5586 lines
160 KiB
C
5586 lines
160 KiB
C
/* BFD semi-generic back-end for a.out binaries.
|
||
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
||
Free Software Foundation, Inc.
|
||
Written by Cygnus Support.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
/*
|
||
SECTION
|
||
a.out backends
|
||
|
||
DESCRIPTION
|
||
|
||
BFD supports a number of different flavours of a.out format,
|
||
though the major differences are only the sizes of the
|
||
structures on disk, and the shape of the relocation
|
||
information.
|
||
|
||
The support is split into a basic support file @file{aoutx.h}
|
||
and other files which derive functions from the base. One
|
||
derivation file is @file{aoutf1.h} (for a.out flavour 1), and
|
||
adds to the basic a.out functions support for sun3, sun4, 386
|
||
and 29k a.out files, to create a target jump vector for a
|
||
specific target.
|
||
|
||
This information is further split out into more specific files
|
||
for each machine, including @file{sunos.c} for sun3 and sun4,
|
||
@file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a
|
||
demonstration of a 64 bit a.out format.
|
||
|
||
The base file @file{aoutx.h} defines general mechanisms for
|
||
reading and writing records to and from disk and various
|
||
other methods which BFD requires. It is included by
|
||
@file{aout32.c} and @file{aout64.c} to form the names
|
||
<<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc.
|
||
|
||
As an example, this is what goes on to make the back end for a
|
||
sun4, from @file{aout32.c}:
|
||
|
||
| #define ARCH_SIZE 32
|
||
| #include "aoutx.h"
|
||
|
||
Which exports names:
|
||
|
||
| ...
|
||
| aout_32_canonicalize_reloc
|
||
| aout_32_find_nearest_line
|
||
| aout_32_get_lineno
|
||
| aout_32_get_reloc_upper_bound
|
||
| ...
|
||
|
||
from @file{sunos.c}:
|
||
|
||
| #define TARGET_NAME "a.out-sunos-big"
|
||
| #define VECNAME sunos_big_vec
|
||
| #include "aoutf1.h"
|
||
|
||
requires all the names from @file{aout32.c}, and produces the jump vector
|
||
|
||
| sunos_big_vec
|
||
|
||
The file @file{host-aout.c} is a special case. It is for a large set
|
||
of hosts that use ``more or less standard'' a.out files, and
|
||
for which cross-debugging is not interesting. It uses the
|
||
standard 32-bit a.out support routines, but determines the
|
||
file offsets and addresses of the text, data, and BSS
|
||
sections, the machine architecture and machine type, and the
|
||
entry point address, in a host-dependent manner. Once these
|
||
values have been determined, generic code is used to handle
|
||
the object file.
|
||
|
||
When porting it to run on a new system, you must supply:
|
||
|
||
| HOST_PAGE_SIZE
|
||
| HOST_SEGMENT_SIZE
|
||
| HOST_MACHINE_ARCH (optional)
|
||
| HOST_MACHINE_MACHINE (optional)
|
||
| HOST_TEXT_START_ADDR
|
||
| HOST_STACK_END_ADDR
|
||
|
||
in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These
|
||
values, plus the structures and macros defined in @file{a.out.h} on
|
||
your host system, will produce a BFD target that will access
|
||
ordinary a.out files on your host. To configure a new machine
|
||
to use @file{host-aout.c}, specify:
|
||
|
||
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
|
||
| TDEPFILES= host-aout.o trad-core.o
|
||
|
||
in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in}
|
||
to use the
|
||
@file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your
|
||
configuration is selected. */
|
||
|
||
/* Some assumptions:
|
||
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
|
||
Doesn't matter what the setting of WP_TEXT is on output, but it'll
|
||
get set on input.
|
||
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
|
||
* Any BFD with both flags clear is OMAGIC.
|
||
(Just want to make these explicit, so the conditions tested in this
|
||
file make sense if you're more familiar with a.out than with BFD.) */
|
||
|
||
#define KEEPIT udata.i
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "safe-ctype.h"
|
||
#include "bfdlink.h"
|
||
|
||
#include "libaout.h"
|
||
#include "libbfd.h"
|
||
#include "aout/aout64.h"
|
||
#include "aout/stab_gnu.h"
|
||
#include "aout/ar.h"
|
||
|
||
/*
|
||
SUBSECTION
|
||
Relocations
|
||
|
||
DESCRIPTION
|
||
The file @file{aoutx.h} provides for both the @emph{standard}
|
||
and @emph{extended} forms of a.out relocation records.
|
||
|
||
The standard records contain only an
|
||
address, a symbol index, and a type field. The extended records
|
||
(used on 29ks and sparcs) also have a full integer for an
|
||
addend. */
|
||
|
||
#ifndef CTOR_TABLE_RELOC_HOWTO
|
||
#define CTOR_TABLE_RELOC_IDX 2
|
||
#define CTOR_TABLE_RELOC_HOWTO(BFD) \
|
||
((obj_reloc_entry_size (BFD) == RELOC_EXT_SIZE \
|
||
? howto_table_ext : howto_table_std) \
|
||
+ CTOR_TABLE_RELOC_IDX)
|
||
#endif
|
||
|
||
#ifndef MY_swap_std_reloc_in
|
||
#define MY_swap_std_reloc_in NAME (aout, swap_std_reloc_in)
|
||
#endif
|
||
|
||
#ifndef MY_swap_ext_reloc_in
|
||
#define MY_swap_ext_reloc_in NAME (aout, swap_ext_reloc_in)
|
||
#endif
|
||
|
||
#ifndef MY_swap_std_reloc_out
|
||
#define MY_swap_std_reloc_out NAME (aout, swap_std_reloc_out)
|
||
#endif
|
||
|
||
#ifndef MY_swap_ext_reloc_out
|
||
#define MY_swap_ext_reloc_out NAME (aout, swap_ext_reloc_out)
|
||
#endif
|
||
|
||
#ifndef MY_final_link_relocate
|
||
#define MY_final_link_relocate _bfd_final_link_relocate
|
||
#endif
|
||
|
||
#ifndef MY_relocate_contents
|
||
#define MY_relocate_contents _bfd_relocate_contents
|
||
#endif
|
||
|
||
#define howto_table_ext NAME (aout, ext_howto_table)
|
||
#define howto_table_std NAME (aout, std_howto_table)
|
||
|
||
reloc_howto_type howto_table_ext[] =
|
||
{
|
||
/* Type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */
|
||
HOWTO (RELOC_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, 0, "8", FALSE, 0, 0x000000ff, FALSE),
|
||
HOWTO (RELOC_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, 0, "16", FALSE, 0, 0x0000ffff, FALSE),
|
||
HOWTO (RELOC_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "32", FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (RELOC_DISP8, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0, "DISP8", FALSE, 0, 0x000000ff, FALSE),
|
||
HOWTO (RELOC_DISP16, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0, "DISP16", FALSE, 0, 0x0000ffff, FALSE),
|
||
HOWTO (RELOC_DISP32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0, "DISP32", FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (RELOC_WDISP30, 2, 2, 30, TRUE, 0, complain_overflow_signed, 0, "WDISP30", FALSE, 0, 0x3fffffff, FALSE),
|
||
HOWTO (RELOC_WDISP22, 2, 2, 22, TRUE, 0, complain_overflow_signed, 0, "WDISP22", FALSE, 0, 0x003fffff, FALSE),
|
||
HOWTO (RELOC_HI22, 10, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "HI22", FALSE, 0, 0x003fffff, FALSE),
|
||
HOWTO (RELOC_22, 0, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "22", FALSE, 0, 0x003fffff, FALSE),
|
||
HOWTO (RELOC_13, 0, 2, 13, FALSE, 0, complain_overflow_bitfield, 0, "13", FALSE, 0, 0x00001fff, FALSE),
|
||
HOWTO (RELOC_LO10, 0, 2, 10, FALSE, 0, complain_overflow_dont, 0, "LO10", FALSE, 0, 0x000003ff, FALSE),
|
||
HOWTO (RELOC_SFA_BASE,0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "SFA_BASE", FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (RELOC_SFA_OFF13,0, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "SFA_OFF13", FALSE, 0, 0xffffffff, FALSE),
|
||
HOWTO (RELOC_BASE10, 0, 2, 10, FALSE, 0, complain_overflow_dont, 0, "BASE10", FALSE, 0, 0x000003ff, FALSE),
|
||
HOWTO (RELOC_BASE13, 0, 2, 13, FALSE, 0, complain_overflow_signed, 0, "BASE13", FALSE, 0, 0x00001fff, FALSE),
|
||
HOWTO (RELOC_BASE22, 10, 2, 22, FALSE, 0, complain_overflow_bitfield, 0, "BASE22", FALSE, 0, 0x003fffff, FALSE),
|
||
HOWTO (RELOC_PC10, 0, 2, 10, TRUE, 0, complain_overflow_dont, 0, "PC10", FALSE, 0, 0x000003ff, TRUE),
|
||
HOWTO (RELOC_PC22, 10, 2, 22, TRUE, 0, complain_overflow_signed, 0, "PC22", FALSE, 0, 0x003fffff, TRUE),
|
||
HOWTO (RELOC_JMP_TBL, 2, 2, 30, TRUE, 0, complain_overflow_signed, 0, "JMP_TBL", FALSE, 0, 0x3fffffff, FALSE),
|
||
HOWTO (RELOC_SEGOFF16,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "SEGOFF16", FALSE, 0, 0x00000000, FALSE),
|
||
HOWTO (RELOC_GLOB_DAT,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "GLOB_DAT", FALSE, 0, 0x00000000, FALSE),
|
||
HOWTO (RELOC_JMP_SLOT,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "JMP_SLOT", FALSE, 0, 0x00000000, FALSE),
|
||
HOWTO (RELOC_RELATIVE,0, 2, 0, FALSE, 0, complain_overflow_bitfield, 0, "RELATIVE", FALSE, 0, 0x00000000, FALSE),
|
||
HOWTO (0, 0, 0, 0, FALSE, 0, complain_overflow_dont, 0, "R_SPARC_NONE",FALSE, 0, 0x00000000, TRUE),
|
||
HOWTO (0, 0, 0, 0, FALSE, 0, complain_overflow_dont, 0, "R_SPARC_NONE",FALSE, 0, 0x00000000, TRUE),
|
||
#define RELOC_SPARC_REV32 RELOC_WDISP19
|
||
HOWTO (RELOC_SPARC_REV32, 0, 2, 32, FALSE, 0, complain_overflow_dont, 0,"R_SPARC_REV32",FALSE, 0, 0xffffffff, FALSE),
|
||
};
|
||
|
||
/* Convert standard reloc records to "arelent" format (incl byte swap). */
|
||
|
||
reloc_howto_type howto_table_std[] =
|
||
{
|
||
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone. */
|
||
HOWTO ( 0, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,0,"8", TRUE, 0x000000ff,0x000000ff, FALSE),
|
||
HOWTO ( 1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,0,"16", TRUE, 0x0000ffff,0x0000ffff, FALSE),
|
||
HOWTO ( 2, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,0,"32", TRUE, 0xffffffff,0xffffffff, FALSE),
|
||
HOWTO ( 3, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,0,"64", TRUE, 0xdeaddead,0xdeaddead, FALSE),
|
||
HOWTO ( 4, 0, 0, 8, TRUE, 0, complain_overflow_signed, 0,"DISP8", TRUE, 0x000000ff,0x000000ff, FALSE),
|
||
HOWTO ( 5, 0, 1, 16, TRUE, 0, complain_overflow_signed, 0,"DISP16", TRUE, 0x0000ffff,0x0000ffff, FALSE),
|
||
HOWTO ( 6, 0, 2, 32, TRUE, 0, complain_overflow_signed, 0,"DISP32", TRUE, 0xffffffff,0xffffffff, FALSE),
|
||
HOWTO ( 7, 0, 4, 64, TRUE, 0, complain_overflow_signed, 0,"DISP64", TRUE, 0xfeedface,0xfeedface, FALSE),
|
||
HOWTO ( 8, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"GOT_REL", FALSE, 0,0x00000000, FALSE),
|
||
HOWTO ( 9, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,0,"BASE16", FALSE,0xffffffff,0xffffffff, FALSE),
|
||
HOWTO (10, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,0,"BASE32", FALSE,0xffffffff,0xffffffff, FALSE),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
HOWTO (16, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"JMP_TABLE", FALSE, 0,0x00000000, FALSE),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
HOWTO (32, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"RELATIVE", FALSE, 0,0x00000000, FALSE),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
EMPTY_HOWTO (-1),
|
||
HOWTO (40, 0, 2, 0, FALSE, 0, complain_overflow_bitfield,0,"BASEREL", FALSE, 0,0x00000000, FALSE),
|
||
};
|
||
|
||
#define TABLE_SIZE(TABLE) (sizeof (TABLE) / sizeof (TABLE[0]))
|
||
|
||
reloc_howto_type *
|
||
NAME (aout, reloc_type_lookup) (bfd *abfd, bfd_reloc_code_real_type code)
|
||
{
|
||
#define EXT(i, j) case i: return & howto_table_ext [j]
|
||
#define STD(i, j) case i: return & howto_table_std [j]
|
||
int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
|
||
|
||
if (code == BFD_RELOC_CTOR)
|
||
switch (bfd_get_arch_info (abfd)->bits_per_address)
|
||
{
|
||
case 32:
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
case 64:
|
||
code = BFD_RELOC_64;
|
||
break;
|
||
}
|
||
|
||
if (ext)
|
||
switch (code)
|
||
{
|
||
EXT (BFD_RELOC_8, 0);
|
||
EXT (BFD_RELOC_16, 1);
|
||
EXT (BFD_RELOC_32, 2);
|
||
EXT (BFD_RELOC_HI22, 8);
|
||
EXT (BFD_RELOC_LO10, 11);
|
||
EXT (BFD_RELOC_32_PCREL_S2, 6);
|
||
EXT (BFD_RELOC_SPARC_WDISP22, 7);
|
||
EXT (BFD_RELOC_SPARC13, 10);
|
||
EXT (BFD_RELOC_SPARC_GOT10, 14);
|
||
EXT (BFD_RELOC_SPARC_BASE13, 15);
|
||
EXT (BFD_RELOC_SPARC_GOT13, 15);
|
||
EXT (BFD_RELOC_SPARC_GOT22, 16);
|
||
EXT (BFD_RELOC_SPARC_PC10, 17);
|
||
EXT (BFD_RELOC_SPARC_PC22, 18);
|
||
EXT (BFD_RELOC_SPARC_WPLT30, 19);
|
||
EXT (BFD_RELOC_SPARC_REV32, 26);
|
||
default:
|
||
return NULL;
|
||
}
|
||
else
|
||
/* std relocs. */
|
||
switch (code)
|
||
{
|
||
STD (BFD_RELOC_8, 0);
|
||
STD (BFD_RELOC_16, 1);
|
||
STD (BFD_RELOC_32, 2);
|
||
STD (BFD_RELOC_8_PCREL, 4);
|
||
STD (BFD_RELOC_16_PCREL, 5);
|
||
STD (BFD_RELOC_32_PCREL, 6);
|
||
STD (BFD_RELOC_16_BASEREL, 9);
|
||
STD (BFD_RELOC_32_BASEREL, 10);
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
reloc_howto_type *
|
||
NAME (aout, reloc_name_lookup) (bfd *abfd, const char *r_name)
|
||
{
|
||
unsigned int i, size;
|
||
reloc_howto_type *howto_table;
|
||
|
||
if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
|
||
{
|
||
howto_table = howto_table_ext;
|
||
size = sizeof (howto_table_ext) / sizeof (howto_table_ext[0]);
|
||
}
|
||
else
|
||
{
|
||
howto_table = howto_table_std;
|
||
size = sizeof (howto_table_std) / sizeof (howto_table_std[0]);
|
||
}
|
||
|
||
for (i = 0; i < size; i++)
|
||
if (howto_table[i].name != NULL
|
||
&& strcasecmp (howto_table[i].name, r_name) == 0)
|
||
return &howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
SUBSECTION
|
||
Internal entry points
|
||
|
||
DESCRIPTION
|
||
@file{aoutx.h} exports several routines for accessing the
|
||
contents of an a.out file, which are gathered and exported in
|
||
turn by various format specific files (eg sunos.c).
|
||
*/
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_swap_exec_header_in
|
||
|
||
SYNOPSIS
|
||
void aout_@var{size}_swap_exec_header_in,
|
||
(bfd *abfd,
|
||
struct external_exec *bytes,
|
||
struct internal_exec *execp);
|
||
|
||
DESCRIPTION
|
||
Swap the information in an executable header @var{raw_bytes} taken
|
||
from a raw byte stream memory image into the internal exec header
|
||
structure @var{execp}.
