static_psymbols.list);
|
||
memset (&objfile->static_psymbols, 0,
|
||
sizeof (objfile->static_psymbols));
|
||
|
||
/* Free the obstacks for non-reusable objfiles. */
|
||
psymbol_bcache_free (objfile->psymbol_cache);
|
||
objfile->psymbol_cache = psymbol_bcache_init ();
|
||
|
||
/* NB: after this call to obstack_free, objfiles_changed
|
||
will need to be called (see discussion below). */
|
||
obstack_free (&objfile->objfile_obstack, 0);
|
||
objfile->sections = NULL;
|
||
objfile->compunit_symtabs = NULL;
|
||
objfile->psymtabs = NULL;
|
||
objfile->psymtabs_addrmap = NULL;
|
||
objfile->free_psymtabs = NULL;
|
||
objfile->template_symbols = NULL;
|
||
|
||
/* obstack_init also initializes the obstack so it is
|
||
empty. We could use obstack_specify_allocation but
|
||
gdb_obstack.h specifies the alloc/dealloc functions. */
|
||
obstack_init (&objfile->objfile_obstack);
|
||
|
||
/* set_objfile_per_bfd potentially allocates the per-bfd
|
||
data on the objfile's obstack (if sharing data across
|
||
multiple users is not possible), so it's important to
|
||
do it *after* the obstack has been initialized. */
|
||
set_objfile_per_bfd (objfile);
|
||
|
||
objfile->original_name
|
||
= (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
|
||
strlen (original_name));
|
||
|
||
/* Reset the sym_fns pointer. The ELF reader can change it
|
||
based on whether .gdb_index is present, and we need it to
|
||
start over. PR symtab/15885 */
|
||
objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
|
||
|
||
build_objfile_section_table (objfile);
|
||
terminate_minimal_symbol_table (objfile);
|
||
|
||
/* We use the same section offsets as from last time. I'm not
|
||
sure whether that is always correct for shared libraries. */
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
||
memcpy (objfile->section_offsets, offsets,
|
||
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
||
objfile->num_sections = num_offsets;
|
||
|
||
/* What the hell is sym_new_init for, anyway? The concept of
|
||
distinguishing between the main file and additional files
|
||
in this way seems rather dubious. */
|
||
if (objfile == symfile_objfile)
|
||
{
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
}
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (&symfile_complaints, 1, 1);
|
||
|
||
objfile->flags &= ~OBJF_PSYMTABS_READ;
|
||
|
||
/* We are about to read new symbols and potentially also
|
||
DWARF information. Some targets may want to pass addresses
|
||
read from DWARF DIE's through an adjustment function before
|
||
saving them, like MIPS, which may call into
|
||
"find_pc_section". When called, that function will make
|
||
use of per-objfile program space data.
|
||
|
||
Since we discarded our section information above, we have
|
||
dangling pointers in the per-objfile program space data
|
||
structure. Force GDB to update the section mapping
|
||
information by letting it know the objfile has changed,
|
||
making the dangling pointers point to correct data
|
||
again. */
|
||
|
||
objfiles_changed ();
|
||
|
||
read_symbols (objfile, 0);
|
||
|
||
if (!objfile_has_symbols (objfile))
|
||
{
|
||
wrap_here ("");
|
||
printf_unfiltered (_("(no debugging symbols found)\n"));
|
||
wrap_here ("");
|
||
}
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (&symfile_complaints, 0, 1);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
|
||
reinit_frame_cache ();
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
discard_cleanups (old_cleanups);
|
||
|
||
/* If the mtime has changed between the time we set new_modtime
|
||
and now, we *want* this to be out of date, so don't call stat
|
||
again now. */
|
||
objfile->mtime = new_modtime;
|
||
init_entry_point_info (objfile);
|
||
|
||
new_objfiles.push_back (objfile);
|
||
}
|
||
}
|
||
|
||
if (!new_objfiles.empty ())
|
||
{
|
||
clear_symtab_users (0);
|
||
|
||
/* clear_objfile_data for each objfile was called before freeing it and
|
||
observer_notify_new_objfile (NULL) has been called by
|
||
clear_symtab_users above. Notify the new files now. */
|
||
for (auto iter : new_objfiles)
|
||
observer_notify_new_objfile (iter);
|
||
|
||
/* At least one objfile has changed, so we can consider that
|
||
the executable we're debugging has changed too. */
|
||
observer_notify_executable_changed ();
|
||
}
|
||
}
|
||
|
||
|
||
typedef struct
|
||
{
|
||
char *ext;
|
||
enum language lang;
|
||
} filename_language;
|
||
|
||
DEF_VEC_O (filename_language);
|
||
|
||
static VEC (filename_language) *filename_language_table;
|
||
|
||
/* See symfile.h. */
|
||
|
||
void
|
||
add_filename_language (const char *ext, enum language lang)
|
||
{
|
||
filename_language entry;
|
||
|
||
entry.ext = xstrdup (ext);
|
||
entry.lang = lang;
|
||
|
||
VEC_safe_push (filename_language, filename_language_table, &entry);
|
||
}
|
||
|
||
static char *ext_args;
|
||
static void
|
||
show_ext_args (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Mapping between filename extension "
|
||
"and source language is \"%s\".\n"),
|
||
value);
|
||
}
|
||
|
||
static void
|
||
set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
|
||
{
|
||
int i;
|
||
char *cp = ext_args;
|
||
enum language lang;
|
||
filename_language *entry;
|
||
|
||
/* First arg is filename extension, starting with '.' */
|
||
if (*cp != '.')