|
||
*/
|
||
|
||
#ifndef NAME_swap_exec_header_in
|
||
void
|
||
NAME (aout, swap_exec_header_in) (bfd *abfd,
|
||
struct external_exec *bytes,
|
||
struct internal_exec *execp)
|
||
{
|
||
/* The internal_exec structure has some fields that are unused in this
|
||
configuration (IE for i960), so ensure that all such uninitialized
|
||
fields are zero'd out. There are places where two of these structs
|
||
are memcmp'd, and thus the contents do matter. */
|
||
memset ((void *) execp, 0, sizeof (struct internal_exec));
|
||
/* Now fill in fields in the execp, from the bytes in the raw data. */
|
||
execp->a_info = H_GET_32 (abfd, bytes->e_info);
|
||
execp->a_text = GET_WORD (abfd, bytes->e_text);
|
||
execp->a_data = GET_WORD (abfd, bytes->e_data);
|
||
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
|
||
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
|
||
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
|
||
execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
|
||
execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
|
||
}
|
||
#define NAME_swap_exec_header_in NAME (aout, swap_exec_header_in)
|
||
#endif
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_swap_exec_header_out
|
||
|
||
SYNOPSIS
|
||
void aout_@var{size}_swap_exec_header_out
|
||
(bfd *abfd,
|
||
struct internal_exec *execp,
|
||
struct external_exec *raw_bytes);
|
||
|
||
DESCRIPTION
|
||
Swap the information in an internal exec header structure
|
||
@var{execp} into the buffer @var{raw_bytes} ready for writing to disk.
|
||
*/
|
||
void
|
||
NAME (aout, swap_exec_header_out) (bfd *abfd,
|
||
struct internal_exec *execp,
|
||
struct external_exec *bytes)
|
||
{
|
||
/* Now fill in fields in the raw data, from the fields in the exec struct. */
|
||
H_PUT_32 (abfd, execp->a_info , bytes->e_info);
|
||
PUT_WORD (abfd, execp->a_text , bytes->e_text);
|
||
PUT_WORD (abfd, execp->a_data , bytes->e_data);
|
||
PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
|
||
PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
|
||
PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
|
||
PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
|
||
PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
|
||
}
|
||
|
||
/* Make all the section for an a.out file. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, make_sections) (bfd *abfd)
|
||
{
|
||
if (obj_textsec (abfd) == NULL && bfd_make_section (abfd, ".text") == NULL)
|
||
return FALSE;
|
||
if (obj_datasec (abfd) == NULL && bfd_make_section (abfd, ".data") == NULL)
|
||
return FALSE;
|
||
if (obj_bsssec (abfd) == NULL && bfd_make_section (abfd, ".bss") == NULL)
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_some_aout_object_p
|
||
|
||
SYNOPSIS
|
||
const bfd_target *aout_@var{size}_some_aout_object_p
|
||
(bfd *abfd,
|
||
struct internal_exec *execp,
|
||
const bfd_target *(*callback_to_real_object_p) (bfd *));
|
||
|
||
DESCRIPTION
|
||
Some a.out variant thinks that the file open in @var{abfd}
|
||
checking is an a.out file. Do some more checking, and set up
|
||
for access if it really is. Call back to the calling
|
||
environment's "finish up" function just before returning, to
|
||
handle any last-minute setup.
|
||
*/
|
||
|
||
const bfd_target *
|
||
NAME (aout, some_aout_object_p) (bfd *abfd,
|
||
struct internal_exec *execp,
|
||
const bfd_target *(*callback_to_real_object_p) (bfd *))
|
||
{
|
||
struct aout_data_struct *rawptr, *oldrawptr;
|
||
const bfd_target *result;
|
||
bfd_size_type amt = sizeof (* rawptr);
|
||
|
||
rawptr = bfd_zalloc (abfd, amt);
|
||
if (rawptr == NULL)
|
||
return NULL;
|
||
|
||
oldrawptr = abfd->tdata.aout_data;
|
||
abfd->tdata.aout_data = rawptr;
|
||
|
||
/* Copy the contents of the old tdata struct.
|
||
In particular, we want the subformat, since for hpux it was set in
|
||
hp300hpux.c:swap_exec_header_in and will be used in
|
||
hp300hpux.c:callback. */
|
||
if (oldrawptr != NULL)
|
||
*abfd->tdata.aout_data = *oldrawptr;
|
||
|
||
abfd->tdata.aout_data->a.hdr = &rawptr->e;
|
||
/* Copy in the internal_exec struct. */
|
||
*(abfd->tdata.aout_data->a.hdr) = *execp;
|
||
execp = abfd->tdata.aout_data->a.hdr;
|
||
|
||
/* Set the file flags. */
|
||
abfd->flags = BFD_NO_FLAGS;
|
||
if (execp->a_drsize || execp->a_trsize)
|
||
abfd->flags |= HAS_RELOC;
|
||
/* Setting of EXEC_P has been deferred to the bottom of this function. */
|
||
if (execp->a_syms)
|
||
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
|
||
if (N_DYNAMIC (*execp))
|
||
abfd->flags |= DYNAMIC;
|
||
|
||
if (N_MAGIC (*execp) == ZMAGIC)
|
||
{
|
||
abfd->flags |= D_PAGED | WP_TEXT;
|
||
adata (abfd).magic = z_magic;
|
||
}
|
||
else if (N_MAGIC (*execp) == QMAGIC)
|
||
{
|
||
abfd->flags |= D_PAGED | WP_TEXT;
|
||
adata (abfd).magic = z_magic;
|
||
adata (abfd).subformat = q_magic_format;
|
||
}
|
||
else if (N_MAGIC (*execp) == NMAGIC)
|
||
{
|
||
abfd->flags |= WP_TEXT;
|
||
adata (abfd).magic = n_magic;
|
||
}
|
||
else if (N_MAGIC (*execp) == OMAGIC
|
||
|| N_MAGIC (*execp) == BMAGIC)
|
||
adata (abfd).magic = o_magic;
|
||
else
|
||
/* Should have been checked with N_BADMAG before this routine
|
||
was called. */
|
||
abort ();
|
||
|
||
bfd_get_start_address (abfd) = execp->a_entry;
|
||
|
||
obj_aout_symbols (abfd) = NULL;
|
||
bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist);
|
||
|
||
/* The default relocation entry size is that of traditional V7 Unix. */
|
||
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
|
||
|
||
/* The default symbol entry size is that of traditional Unix. */
|
||
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
|
||
|
||
#ifdef USE_MMAP
|
||
bfd_init_window (&obj_aout_sym_window (abfd));
|
||
bfd_init_window (&obj_aout_string_window (abfd));
|
||
#endif
|
||
obj_aout_external_syms (abfd) = NULL;
|
||
obj_aout_external_strings (abfd) = NULL;
|
||
obj_aout_sym_hashes (abfd) = NULL;
|
||
|
||
if (! NAME (aout, make_sections) (abfd))
|
||
goto error_ret;
|
||
|
||
obj_datasec (abfd)->size = execp->a_data;
|
||
obj_bsssec (abfd)->size = execp->a_bss;
|
||
|
||
obj_textsec (abfd)->flags =
|
||
(execp->a_trsize != 0
|
||
? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC)
|
||
: (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
|
||
obj_datasec (abfd)->flags =
|
||
(execp->a_drsize != 0
|
||
? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC)
|
||
: (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
|
||
obj_bsssec (abfd)->flags = SEC_ALLOC;
|
||
|
||
#ifdef THIS_IS_ONLY_DOCUMENTATION
|
||
/* The common code can't fill in these things because they depend
|
||
on either the start address of the text segment, the rounding
|
||
up of virtual addresses between segments, or the starting file
|
||
position of the text segment -- all of which varies among different
|
||
versions of a.out. */
|
||
|
||
/* Call back to the format-dependent code to fill in the rest of the
|
||
fields and do any further cleanup. Things that should be filled
|
||
in by the callback: */
|
||
|
||
struct exec *execp = exec_hdr (abfd);
|
||
|
||
obj_textsec (abfd)->size = N_TXTSIZE (*execp);
|
||
/* Data and bss are already filled in since they're so standard. */
|
||
|
||
/* The virtual memory addresses of the sections. */
|
||
obj_textsec (abfd)->vma = N_TXTADDR (*execp);
|
||
obj_datasec (abfd)->vma = N_DATADDR (*execp);
|
||
obj_bsssec (abfd)->vma = N_BSSADDR (*execp);
|
||
|
||
/* The file offsets of the sections. */
|
||
obj_textsec (abfd)->filepos = N_TXTOFF (*execp);
|
||
obj_datasec (abfd)->filepos = N_DATOFF (*execp);
|
||
|
||
/* The file offsets of the relocation info. */
|
||
obj_textsec (abfd)->rel_filepos = N_TRELOFF (*execp);
|
||
obj_datasec (abfd)->rel_filepos = N_DRELOFF (*execp);
|
||
|
||
/* The file offsets of the string table and symbol table. */
|
||
obj_str_filepos (abfd) = N_STROFF (*execp);
|
||
obj_sym_filepos (abfd) = N_SYMOFF (*execp);
|
||
|
||
/* Determine the architecture and machine type of the object file. */
|
||
switch (N_MACHTYPE (*exec_hdr (abfd)))
|
||
{
|
||
default:
|
||
abfd->obj_arch = bfd_arch_obscure;
|
||
break;
|
||
}
|
||
|
||
adata (abfd)->page_size = TARGET_PAGE_SIZE;
|
||
adata (abfd)->segment_size = SEGMENT_SIZE;
|
||
adata (abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
|
||
|
||
return abfd->xvec;
|
||
|
||
/* The architecture is encoded in various ways in various a.out variants,
|
||
or is not encoded at all in some of them. The relocation size depends
|
||
on the architecture and the a.out variant. Finally, the return value
|
||
is the bfd_target vector in use. If an error occurs, return zero and
|
||
set bfd_error to the appropriate error code.
|
||
|
||
Formats such as b.out, which have additional fields in the a.out
|
||
header, should cope with them in this callback as well. */
|
||
#endif /* DOCUMENTATION */
|
||
|
||
result = (*callback_to_real_object_p) (abfd);
|
||
|
||
/* Now that the segment addresses have been worked out, take a better
|
||
guess at whether the file is executable. If the entry point
|
||
is within the text segment, assume it is. (This makes files
|
||
executable even if their entry point address is 0, as long as
|
||
their text starts at zero.).
|
||
|
||
This test had to be changed to deal with systems where the text segment
|
||
runs at a different location than the default. The problem is that the
|
||
entry address can appear to be outside the text segment, thus causing an
|
||
erroneous conclusion that the file isn't executable.
|
||
|
||
To fix this, we now accept any non-zero entry point as an indication of
|
||
executability. This will work most of the time, since only the linker
|
||
sets the entry point, and that is likely to be non-zero for most systems. */
|
||
|
||
if (execp->a_entry != 0
|
||
|| (execp->a_entry >= obj_textsec (abfd)->vma
|
||
&& execp->a_entry < (obj_textsec (abfd)->vma
|
||
+ obj_textsec (abfd)->size)))
|
||
abfd->flags |= EXEC_P;
|
||
#ifdef STAT_FOR_EXEC
|
||
else
|
||
{
|
||
struct stat stat_buf;
|
||
|
||
/* The original heuristic doesn't work in some important cases.
|
||
The a.out file has no information about the text start
|
||
address. For files (like kernels) linked to non-standard
|
||
addresses (ld -Ttext nnn) the entry point may not be between
|
||
the default text start (obj_textsec(abfd)->vma) and
|
||
(obj_textsec(abfd)->vma) + text size. This is not just a mach
|
||
issue. Many kernels are loaded at non standard addresses. */
|
||
if (abfd->iostream != NULL
|
||
&& (abfd->flags & BFD_IN_MEMORY) == 0
|
||
&& (fstat (fileno ((FILE *) (abfd->iostream)), &stat_buf) == 0)
|
||
&& ((stat_buf.st_mode & 0111) != 0))
|
||
abfd->flags |= EXEC_P;
|
||
}
|
||
#endif /* STAT_FOR_EXEC */
|
||
|
||
if (result)
|
||
return result;
|
||
|
||
error_ret:
|
||
bfd_release (abfd, rawptr);
|
||
abfd->tdata.aout_data = oldrawptr;
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_mkobject
|
||
|
||
SYNOPSIS
|
||
bfd_boolean aout_@var{size}_mkobject, (bfd *abfd);
|
||
|
||
DESCRIPTION
|
||
Initialize BFD @var{abfd} for use with a.out files.
|
||
*/
|
||
|
||
bfd_boolean
|
||
NAME (aout, mkobject) (bfd *abfd)
|
||
{
|
||
struct aout_data_struct *rawptr;
|
||
bfd_size_type amt = sizeof (* rawptr);
|
||
|
||
bfd_set_error (bfd_error_system_call);
|
||
|
||
rawptr = bfd_zalloc (abfd, amt);
|
||
if (rawptr == NULL)
|
||
return FALSE;
|
||
|
||
abfd->tdata.aout_data = rawptr;
|
||
exec_hdr (abfd) = &(rawptr->e);
|
||
|
||
obj_textsec (abfd) = NULL;
|
||
obj_datasec (abfd) = NULL;
|
||
obj_bsssec (abfd) = NULL;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_machine_type
|
||
|
||
SYNOPSIS
|
||
enum machine_type aout_@var{size}_machine_type
|
||
(enum bfd_architecture arch,
|
||
unsigned long machine,
|
||
bfd_boolean *unknown);
|
||
|
||
DESCRIPTION
|
||
Keep track of machine architecture and machine type for
|
||
a.out's. Return the <<machine_type>> for a particular
|
||
architecture and machine, or <<M_UNKNOWN>> if that exact architecture
|
||
and machine can't be represented in a.out format.
|
||
|
||
If the architecture is understood, machine type 0 (default)
|
||
is always understood.
|
||
*/
|
||
|
||
enum machine_type
|
||
NAME (aout, machine_type) (enum bfd_architecture arch,
|
||
unsigned long machine,
|
||
bfd_boolean *unknown)
|
||
{
|
||
enum machine_type arch_flags;
|
||
|
||
arch_flags = M_UNKNOWN;
|
||
*unknown = TRUE;
|
||
|
||
switch (arch)
|
||
{
|
||
case bfd_arch_sparc:
|
||
if (machine == 0
|
||
|| machine == bfd_mach_sparc
|
||
|| machine == bfd_mach_sparc_sparclite
|
||
|| machine == bfd_mach_sparc_sparclite_le
|
||
|| machine == bfd_mach_sparc_v8plus
|
||
|| machine == bfd_mach_sparc_v8plusa
|
||
|| machine == bfd_mach_sparc_v8plusb
|
||
|| machine == bfd_mach_sparc_v9
|
||
|| machine == bfd_mach_sparc_v9a
|
||
|| machine == bfd_mach_sparc_v9b)
|
||
arch_flags = M_SPARC;
|
||
else if (machine == bfd_mach_sparc_sparclet)
|
||
arch_flags = M_SPARCLET;
|
||
break;
|
||
|
||
case bfd_arch_m68k:
|
||
switch (machine)
|
||
{
|
||
case 0: arch_flags = M_68010; break;
|
||
case bfd_mach_m68000: arch_flags = M_UNKNOWN; *unknown = FALSE; break;
|
||
case bfd_mach_m68010: arch_flags = M_68010; break;
|
||
case bfd_mach_m68020: arch_flags = M_68020; break;
|
||
default: arch_flags = M_UNKNOWN; break;
|
||
}
|
||
break;
|
||
|
||
case bfd_arch_i386:
|
||
if (machine == 0
|
||
|| machine == bfd_mach_i386_i386
|
||
|| machine == bfd_mach_i386_i386_intel_syntax)
|
||
arch_flags = M_386;
|
||
break;
|
||
|
||
case bfd_arch_arm:
|
||
if (machine == 0)
|
||
arch_flags = M_ARM;
|
||
break;
|
||
|
||
case bfd_arch_mips:
|
||
switch (machine)
|
||
{
|
||
case 0:
|
||
case bfd_mach_mips3000:
|
||
case bfd_mach_mips3900:
|
||
arch_flags = M_MIPS1;
|
||
break;
|
||
case bfd_mach_mips6000:
|
||
arch_flags = M_MIPS2;
|
||
break;
|
||
case bfd_mach_mips4000:
|
||
case bfd_mach_mips4010:
|
||
case bfd_mach_mips4100:
|
||
case bfd_mach_mips4300:
|
||
case bfd_mach_mips4400:
|
||
case bfd_mach_mips4600:
|
||
case bfd_mach_mips4650:
|
||
case bfd_mach_mips8000:
|
||
case bfd_mach_mips9000:
|
||
case bfd_mach_mips10000:
|
||
case bfd_mach_mips12000:
|
||
case bfd_mach_mips16:
|
||
case bfd_mach_mipsisa32:
|
||
case bfd_mach_mipsisa32r2:
|
||
case bfd_mach_mips5:
|
||
case bfd_mach_mipsisa64:
|
||
case bfd_mach_mipsisa64r2:
|
||
case bfd_mach_mips_sb1:
|
||
/* FIXME: These should be MIPS3, MIPS4, MIPS16, MIPS32, etc. */
|
||
arch_flags = M_MIPS2;
|
||
break;
|
||
default:
|
||
arch_flags = M_UNKNOWN;
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case bfd_arch_ns32k:
|
||
switch (machine)
|
||
{
|
||
case 0: arch_flags = M_NS32532; break;
|
||
case 32032: arch_flags = M_NS32032; break;
|
||
case 32532: arch_flags = M_NS32532; break;
|
||
default: arch_flags = M_UNKNOWN; break;
|
||
}
|
||
break;
|
||
|
||
case bfd_arch_vax:
|
||
*unknown = FALSE;
|
||
break;
|
||
|
||
case bfd_arch_cris:
|
||
if (machine == 0 || machine == 255)
|
||
arch_flags = M_CRIS;
|
||
break;
|
||
|
||
case bfd_arch_m88k:
|
||
*unknown = FALSE;
|
||
break;
|
||
|
||
default:
|
||
arch_flags = M_UNKNOWN;
|
||
}
|
||
|
||
if (arch_flags != M_UNKNOWN)
|
||
*unknown = FALSE;
|
||
|
||
return arch_flags;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_set_arch_mach
|
||
|
||
SYNOPSIS
|
||
bfd_boolean aout_@var{size}_set_arch_mach,
|
||
(bfd *,
|
||
enum bfd_architecture arch,
|
||
unsigned long machine);
|
||
|
||
DESCRIPTION
|
||
Set the architecture and the machine of the BFD @var{abfd} to the
|
||
values @var{arch} and @var{machine}. Verify that @var{abfd}'s format
|
||
can support the architecture required.