|
||
error (_("'%s': Filename extension must begin with '.'"), ext_args);
|
||
|
||
/* Find end of first arg. */
|
||
while (*cp && !isspace (*cp))
|
||
cp++;
|
||
|
||
if (*cp == '\0')
|
||
error (_("'%s': two arguments required -- "
|
||
"filename extension and language"),
|
||
ext_args);
|
||
|
||
/* Null-terminate first arg. */
|
||
*cp++ = '\0';
|
||
|
||
/* Find beginning of second arg, which should be a source language. */
|
||
cp = skip_spaces (cp);
|
||
|
||
if (*cp == '\0')
|
||
error (_("'%s': two arguments required -- "
|
||
"filename extension and language"),
|
||
ext_args);
|
||
|
||
/* Lookup the language from among those we know. */
|
||
lang = language_enum (cp);
|
||
|
||
/* Now lookup the filename extension: do we already know it? */
|
||
for (i = 0;
|
||
VEC_iterate (filename_language, filename_language_table, i, entry);
|
||
++i)
|
||
{
|
||
if (0 == strcmp (ext_args, entry->ext))
|
||
break;
|
||
}
|
||
|
||
if (entry == NULL)
|
||
{
|
||
/* New file extension. */
|
||
add_filename_language (ext_args, lang);
|
||
}
|
||
else
|
||
{
|
||
/* Redefining a previously known filename extension. */
|
||
|
||
/* if (from_tty) */
|
||
/* query ("Really make files of type %s '%s'?", */
|
||
/* ext_args, language_str (lang)); */
|
||
|
||
xfree (entry->ext);
|
||
entry->ext = xstrdup (ext_args);
|
||
entry->lang = lang;
|
||
}
|
||
}
|
||
|
||
static void
|
||
info_ext_lang_command (char *args, int from_tty)
|
||
{
|
||
int i;
|
||
filename_language *entry;
|
||
|
||
printf_filtered (_("Filename extensions and the languages they represent:"));
|
||
printf_filtered ("\n\n");
|
||
for (i = 0;
|
||
VEC_iterate (filename_language, filename_language_table, i, entry);
|
||
++i)
|
||
printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
|
||
}
|
||
|
||
enum language
|
||
deduce_language_from_filename (const char *filename)
|
||
{
|
||
int i;
|
||
const char *cp;
|
||
|
||
if (filename != NULL)
|
||
if ((cp = strrchr (filename, '.')) != NULL)
|
||
{
|
||
filename_language *entry;
|
||
|
||
for (i = 0;
|
||
VEC_iterate (filename_language, filename_language_table, i, entry);
|
||
++i)
|
||
if (strcmp (cp, entry->ext) == 0)
|
||
return entry->lang;
|
||
}
|
||
|
||
return language_unknown;
|
||
}
|
||
|
||
/* Allocate and initialize a new symbol table.
|
||
CUST is from the result of allocate_compunit_symtab. */
|
||
|
||
struct symtab *
|
||
allocate_symtab (struct compunit_symtab *cust, const char *filename)
|
||
{
|
||
struct objfile *objfile = cust->objfile;
|
||
struct symtab *symtab
|
||
= OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
|
||
|
||
symtab->filename
|
||
= (const char *) bcache (filename, strlen (filename) + 1,
|
||
objfile->per_bfd->filename_cache);
|
||
symtab->fullname = NULL;
|
||
symtab->language = deduce_language_from_filename (filename);
|
||
|
||
/* This can be very verbose with lots of headers.
|
||
Only print at higher debug levels. */
|
||
if (symtab_create_debug >= 2)
|
||
{
|
||
/* Be a bit clever with debugging messages, and don't print objfile
|
||
every time, only when it changes. */
|
||
static char *last_objfile_name = NULL;
|
||
|
||
if (last_objfile_name == NULL
|
||
|| strcmp (last_objfile_name, objfile_name (objfile)) != 0)
|
||
{
|
||
xfree (last_objfile_name);
|
||
last_objfile_name = xstrdup (objfile_name (objfile));
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Creating one or more symtabs for objfile %s ...\n",
|
||
last_objfile_name);
|
||
}
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Created symtab %s for module %s.\n",
|
||
host_address_to_string (symtab), filename);
|
||
}
|
||
|
||
/* Add it to CUST's list of symtabs. */
|
||
if (cust->filetabs == NULL)
|
||
{
|
||
cust->filetabs = symtab;
|
||
cust->last_filetab = symtab;
|
||
}
|
||
else
|
||
{
|
||
cust->last_filetab->next = symtab;
|
||
cust->last_filetab = symtab;
|
||
}
|
||
|
||
/* Backlink to the containing compunit symtab. */
|
||
symtab->compunit_symtab = cust;
|
||
|
||
return symtab;
|
||
}
|
||
|
||
/* Allocate and initialize a new compunit.
|
||
NAME is the name of the main source file, if there is one, or some
|
||
descriptive text if there are no source files. */
|
||
|
||
struct compunit_symtab *
|
||
allocate_compunit_symtab (struct objfile *objfile, const char *name)
|
||
{
|
||
struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct compunit_symtab);
|
||
const char *saved_name;
|
||
|
||
cu->objfile = objfile;
|
||
|
||
/* The name we record here is only for display/debugging purposes.
|
||
Just save the basename to avoid path issues (too long for display,
|
||
relative vs absolute, etc.). */
|
||
saved_name = lbasename (name);
|
||
cu->name
|
||
= (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
|
||
strlen (saved_name));
|
||
|
||
COMPUNIT_DEBUGFORMAT (cu) = "unknown";
|
||
|
||
if (symtab_create_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Created compunit symtab %s for %s.\n",
|
||
host_address_to_string (cu),
|
||
cu->name);
|
||
}
|
||
|
||
return cu;
|
||
}
|
||
|
||
/* Hook CU to the objfile it comes from. */
|
||
|
||
void
|
||
add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
|
||
{
|
||
cu->next = cu->objfile->compunit_symtabs;
|
||
cu->objfile->compunit_symtabs = cu;
|
||
}
|
||
|
||
|
||
/* Reset all data structures in gdb which may contain references to
|
||
symbol table data. */
|
||
|
||
void
|
||
clear_symtab_users (symfile_add_flags add_flags)
|
||
{
|
||
/* Someday, we should do better than this, by only blowing away
|
||
the things that really need to be blown. */
|
||
|
||
/* Clear the "current" symtab first, because it is no longer valid.
|
||
breakpoint_re_set may try to access the current symtab. */
|
||
clear_current_source_symtab_and_line ();
|
||
|
||
clear_displays ();
|
||
clear_last_displayed_sal ();
|
||
clear_pc_function_cache ();
|
||
observer_notify_new_objfile (NULL);
|
||
|
||
/* Clear globals which might have pointed into a removed objfile.
|
||
FIXME: It's not clear which of these are supposed to persist
|
||
between expressions and which ought to be reset each time. */
|
||
expression_context_block = NULL;
|
||
innermost_block = NULL;
|
||
|
||
/* Varobj may refer to old symbols, perform a cleanup. */
|
||
varobj_invalidate ();
|
||
|
||
/* Now that the various caches have been cleared, we can re_set
|
||
our breakpoints without risking it using stale data. */
|
||
if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
static void
|
||
clear_symtab_users_cleanup (void *ignore)
|
||
{
|
||
clear_symtab_users (0);
|
||
}
|
||
|
||
/* OVERLAYS:
|
||
The following code implements an abstraction for debugging overlay sections.
|
||
|
||
The target model is as follows:
|
||
1) The gnu linker will permit multiple sections to be mapped into the
|
||
same VMA, each with its own unique LMA (or load address).
|
||
2) It is assumed that some runtime mechanism exists for mapping the
|
||
sections, one by one, from the load address into the VMA address.
|
||
3) This code provides a mechanism for gdb to keep track of which
|
||
sections should be considered to be mapped from the VMA to the LMA.
|
||
This information is used for symbol lookup, and memory read/write.
|
||
For instance, if a section has been mapped then its contents
|
||
should be read from the VMA, otherwise from the LMA.
|
||
|
||
Two levels of debugger support for overlays are available. One is
|
||
"manual", in which the debugger relies on the user to tell it which
|
||
overlays are currently mapped. This level of support is
|
||
implemented entirely in the core debugger, and the information about
|
||
whether a section is mapped is kept in the objfile->obj_section table.
|
||
|
||
The second level of support is "automatic", and is only available if
|
||
the target-specific code provides functionality to read the target's
|
||
overlay mapping table, and translate its contents for the debugger
|
||
(by updating the mapped state information in the obj_section tables).
|
||
|
||
The interface is as follows:
|
||
User commands:
|
||
overlay map <name> -- tell gdb to consider this section mapped
|
||
overlay unmap <name> -- tell gdb to consider this section unmapped
|
||
overlay list -- list the sections that GDB thinks are mapped
|
||
overlay read-target -- get the target's state of what's mapped
|
||
overlay off/manual/auto -- set overlay debugging state
|
||
Functional interface:
|
||
find_pc_mapped_section(pc): if the pc is in the range of a mapped
|
||
section, return that section.
|
||
find_pc_overlay(pc): find any overlay section that contains
|
||
the pc, either in its VMA or its LMA
|
||
section_is_mapped(sect): true if overlay is marked as mapped
|
||
section_is_overlay(sect): true if section's VMA != LMA
|
||
pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
|
||
pc_in_unmapped_range(...): true if pc belongs to section's LMA
|
||
sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
|
||
overlay_mapped_address(...): map an address from section's LMA to VMA
|
||
overlay_unmapped_address(...): map an address from section's VMA to LMA
|
||
symbol_overlayed_address(...): Return a "current" address for symbol:
|
||
either in VMA or LMA depending on whether
|
||
the symbol's section is currently mapped. */
|
||
|
||
/* Overlay debugging state: */
|
||
|
||
enum overlay_debugging_state overlay_debugging = ovly_off;
|
||
int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
|
||
|
||
/* Function: section_is_overlay (SECTION)
|
||
Returns true if SECTION has VMA not equal to LMA, ie.
|
||
SECTION is loaded at an address different from where it will "run". */
|
||
|
||
int
|
||
section_is_overlay (struct obj_section *section)
|
||
{
|
||
if (overlay_debugging && section)
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
if (bfd_section_lma (abfd, bfd_section) != 0
|
||
&& bfd_section_lma (abfd, bfd_section)
|
||
!= bfd_section_vma (abfd, bfd_section))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: overlay_invalidate_all (void)
|
||
Invalidate the mapped state of all overlay sections (mark it as stale). */
|
||
|
||
static void
|
||
overlay_invalidate_all (void)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *sect;
|
||
|
||
ALL_OBJSECTIONS (objfile, sect)
|
||
if (section_is_overlay (sect))
|
||
sect->ovly_mapped = -1;
|
||
}
|
||
|
||
/* Function: section_is_mapped (SECTION)
|
||
Returns true if section is an overlay, and is currently mapped.