|
||
*/
|
||
|
||
bfd_boolean
|
||
NAME (aout, set_arch_mach) (bfd *abfd,
|
||
enum bfd_architecture arch,
|
||
unsigned long machine)
|
||
{
|
||
if (! bfd_default_set_arch_mach (abfd, arch, machine))
|
||
return FALSE;
|
||
|
||
if (arch != bfd_arch_unknown)
|
||
{
|
||
bfd_boolean unknown;
|
||
|
||
NAME (aout, machine_type) (arch, machine, &unknown);
|
||
if (unknown)
|
||
return FALSE;
|
||
}
|
||
|
||
/* Determine the size of a relocation entry. */
|
||
switch (arch)
|
||
{
|
||
case bfd_arch_sparc:
|
||
case bfd_arch_mips:
|
||
obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
|
||
break;
|
||
default:
|
||
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
|
||
break;
|
||
}
|
||
|
||
return (*aout_backend_info (abfd)->set_sizes) (abfd);
|
||
}
|
||
|
||
static void
|
||
adjust_o_magic (bfd *abfd, struct internal_exec *execp)
|
||
{
|
||
file_ptr pos = adata (abfd).exec_bytes_size;
|
||
bfd_vma vma = 0;
|
||
int pad = 0;
|
||
|
||
/* Text. */
|
||
obj_textsec (abfd)->filepos = pos;
|
||
if (!obj_textsec (abfd)->user_set_vma)
|
||
obj_textsec (abfd)->vma = vma;
|
||
else
|
||
vma = obj_textsec (abfd)->vma;
|
||
|
||
pos += obj_textsec (abfd)->size;
|
||
vma += obj_textsec (abfd)->size;
|
||
|
||
/* Data. */
|
||
if (!obj_datasec (abfd)->user_set_vma)
|
||
{
|
||
obj_textsec (abfd)->size += pad;
|
||
pos += pad;
|
||
vma += pad;
|
||
obj_datasec (abfd)->vma = vma;
|
||
}
|
||
else
|
||
vma = obj_datasec (abfd)->vma;
|
||
obj_datasec (abfd)->filepos = pos;
|
||
pos += obj_datasec (abfd)->size;
|
||
vma += obj_datasec (abfd)->size;
|
||
|
||
/* BSS. */
|
||
if (!obj_bsssec (abfd)->user_set_vma)
|
||
{
|
||
obj_datasec (abfd)->size += pad;
|
||
pos += pad;
|
||
vma += pad;
|
||
obj_bsssec (abfd)->vma = vma;
|
||
}
|
||
else
|
||
{
|
||
/* The VMA of the .bss section is set by the VMA of the
|
||
.data section plus the size of the .data section. We may
|
||
need to add padding bytes to make this true. */
|
||
pad = obj_bsssec (abfd)->vma - vma;
|
||
if (pad > 0)
|
||
{
|
||
obj_datasec (abfd)->size += pad;
|
||
pos += pad;
|
||
}
|
||
}
|
||
obj_bsssec (abfd)->filepos = pos;
|
||
|
||
/* Fix up the exec header. */
|
||
execp->a_text = obj_textsec (abfd)->size;
|
||
execp->a_data = obj_datasec (abfd)->size;
|
||
execp->a_bss = obj_bsssec (abfd)->size;
|
||
N_SET_MAGIC (*execp, OMAGIC);
|
||
}
|
||
|
||
static void
|
||
adjust_z_magic (bfd *abfd, struct internal_exec *execp)
|
||
{
|
||
bfd_size_type data_pad, text_pad;
|
||
file_ptr text_end;
|
||
const struct aout_backend_data *abdp;
|
||
/* TRUE if text includes exec header. */
|
||
bfd_boolean ztih;
|
||
|
||
abdp = aout_backend_info (abfd);
|
||
|
||
/* Text. */
|
||
ztih = (abdp != NULL
|
||
&& (abdp->text_includes_header
|
||
|| obj_aout_subformat (abfd) == q_magic_format));
|
||
obj_textsec (abfd)->filepos = (ztih
|
||
? adata (abfd).exec_bytes_size
|
||
: adata (abfd).zmagic_disk_block_size);
|
||
if (! obj_textsec (abfd)->user_set_vma)
|
||
{
|
||
/* ?? Do we really need to check for relocs here? */
|
||
obj_textsec (abfd)->vma = ((abfd->flags & HAS_RELOC)
|
||
? 0
|
||
: (ztih
|
||
? (abdp->default_text_vma
|
||
+ adata (abfd).exec_bytes_size)
|
||
: abdp->default_text_vma));
|
||
text_pad = 0;
|
||
}
|
||
else
|
||
{
|
||
/* The .text section is being loaded at an unusual address. We
|
||
may need to pad it such that the .data section starts at a page
|
||
boundary. */
|
||
if (ztih)
|
||
text_pad = ((obj_textsec (abfd)->filepos - obj_textsec (abfd)->vma)
|
||
& (adata (abfd).page_size - 1));
|
||
else
|
||
text_pad = ((- obj_textsec (abfd)->vma)
|
||
& (adata (abfd).page_size - 1));
|
||
}
|
||
|
||
/* Find start of data. */
|
||
if (ztih)
|
||
{
|
||
text_end = obj_textsec (abfd)->filepos + obj_textsec (abfd)->size;
|
||
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
|
||
}
|
||
else
|
||
{
|
||
/* Note that if page_size == zmagic_disk_block_size, then
|
||
filepos == page_size, and this case is the same as the ztih
|
||
case. */
|
||
text_end = obj_textsec (abfd)->size;
|
||
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
|
||
text_end += obj_textsec (abfd)->filepos;
|
||
}
|
||
obj_textsec (abfd)->size += text_pad;
|
||
text_end += text_pad;
|
||
|
||
/* Data. */
|
||
if (!obj_datasec (abfd)->user_set_vma)
|
||
{
|
||
bfd_vma vma;
|
||
vma = obj_textsec (abfd)->vma + obj_textsec (abfd)->size;
|
||
obj_datasec (abfd)->vma = BFD_ALIGN (vma, adata (abfd).segment_size);
|
||
}
|
||
if (abdp && abdp->zmagic_mapped_contiguous)
|
||
{
|
||
asection * text = obj_textsec (abfd);
|
||
asection * data = obj_datasec (abfd);
|
||
|
||
text_pad = data->vma - (text->vma + text->size);
|
||
/* Only pad the text section if the data
|
||
section is going to be placed after it. */
|
||
if (text_pad > 0)
|
||
text->size += text_pad;
|
||
}
|
||
obj_datasec (abfd)->filepos = (obj_textsec (abfd)->filepos
|
||
+ obj_textsec (abfd)->size);
|
||
|
||
/* Fix up exec header while we're at it. */
|
||
execp->a_text = obj_textsec (abfd)->size;
|
||
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
|
||
execp->a_text += adata (abfd).exec_bytes_size;
|
||
if (obj_aout_subformat (abfd) == q_magic_format)
|
||
N_SET_MAGIC (*execp, QMAGIC);
|
||
else
|
||
N_SET_MAGIC (*execp, ZMAGIC);
|
||
|
||
/* Spec says data section should be rounded up to page boundary. */
|
||
obj_datasec (abfd)->size
|
||
= align_power (obj_datasec (abfd)->size,
|
||
obj_bsssec (abfd)->alignment_power);
|
||
execp->a_data = BFD_ALIGN (obj_datasec (abfd)->size,
|
||
adata (abfd).page_size);
|
||
data_pad = execp->a_data - obj_datasec (abfd)->size;
|
||
|
||
/* BSS. */
|
||
if (!obj_bsssec (abfd)->user_set_vma)
|
||
obj_bsssec (abfd)->vma = (obj_datasec (abfd)->vma
|
||
+ obj_datasec (abfd)->size);
|
||
/* If the BSS immediately follows the data section and extra space
|
||
in the page is left after the data section, fudge data
|
||
in the header so that the bss section looks smaller by that
|
||
amount. We'll start the bss section there, and lie to the OS.
|
||
(Note that a linker script, as well as the above assignment,
|
||
could have explicitly set the BSS vma to immediately follow
|
||
the data section.) */
|
||
if (align_power (obj_bsssec (abfd)->vma, obj_bsssec (abfd)->alignment_power)
|
||
== obj_datasec (abfd)->vma + obj_datasec (abfd)->size)
|
||
execp->a_bss = (data_pad > obj_bsssec (abfd)->size
|
||
? 0 : obj_bsssec (abfd)->size - data_pad);
|
||
else
|
||
execp->a_bss = obj_bsssec (abfd)->size;
|
||
}
|
||
|
||
static void
|
||
adjust_n_magic (bfd *abfd, struct internal_exec *execp)
|
||
{
|
||
file_ptr pos = adata (abfd).exec_bytes_size;
|
||
bfd_vma vma = 0;
|
||
int pad;
|
||
|
||
/* Text. */
|
||
obj_textsec (abfd)->filepos = pos;
|
||
if (!obj_textsec (abfd)->user_set_vma)
|
||
obj_textsec (abfd)->vma = vma;
|
||
else
|
||
vma = obj_textsec (abfd)->vma;
|
||
pos += obj_textsec (abfd)->size;
|
||
vma += obj_textsec (abfd)->size;
|
||
|
||
/* Data. */
|
||
obj_datasec (abfd)->filepos = pos;
|
||
if (!obj_datasec (abfd)->user_set_vma)
|
||
obj_datasec (abfd)->vma = BFD_ALIGN (vma, adata (abfd).segment_size);
|
||
vma = obj_datasec (abfd)->vma;
|
||
|
||
/* Since BSS follows data immediately, see if it needs alignment. */
|
||
vma += obj_datasec (abfd)->size;
|
||
pad = align_power (vma, obj_bsssec (abfd)->alignment_power) - vma;
|
||
obj_datasec (abfd)->size += pad;
|
||
pos += obj_datasec (abfd)->size;
|
||
|
||
/* BSS. */
|
||
if (!obj_bsssec (abfd)->user_set_vma)
|
||
obj_bsssec (abfd)->vma = vma;
|
||
else
|
||
vma = obj_bsssec (abfd)->vma;
|
||
|
||
/* Fix up exec header. */
|
||
execp->a_text = obj_textsec (abfd)->size;
|
||
execp->a_data = obj_datasec (abfd)->size;
|
||
execp->a_bss = obj_bsssec (abfd)->size;
|
||
N_SET_MAGIC (*execp, NMAGIC);
|
||
}
|
||
|
||
bfd_boolean
|
||
NAME (aout, adjust_sizes_and_vmas) (bfd *abfd,
|
||
bfd_size_type *text_size,
|
||
file_ptr *text_end ATTRIBUTE_UNUSED)
|
||
{
|
||
struct internal_exec *execp = exec_hdr (abfd);
|
||
|
||
if (! NAME (aout, make_sections) (abfd))
|
||
return FALSE;
|
||
|
||
if (adata (abfd).magic != undecided_magic)
|
||
return TRUE;
|
||
|
||
obj_textsec (abfd)->size =
|
||
align_power (obj_textsec (abfd)->size,
|
||
obj_textsec (abfd)->alignment_power);
|
||
|
||
*text_size = obj_textsec (abfd)->size;
|
||
/* Rule (heuristic) for when to pad to a new page. Note that there
|
||
are (at least) two ways demand-paged (ZMAGIC) files have been
|
||
handled. Most Berkeley-based systems start the text segment at
|
||
(TARGET_PAGE_SIZE). However, newer versions of SUNOS start the text
|
||
segment right after the exec header; the latter is counted in the
|
||
text segment size, and is paged in by the kernel with the rest of
|
||
the text. */
|
||
|
||
/* This perhaps isn't the right way to do this, but made it simpler for me
|
||
to understand enough to implement it. Better would probably be to go
|
||
right from BFD flags to alignment/positioning characteristics. But the
|
||
old code was sloppy enough about handling the flags, and had enough
|
||
other magic, that it was a little hard for me to understand. I think
|
||
I understand it better now, but I haven't time to do the cleanup this
|
||
minute. */
|
||
|
||
if (abfd->flags & D_PAGED)
|
||
/* Whether or not WP_TEXT is set -- let D_PAGED override. */
|
||
adata (abfd).magic = z_magic;
|
||
else if (abfd->flags & WP_TEXT)
|
||
adata (abfd).magic = n_magic;
|
||
else
|
||
adata (abfd).magic = o_magic;
|
||
|
||
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
|
||
#if __GNUC__ >= 2
|
||
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
|
||
({ char *str;
|
||
switch (adata (abfd).magic)
|
||
{
|
||
case n_magic: str = "NMAGIC"; break;
|
||
case o_magic: str = "OMAGIC"; break;
|
||
case z_magic: str = "ZMAGIC"; break;
|
||
default: abort ();
|
||
}
|
||
str;
|
||
}),
|
||
obj_textsec (abfd)->vma, obj_textsec (abfd)->size,
|
||
obj_textsec (abfd)->alignment_power,
|
||
obj_datasec (abfd)->vma, obj_datasec (abfd)->size,
|
||
obj_datasec (abfd)->alignment_power,
|
||
obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size,
|
||
obj_bsssec (abfd)->alignment_power);
|
||
#endif
|
||
#endif
|
||
|
||
switch (adata (abfd).magic)
|
||
{
|
||
case o_magic:
|
||
adjust_o_magic (abfd, execp);
|
||
break;
|
||
case z_magic:
|
||
adjust_z_magic (abfd, execp);
|
||
break;
|
||
case n_magic:
|
||
adjust_n_magic (abfd, execp);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
#ifdef BFD_AOUT_DEBUG
|
||
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
|
||
obj_textsec (abfd)->vma, obj_textsec (abfd)->size,
|
||
obj_textsec (abfd)->filepos,
|
||
obj_datasec (abfd)->vma, obj_datasec (abfd)->size,
|
||
obj_datasec (abfd)->filepos,
|
||
obj_bsssec (abfd)->vma, obj_bsssec (abfd)->size);
|
||
#endif
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_@var{size}_new_section_hook
|
||
|
||
SYNOPSIS
|
||
bfd_boolean aout_@var{size}_new_section_hook,
|
||
(bfd *abfd,
|
||
asection *newsect);
|
||
|
||
DESCRIPTION
|
||
Called by the BFD in response to a @code{bfd_make_section}
|
||
request.