|
||
|
||
Access to the ovly_mapped flag is restricted to this function, so
|
||
that we can do automatic update. If the global flag
|
||
OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
|
||
overlay_invalidate_all. If the mapped state of the particular
|
||
section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
|
||
|
||
int
|
||
section_is_mapped (struct obj_section *osect)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
|
||
if (osect == 0 || !section_is_overlay (osect))
|
||
return 0;
|
||
|
||
switch (overlay_debugging)
|
||
{
|
||
default:
|
||
case ovly_off:
|
||
return 0; /* overlay debugging off */
|
||
case ovly_auto: /* overlay debugging automatic */
|
||
/* Unles there is a gdbarch_overlay_update function,
|
||
there's really nothing useful to do here (can't really go auto). */
|
||
gdbarch = get_objfile_arch (osect->objfile);
|
||
if (gdbarch_overlay_update_p (gdbarch))
|
||
{
|
||
if (overlay_cache_invalid)
|
||
{
|
||
overlay_invalidate_all ();
|
||
overlay_cache_invalid = 0;
|
||
}
|
||
if (osect->ovly_mapped == -1)
|
||
gdbarch_overlay_update (gdbarch, osect);
|
||
}
|
||
/* fall thru to manual case */
|
||
case ovly_on: /* overlay debugging manual */
|
||
return osect->ovly_mapped == 1;
|
||
}
|
||
}
|
||
|
||
/* Function: pc_in_unmapped_range
|
||
If PC falls into the lma range of SECTION, return true, else false. */
|
||
|
||
CORE_ADDR
|
||
pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section))
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
/* We assume the LMA is relocated by the same offset as the VMA. */
|
||
bfd_vma size = bfd_get_section_size (bfd_section);
|
||
CORE_ADDR offset = obj_section_offset (section);
|
||
|
||
if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
|
||
&& pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: pc_in_mapped_range
|
||
If PC falls into the vma range of SECTION, return true, else false. */
|
||
|
||
CORE_ADDR
|
||
pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section))
|
||
{
|
||
if (obj_section_addr (section) <= pc
|
||
&& pc < obj_section_endaddr (section))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if the mapped ranges of sections A and B overlap, false
|
||
otherwise. */
|
||
|
||
static int
|
||
sections_overlap (struct obj_section *a, struct obj_section *b)
|
||
{
|
||
CORE_ADDR a_start = obj_section_addr (a);
|
||
CORE_ADDR a_end = obj_section_endaddr (a);
|
||
CORE_ADDR b_start = obj_section_addr (b);
|
||
CORE_ADDR b_end = obj_section_endaddr (b);
|
||
|
||
return (a_start < b_end && b_start < a_end);
|
||
}
|
||
|
||
/* Function: overlay_unmapped_address (PC, SECTION)
|
||
Returns the address corresponding to PC in the unmapped (load) range.
|
||
May be the same as PC. */
|
||
|
||
CORE_ADDR
|
||
overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
return pc + bfd_section_lma (abfd, bfd_section)
|
||
- bfd_section_vma (abfd, bfd_section);
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Function: overlay_mapped_address (PC, SECTION)
|
||
Returns the address corresponding to PC in the mapped (runtime) range.
|
||
May be the same as PC. */
|
||
|
||
CORE_ADDR
|
||
overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
|
||
{
|
||
bfd *abfd = section->objfile->obfd;
|
||
asection *bfd_section = section->the_bfd_section;
|
||
|
||
return pc + bfd_section_vma (abfd, bfd_section)
|
||
- bfd_section_lma (abfd, bfd_section);
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Function: symbol_overlayed_address
|
||
Return one of two addresses (relative to the VMA or to the LMA),
|
||
depending on whether the section is mapped or not. */
|
||
|
||
CORE_ADDR
|
||
symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
|
||
{
|
||
if (overlay_debugging)
|
||
{
|
||
/* If the symbol has no section, just return its regular address. */
|
||
if (section == 0)
|
||
return address;
|
||
/* If the symbol's section is not an overlay, just return its
|
||
address. */
|
||
if (!section_is_overlay (section))
|
||
return address;
|
||
/* If the symbol's section is mapped, just return its address. */
|
||
if (section_is_mapped (section))
|
||
return address;
|
||
/*
|
||
* HOWEVER: if the symbol is in an overlay section which is NOT mapped,
|
||
* then return its LOADED address rather than its vma address!!
|
||
*/
|
||
return overlay_unmapped_address (address, section);
|
||
}
|
||
return address;
|
||
}
|
||
|
||
/* Function: find_pc_overlay (PC)
|
||
Return the best-match overlay section for PC:
|
||
If PC matches a mapped overlay section's VMA, return that section.
|
||
Else if PC matches an unmapped section's VMA, return that section.
|
||
Else if PC matches an unmapped section's LMA, return that section. */
|
||
|
||
struct obj_section *
|
||
find_pc_overlay (CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect, *best_match = NULL;
|
||
|
||
if (overlay_debugging)
|
||
{
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_overlay (osect))
|
||
{
|
||
if (pc_in_mapped_range (pc, osect))
|
||
{
|
||
if (section_is_mapped (osect))
|
||
return osect;
|
||
else
|
||
best_match = osect;
|
||
}
|
||
else if (pc_in_unmapped_range (pc, osect))
|
||
best_match = osect;
|
||
}
|
||
}
|
||
return best_match;
|
||
}
|
||
|
||
/* Function: find_pc_mapped_section (PC)
|
||
If PC falls into the VMA address range of an overlay section that is
|
||
currently marked as MAPPED, return that section. Else return NULL. */
|
||
|
||
struct obj_section *
|
||
find_pc_mapped_section (CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
{
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
|
||
return osect;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Function: list_overlays_command
|
||
Print a list of mapped sections and their PC ranges. */
|
||
|
||
static void
|
||
list_overlays_command (char *args, int from_tty)
|
||
{
|
||
int nmapped = 0;
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
{
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_mapped (osect))
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
const char *name;
|
||
bfd_vma lma, vma;
|
||
int size;
|
||
|
||
vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
|
||
lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
|
||
size = bfd_get_section_size (osect->the_bfd_section);
|
||
name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
|
||
|
||
printf_filtered ("Section %s, loaded at ", name);
|
||
fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