|
||
*/
|
||
bfd_boolean
|
||
NAME (aout, new_section_hook) (bfd *abfd, asection *newsect)
|
||
{
|
||
/* Align to double at least. */
|
||
newsect->alignment_power = bfd_get_arch_info (abfd)->section_align_power;
|
||
|
||
if (bfd_get_format (abfd) == bfd_object)
|
||
{
|
||
if (obj_textsec (abfd) == NULL && !strcmp (newsect->name, ".text"))
|
||
{
|
||
obj_textsec (abfd)= newsect;
|
||
newsect->target_index = N_TEXT;
|
||
}
|
||
else if (obj_datasec (abfd) == NULL && !strcmp (newsect->name, ".data"))
|
||
{
|
||
obj_datasec (abfd) = newsect;
|
||
newsect->target_index = N_DATA;
|
||
}
|
||
else if (obj_bsssec (abfd) == NULL && !strcmp (newsect->name, ".bss"))
|
||
{
|
||
obj_bsssec (abfd) = newsect;
|
||
newsect->target_index = N_BSS;
|
||
}
|
||
}
|
||
|
||
/* We allow more than three sections internally. */
|
||
return _bfd_generic_new_section_hook (abfd, newsect);
|
||
}
|
||
|
||
bfd_boolean
|
||
NAME (aout, set_section_contents) (bfd *abfd,
|
||
sec_ptr section,
|
||
const void * location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
file_ptr text_end;
|
||
bfd_size_type text_size;
|
||
|
||
if (! abfd->output_has_begun)
|
||
{
|
||
if (! NAME (aout, adjust_sizes_and_vmas) (abfd, &text_size, &text_end))
|
||
return FALSE;
|
||
}
|
||
|
||
if (section == obj_bsssec (abfd))
|
||
{
|
||
bfd_set_error (bfd_error_no_contents);
|
||
return FALSE;
|
||
}
|
||
|
||
if (section != obj_textsec (abfd)
|
||
&& section != obj_datasec (abfd))
|
||
{
|
||
if (aout_section_merge_with_text_p (abfd, section))
|
||
section->filepos = obj_textsec (abfd)->filepos +
|
||
(section->vma - obj_textsec (abfd)->vma);
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s: can not represent section `%s' in a.out object file format"),
|
||
bfd_get_filename (abfd), bfd_get_section_name (abfd, section));
|
||
bfd_set_error (bfd_error_nonrepresentable_section);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (count != 0)
|
||
{
|
||
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0
|
||
|| bfd_bwrite (location, count, abfd) != count)
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Read the external symbols from an a.out file. */
|
||
|
||
static bfd_boolean
|
||
aout_get_external_symbols (bfd *abfd)
|
||
{
|
||
if (obj_aout_external_syms (abfd) == NULL)
|
||
{
|
||
bfd_size_type count;
|
||
struct external_nlist *syms;
|
||
bfd_size_type amt;
|
||
|
||
count = exec_hdr (abfd)->a_syms / EXTERNAL_NLIST_SIZE;
|
||
|
||
#ifdef USE_MMAP
|
||
if (! bfd_get_file_window (abfd, obj_sym_filepos (abfd),
|
||
exec_hdr (abfd)->a_syms,
|
||
&obj_aout_sym_window (abfd), TRUE))
|
||
return FALSE;
|
||
syms = (struct external_nlist *) obj_aout_sym_window (abfd).data;
|
||
#else
|
||
/* We allocate using malloc to make the values easy to free
|
||
later on. If we put them on the objalloc it might not be
|
||
possible to free them. */
|
||
syms = bfd_malloc (count * EXTERNAL_NLIST_SIZE);
|
||
if (syms == NULL && count != 0)
|
||
return FALSE;
|
||
|
||
amt = exec_hdr (abfd)->a_syms;
|
||
if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0
|
||
|| bfd_bread (syms, amt, abfd) != amt)
|
||
{
|
||
free (syms);
|
||
return FALSE;
|
||
}
|
||
#endif
|
||
|
||
obj_aout_external_syms (abfd) = syms;
|
||
obj_aout_external_sym_count (abfd) = count;
|
||
}
|
||
|
||
if (obj_aout_external_strings (abfd) == NULL
|
||
&& exec_hdr (abfd)->a_syms != 0)
|
||
{
|
||
unsigned char string_chars[BYTES_IN_WORD];
|
||
bfd_size_type stringsize;
|
||
char *strings;
|
||
bfd_size_type amt = BYTES_IN_WORD;
|
||
|
||
/* Get the size of the strings. */
|
||
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|
||
|| bfd_bread ((void *) string_chars, amt, abfd) != amt)
|
||
return FALSE;
|
||
stringsize = GET_WORD (abfd, string_chars);
|
||
|
||
#ifdef USE_MMAP
|
||
if (! bfd_get_file_window (abfd, obj_str_filepos (abfd), stringsize,
|
||
&obj_aout_string_window (abfd), TRUE))
|
||
return FALSE;
|
||
strings = (char *) obj_aout_string_window (abfd).data;
|
||
#else
|
||
strings = bfd_malloc (stringsize + 1);
|
||
if (strings == NULL)
|
||
return FALSE;
|
||
|
||
/* Skip space for the string count in the buffer for convenience
|
||
when using indexes. */
|
||
amt = stringsize - BYTES_IN_WORD;
|
||
if (bfd_bread (strings + BYTES_IN_WORD, amt, abfd) != amt)
|
||
{
|
||
free (strings);
|
||
return FALSE;
|
||
}
|
||
#endif
|
||
|
||
/* Ensure that a zero index yields an empty string. */
|
||
strings[0] = '\0';
|
||
|
||
strings[stringsize - 1] = 0;
|
||
|
||
obj_aout_external_strings (abfd) = strings;
|
||
obj_aout_external_string_size (abfd) = stringsize;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Translate an a.out symbol into a BFD symbol. The desc, other, type
|
||
and symbol->value fields of CACHE_PTR will be set from the a.out
|
||
nlist structure. This function is responsible for setting
|
||
symbol->flags and symbol->section, and adjusting symbol->value. */
|
||
|
||
static bfd_boolean
|
||
translate_from_native_sym_flags (bfd *abfd, aout_symbol_type *cache_ptr)
|
||
{
|
||
flagword visible;
|
||
|
||
if ((cache_ptr->type & N_STAB) != 0
|
||
|| cache_ptr->type == N_FN)
|
||
{
|
||
asection *sec;
|
||
|
||
/* This is a debugging symbol. */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING;
|
||
|
||
/* Work out the symbol section. */
|
||
switch (cache_ptr->type & N_TYPE)
|
||
{
|
||
case N_TEXT:
|
||
case N_FN:
|
||
sec = obj_textsec (abfd);
|
||
break;
|
||
case N_DATA:
|
||
sec = obj_datasec (abfd);
|
||
break;
|
||
case N_BSS:
|
||
sec = obj_bsssec (abfd);
|
||
break;
|
||
default:
|
||
case N_ABS:
|
||
sec = bfd_abs_section_ptr;
|
||
break;
|
||
}
|
||
|
||
cache_ptr->symbol.section = sec;
|
||
cache_ptr->symbol.value -= sec->vma;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Get the default visibility. This does not apply to all types, so
|
||
we just hold it in a local variable to use if wanted. */
|
||
if ((cache_ptr->type & N_EXT) == 0)
|
||
visible = BSF_LOCAL;
|
||
else
|
||
visible = BSF_GLOBAL;
|
||
|
||
switch (cache_ptr->type)
|
||
{
|
||
default:
|
||
case N_ABS: case N_ABS | N_EXT:
|
||
cache_ptr->symbol.section = bfd_abs_section_ptr;
|
||
cache_ptr->symbol.flags = visible;
|
||
break;
|
||
|
||
case N_UNDF | N_EXT:
|
||
if (cache_ptr->symbol.value != 0)
|
||
{
|
||
/* This is a common symbol. */
|
||
cache_ptr->symbol.flags = BSF_GLOBAL;
|
||
cache_ptr->symbol.section = bfd_com_section_ptr;
|
||
}
|
||
else
|
||
{
|
||
cache_ptr->symbol.flags = 0;
|
||
cache_ptr->symbol.section = bfd_und_section_ptr;
|
||
}
|
||
break;
|
||
|
||
case N_TEXT: case N_TEXT | N_EXT:
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
||
cache_ptr->symbol.flags = visible;
|
||
break;
|
||
|
||
/* N_SETV symbols used to represent set vectors placed in the
|
||
data section. They are no longer generated. Theoretically,
|
||
it was possible to extract the entries and combine them with
|
||
new ones, although I don't know if that was ever actually
|
||
done. Unless that feature is restored, treat them as data
|
||
symbols. */
|
||
case N_SETV: case N_SETV | N_EXT:
|
||
case N_DATA: case N_DATA | N_EXT:
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
||
cache_ptr->symbol.flags = visible;
|
||
break;
|
||
|
||
case N_BSS: case N_BSS | N_EXT:
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
||
cache_ptr->symbol.flags = visible;
|
||
break;
|
||
|
||
case N_SETA: case N_SETA | N_EXT:
|
||
case N_SETT: case N_SETT | N_EXT:
|
||
case N_SETD: case N_SETD | N_EXT:
|
||
case N_SETB: case N_SETB | N_EXT:
|
||
{
|
||
/* This code is no longer needed. It used to be used to make
|
||
the linker handle set symbols, but they are now handled in
|
||
the add_symbols routine instead. */
|
||
switch (cache_ptr->type & N_TYPE)
|
||
{
|
||
case N_SETA:
|
||
cache_ptr->symbol.section = bfd_abs_section_ptr;
|
||
break;
|
||
case N_SETT:
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
break;
|
||
case N_SETD:
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
break;
|
||
case N_SETB:
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
break;
|
||
}
|
||
|
||
cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
|
||
}
|
||
break;
|
||
|
||
case N_WARNING:
|
||
/* This symbol is the text of a warning message. The next
|
||
symbol is the symbol to associate the warning with. If a
|
||
reference is made to that symbol, a warning is issued. */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
|
||
cache_ptr->symbol.section = bfd_abs_section_ptr;
|
||
break;
|
||
|
||
case N_INDR: case N_INDR | N_EXT:
|
||
/* An indirect symbol. This consists of two symbols in a row.
|
||
The first symbol is the name of the indirection. The second
|
||
symbol is the name of the target. A reference to the first
|
||
symbol becomes a reference to the second. */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT | visible;
|
||
cache_ptr->symbol.section = bfd_ind_section_ptr;
|
||
break;
|
||
|
||
case N_WEAKU:
|
||
cache_ptr->symbol.section = bfd_und_section_ptr;
|
||
cache_ptr->symbol.flags = BSF_WEAK;
|
||
break;
|
||
|
||
case N_WEAKA:
|
||
cache_ptr->symbol.section = bfd_abs_section_ptr;
|
||
cache_ptr->symbol.flags = BSF_WEAK;
|
||
break;
|
||
|
||
case N_WEAKT:
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
||
cache_ptr->symbol.flags = BSF_WEAK;
|
||
break;
|
||
|
||
case N_WEAKD:
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
||
cache_ptr->symbol.flags = BSF_WEAK;
|
||
break;
|
||
|
||
case N_WEAKB:
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
||
cache_ptr->symbol.flags = BSF_WEAK;
|
||
break;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set the fields of SYM_POINTER according to CACHE_PTR. */
|
||
|
||
static bfd_boolean
|
||
translate_to_native_sym_flags (bfd *abfd,
|
||
asymbol *cache_ptr,
|
||
struct external_nlist *sym_pointer)
|
||
{
|
||
bfd_vma value = cache_ptr->value;
|
||
asection *sec;
|
||
bfd_vma off;
|
||
|
||
/* Mask out any existing type bits in case copying from one section
|
||
to another. */
|
||
sym_pointer->e_type[0] &= ~N_TYPE;
|
||
|
||
sec = bfd_get_section (cache_ptr);
|
||
off = 0;
|
||
|
||
if (sec == NULL)
|
||
{
|
||
/* This case occurs, e.g., for the *DEBUG* section of a COFF
|
||
file. */
|
||
(*_bfd_error_handler)
|
||
(_("%s: can not represent section for symbol `%s' in a.out object file format"),
|
||
bfd_get_filename (abfd),
|
||
cache_ptr->name != NULL ? cache_ptr->name : _("*unknown*"));
|
||
bfd_set_error (bfd_error_nonrepresentable_section);
|
||
return FALSE;
|
||
}
|
||
|
||
if (sec->output_section != NULL)
|
||
{
|
||
off = sec->output_offset;
|
||
sec = sec->output_section;
|
||
}
|
||
|
||
if (bfd_is_abs_section (sec))
|
||
sym_pointer->e_type[0] |= N_ABS;
|
||
else if (sec == obj_textsec (abfd))
|
||
sym_pointer->e_type[0] |= N_TEXT;
|
||
else if (sec == obj_datasec (abfd))
|
||
sym_pointer->e_type[0] |= N_DATA;
|
||
else if (sec == obj_bsssec (abfd))
|
||
sym_pointer->e_type[0] |= N_BSS;
|
||
else if (bfd_is_und_section (sec))
|
||
sym_pointer->e_type[0] = N_UNDF | N_EXT;
|
||
else if (bfd_is_ind_section (sec))
|
||
sym_pointer->e_type[0] = N_INDR;
|
||
else if (bfd_is_com_section (sec))
|
||
sym_pointer->e_type[0] = N_UNDF | N_EXT;
|
||
else
|
||
{
|
||
if (aout_section_merge_with_text_p (abfd, sec))
|
||
sym_pointer->e_type[0] |= N_TEXT;
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%s: can not represent section `%s' in a.out object file format"),
|
||
bfd_get_filename (abfd), bfd_get_section_name (abfd, sec));
|
||
bfd_set_error (bfd_error_nonrepresentable_section);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Turn the symbol from section relative to absolute again. */
|
||
value += sec->vma + off;
|
||
|
||
if ((cache_ptr->flags & BSF_WARNING) != 0)
|
||
sym_pointer->e_type[0] = N_WARNING;
|
||
|
||
if ((cache_ptr->flags & BSF_DEBUGGING) != 0)
|
||
sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type;
|
||
else if ((cache_ptr->flags & BSF_GLOBAL) != 0)
|
||
sym_pointer->e_type[0] |= N_EXT;
|
||
else if ((cache_ptr->flags & BSF_LOCAL) != 0)
|
||
sym_pointer->e_type[0] &= ~N_EXT;
|
||
|
||
if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0)
|
||
{
|
||
int type = ((aout_symbol_type *) cache_ptr)->type;
|
||
|
||
switch (type)
|
||
{
|
||
case N_ABS: type = N_SETA; break;
|
||
case N_TEXT: type = N_SETT; break;
|
||
case N_DATA: type = N_SETD; break;
|
||
case N_BSS: type = N_SETB; break;
|
||
}
|
||
sym_pointer->e_type[0] = type;
|
||
}
|
||
|
||
if ((cache_ptr->flags & BSF_WEAK) != 0)
|
||
{
|
||
int type;
|
||
|
||
switch (sym_pointer->e_type[0] & N_TYPE)
|
||
{
|
||
default:
|
||
case N_ABS: type = N_WEAKA; break;
|
||
case N_TEXT: type = N_WEAKT; break;
|
||
case N_DATA: type = N_WEAKD; break;
|
||
case N_BSS: type = N_WEAKB; break;
|
||
case N_UNDF: type = N_WEAKU; break;
|
||
}
|
||
sym_pointer->e_type[0] = type;
|
||
}
|
||
|
||
PUT_WORD (abfd, value, sym_pointer->e_value);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Native-level interface to symbols. */
|
||
|
||
asymbol *
|
||
NAME (aout, make_empty_symbol) (bfd *abfd)
|
||
{
|
||
bfd_size_type amt = sizeof (aout_symbol_type);
|
||
|
||
aout_symbol_type *new = bfd_zalloc (abfd, amt);
|
||
if (!new)
|
||
return NULL;
|
||
new->symbol.the_bfd = abfd;
|
||
|
||
return &new->symbol;
|
||
}
|
||
|
||
/* Translate a set of internal symbols into external symbols. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, translate_symbol_table) (bfd *abfd,
|
||
aout_symbol_type *in,
|
||
struct external_nlist *ext,
|
||
bfd_size_type count,
|
||
char *str,
|
||
bfd_size_type strsize,
|
||
bfd_boolean dynamic)
|
||
{
|
||
struct external_nlist *ext_end;
|
||
|
||
ext_end = ext + count;
|
||
for (; ext < ext_end; ext++, in++)
|
||
{
|
||
bfd_vma x;
|
||
|
||
x = GET_WORD (abfd, ext->e_strx);
|
||
in->symbol.the_bfd = abfd;
|
||
|
||
/* For the normal symbols, the zero index points at the number
|
||
of bytes in the string table but is to be interpreted as the
|
||
null string. For the dynamic symbols, the number of bytes in
|
||
the string table is stored in the __DYNAMIC structure and the
|
||
zero index points at an actual string. */
|
||
if (x == 0 && ! dynamic)
|
||
in->symbol.name = "";
|
||
else if (x < strsize)
|
||
in->symbol.name = str + x;
|
||
else
|
||
return FALSE;
|
||
|
||
in->symbol.value = GET_SWORD (abfd, ext->e_value);
|
||
in->desc = H_GET_16 (abfd, ext->e_desc);
|
||
in->other = H_GET_8 (abfd, ext->e_other);
|
||
in->type = H_GET_8 (abfd, ext->e_type);
|
||
in->symbol.udata.p = NULL;
|
||
|
||
if (! translate_from_native_sym_flags (abfd, in))
|
||
return FALSE;
|
||
|
||
if (dynamic)
|
||
in->symbol.flags |= BSF_DYNAMIC;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* We read the symbols into a buffer, which is discarded when this
|
||
function exits. We read the strings into a buffer large enough to
|
||
hold them all plus all the cached symbol entries. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, slurp_symbol_table) (bfd *abfd)
|
||
{
|
||
struct external_nlist *old_external_syms;
|
||
aout_symbol_type *cached;
|
||
bfd_size_type cached_size;
|
||
|
||
/* If there's no work to be done, don't do any. */
|
||
if (obj_aout_symbols (abfd) != NULL)
|
||
return TRUE;
|
||
|
||
old_external_syms = obj_aout_external_syms (abfd);
|
||
|
||
if (! aout_get_external_symbols (abfd))
|
||
return FALSE;
|
||
|
||
cached_size = obj_aout_external_sym_count (abfd);
|
||
cached_size *= sizeof (aout_symbol_type);
|
||
cached = bfd_zmalloc (cached_size);
|
||
if (cached == NULL && cached_size != 0)
|
||
return FALSE;
|
||
|
||
/* Convert from external symbol information to internal. */
|
||
if (! (NAME (aout, translate_symbol_table)
|
||
(abfd, cached,
|
||
obj_aout_external_syms (abfd),
|
||
obj_aout_external_sym_count (abfd),
|
||
obj_aout_external_strings (abfd),
|
||
obj_aout_external_string_size (abfd),
|
||
FALSE)))
|
||
{
|
||
free (cached);
|
||
return FALSE;
|
||
}
|
||
|
||
bfd_get_symcount (abfd) = obj_aout_external_sym_count (abfd);
|
||
|
||
obj_aout_symbols (abfd) = cached;
|
||
|
||
/* It is very likely that anybody who calls this function will not
|
||
want the external symbol information, so if it was allocated
|
||
because of our call to aout_get_external_symbols, we free it up
|
||
right away to save space. */
|
||
if (old_external_syms == NULL
|
||
&& obj_aout_external_syms (abfd) != NULL)
|
||
{
|
||
#ifdef USE_MMAP
|
||
bfd_free_window (&obj_aout_sym_window (abfd));
|
||
#else
|
||
free (obj_aout_external_syms (abfd));
|
||
#endif
|
||
obj_aout_external_syms (abfd) = NULL;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* We use a hash table when writing out symbols so that we only write
|
||
out a particular string once. This helps particularly when the
|
||
linker writes out stabs debugging entries, because each different
|
||
contributing object file tends to have many duplicate stabs
|
||
strings.