|
||
puts_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
|
||
printf_filtered (", mapped at ");
|
||
fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
|
||
puts_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
|
||
puts_filtered ("\n");
|
||
|
||
nmapped++;
|
||
}
|
||
}
|
||
if (nmapped == 0)
|
||
printf_filtered (_("No sections are mapped.\n"));
|
||
}
|
||
|
||
/* Function: map_overlay_command
|
||
Mark the named section as mapped (ie. residing at its VMA address). */
|
||
|
||
static void
|
||
map_overlay_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objfile, *objfile2;
|
||
struct obj_section *sec, *sec2;
|
||
|
||
if (!overlay_debugging)
|
||
error (_("Overlay debugging not enabled. Use "
|
||
"either the 'overlay auto' or\n"
|
||
"the 'overlay manual' command."));
|
||
|
||
if (args == 0 || *args == 0)
|
||
error (_("Argument required: name of an overlay section"));
|
||
|
||
/* First, find a section matching the user supplied argument. */
|
||
ALL_OBJSECTIONS (objfile, sec)
|
||
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
||
{
|
||
/* Now, check to see if the section is an overlay. */
|
||
if (!section_is_overlay (sec))
|
||
continue; /* not an overlay section */
|
||
|
||
/* Mark the overlay as "mapped". */
|
||
sec->ovly_mapped = 1;
|
||
|
||
/* Next, make a pass and unmap any sections that are
|
||
overlapped by this new section: */
|
||
ALL_OBJSECTIONS (objfile2, sec2)
|
||
if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
|
||
{
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
|
||
bfd_section_name (objfile->obfd,
|
||
sec2->the_bfd_section));
|
||
sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
|
||
}
|
||
return;
|
||
}
|
||
error (_("No overlay section called %s"), args);
|
||
}
|
||
|
||
/* Function: unmap_overlay_command
|
||
Mark the overlay section as unmapped
|
||
(ie. resident in its LMA address range, rather than the VMA range). */
|
||
|
||
static void
|
||
unmap_overlay_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *sec = NULL;
|
||
|
||
if (!overlay_debugging)
|
||
error (_("Overlay debugging not enabled. "
|
||
"Use either the 'overlay auto' or\n"
|
||
"the 'overlay manual' command."));
|
||
|
||
if (args == 0 || *args == 0)
|
||
error (_("Argument required: name of an overlay section"));
|
||
|
||
/* First, find a section matching the user supplied argument. */
|
||
ALL_OBJSECTIONS (objfile, sec)
|
||
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
||
{
|
||
if (!sec->ovly_mapped)
|
||
error (_("Section %s is not mapped"), args);
|
||
sec->ovly_mapped = 0;
|
||
return;
|
||
}
|
||
error (_("No overlay section called %s"), args);
|
||
}
|
||
|
||
/* Function: overlay_auto_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_auto_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_auto;
|
||
enable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Automatic overlay debugging enabled."));
|
||
}
|
||
|
||
/* Function: overlay_manual_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_manual_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_on;
|
||
disable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Overlay debugging enabled."));
|
||
}
|
||
|
||
/* Function: overlay_off_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_off_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_off;
|
||
disable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_unfiltered (_("Overlay debugging disabled."));
|
||
}
|
||
|
||
static void
|
||
overlay_load_command (char *args, int from_tty)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
|
||
if (gdbarch_overlay_update_p (gdbarch))
|
||
gdbarch_overlay_update (gdbarch, NULL);
|
||
else
|
||
error (_("This target does not know how to read its overlay state."));
|
||
}
|
||
|
||
/* Function: overlay_command
|
||
A place-holder for a mis-typed command. */
|
||
|
||
/* Command list chain containing all defined "overlay" subcommands. */
|
||
static struct cmd_list_element *overlaylist;
|
||
|
||
static void
|
||
overlay_command (char *args, int from_tty)
|
||
{
|
||
printf_unfiltered
|
||
("\"overlay\" must be followed by the name of an overlay command.\n");
|
||
help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
/* Target Overlays for the "Simplest" overlay manager:
|
||
|
||
This is GDB's default target overlay layer. It works with the
|
||
minimal overlay manager supplied as an example by Cygnus. The
|
||
entry point is via a function pointer "gdbarch_overlay_update",
|
||
so targets that use a different runtime overlay manager can
|
||
substitute their own overlay_update function and take over the
|
||
function pointer.
|
||
|
||
The overlay_update function pokes around in the target's data structures
|
||
to see what overlays are mapped, and updates GDB's overlay mapping with
|
||
this information.
|
||
|
||
In this simple implementation, the target data structures are as follows:
|
||
unsigned _novlys; /# number of overlay sections #/
|
||
unsigned _ovly_table[_novlys][4] = {
|
||
{VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
|
||
{..., ..., ..., ...},
|
||
}
|
||
unsigned _novly_regions; /# number of overlay regions #/
|
||
unsigned _ovly_region_table[_novly_regions][3] = {
|
||
{VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
|
||
{..., ..., ...},
|
||
}
|
||
These functions will attempt to update GDB's mappedness state in the
|
||
symbol section table, based on the target's mappedness state.
|
||
|
||
To do this, we keep a cached copy of the target's _ovly_table, and
|
||
attempt to detect when the cached copy is invalidated. The main
|
||
entry point is "simple_overlay_update(SECT), which looks up SECT in
|
||
the cached table and re-reads only the entry for that section from
|
||
the target (whenever possible). */
|
||
|
||
/* Cached, dynamically allocated copies of the target data structures: */
|
||
static unsigned (*cache_ovly_table)[4] = 0;
|
||
static unsigned cache_novlys = 0;
|
||
static CORE_ADDR cache_ovly_table_base = 0;
|
||
enum ovly_index
|
||
{
|
||
VMA, OSIZE, LMA, MAPPED
|
||
};
|
||
|
||
/* Throw away the cached copy of _ovly_table. */
|
||
|
||
static void
|
||
simple_free_overlay_table (void)
|
||
{
|
||
if (cache_ovly_table)
|
||
xfree (cache_ovly_table);
|
||
cache_novlys = 0;
|
||
cache_ovly_table = NULL;
|
||
cache_ovly_table_base = 0;
|
||
}
|
||
|
||
/* Read an array of ints of size SIZE from the target into a local buffer.
|
||
Convert to host order. int LEN is number of ints. */
|
||
|
||
static void
|
||
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
|
||
int len, int size, enum bfd_endian byte_order)
|
||
{
|
||
/* FIXME (alloca): Not safe if array is very large. */
|
||
gdb_byte *buf = (gdb_byte *) alloca (len * size);
|
||
int i;
|
||
|
||
read_memory (memaddr, buf, len * size);
|
||
for (i = 0; i < len; i++)
|
||
myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
|
||
}
|
||
|
||
/* Find and grab a copy of the target _ovly_table
|
||
(and _novlys, which is needed for the table's size). */
|
||
|
||
static int
|
||
simple_read_overlay_table (void)
|
||
{
|
||
struct bound_minimal_symbol novlys_msym;
|
||
struct bound_minimal_symbol ovly_table_msym;
|
||
struct gdbarch *gdbarch;
|
||
int word_size;
|
||
enum bfd_endian byte_order;
|
||
|
||
simple_free_overlay_table ();
|
||
novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
|
||
if (! novlys_msym.minsym)
|
||
{
|
||
error (_("Error reading inferior's overlay table: "
|
||
"couldn't find `_novlys' variable\n"
|
||
"in inferior. Use `overlay manual' mode."));
|
||
return 0;
|
||
}
|
||
|
||
ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
|
||
if (! ovly_table_msym.minsym)
|
||
{
|
||
error (_("Error reading inferior's overlay table: couldn't find "
|
||
"`_ovly_table' array\n"
|
||
"in inferior. Use `overlay manual' mode."));
|
||
return 0;
|
||
}
|
||
|
||
gdbarch = get_objfile_arch (ovly_table_msym.objfile);
|
||
word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
|
||
4, byte_order);
|
||
cache_ovly_table
|
||
= (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
|
||
cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
||
read_target_long_array (cache_ovly_table_base,
|
||
(unsigned int *) cache_ovly_table,
|
||
cache_novlys * 4, word_size, byte_order);
|
||
|
||
return 1; /* SUCCESS */
|
||
}
|
||
|
||
/* Function: simple_overlay_update_1
|
||
A helper function for simple_overlay_update. Assuming a cached copy
|
||
of _ovly_table exists, look through it to find an entry whose vma,
|
||
lma and size match those of OSECT. Re-read the entry and make sure
|
||
it still matches OSECT (else the table may no longer be valid).
|
||
Set OSECT's mapped state to match the entry. Return: 1 for
|
||
success, 0 for failure. */
|
||
|
||
static int
|
||
simple_overlay_update_1 (struct obj_section *osect)
|
||
{
|
||
int i;
|
||
bfd *obfd = osect->objfile->obfd;
|
||
asection *bsect = osect->the_bfd_section;
|
||
struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
|
||
int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
for (i = 0; i < cache_novlys; i++)
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
|
||
{
|
||
read_target_long_array (cache_ovly_table_base + i * word_size,
|
||
(unsigned int *) cache_ovly_table[i],
|
||
4, word_size, byte_order);
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
|
||
{
|
||
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
||
return 1;
|
||
}
|
||
else /* Warning! Warning! Target's ovly table has changed! */
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Function: simple_overlay_update
|
||
If OSECT is NULL, then update all sections' mapped state
|
||
(after re-reading the entire target _ovly_table).
|
||
If OSECT is non-NULL, then try to find a matching entry in the
|
||
cached ovly_table and update only OSECT's mapped state.
|
||
If a cached entry can't be found or the cache isn't valid, then
|
||
re-read the entire cache, and go ahead and update all sections. */
|
||
|
||
void
|
||
simple_overlay_update (struct obj_section *osect)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
/* Were we given an osect to look up? NULL means do all of them. */
|
||
if (osect)
|
||
/* Have we got a cached copy of the target's overlay table? */
|
||
if (cache_ovly_table != NULL)
|
||
{
|
||
/* Does its cached location match what's currently in the
|
||
symtab? */
|
||
struct bound_minimal_symbol minsym
|
||
= lookup_minimal_symbol ("_ovly_table", NULL, NULL);
|
||
|
||
if (minsym.minsym == NULL)
|
||
error (_("Error reading inferior's overlay table: couldn't "
|
||
"find `_ovly_table' array\n"
|
||
"in inferior. Use `overlay manual' mode."));
|
||
|
||
if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
|
||
/* Then go ahead and try to look up this single section in
|
||
the cache. */
|
||
if (simple_overlay_update_1 (osect))
|
||
/* Found it! We're done. */
|
||
return;
|
||
}
|
||
|
||
/* Cached table no good: need to read the entire table anew.