|
||
|
||
This hash table code breaks dbx on SunOS 4.1.3, so we don't do it
|
||
if BFD_TRADITIONAL_FORMAT is set. */
|
||
|
||
/* Get the index of a string in a strtab, adding it if it is not
|
||
already present. */
|
||
|
||
static inline bfd_size_type
|
||
add_to_stringtab (bfd *abfd,
|
||
struct bfd_strtab_hash *tab,
|
||
const char *str,
|
||
bfd_boolean copy)
|
||
{
|
||
bfd_boolean hash;
|
||
bfd_size_type index;
|
||
|
||
/* An index of 0 always means the empty string. */
|
||
if (str == 0 || *str == '\0')
|
||
return 0;
|
||
|
||
/* Don't hash if BFD_TRADITIONAL_FORMAT is set, because SunOS dbx
|
||
doesn't understand a hashed string table. */
|
||
hash = TRUE;
|
||
if ((abfd->flags & BFD_TRADITIONAL_FORMAT) != 0)
|
||
hash = FALSE;
|
||
|
||
index = _bfd_stringtab_add (tab, str, hash, copy);
|
||
|
||
if (index != (bfd_size_type) -1)
|
||
/* Add BYTES_IN_WORD to the return value to account for the
|
||
space taken up by the string table size. */
|
||
index += BYTES_IN_WORD;
|
||
|
||
return index;
|
||
}
|
||
|
||
/* Write out a strtab. ABFD is already at the right location in the
|
||
file. */
|
||
|
||
static bfd_boolean
|
||
emit_stringtab (bfd *abfd, struct bfd_strtab_hash *tab)
|
||
{
|
||
bfd_byte buffer[BYTES_IN_WORD];
|
||
bfd_size_type amt = BYTES_IN_WORD;
|
||
|
||
/* The string table starts with the size. */
|
||
PUT_WORD (abfd, _bfd_stringtab_size (tab) + BYTES_IN_WORD, buffer);
|
||
if (bfd_bwrite ((void *) buffer, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
return _bfd_stringtab_emit (abfd, tab);
|
||
}
|
||
|
||
bfd_boolean
|
||
NAME (aout, write_syms) (bfd *abfd)
|
||
{
|
||
unsigned int count ;
|
||
asymbol **generic = bfd_get_outsymbols (abfd);
|
||
struct bfd_strtab_hash *strtab;
|
||
|
||
strtab = _bfd_stringtab_init ();
|
||
if (strtab == NULL)
|
||
return FALSE;
|
||
|
||
for (count = 0; count < bfd_get_symcount (abfd); count++)
|
||
{
|
||
asymbol *g = generic[count];
|
||
bfd_size_type indx;
|
||
struct external_nlist nsp;
|
||
bfd_size_type amt;
|
||
|
||
indx = add_to_stringtab (abfd, strtab, g->name, FALSE);
|
||
if (indx == (bfd_size_type) -1)
|
||
goto error_return;
|
||
PUT_WORD (abfd, indx, (bfd_byte *) nsp.e_strx);
|
||
|
||
if (bfd_asymbol_flavour (g) == abfd->xvec->flavour)
|
||
{
|
||
H_PUT_16 (abfd, aout_symbol (g)->desc, nsp.e_desc);
|
||
H_PUT_8 (abfd, aout_symbol (g)->other, nsp.e_other);
|
||
H_PUT_8 (abfd, aout_symbol (g)->type, nsp.e_type);
|
||
}
|
||
else
|
||
{
|
||
H_PUT_16 (abfd, 0, nsp.e_desc);
|
||
H_PUT_8 (abfd, 0, nsp.e_other);
|
||
H_PUT_8 (abfd, 0, nsp.e_type);
|
||
}
|
||
|
||
if (! translate_to_native_sym_flags (abfd, g, &nsp))
|
||
goto error_return;
|
||
|
||
amt = EXTERNAL_NLIST_SIZE;
|
||
if (bfd_bwrite ((void *) &nsp, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* NB: `KEEPIT' currently overlays `udata.p', so set this only
|
||
here, at the end. */
|
||
g->KEEPIT = count;
|
||
}
|
||
|
||
if (! emit_stringtab (abfd, strtab))
|
||
goto error_return;
|
||
|
||
_bfd_stringtab_free (strtab);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
_bfd_stringtab_free (strtab);
|
||
return FALSE;
|
||
}
|
||
|
||
long
|
||
NAME (aout, canonicalize_symtab) (bfd *abfd, asymbol **location)
|
||
{
|
||
unsigned int counter = 0;
|
||
aout_symbol_type *symbase;
|
||
|
||
if (!NAME (aout, slurp_symbol_table) (abfd))
|
||
return -1;
|
||
|
||
for (symbase = obj_aout_symbols (abfd);
|
||
counter++ < bfd_get_symcount (abfd);
|
||
)
|
||
*(location++) = (asymbol *) (symbase++);
|
||
*location++ =0;
|
||
return bfd_get_symcount (abfd);
|
||
}
|
||
|
||
/* Standard reloc stuff. */
|
||
/* Output standard relocation information to a file in target byte order. */
|
||
|
||
extern void NAME (aout, swap_std_reloc_out)
|
||
(bfd *, arelent *, struct reloc_std_external *);
|
||
|
||
void
|
||
NAME (aout, swap_std_reloc_out) (bfd *abfd,
|
||
arelent *g,
|
||
struct reloc_std_external *natptr)
|
||
{
|
||
int r_index;
|
||
asymbol *sym = *(g->sym_ptr_ptr);
|
||
int r_extern;
|
||
unsigned int r_length;
|
||
int r_pcrel;
|
||
int r_baserel, r_jmptable, r_relative;
|
||
asection *output_section = sym->section->output_section;
|
||
|
||
PUT_WORD (abfd, g->address, natptr->r_address);
|
||
|
||
r_length = g->howto->size ; /* Size as a power of two. */
|
||
r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
|
||
/* XXX This relies on relocs coming from a.out files. */
|
||
r_baserel = (g->howto->type & 8) != 0;
|
||
r_jmptable = (g->howto->type & 16) != 0;
|
||
r_relative = (g->howto->type & 32) != 0;
|
||
|
||
/* Name was clobbered by aout_write_syms to be symbol index. */
|
||
|
||
/* If this relocation is relative to a symbol then set the
|
||
r_index to the symbols index, and the r_extern bit.
|
||
|
||
Absolute symbols can come in in two ways, either as an offset
|
||
from the abs section, or as a symbol which has an abs value.
|
||
check for that here. */
|
||
|
||
if (bfd_is_com_section (output_section)
|
||
|| bfd_is_abs_section (output_section)
|
||
|| bfd_is_und_section (output_section)
|
||
/* PR gas/3041 a.out relocs against weak symbols
|
||
must be treated as if they were against externs. */
|
||
|| (sym->flags & BSF_WEAK))
|
||
{
|
||
if (bfd_abs_section_ptr->symbol == sym)
|
||
{
|
||
/* Whoops, looked like an abs symbol, but is
|
||
really an offset from the abs section. */
|
||
r_index = N_ABS;
|
||
r_extern = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Fill in symbol. */
|
||
r_extern = 1;
|
||
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Just an ordinary section. */
|
||
r_extern = 0;
|
||
r_index = output_section->target_index;
|
||
}
|
||
|
||
/* Now the fun stuff. */
|
||
if (bfd_header_big_endian (abfd))
|
||
{
|
||
natptr->r_index[0] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[2] = r_index;
|
||
natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
|
||
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
|
||
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
|
||
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
|
||
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
|
||
}
|
||
else
|
||
{
|
||
natptr->r_index[2] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[0] = r_index;
|
||
natptr->r_type[0] = ((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
|
||
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
|
||
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
|
||
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
|
||
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
|
||
}
|
||
}
|
||
|
||
/* Extended stuff. */
|
||
/* Output extended relocation information to a file in target byte order. */
|
||
|
||
extern void NAME (aout, swap_ext_reloc_out)
|
||
(bfd *, arelent *, struct reloc_ext_external *);
|
||
|
||
void
|
||
NAME (aout, swap_ext_reloc_out) (bfd *abfd,
|
||
arelent *g,
|
||
struct reloc_ext_external *natptr)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
bfd_vma r_addend;
|
||
asymbol *sym = *(g->sym_ptr_ptr);
|
||
asection *output_section = sym->section->output_section;
|
||
|
||
PUT_WORD (abfd, g->address, natptr->r_address);
|
||
|
||
r_type = (unsigned int) g->howto->type;
|
||
|
||
r_addend = g->addend;
|
||
if ((sym->flags & BSF_SECTION_SYM) != 0)
|
||
r_addend += (*(g->sym_ptr_ptr))->section->output_section->vma;
|
||
|
||
/* If this relocation is relative to a symbol then set the
|
||
r_index to the symbols index, and the r_extern bit.
|
||
|
||
Absolute symbols can come in in two ways, either as an offset
|
||
from the abs section, or as a symbol which has an abs value.
|
||
check for that here. */
|
||
if (bfd_is_abs_section (bfd_get_section (sym)))
|
||
{
|
||
r_extern = 0;
|
||
r_index = N_ABS;
|
||
}
|
||
else if ((sym->flags & BSF_SECTION_SYM) == 0)
|
||
{
|
||
if (bfd_is_und_section (bfd_get_section (sym))
|
||
|| (sym->flags & BSF_GLOBAL) != 0)
|
||
r_extern = 1;
|
||
else
|
||
r_extern = 0;
|
||
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
|
||
}
|
||
else
|
||
{
|
||
/* Just an ordinary section. */
|
||
r_extern = 0;
|
||
r_index = output_section->target_index;
|
||
}
|
||
|
||
/* Now the fun stuff. */
|
||
if (bfd_header_big_endian (abfd))
|
||
{
|
||
natptr->r_index[0] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[2] = r_index;
|
||
natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0)
|
||
| (r_type << RELOC_EXT_BITS_TYPE_SH_BIG));
|
||
}
|
||
else
|
||
{
|
||
natptr->r_index[2] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[0] = r_index;
|
||
natptr->r_type[0] = ((r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0)
|
||
| (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE));
|
||
}
|
||
|
||
PUT_WORD (abfd, r_addend, natptr->r_addend);
|
||
}
|
||
|
||
/* BFD deals internally with all things based from the section they're
|
||
in. so, something in 10 bytes into a text section with a base of
|
||
50 would have a symbol (.text+10) and know .text vma was 50.
|
||
|
||
Aout keeps all it's symbols based from zero, so the symbol would
|
||
contain 60. This macro subs the base of each section from the value
|
||
to give the true offset from the section. */
|
||
|
||
#define MOVE_ADDRESS(ad) \
|
||
if (r_extern) \
|
||
{ \
|
||
/* Undefined symbol. */ \
|
||
cache_ptr->sym_ptr_ptr = symbols + r_index; \
|
||
cache_ptr->addend = ad; \
|
||
} \
|
||
else \
|
||
{ \
|
||
/* Defined, section relative. Replace symbol with pointer to \
|
||
symbol which points to section. */ \
|
||
switch (r_index) \
|
||
{ \
|
||
case N_TEXT: \
|
||
case N_TEXT | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_textsec (abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->textsec->vma; \
|
||
break; \
|
||
case N_DATA: \
|
||
case N_DATA | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_datasec (abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->datasec->vma; \
|
||
break; \
|
||
case N_BSS: \
|
||
case N_BSS | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_bsssec (abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->bsssec->vma; \
|
||
break; \
|
||
default: \
|
||
case N_ABS: \
|
||
case N_ABS | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad; \
|
||
break; \
|
||
} \
|
||
}
|
||
|
||
void
|
||
NAME (aout, swap_ext_reloc_in) (bfd *abfd,
|
||
struct reloc_ext_external *bytes,
|
||
arelent *cache_ptr,
|
||
asymbol **symbols,
|
||
bfd_size_type symcount)
|
||
{
|
||
unsigned int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
||
|
||
cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
|
||
|
||
/* Now the fun stuff. */
|
||
if (bfd_header_big_endian (abfd))
|
||
{
|
||
r_index = (((unsigned int) bytes->r_index[0] << 16)
|
||
| ((unsigned int) bytes->r_index[1] << 8)
|
||
| bytes->r_index[2]);
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
|
||
r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
||
>> RELOC_EXT_BITS_TYPE_SH_BIG);
|
||
}
|
||
else
|
||
{
|
||
r_index = (((unsigned int) bytes->r_index[2] << 16)
|
||
| ((unsigned int) bytes->r_index[1] << 8)
|
||
| bytes->r_index[0]);
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
|
||
r_type = ((bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
||
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
||
}
|
||
|
||
cache_ptr->howto = howto_table_ext + r_type;
|
||
|
||
/* Base relative relocs are always against the symbol table,
|
||
regardless of the setting of r_extern. r_extern just reflects
|
||
whether the symbol the reloc is against is local or global. */
|
||
if (r_type == (unsigned int) RELOC_BASE10
|
||
|| r_type == (unsigned int) RELOC_BASE13
|
||
|| r_type == (unsigned int) RELOC_BASE22)
|
||
r_extern = 1;
|
||
|
||
if (r_extern && r_index > symcount)
|
||
{
|
||
/* We could arrange to return an error, but it might be useful
|
||
to see the file even if it is bad. */
|
||
r_extern = 0;
|
||
r_index = N_ABS;
|
||
}
|
||
|
||
MOVE_ADDRESS (GET_SWORD (abfd, bytes->r_addend));
|
||
}
|
||
|
||
void
|
||
NAME (aout, swap_std_reloc_in) (bfd *abfd,
|
||
struct reloc_std_external *bytes,
|
||
arelent *cache_ptr,
|
||
asymbol **symbols,
|
||
bfd_size_type symcount)
|
||
{
|
||
unsigned int r_index;
|
||
int r_extern;
|
||
unsigned int r_length;
|
||
int r_pcrel;
|
||
int r_baserel, r_jmptable, r_relative;
|
||
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
||
unsigned int howto_idx;
|
||
|
||
cache_ptr->address = H_GET_32 (abfd, bytes->r_address);
|
||
|
||
/* Now the fun stuff. */
|
||
if (bfd_header_big_endian (abfd))
|
||
{
|
||
r_index = (((unsigned int) bytes->r_index[0] << 16)
|
||
| ((unsigned int) bytes->r_index[1] << 8)
|
||
| bytes->r_index[2]);
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
|
||
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
|
||
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
|
||
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
|
||
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
|
||
r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
|
||
>> RELOC_STD_BITS_LENGTH_SH_BIG);
|
||
}
|
||
else
|
||
{
|
||
r_index = (((unsigned int) bytes->r_index[2] << 16)
|
||
| ((unsigned int) bytes->r_index[1] << 8)
|
||
| bytes->r_index[0]);
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
|
||
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
|
||
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
|
||
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
|
||
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
|
||
r_length = ((bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
|
||
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
|
||
}
|
||
|
||
howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel
|
||
+ 16 * r_jmptable + 32 * r_relative);
|
||
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std));
|
||
cache_ptr->howto = howto_table_std + howto_idx;
|
||
BFD_ASSERT (cache_ptr->howto->type != (unsigned int) -1);
|
||
|
||
/* Base relative relocs are always against the symbol table,
|
||
regardless of the setting of r_extern. r_extern just reflects
|
||
whether the symbol the reloc is against is local or global. */
|
||
if (r_baserel)
|
||
r_extern = 1;
|
||
|
||
if (r_extern && r_index > symcount)
|
||
{
|
||
/* We could arrange to return an error, but it might be useful
|
||
to see the file even if it is bad. */
|
||
r_extern = 0;
|
||
r_index = N_ABS;
|
||
}
|
||
|
||
MOVE_ADDRESS (0);
|
||
}
|
||
|
||
/* Read and swap the relocs for a section. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, slurp_reloc_table) (bfd *abfd, sec_ptr asect, asymbol **symbols)
|
||
{
|
||
bfd_size_type count;
|
||
bfd_size_type reloc_size;
|
||
void * relocs;
|
||
arelent *reloc_cache;
|
||
size_t each_size;
|
||
unsigned int counter = 0;
|
||
arelent *cache_ptr;
|
||
bfd_size_type amt;
|
||
|
||
if (asect->relocation)
|
||
return TRUE;
|
||
|
||
if (asect->flags & SEC_CONSTRUCTOR)
|
||
return TRUE;
|
||
|
||
if (asect == obj_datasec (abfd))
|
||
reloc_size = exec_hdr (abfd)->a_drsize;
|
||
else if (asect == obj_textsec (abfd))
|
||
reloc_size = exec_hdr (abfd)->a_trsize;
|
||
else if (asect == obj_bsssec (abfd))
|
||
reloc_size = 0;
|
||
else
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return FALSE;
|
||
}
|
||
|
||
if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
each_size = obj_reloc_entry_size (abfd);
|
||
|
||
count = reloc_size / each_size;
|
||
|
||
amt = count * sizeof (arelent);
|
||
reloc_cache = bfd_zmalloc (amt);
|
||
if (reloc_cache == NULL && count != 0)
|
||
return FALSE;
|
||
|
||
relocs = bfd_malloc (reloc_size);
|
||
if (relocs == NULL && reloc_size != 0)
|
||
{
|
||
free (reloc_cache);
|
||
return FALSE;
|
||
}
|
||
|
||
if (bfd_bread (relocs, reloc_size, abfd) != reloc_size)
|
||
{
|
||
free (relocs);
|
||
free (reloc_cache);
|
||
return FALSE;
|
||
}
|
||
|
||
cache_ptr = reloc_cache;
|
||
if (each_size == RELOC_EXT_SIZE)
|
||
{
|
||
struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs;
|
||
|
||
for (; counter < count; counter++, rptr++, cache_ptr++)
|
||
MY_swap_ext_reloc_in (abfd, rptr, cache_ptr, symbols,
|
||
(bfd_size_type) bfd_get_symcount (abfd));
|
||
}
|
||
else
|
||
{
|
||
struct reloc_std_external *rptr = (struct reloc_std_external *) relocs;
|
||
|
||
for (; counter < count; counter++, rptr++, cache_ptr++)
|
||
MY_swap_std_reloc_in (abfd, rptr, cache_ptr, symbols,
|
||
(bfd_size_type) bfd_get_symcount (abfd));
|
||
}
|
||
|
||
free (relocs);
|
||
|
||
asect->relocation = reloc_cache;
|
||
asect->reloc_count = cache_ptr - reloc_cache;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Write out a relocation section into an object file. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, squirt_out_relocs) (bfd *abfd, asection *section)
|
||
{
|
||
arelent **generic;
|
||
unsigned char *native, *natptr;
|
||
size_t each_size;
|
||
|
||
unsigned int count = section->reloc_count;
|
||
bfd_size_type natsize;
|
||
|
||
if (count == 0 || section->orelocation == NULL)
|
||
return TRUE;
|
||
|
||
each_size = obj_reloc_entry_size (abfd);
|
||
natsize = (bfd_size_type) each_size * count;
|
||
native = bfd_zalloc (abfd, natsize);
|
||
if (!native)
|
||
return FALSE;
|
||
|
||
generic = section->orelocation;
|
||
|
||
if (each_size == RELOC_EXT_SIZE)
|
||
{
|
||
for (natptr = native;
|
||
count != 0;
|
||
--count, natptr += each_size, ++generic)
|
||
MY_swap_ext_reloc_out (abfd, *generic,
|
||
(struct reloc_ext_external *) natptr);
|
||
}
|
||
else
|
||
{
|
||
for (natptr = native;
|
||
count != 0;
|
||
--count, natptr += each_size, ++generic)
|
||
MY_swap_std_reloc_out (abfd, *generic,
|
||
(struct reloc_std_external *) natptr);
|
||
}
|
||
|
||
if (bfd_bwrite ((void *) native, natsize, abfd) != natsize)
|
||
{
|
||
bfd_release (abfd, native);
|
||
return FALSE;
|
||
}
|
||
bfd_release (abfd, native);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is stupid. This function should be a boolean predicate. */
|
||
|
||
long
|
||
NAME (aout, canonicalize_reloc) (bfd *abfd,
|
||
sec_ptr section,
|
||
arelent **relptr,
|
||
asymbol **symbols)
|
||
{
|
||
arelent *tblptr = section->relocation;
|
||
unsigned int count;
|
||
|
||
if (section == obj_bsssec (abfd))
|
||
{
|
||
*relptr = NULL;
|
||
return 0;
|
||
}
|
||
|
||
if (!(tblptr || NAME (aout, slurp_reloc_table) (abfd, section, symbols)))
|
||
return -1;
|
||
|
||
if (section->flags & SEC_CONSTRUCTOR)
|
||
{
|
||
arelent_chain *chain = section->constructor_chain;
|
||
for (count = 0; count < section->reloc_count; count ++)
|
||
{
|
||
*relptr ++ = &chain->relent;
|
||
chain = chain->next;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tblptr = section->relocation;
|
||
|
||
for (count = 0; count++ < section->reloc_count; )
|
||
{
|
||
*relptr++ = tblptr++;
|
||
}
|
||
}
|
||
*relptr = 0;
|
||
|
||
return section->reloc_count;
|
||
}
|
||
|
||
long
|
||
NAME (aout, get_reloc_upper_bound) (bfd *abfd, sec_ptr asect)
|
||
{
|
||
if (bfd_get_format (abfd) != bfd_object)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
if (asect->flags & SEC_CONSTRUCTOR)
|
||
return sizeof (arelent *) * (asect->reloc_count + 1);
|
||
|
||
if (asect == obj_datasec (abfd))
|
||
return sizeof (arelent *)
|
||
* ((exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd))
|
||
+ 1);
|
||
|
||
if (asect == obj_textsec (abfd))
|
||
return sizeof (arelent *)
|
||
* ((exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd))
|
||
+ 1);
|
||
|
||
if (asect == obj_bsssec (abfd))
|
||
return sizeof (arelent *);
|
||
|
||
if (asect == obj_bsssec (abfd))
|
||
return 0;
|
||
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
long
|
||
NAME (aout, get_symtab_upper_bound) (bfd *abfd)
|
||
{
|
||
if (!NAME (aout, slurp_symbol_table) (abfd))
|
||
return -1;
|
||
|
||
return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
|
||
}
|
||
|
||
alent *
|
||
NAME (aout, get_lineno) (bfd *ignore_abfd ATTRIBUTE_UNUSED,
|
||
asymbol *ignore_symbol ATTRIBUTE_UNUSED)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
void
|
||
NAME (aout, get_symbol_info) (bfd *ignore_abfd ATTRIBUTE_UNUSED,
|
||
asymbol *symbol,
|
||
symbol_info *ret)
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
|
||
if (ret->type == '?')
|
||
{
|
||
int type_code = aout_symbol (symbol)->type & 0xff;
|
||
const char *stab_name = bfd_get_stab_name (type_code);
|
||
static char buf[10];
|
||
|
||
if (stab_name == NULL)
|
||
{
|
||
sprintf (buf, "(%d)", type_code);
|
||
stab_name = buf;
|
||
}
|
||
ret->type = '-';
|
||
ret->stab_type = type_code;
|
||
ret->stab_other = (unsigned) (aout_symbol (symbol)->other & 0xff);
|
||
ret->stab_desc = (unsigned) (aout_symbol (symbol)->desc & 0xffff);
|
||
ret->stab_name = stab_name;
|
||
}
|
||
}
|
||
|
||
void
|
||
NAME (aout, print_symbol) (bfd *abfd,
|
||
void * afile,
|
||
asymbol *symbol,
|
||
bfd_print_symbol_type how)
|
||
{
|
||
FILE *file = (FILE *)afile;
|
||
|
||
switch (how)
|
||
{
|
||
case bfd_print_symbol_name:
|
||
if (symbol->name)
|
||
fprintf (file,"%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf (file,"%4x %2x %2x",
|
||
(unsigned) (aout_symbol (symbol)->desc & 0xffff),
|
||
(unsigned) (aout_symbol (symbol)->other & 0xff),
|
||
(unsigned) (aout_symbol (symbol)->type));
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
const char *section_name = symbol->section->name;
|
||
|
||
bfd_print_symbol_vandf (abfd, (void *)file, symbol);
|
||
|
||
fprintf (file," %-5s %04x %02x %02x",
|
||
section_name,
|
||
(unsigned) (aout_symbol (symbol)->desc & 0xffff),
|
||
(unsigned) (aout_symbol (symbol)->other & 0xff),
|
||
(unsigned) (aout_symbol (symbol)->type & 0xff));
|
||
if (symbol->name)
|
||
fprintf (file," %s", symbol->name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we don't have to allocate more than 1MB to hold the generic
|
||
symbols, we use the generic minisymbol methord: it's faster, since
|
||
it only translates the symbols once, not multiple times. */
|
||
#define MINISYM_THRESHOLD (1000000 / sizeof (asymbol))
|
||
|
||
/* Read minisymbols. For minisymbols, we use the unmodified a.out
|
||
symbols. The minisymbol_to_symbol function translates these into
|
||
BFD asymbol structures. */
|
||
|
||
long
|
||
NAME (aout, read_minisymbols) (bfd *abfd,
|
||
bfd_boolean dynamic,
|
||
void * *minisymsp,
|
||
unsigned int *sizep)
|
||
{
|
||
if (dynamic)
|
||
/* We could handle the dynamic symbols here as well, but it's
|
||
easier to hand them off. */
|
||
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
|
||
|
||
if (! aout_get_external_symbols (abfd))
|
||
return -1;
|
||
|
||
if (obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
|
||
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
|
||
|
||
*minisymsp = (void *) obj_aout_external_syms (abfd);
|
||
|
||
/* By passing the external symbols back from this routine, we are
|
||
giving up control over the memory block. Clear
|
||
obj_aout_external_syms, so that we do not try to free it
|
||
ourselves. */
|
||
obj_aout_external_syms (abfd) = NULL;
|
||
|
||
*sizep = EXTERNAL_NLIST_SIZE;
|
||
return obj_aout_external_sym_count (abfd);
|
||
}
|
||
|
||
/* Convert a minisymbol to a BFD asymbol. A minisymbol is just an
|
||
unmodified a.out symbol. The SYM argument is a structure returned
|
||
by bfd_make_empty_symbol, which we fill in here. */
|
||
|
||
asymbol *
|
||
NAME (aout, minisymbol_to_symbol) (bfd *abfd,
|
||
bfd_boolean dynamic,
|
||
const void * minisym,
|
||
asymbol *sym)
|
||
{
|
||
if (dynamic
|
||
|| obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
|
||
return _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym);
|
||
|
||
memset (sym, 0, sizeof (aout_symbol_type));
|
||
|
||
/* We call translate_symbol_table to translate a single symbol. */
|
||
if (! (NAME (aout, translate_symbol_table)
|
||
(abfd,
|
||
(aout_symbol_type *) sym,
|
||
(struct external_nlist *) minisym,
|
||
(bfd_size_type) 1,
|
||
obj_aout_external_strings (abfd),
|
||
obj_aout_external_string_size (abfd),
|
||
FALSE)))
|
||
return NULL;
|
||
|
||
return sym;
|
||
}
|
||
|
||
/* Provided a BFD, a section and an offset into the section, calculate
|
||
and return the name of the source file and the line nearest to the
|
||
wanted location. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, find_nearest_line) (bfd *abfd,
|
||
asection *section,
|
||
asymbol **symbols,
|
||
bfd_vma offset,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr,
|
||
unsigned int *line_ptr)
|
||
{
|
||
/* Run down the file looking for the filename, function and linenumber. */
|
||
asymbol **p;
|
||
const char *directory_name = NULL;
|
||
const char *main_file_name = NULL;
|
||
const char *current_file_name = NULL;
|
||
const char *line_file_name = NULL; /* Value of current_file_name at line number. */
|
||
const char *line_directory_name = NULL; /* Value of directory_name at line number. */
|
||
bfd_vma low_line_vma = 0;
|
||
bfd_vma low_func_vma = 0;
|
||
asymbol *func = 0;
|
||
bfd_size_type filelen, funclen;
|
||
char *buf;
|
||
|
||
*filename_ptr = abfd->filename;
|
||
*functionname_ptr = 0;
|
||
*line_ptr = 0;
|
||
|
||
if (symbols != NULL)
|
||
{
|
||
for (p = symbols; *p; p++)
|
||
{
|
||
aout_symbol_type *q = (aout_symbol_type *) (*p);
|
||
next:
|
||
switch (q->type)
|
||
{
|
||
case N_TEXT:
|
||
/* If this looks like a file name symbol, and it comes after
|
||
the line number we have found so far, but before the
|
||
offset, then we have probably not found the right line
|
||
number. */
|
||
if (q->symbol.value <= offset
|
||
&& ((q->symbol.value > low_line_vma
|
||
&& (line_file_name != NULL
|
||
|| *line_ptr != 0))
|
||
|| (q->symbol.value > low_func_vma
|
||
&& func != NULL)))
|
||
{
|
||
const char *symname;
|
||
|
||
symname = q->symbol.name;
|
||
if (strcmp (symname + strlen (symname) - 2, ".o") == 0)
|
||
{
|
||
if (q->symbol.value > low_line_vma)
|
||
{
|
||
*line_ptr = 0;
|
||
line_file_name = NULL;
|
||
}
|
||
if (q->symbol.value > low_func_vma)
|
||
func = NULL;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case N_SO:
|
||
/* If this symbol is less than the offset, but greater than
|
||
the line number we have found so far, then we have not
|
||
found the right line number. */
|
||
if (q->symbol.value <= offset)
|
||
{
|
||
if (q->symbol.value > low_line_vma)
|
||
{
|
||
*line_ptr = 0;
|
||
line_file_name = NULL;
|
||
}
|
||
if (q->symbol.value > low_func_vma)
|
||
func = NULL;
|
||
}
|
||
|
||
main_file_name = current_file_name = q->symbol.name;
|
||
/* Look ahead to next symbol to check if that too is an N_SO. */
|
||
p++;
|
||
if (*p == NULL)
|
||
goto done;
|
||
q = (aout_symbol_type *) (*p);
|
||
if (q->type != (int)N_SO)
|
||
goto next;
|
||
|
||
/* Found a second N_SO First is directory; second is filename. */
|
||
directory_name = current_file_name;
|
||
main_file_name = current_file_name = q->symbol.name;
|
||
if (obj_textsec (abfd) != section)
|
||
goto done;
|
||
break;
|
||
case N_SOL:
|
||
current_file_name = q->symbol.name;
|
||
break;
|
||
|
||
case N_SLINE:
|
||
|
||
case N_DSLINE:
|
||
case N_BSLINE:
|
||
/* We'll keep this if it resolves nearer than the one we have
|
||
already. */
|
||
if (q->symbol.value >= low_line_vma
|
||
&& q->symbol.value <= offset)
|
||
{
|
||
*line_ptr = q->desc;
|
||
low_line_vma = q->symbol.value;
|
||
line_file_name = current_file_name;
|
||
line_directory_name = directory_name;
|
||
}
|
||
break;
|
||
case N_FUN:
|
||
{
|
||
/* We'll keep this if it is nearer than the one we have already. */
|
||
if (q->symbol.value >= low_func_vma &&
|
||
q->symbol.value <= offset)
|
||
{
|
||
low_func_vma = q->symbol.value;
|
||
func = (asymbol *)q;
|
||
}
|
||
else if (q->symbol.value > offset)
|
||
goto done;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
done:
|
||
if (*line_ptr != 0)
|
||
{
|
||
main_file_name = line_file_name;
|
||
directory_name = line_directory_name;
|
||
}
|
||
|
||