|
||
Or else we want all the sections, in which case it's actually
|
||
more efficient to read the whole table in one block anyway. */
|
||
|
||
if (! simple_read_overlay_table ())
|
||
return;
|
||
|
||
/* Now may as well update all sections, even if only one was requested. */
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_overlay (osect))
|
||
{
|
||
int i;
|
||
bfd *obfd = osect->objfile->obfd;
|
||
asection *bsect = osect->the_bfd_section;
|
||
|
||
for (i = 0; i < cache_novlys; i++)
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
|
||
{ /* obj_section matches i'th entry in ovly_table. */
|
||
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
||
break; /* finished with inner for loop: break out. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set the output sections and output offsets for section SECTP in
|
||
ABFD. The relocation code in BFD will read these offsets, so we
|
||
need to be sure they're initialized. We map each section to itself,
|
||
with no offset; this means that SECTP->vma will be honored. */
|
||
|
||
static void
|
||
symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
|
||
{
|
||
sectp->output_section = sectp;
|
||
sectp->output_offset = 0;
|
||
}
|
||
|
||
/* Default implementation for sym_relocate. */
|
||
|
||
bfd_byte *
|
||
default_symfile_relocate (struct objfile *objfile, asection *sectp,
|
||
bfd_byte *buf)
|
||
{
|
||
/* Use sectp->owner instead of objfile->obfd. sectp may point to a
|
||
DWO file. */
|
||
bfd *abfd = sectp->owner;
|
||
|
||
/* We're only interested in sections with relocation
|
||
information. */
|
||
if ((sectp->flags & SEC_RELOC) == 0)
|
||
return NULL;
|
||
|
||
/* We will handle section offsets properly elsewhere, so relocate as if
|
||
all sections begin at 0. */
|
||
bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
|
||
|
||
return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
|
||
}
|
||
|
||
/* Relocate the contents of a debug section SECTP in ABFD. The
|
||
contents are stored in BUF if it is non-NULL, or returned in a
|
||
malloc'd buffer otherwise.
|
||
|
||
For some platforms and debug info formats, shared libraries contain
|
||
relocations against the debug sections (particularly for DWARF-2;
|
||
one affected platform is PowerPC GNU/Linux, although it depends on
|
||
the version of the linker in use). Also, ELF object files naturally
|
||
have unresolved relocations for their debug sections. We need to apply
|
||
the relocations in order to get the locations of symbols correct.
|
||
Another example that may require relocation processing, is the
|
||
DWARF-2 .eh_frame section in .o files, although it isn't strictly a
|
||
debug section. */
|
||
|
||
bfd_byte *
|
||
symfile_relocate_debug_section (struct objfile *objfile,
|
||
asection *sectp, bfd_byte *buf)
|
||
{
|
||
gdb_assert (objfile->sf->sym_relocate);
|
||
|
||
return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
|
||
}
|
||
|
||
struct symfile_segment_data *
|
||
get_symfile_segment_data (bfd *abfd)
|
||
{
|
||
const struct sym_fns *sf = find_sym_fns (abfd);
|
||
|
||
if (sf == NULL)
|
||
return NULL;
|
||
|
||
return sf->sym_segments (abfd);
|
||
}
|
||
|
||
void
|
||
free_symfile_segment_data (struct symfile_segment_data *data)
|
||
{
|
||
xfree (data->segment_bases);
|
||
xfree (data->segment_sizes);
|
||
xfree (data->segment_info);
|
||
xfree (data);
|
||
}
|
||
|
||
/* Given:
|
||
- DATA, containing segment addresses from the object file ABFD, and
|
||
the mapping from ABFD's sections onto the segments that own them,
|
||
and
|
||
- SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
|
||
segment addresses reported by the target,
|
||
store the appropriate offsets for each section in OFFSETS.
|
||
|
||
If there are fewer entries in SEGMENT_BASES than there are segments
|
||
in DATA, then apply SEGMENT_BASES' last entry to all the segments.
|
||
|
||
If there are more entries, then ignore the extra. The target may
|
||
not be able to distinguish between an empty data segment and a
|
||
missing data segment; a missing text segment is less plausible. */
|
||
|
||
int
|
||
symfile_map_offsets_to_segments (bfd *abfd,
|
||
const struct symfile_segment_data *data,
|
||
struct section_offsets *offsets,
|
||
int num_segment_bases,
|
||
const CORE_ADDR *segment_bases)
|
||
{
|
||
int i;
|
||
asection *sect;
|
||
|
||
/* It doesn't make sense to call this function unless you have some
|
||
segment base addresses. */
|
||
gdb_assert (num_segment_bases > 0);
|
||
|
||
/* If we do not have segment mappings for the object file, we
|
||
can not relocate it by segments. */
|
||
gdb_assert (data != NULL);
|
||
gdb_assert (data->num_segments > 0);
|
||
|
||
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
||
{
|
||
int which = data->segment_info[i];
|
||
|
||
gdb_assert (0 <= which && which <= data->num_segments);
|
||
|
||
/* Don't bother computing offsets for sections that aren't
|
||
loaded as part of any segment. */
|
||
if (! which)
|
||
continue;
|
||
|
||
/* Use the last SEGMENT_BASES entry as the address of any extra
|
||
segments mentioned in DATA->segment_info. */
|
||
if (which > num_segment_bases)
|
||
which = num_segment_bases;
|
||
|
||
offsets->offsets[i] = (segment_bases[which - 1]
|
||
- data->segment_bases[which - 1]);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
symfile_find_segment_sections (struct objfile *objfile)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
int i;
|
||
asection *sect;
|
||
struct symfile_segment_data *data;
|
||
|
||
data = get_symfile_segment_data (objfile->obfd);
|
||
if (data == NULL)
|
||
return;
|
||
|
||
if (data->num_segments != 1 && data->num_segments != 2)
|
||
{
|
||
free_symfile_segment_data (data);
|
||
return;
|
||
}
|
||
|
||
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
||
{
|
||
int which = data->segment_info[i];
|
||
|
||
if (which == 1)
|
||
{
|
||
if (objfile->sect_index_text == -1)
|
||
objfile->sect_index_text = sect->index;
|
||
|
||
if (objfile->sect_index_rodata == -1)
|
||
objfile->sect_index_rodata = sect->index;
|
||
}
|
||
else if (which == 2)
|
||
{
|
||
if (objfile->sect_index_data == -1)
|
||
objfile->sect_index_data = sect->index;
|
||
|
||
if (objfile->sect_index_bss == -1)
|
||
objfile->sect_index_bss = sect->index;
|
||
}
|
||
}
|
||
|
||
free_symfile_segment_data (data);
|
||
}
|
||
|
||
/* Listen for free_objfile events. */
|
||
|
||
static void
|
||
symfile_free_objfile (struct objfile *objfile)
|
||
{
|
||
/* Remove the target sections owned by this objfile. */
|
||
if (objfile != NULL)
|
||
remove_target_sections ((void *) objfile);
|
||
}
|
||
|
||
/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
|
||
Expand all symtabs that match the specified criteria.