if (main_file_name == NULL
|
||
|| IS_ABSOLUTE_PATH (main_file_name)
|
||
|| directory_name == NULL)
|
||
filelen = 0;
|
||
else
|
||
filelen = strlen (directory_name) + strlen (main_file_name);
|
||
|
||
if (func == NULL)
|
||
funclen = 0;
|
||
else
|
||
funclen = strlen (bfd_asymbol_name (func));
|
||
|
||
if (adata (abfd).line_buf != NULL)
|
||
free (adata (abfd).line_buf);
|
||
|
||
if (filelen + funclen == 0)
|
||
adata (abfd).line_buf = buf = NULL;
|
||
else
|
||
{
|
||
buf = bfd_malloc (filelen + funclen + 3);
|
||
adata (abfd).line_buf = buf;
|
||
if (buf == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
if (main_file_name != NULL)
|
||
{
|
||
if (IS_ABSOLUTE_PATH (main_file_name) || directory_name == NULL)
|
||
*filename_ptr = main_file_name;
|
||
else
|
||
{
|
||
sprintf (buf, "%s%s", directory_name, main_file_name);
|
||
*filename_ptr = buf;
|
||
buf += filelen + 1;
|
||
}
|
||
}
|
||
|
||
if (func)
|
||
{
|
||
const char *function = func->name;
|
||
char *colon;
|
||
|
||
/* The caller expects a symbol name. We actually have a
|
||
function name, without the leading underscore. Put the
|
||
underscore back in, so that the caller gets a symbol name. */
|
||
if (bfd_get_symbol_leading_char (abfd) == '\0')
|
||
strcpy (buf, function);
|
||
else
|
||
{
|
||
buf[0] = bfd_get_symbol_leading_char (abfd);
|
||
strcpy (buf + 1, function);
|
||
}
|
||
/* Have to remove : stuff. */
|
||
colon = strchr (buf, ':');
|
||
if (colon != NULL)
|
||
*colon = '\0';
|
||
*functionname_ptr = buf;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
int
|
||
NAME (aout, sizeof_headers) (bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
return adata (abfd).exec_bytes_size;
|
||
}
|
||
|
||
/* Free all information we have cached for this BFD. We can always
|
||
read it again later if we need it. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, bfd_free_cached_info) (bfd *abfd)
|
||
{
|
||
asection *o;
|
||
|
||
if (bfd_get_format (abfd) != bfd_object
|
||
|| abfd->tdata.aout_data == NULL)
|
||
return TRUE;
|
||
|
||
#define BFCI_FREE(x) if (x != NULL) { free (x); x = NULL; }
|
||
BFCI_FREE (obj_aout_symbols (abfd));
|
||
#ifdef USE_MMAP
|
||
obj_aout_external_syms (abfd) = 0;
|
||
bfd_free_window (&obj_aout_sym_window (abfd));
|
||
bfd_free_window (&obj_aout_string_window (abfd));
|
||
obj_aout_external_strings (abfd) = 0;
|
||
#else
|
||
BFCI_FREE (obj_aout_external_syms (abfd));
|
||
BFCI_FREE (obj_aout_external_strings (abfd));
|
||
#endif
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
BFCI_FREE (o->relocation);
|
||
#undef BFCI_FREE
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* a.out link code. */
|
||
|
||
/* Routine to create an entry in an a.out link hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
NAME (aout, link_hash_newfunc) (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == NULL)
|
||
ret = bfd_hash_allocate (table, sizeof (* ret));
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct aout_link_hash_entry *)
|
||
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string));
|
||
if (ret)
|
||
{
|
||
/* Set local fields. */
|
||
ret->written = FALSE;
|
||
ret->indx = -1;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Initialize an a.out link hash table. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, link_hash_table_init) (struct aout_link_hash_table *table,
|
||
bfd *abfd,
|
||
struct bfd_hash_entry *(*newfunc)
|
||
(struct bfd_hash_entry *, struct bfd_hash_table *,
|
||
const char *),
|
||
unsigned int entsize)
|
||
{
|
||
return _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
|
||
}
|
||
|
||
/* Create an a.out link hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
NAME (aout, link_hash_table_create) (bfd *abfd)
|
||
{
|
||
struct aout_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (* ret);
|
||
|
||
ret = bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (!NAME (aout, link_hash_table_init) (ret, abfd,
|
||
NAME (aout, link_hash_newfunc),
|
||
sizeof (struct aout_link_hash_entry)))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
return &ret->root;
|
||
}
|
||
|
||
/* Add all symbols from an object file to the hash table. */
|
||
|
||
static bfd_boolean
|
||
aout_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
bfd_boolean (*add_one_symbol)
|
||
(struct bfd_link_info *, bfd *, const char *, flagword, asection *,
|
||
bfd_vma, const char *, bfd_boolean, bfd_boolean,
|
||
struct bfd_link_hash_entry **);
|
||
struct external_nlist *syms;
|
||
bfd_size_type sym_count;
|
||
char *strings;
|
||
bfd_boolean copy;
|
||
struct aout_link_hash_entry **sym_hash;
|
||
struct external_nlist *p;
|
||
struct external_nlist *pend;
|
||
bfd_size_type amt;
|
||
|
||
syms = obj_aout_external_syms (abfd);
|
||
sym_count = obj_aout_external_sym_count (abfd);
|
||
strings = obj_aout_external_strings (abfd);
|
||
if (info->keep_memory)
|
||
copy = FALSE;
|
||
else
|
||
copy = TRUE;
|
||
|
||
if (aout_backend_info (abfd)->add_dynamic_symbols != NULL)
|
||
{
|
||
if (! ((*aout_backend_info (abfd)->add_dynamic_symbols)
|
||
(abfd, info, &syms, &sym_count, &strings)))
|
||
return FALSE;
|
||
}
|
||
|
||
/* We keep a list of the linker hash table entries that correspond
|
||
to particular symbols. We could just look them up in the hash
|
||
table, but keeping the list is more efficient. Perhaps this
|
||
should be conditional on info->keep_memory. */
|
||
amt = sym_count * sizeof (struct aout_link_hash_entry *);
|
||
sym_hash = bfd_alloc (abfd, amt);
|
||
if (sym_hash == NULL && sym_count != 0)
|
||
return FALSE;
|
||
obj_aout_sym_hashes (abfd) = sym_hash;
|
||
|
||
add_one_symbol = aout_backend_info (abfd)->add_one_symbol;
|
||
if (add_one_symbol == NULL)
|
||
add_one_symbol = _bfd_generic_link_add_one_symbol;
|
||
|
||
p = syms;
|
||
pend = p + sym_count;
|
||
for (; p < pend; p++, sym_hash++)
|
||
{
|
||
int type;
|
||
const char *name;
|
||
bfd_vma value;
|
||
asection *section;
|
||
flagword flags;
|
||
const char *string;
|
||
|
||
*sym_hash = NULL;
|
||
|
||
type = H_GET_8 (abfd, p->e_type);
|
||
|
||
/* Ignore debugging symbols. */
|
||
if ((type & N_STAB) != 0)
|
||
continue;
|
||
|
||
name = strings + GET_WORD (abfd, p->e_strx);
|
||
value = GET_WORD (abfd, p->e_value);
|
||
flags = BSF_GLOBAL;
|
||
string = NULL;
|
||
switch (type)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case N_UNDF:
|
||
case N_ABS:
|
||
case N_TEXT:
|
||
case N_DATA:
|
||
case N_BSS:
|
||
case N_FN_SEQ:
|
||
case N_COMM:
|
||
case N_SETV:
|
||
case N_FN:
|
||
/* Ignore symbols that are not externally visible. */
|
||
continue;
|
||
case N_INDR:
|
||
/* Ignore local indirect symbol. */
|
||
++p;
|
||
++sym_hash;
|
||
continue;
|
||
|
||
case N_UNDF | N_EXT:
|
||
if (value == 0)
|
||
{
|
||
section = bfd_und_section_ptr;
|
||
flags = 0;
|
||
}
|
||
else
|
||
section = bfd_com_section_ptr;
|
||
break;
|
||
case N_ABS | N_EXT:
|
||
section = bfd_abs_section_ptr;
|
||
break;
|
||
case N_TEXT | N_EXT:
|
||
section = obj_textsec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_DATA | N_EXT:
|
||
case N_SETV | N_EXT:
|
||
/* Treat N_SETV symbols as N_DATA symbol; see comment in
|
||
translate_from_native_sym_flags. */
|
||
section = obj_datasec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_BSS | N_EXT:
|
||
section = obj_bsssec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_INDR | N_EXT:
|
||
/* An indirect symbol. The next symbol is the symbol
|
||
which this one really is. */
|
||
BFD_ASSERT (p + 1 < pend);
|
||
++p;
|
||
string = strings + GET_WORD (abfd, p->e_strx);
|
||
section = bfd_ind_section_ptr;
|
||
flags |= BSF_INDIRECT;
|
||
break;
|
||
case N_COMM | N_EXT:
|
||
section = bfd_com_section_ptr;
|
||
break;
|
||
case N_SETA: case N_SETA | N_EXT:
|
||
section = bfd_abs_section_ptr;
|
||
flags |= BSF_CONSTRUCTOR;
|
||
break;
|
||
case N_SETT: case N_SETT | N_EXT:
|
||
section = obj_textsec (abfd);
|
||
flags |= BSF_CONSTRUCTOR;
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_SETD: case N_SETD | N_EXT:
|
||
section = obj_datasec (abfd);
|
||
flags |= BSF_CONSTRUCTOR;
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_SETB: case N_SETB | N_EXT:
|
||
section = obj_bsssec (abfd);
|
||
flags |= BSF_CONSTRUCTOR;
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
break;
|
||
case N_WARNING:
|
||
/* A warning symbol. The next symbol is the one to warn
|
||
about. If there is no next symbol, just look away. */
|
||
if (p + 1 >= pend)
|
||
return TRUE;
|
||
++p;
|
||
string = name;
|
||
name = strings + GET_WORD (abfd, p->e_strx);
|
||
section = bfd_und_section_ptr;
|
||
flags |= BSF_WARNING;
|
||
break;
|
||
case N_WEAKU:
|
||
section = bfd_und_section_ptr;
|
||
flags = BSF_WEAK;
|
||
break;
|
||
case N_WEAKA:
|
||
section = bfd_abs_section_ptr;
|
||
flags = BSF_WEAK;
|
||
break;
|
||
case N_WEAKT:
|
||
section = obj_textsec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
flags = BSF_WEAK;
|
||
break;
|
||
case N_WEAKD:
|
||
section = obj_datasec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
flags = BSF_WEAK;
|
||
break;
|
||
case N_WEAKB:
|
||
section = obj_bsssec (abfd);
|
||
value -= bfd_get_section_vma (abfd, section);
|
||
flags = BSF_WEAK;
|
||
break;
|
||
}
|
||
|
||
if (! ((*add_one_symbol)
|
||
(info, abfd, name, flags, section, value, string, copy, FALSE,
|
||
(struct bfd_link_hash_entry **) sym_hash)))
|
||
return FALSE;
|
||
|
||
/* Restrict the maximum alignment of a common symbol based on
|
||
the architecture, since a.out has no way to represent
|
||
alignment requirements of a section in a .o file. FIXME:
|
||
This isn't quite right: it should use the architecture of the
|
||
output file, not the input files. */
|
||
if ((*sym_hash)->root.type == bfd_link_hash_common
|
||
&& ((*sym_hash)->root.u.c.p->alignment_power >
|
||
bfd_get_arch_info (abfd)->section_align_power))
|
||
(*sym_hash)->root.u.c.p->alignment_power =
|
||
bfd_get_arch_info (abfd)->section_align_power;
|
||
|
||
/* If this is a set symbol, and we are not building sets, then
|
||
it is possible for the hash entry to not have been set. In
|
||
such a case, treat the symbol as not globally defined. */
|
||
if ((*sym_hash)->root.type == bfd_link_hash_new)
|
||
{
|
||
BFD_ASSERT ((flags & BSF_CONSTRUCTOR) != 0);
|
||
*sym_hash = NULL;
|
||
}
|
||
|
||
if (type == (N_INDR | N_EXT) || type == N_WARNING)
|
||
++sym_hash;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Free up the internal symbols read from an a.out file. */
|
||
|
||
static bfd_boolean
|
||
aout_link_free_symbols (bfd *abfd)
|
||
{
|
||
if (obj_aout_external_syms (abfd) != NULL)
|
||
{
|
||
#ifdef USE_MMAP
|
||
bfd_free_window (&obj_aout_sym_window (abfd));
|
||
#else
|
||
free ((void *) obj_aout_external_syms (abfd));
|
||
#endif
|
||
obj_aout_external_syms (abfd) = NULL;
|
||
}
|
||
if (obj_aout_external_strings (abfd) != NULL)
|
||
{
|
||
#ifdef USE_MMAP
|
||
bfd_free_window (&obj_aout_string_window (abfd));
|
||
#else
|
||
free ((void *) obj_aout_external_strings (abfd));
|
||
#endif
|
||
obj_aout_external_strings (abfd) = NULL;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Add symbols from an a.out object file. */
|
||
|
||
static bfd_boolean
|
||
aout_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
if (! aout_get_external_symbols (abfd))
|
||
return FALSE;
|
||
if (! aout_link_add_symbols (abfd, info))
|
||
return FALSE;
|
||
if (! info->keep_memory)
|
||
{
|
||
if (! aout_link_free_symbols (abfd))
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Look through the internal symbols to see if this object file should
|
||
be included in the link. We should include this object file if it
|
||
defines any symbols which are currently undefined. If this object
|
||
file defines a common symbol, then we may adjust the size of the
|
||
known symbol but we do not include the object file in the link
|
||
(unless there is some other reason to include it). */
|
||
|
||
static bfd_boolean
|
||
aout_link_check_ar_symbols (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean *pneeded)
|
||
{
|
||
struct external_nlist *p;
|
||
struct external_nlist *pend;
|
||
char *strings;
|
||
|
||
*pneeded = FALSE;
|
||
|
||
/* Look through all the symbols. */
|
||
p = obj_aout_external_syms (abfd);
|
||
pend = p + obj_aout_external_sym_count (abfd);
|
||
strings = obj_aout_external_strings (abfd);
|
||
for (; p < pend; p++)
|
||
{
|
||
int type = H_GET_8 (abfd, p->e_type);
|
||
const char *name;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
/* Ignore symbols that are not externally visible. This is an
|
||
optimization only, as we check the type more thoroughly
|
||
below. */
|
||
if (((type & N_EXT) == 0
|
||
|| (type & N_STAB) != 0
|
||
|| type == N_FN)
|
||
&& type != N_WEAKA
|
||
&& type != N_WEAKT
|
||
&& type != N_WEAKD
|
||
&& type != N_WEAKB)
|
||
{
|
||
if (type == N_WARNING
|
||
|| type == N_INDR)
|
||
++p;
|
||
continue;
|
||
}
|
||
|
||
name = strings + GET_WORD (abfd, p->e_strx);
|
||
h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
|
||
|
||
/* We are only interested in symbols that are currently
|
||
undefined or common. */
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common))
|
||
{
|
||
if (type == (N_INDR | N_EXT))
|
||
++p;
|
||
continue;
|
||
}
|
||
|
||
if (type == (N_TEXT | N_EXT)
|
||
|| type == (N_DATA | N_EXT)
|
||
|| type == (N_BSS | N_EXT)
|
||
|| type == (N_ABS | N_EXT)
|
||
|| type == (N_INDR | N_EXT))
|
||
{
|
||
/* This object file defines this symbol. We must link it
|
||
in. This is true regardless of whether the current
|
||
definition of the symbol is undefined or common.
|
||
|
||
If the current definition is common, we have a case in
|
||
which we have already seen an object file including:
|
||
int a;
|
||
and this object file from the archive includes:
|
||
int a = 5;
|
||
In such a case, whether to include this object is target
|
||
dependant for backward compatibility.