|
||
See quick_symbol_functions.expand_symtabs_matching for details. */
|
||
|
||
void
|
||
expand_symtabs_matching
|
||
(gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
|
||
gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
|
||
gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
|
||
enum search_domain kind)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
if (objfile->sf)
|
||
objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
|
||
symbol_matcher,
|
||
expansion_notify, kind);
|
||
}
|
||
}
|
||
|
||
/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
|
||
Map function FUN over every file.
|
||
See quick_symbol_functions.map_symbol_filenames for details. */
|
||
|
||
void
|
||
map_symbol_filenames (symbol_filename_ftype *fun, void *data,
|
||
int need_fullname)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
if (objfile->sf)
|
||
objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
|
||
need_fullname);
|
||
}
|
||
}
|
||
|
||
void
|
||
_initialize_symfile (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
observer_attach_free_objfile (symfile_free_objfile);
|
||
|
||
c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
|
||
Load symbol table from executable file FILE.\n\
|
||
The `file' command can also load symbol tables, as well as setting the file\n\
|
||
to execute."), &cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
|
||
Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
|
||
Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
|
||
...]\nADDR is the starting address of the file's text.\n\
|
||
The optional arguments are section-name section-address pairs and\n\
|
||
should be specified if the data and bss segments are not contiguous\n\
|
||
with the text. SECT is a section name to be loaded at SECT_ADDR."),
|
||
&cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
c = add_cmd ("remove-symbol-file", class_files,
|
||
remove_symbol_file_command, _("\
|
||
Remove a symbol file added via the add-symbol-file command.\n\
|
||
Usage: remove-symbol-file FILENAME\n\
|
||
remove-symbol-file -a ADDRESS\n\
|
||
The file to remove can be identified by its filename or by an address\n\
|
||
that lies within the boundaries of this symbol file in memory."),
|
||
&cmdlist);
|
||
|
||
c = add_cmd ("load", class_files, load_command, _("\
|
||
Dynamically load FILE into the running program, and record its symbols\n\
|
||
for access from GDB.\n\
|
||
An optional load OFFSET may also be given as a literal address.\n\
|
||
When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
|
||
on its own.\n\
|
||
Usage: load [FILE] [OFFSET]"), &cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
add_prefix_cmd ("overlay", class_support, overlay_command,
|
||
_("Commands for debugging overlays."), &overlaylist,
|
||
"overlay ", 0, &cmdlist);
|
||
|
||
add_com_alias ("ovly", "overlay", class_alias, 1);
|
||
add_com_alias ("ov", "overlay", class_alias, 1);
|
||
|
||
add_cmd ("map-overlay", class_support, map_overlay_command,
|
||
_("Assert that an overlay section is mapped."), &overlaylist);
|
||
|
||
add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
|
||
_("Assert that an overlay section is unmapped."), &overlaylist);
|
||
|
||
add_cmd ("list-overlays", class_support, list_overlays_command,
|
||
_("List mappings of overlay sections."), &overlaylist);
|
||
|
||
add_cmd ("manual", class_support, overlay_manual_command,
|
||
_("Enable overlay debugging."), &overlaylist);
|
||
add_cmd ("off", class_support, overlay_off_command,
|
||
_("Disable overlay debugging."), &overlaylist);
|
||
add_cmd ("auto", class_support, overlay_auto_command,
|
||
_("Enable automatic overlay debugging."), &overlaylist);
|
||
add_cmd ("load-target", class_support, overlay_load_command,
|
||
_("Read the overlay mapping state from the target."), &overlaylist);
|
||
|
||
/* Filename extension to source language lookup table: */
|
||
add_setshow_string_noescape_cmd ("extension-language", class_files,
|
||
&ext_args, _("\
|
||
Set mapping between filename extension and source language."), _("\
|
||
Show mapping between filename extension and source language."), _("\
|
||
Usage: set extension-language .foo bar"),
|
||
set_ext_lang_command,
|
||
show_ext_args,
|
||
&setlist, &showlist);
|
||
|
||
add_info ("extensions", info_ext_lang_command,
|
||
_("All filename extensions associated with a source language."));
|
||
|
||
add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
|
||
&debug_file_directory, _("\
|
||
Set the directories where separate debug symbols are searched for."), _("\
|
||
Show the directories where separate debug symbols are searched for."), _("\
|
||
Separate debug symbols are first searched for in the same\n\
|
||
directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
|
||
and lastly at the path of the directory of the binary with\n\
|
||
each global debug-file-directory component prepended."),
|
||
NULL,
|
||
show_debug_file_directory,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_enum_cmd ("symbol-loading", no_class,
|
||
print_symbol_loading_enums, &print_symbol_loading,
|
||
_("\
|
||
Set printing of symbol loading messages."), _("\
|
||
Show printing of symbol loading messages."), _("\
|
||
off == turn all messages off\n\
|
||
brief == print messages for the executable,\n\
|
||
and brief messages for shared libraries\n\
|
||
full == print messages for the executable,\n\
|
||
and messages for each shared library."),
|
||
NULL,
|
||
NULL,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("separate-debug-file", no_class,
|
||
&separate_debug_file_debug, _("\
|
||
Set printing of separate debug info file search debug."), _("\
|
||
Show printing of separate debug info file search debug."), _("\
|
||
When on, GDB prints the searched locations while looking for separate debug \
|
||
info files."), NULL, NULL, &setdebuglist, &showdebuglist);
|
||
}
|