|
||
|
||
FIXME: The SunOS 4.1.3 linker will pull in the archive
|
||
element if the symbol is defined in the .data section,
|
||
but not if it is defined in the .text section. That
|
||
seems a bit crazy to me, and it has not been implemented
|
||
yet. However, it might be correct. */
|
||
if (h->type == bfd_link_hash_common)
|
||
{
|
||
int skip = 0;
|
||
|
||
switch (info->common_skip_ar_aymbols)
|
||
{
|
||
case bfd_link_common_skip_text:
|
||
skip = (type == (N_TEXT | N_EXT));
|
||
break;
|
||
case bfd_link_common_skip_data:
|
||
skip = (type == (N_DATA | N_EXT));
|
||
break;
|
||
default:
|
||
case bfd_link_common_skip_all:
|
||
skip = 1;
|
||
break;
|
||
}
|
||
|
||
if (skip)
|
||
continue;
|
||
}
|
||
|
||
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
|
||
return FALSE;
|
||
*pneeded = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
if (type == (N_UNDF | N_EXT))
|
||
{
|
||
bfd_vma value;
|
||
|
||
value = GET_WORD (abfd, p->e_value);
|
||
if (value != 0)
|
||
{
|
||
/* This symbol is common in the object from the archive
|
||
file. */
|
||
if (h->type == bfd_link_hash_undefined)
|
||
{
|
||
bfd *symbfd;
|
||
unsigned int power;
|
||
|
||
symbfd = h->u.undef.abfd;
|
||
if (symbfd == NULL)
|
||
{
|
||
/* This symbol was created as undefined from
|
||
outside BFD. We assume that we should link
|
||
in the object file. This is done for the -u
|
||
option in the linker. */
|
||
if (! (*info->callbacks->add_archive_element) (info,
|
||
abfd,
|
||
name))
|
||
return FALSE;
|
||
*pneeded = TRUE;
|
||
return TRUE;
|
||
}
|
||
/* Turn the current link symbol into a common
|
||
symbol. It is already on the undefs list. */
|
||
h->type = bfd_link_hash_common;
|
||
h->u.c.p = bfd_hash_allocate (&info->hash->table,
|
||
sizeof (struct bfd_link_hash_common_entry));
|
||
if (h->u.c.p == NULL)
|
||
return FALSE;
|
||
|
||
h->u.c.size = value;
|
||
|
||
/* FIXME: This isn't quite right. The maximum
|
||
alignment of a common symbol should be set by the
|
||
architecture of the output file, not of the input
|
||
file. */
|
||
power = bfd_log2 (value);
|
||
if (power > bfd_get_arch_info (abfd)->section_align_power)
|
||
power = bfd_get_arch_info (abfd)->section_align_power;
|
||
h->u.c.p->alignment_power = power;
|
||
|
||
h->u.c.p->section = bfd_make_section_old_way (symbfd,
|
||
"COMMON");
|
||
}
|
||
else
|
||
{
|
||
/* Adjust the size of the common symbol if
|
||
necessary. */
|
||
if (value > h->u.c.size)
|
||
h->u.c.size = value;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (type == N_WEAKA
|
||
|| type == N_WEAKT
|
||
|| type == N_WEAKD
|
||
|| type == N_WEAKB)
|
||
{
|
||
/* This symbol is weak but defined. We must pull it in if
|
||
the current link symbol is undefined, but we don't want
|
||
it if the current link symbol is common. */
|
||
if (h->type == bfd_link_hash_undefined)
|
||
{
|
||
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
|
||
return FALSE;
|
||
*pneeded = TRUE;
|
||
return TRUE;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We do not need this object file. */
|
||
return TRUE;
|
||
}
|
||
/* Check a single archive element to see if we need to include it in
|
||
the link. *PNEEDED is set according to whether this element is
|
||
needed in the link or not. This is called from
|
||
_bfd_generic_link_add_archive_symbols. */
|
||
|
||
static bfd_boolean
|
||
aout_link_check_archive_element (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean *pneeded)
|
||
{
|
||
if (! aout_get_external_symbols (abfd))
|
||
return FALSE;
|
||
|
||
if (! aout_link_check_ar_symbols (abfd, info, pneeded))
|
||
return FALSE;
|
||
|
||
if (*pneeded)
|
||
{
|
||
if (! aout_link_add_symbols (abfd, info))
|
||
return FALSE;
|
||
}
|
||
|
||
if (! info->keep_memory || ! *pneeded)
|
||
{
|
||
if (! aout_link_free_symbols (abfd))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Given an a.out BFD, add symbols to the global hash table as
|
||
appropriate. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, link_add_symbols) (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
switch (bfd_get_format (abfd))
|
||
{
|
||
case bfd_object:
|
||
return aout_link_add_object_symbols (abfd, info);
|
||
case bfd_archive:
|
||
return _bfd_generic_link_add_archive_symbols
|
||
(abfd, info, aout_link_check_archive_element);
|
||
default:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* A hash table used for header files with N_BINCL entries. */
|
||
|
||
struct aout_link_includes_table
|
||
{
|
||
struct bfd_hash_table root;
|
||
};
|
||
|
||
/* A linked list of totals that we have found for a particular header
|
||
file. */
|
||
|
||
struct aout_link_includes_totals
|
||
{
|
||
struct aout_link_includes_totals *next;
|
||
bfd_vma total;
|
||
};
|
||
|
||
/* An entry in the header file hash table. */
|
||
|
||
struct aout_link_includes_entry
|
||
{
|
||
struct bfd_hash_entry root;
|
||
/* List of totals we have found for this file. */
|
||
struct aout_link_includes_totals *totals;
|
||
};
|
||
|
||
/* Look up an entry in an the header file hash table. */
|
||
|
||
#define aout_link_includes_lookup(table, string, create, copy) \
|
||
((struct aout_link_includes_entry *) \
|
||
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
|
||
|
||
/* During the final link step we need to pass around a bunch of
|
||
information, so we do it in an instance of this structure. */
|
||
|
||
struct aout_final_link_info
|
||
{
|
||
/* General link information. */
|
||
struct bfd_link_info *info;
|
||
/* Output bfd. */
|
||
bfd *output_bfd;
|
||
/* Reloc file positions. */
|
||
file_ptr treloff, dreloff;
|
||
/* File position of symbols. */
|
||
file_ptr symoff;
|
||
/* String table. */
|
||
struct bfd_strtab_hash *strtab;
|
||
/* Header file hash table. */
|
||
struct aout_link_includes_table includes;
|
||
/* A buffer large enough to hold the contents of any section. */
|
||
bfd_byte *contents;
|
||
/* A buffer large enough to hold the relocs of any section. */
|
||
void * relocs;
|
||
/* A buffer large enough to hold the symbol map of any input BFD. */
|
||
int *symbol_map;
|
||
/* A buffer large enough to hold output symbols of any input BFD. */
|
||
struct external_nlist *output_syms;
|
||
};
|
||
|
||
/* The function to create a new entry in the header file hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
aout_link_includes_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
struct aout_link_includes_entry *ret =
|
||
(struct aout_link_includes_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == NULL)
|
||
ret = bfd_hash_allocate (table, sizeof (* ret));
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct aout_link_includes_entry *)
|
||
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
||
if (ret)
|
||
{
|
||
/* Set local fields. */
|
||
ret->totals = NULL;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Write out a symbol that was not associated with an a.out input
|
||
object. */
|
||
|
||
static bfd_boolean
|
||
aout_link_write_other_symbol (struct aout_link_hash_entry *h, void * data)
|
||
{
|
||
struct aout_final_link_info *finfo = (struct aout_final_link_info *) data;
|
||
bfd *output_bfd;
|
||
int type;
|
||
bfd_vma val;
|
||
struct external_nlist outsym;
|
||
bfd_size_type indx;
|
||
bfd_size_type amt;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
{
|
||
h = (struct aout_link_hash_entry *) h->root.u.i.link;
|
||
if (h->root.type == bfd_link_hash_new)
|
||
return TRUE;
|
||
}
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
|
||
if (aout_backend_info (output_bfd)->write_dynamic_symbol != NULL)
|
||
{
|
||
if (! ((*aout_backend_info (output_bfd)->write_dynamic_symbol)
|
||
(output_bfd, finfo->info, h)))
|
||
{
|
||
/* FIXME: No way to handle errors. */
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (h->written)
|
||
return TRUE;
|
||
|
||
h->written = TRUE;
|
||
|
||
/* An indx of -2 means the symbol must be written. */
|
||
if (h->indx != -2
|
||
&& (finfo->info->strip == strip_all
|
||
|| (finfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (finfo->info->keep_hash, h->root.root.string,
|
||
FALSE, FALSE) == NULL)))
|
||
return TRUE;
|
||
|
||
switch (h->root.type)
|
||
{
|
||
default:
|
||
case bfd_link_hash_warning:
|
||
abort ();
|
||
/* Avoid variable not initialized warnings. */
|
||
return TRUE;
|
||
case bfd_link_hash_new:
|
||
/* This can happen for set symbols when sets are not being
|
||
built. */
|
||
return TRUE;
|
||
case bfd_link_hash_undefined:
|
||
type = N_UNDF | N_EXT;
|
||
val = 0;
|
||
break;
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
{
|
||
asection *sec;
|
||
|
||
sec = h->root.u.def.section->output_section;
|
||
BFD_ASSERT (bfd_is_abs_section (sec)
|
||
|| sec->owner == output_bfd);
|
||
if (sec == obj_textsec (output_bfd))
|
||
type = h->root.type == bfd_link_hash_defined ? N_TEXT : N_WEAKT;
|
||
else if (sec == obj_datasec (output_bfd))
|
||
type = h->root.type == bfd_link_hash_defined ? N_DATA : N_WEAKD;
|
||
else if (sec == obj_bsssec (output_bfd))
|
||
type = h->root.type == bfd_link_hash_defined ? N_BSS : N_WEAKB;
|
||
else
|
||
type = h->root.type == bfd_link_hash_defined ? N_ABS : N_WEAKA;
|
||
type |= N_EXT;
|
||
val = (h->root.u.def.value
|
||
+ sec->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
break;
|
||
case bfd_link_hash_common:
|
||
type = N_UNDF | N_EXT;
|
||
val = h->root.u.c.size;
|
||
break;
|
||
case bfd_link_hash_undefweak:
|
||
type = N_WEAKU;
|
||
val = 0;
|
||
case bfd_link_hash_indirect:
|
||
/* We ignore these symbols, since the indirected symbol is
|
||
already in the hash table. */
|
||
return TRUE;
|
||
}
|
||
|
||
H_PUT_8 (output_bfd, type, outsym.e_type);
|
||
H_PUT_8 (output_bfd, 0, outsym.e_other);
|
||
H_PUT_16 (output_bfd, 0, outsym.e_desc);
|
||
indx = add_to_stringtab (output_bfd, finfo->strtab, h->root.root.string,
|
||
FALSE);
|
||
if (indx == - (bfd_size_type) 1)
|
||
/* FIXME: No way to handle errors. */
|
||
abort ();
|
||
|
||
PUT_WORD (output_bfd, indx, outsym.e_strx);
|
||
PUT_WORD (output_bfd, val, outsym.e_value);
|
||
|
||
amt = EXTERNAL_NLIST_SIZE;
|
||
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0
|
||
|| bfd_bwrite ((void *) &outsym, amt, output_bfd) != amt)
|
||
/* FIXME: No way to handle errors. */
|
||
abort ();
|
||
|
||
finfo->symoff += EXTERNAL_NLIST_SIZE;
|
||
h->indx = obj_aout_external_sym_count (output_bfd);
|
||
++obj_aout_external_sym_count (output_bfd);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Handle a link order which is supposed to generate a reloc. */
|
||
|
||
static bfd_boolean
|
||
aout_link_reloc_link_order (struct aout_final_link_info *finfo,
|
||
asection *o,
|
||
struct bfd_link_order *p)
|
||
{
|
||
struct bfd_link_order_reloc *pr;
|
||
int r_index;
|
||
int r_extern;
|
||
reloc_howto_type *howto;
|
||
file_ptr *reloff_ptr = NULL;
|
||
struct reloc_std_external srel;
|
||
struct reloc_ext_external erel;
|
||
void * rel_ptr;
|
||
bfd_size_type amt;
|
||
|
||
pr = p->u.reloc.p;
|
||
|
||
if (p->type == bfd_section_reloc_link_order)
|
||
{
|
||
r_extern = 0;
|
||
if (bfd_is_abs_section (pr->u.section))
|
||
r_index = N_ABS | N_EXT;
|
||
else
|
||
{
|
||
BFD_ASSERT (pr->u.section->owner == finfo->output_bfd);
|
||
r_index = pr->u.section->target_index;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
BFD_ASSERT (p->type == bfd_symbol_reloc_link_order);
|
||
r_extern = 1;
|
||
h = ((struct aout_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (finfo->output_bfd, finfo->info,
|
||
pr->u.name, FALSE, FALSE, TRUE));
|
||
if (h != NULL
|
||
&& h->indx >= 0)
|
||
r_index = h->indx;
|
||
else if (h != NULL)
|
||
{
|
||
/* We decided to strip this symbol, but it turns out that we
|
||
can't. Note that we lose the other and desc information
|
||
here. I don't think that will ever matter for a global
|
||
symbol. */
|
||
h->indx = -2;
|
||
h->written = FALSE;
|
||
if (! aout_link_write_other_symbol (h, (void *) finfo))
|
||
return FALSE;
|
||
r_index = h->indx;
|
||
}
|
||
else
|
||
{
|
||
if (! ((*finfo->info->callbacks->unattached_reloc)
|
||
(finfo->info, pr->u.name, NULL, NULL, (bfd_vma) 0)))
|
||
return FALSE;
|
||
r_index = 0;
|
||
}
|
||
}
|
||
|
||
howto = bfd_reloc_type_lookup (finfo->output_bfd, pr->reloc);
|
||
if (howto == 0)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (o == obj_textsec (finfo->output_bfd))
|
||
reloff_ptr = &finfo->treloff;
|
||
else if (o == obj_datasec (finfo->output_bfd))
|
||
reloff_ptr = &finfo->dreloff;
|
||
else
|
||
abort ();
|
||
|
||
if (obj_reloc_entry_size (finfo->output_bfd) == RELOC_STD_SIZE)
|
||
{
|
||
#ifdef MY_put_reloc
|
||
MY_put_reloc (finfo->output_bfd, r_extern, r_index, p->offset, howto,
|
||
&srel);
|
||
#else
|
||
{
|
||
int r_pcrel;
|
||
int r_baserel;
|
||
int r_jmptable;
|
||
int r_relative;
|
||
int r_length;
|
||
|
||
r_pcrel = (int) howto->pc_relative;
|
||
r_baserel = (howto->type & 8) != 0;
|
||
r_jmptable = (howto->type & 16) != 0;
|
||
r_relative = (howto->type & 32) != 0;
|
||
r_length = howto->size;
|
||
|
||
PUT_WORD (finfo->output_bfd, p->offset, srel.r_address);
|
||
if (bfd_header_big_endian (finfo->output_bfd))
|
||
{
|
||
srel.r_index[0] = r_index >> 16;
|
||
srel.r_index[1] = r_index >> 8;
|
||
srel.r_index[2] = r_index;
|
||
srel.r_type[0] =
|
||
((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
|
||
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
|
||
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
|
||
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
|
||
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
|
||
}
|
||
else
|
||
{
|
||
srel.r_index[2] = r_index >> 16;
|
||
srel.r_index[1] = r_index >> 8;
|
||
srel.r_index[0] = r_index;
|
||
srel.r_type[0] =
|
||
((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
|
||
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
|
||
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
|
||
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
|
||
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
|
||
}
|
||
}
|
||
#endif
|
||
rel_ptr = (void *) &srel;
|
||
|
||
/* We have to write the addend into the object file, since
|
||
standard a.out relocs are in place. It would be more
|
||
reliable if we had the current contents of the file here,
|
||
rather than assuming zeroes, but we can't read the file since
|
||
it was opened using bfd_openw. */
|
||
if (pr->addend != 0)
|
||
{
|
||
bfd_size_type size;
|
||
bfd_reloc_status_type r;
|
||
bfd_byte *buf;
|
||
bfd_boolean ok;
|
||
|
||
size = bfd_get_reloc_size (howto);
|
||
buf = bfd_zmalloc (size);
|
||
if (buf == NULL)
|
||
return FALSE;
|
||
r = MY_relocate_contents (howto, finfo->output_bfd,
|
||
(bfd_vma) pr->addend, buf);
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_ok:
|
||
break;
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
if (! ((*finfo->info->callbacks->reloc_overflow)
|
||
(finfo->info, NULL,
|
||
(p->type == bfd_section_reloc_link_order
|
||
? bfd_section_name (finfo->output_bfd,
|
||
pr->u.section)
|
||
: pr->u.name),
|
||
howto->name, pr->addend, NULL, NULL, (bfd_vma) 0)))
|
||
{
|
||
free (buf);
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
ok = bfd_set_section_contents (finfo->output_bfd, o, (void *) buf,
|
||
(file_ptr) p->offset, size);
|
||
free (buf);
|
||
if (! ok)
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
#ifdef MY_put_ext_reloc
|
||
MY_put_ext_reloc (finfo->output_bfd, r_extern, r_index, p->offset,
|
||
howto, &erel, pr->addend);
|
||
#else
|
||
PUT_WORD (finfo->output_bfd, p->offset, erel.r_address);
|
||
|
||
if (bfd_header_big_endian (finfo->output_bfd))
|
||
{
|
||
erel.r_index[0] = r_index >> 16;
|
||
erel.r_index[1] = r_index >> 8;
|
||
erel.r_index[2] = r_index;
|
||
erel.r_type[0] =
|
||
((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0)
|
||
| (howto->type << RELOC_EXT_BITS_TYPE_SH_BIG));
|
||
}
|
||
else
|
||
{
|
||
erel.r_index[2] = r_index >> 16;
|
||
erel.r_index[1] = r_index >> 8;
|
||
erel.r_index[0] = r_index;
|
||
erel.r_type[0] =
|
||
(r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0)
|
||
| (howto->type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
||
}
|
||
|
||
PUT_WORD (finfo->output_bfd, (bfd_vma) pr->addend, erel.r_addend);
|
||
#endif /* MY_put_ext_reloc */
|
||
|
||
rel_ptr = (void *) &erel;
|
||
}
|
||
|
||
amt = obj_reloc_entry_size (finfo->output_bfd);
|
||
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0
|
||
|| bfd_bwrite (rel_ptr, amt, finfo->output_bfd) != amt)
|
||
return FALSE;
|
||
|
||
*reloff_ptr += obj_reloc_entry_size (finfo->output_bfd);
|
||
|
||
/* Assert that the relocs have not run into the symbols, and that n
|
||
the text relocs have not run into the data relocs. */
|
||
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
|
||
&& (reloff_ptr != &finfo->treloff
|
||
|| (*reloff_ptr
|
||
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Get the section corresponding to a reloc index. */
|
||
|
||
static INLINE asection *
|
||
aout_reloc_index_to_section (bfd *abfd, int indx)
|
||
{
|
||
switch (indx & N_TYPE)
|
||
{
|
||
case N_TEXT: return obj_textsec (abfd);
|
||
case N_DATA: return obj_datasec (abfd);
|
||
case N_BSS: return obj_bsssec (abfd);
|
||
case N_ABS:
|
||
case N_UNDF: return bfd_abs_section_ptr;
|
||
default: abort ();
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Relocate an a.out section using standard a.out relocs. */
|
||
|
||
static bfd_boolean
|
||
aout_link_input_section_std (struct aout_final_link_info *finfo,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
struct reloc_std_external *relocs,
|
||
bfd_size_type rel_size,
|
||
bfd_byte *contents)
|
||
{
|
||
bfd_boolean (*check_dynamic_reloc)
|
||
(struct bfd_link_info *, bfd *, asection *,
|
||
struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *,
|
||
bfd_vma *);
|
||
bfd *output_bfd;
|
||
bfd_boolean relocatable;
|
||
struct external_nlist *syms;
|
||
char *strings;
|
||
struct aout_link_hash_entry **sym_hashes;
|
||
int *symbol_map;
|
||
bfd_size_type reloc_count;
|
||
struct reloc_std_external *rel;
|
||
struct reloc_std_external *rel_end;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
|
||
|
||
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE);
|
||
BFD_ASSERT (input_bfd->xvec->header_byteorder
|
||
== output_bfd->xvec->header_byteorder);
|
||
|
||
relocatable = finfo->info->relocatable;
|
||
syms = obj_aout_external_syms (input_bfd);
|
||
strings = obj_aout_external_strings (input_bfd);
|
||
sym_hashes = obj_aout_sym_hashes (input_bfd);
|
||
symbol_map = finfo->symbol_map;
|
||
|
||
reloc_count = rel_size / RELOC_STD_SIZE;
|
||
rel = relocs;
|
||
rel_end = rel + reloc_count;
|
||
for (; rel < rel_end; rel++)
|
||
{
|
||
bfd_vma r_addr;
|
||
int r_index;
|
||
int r_extern;
|
||
int r_pcrel;
|
||
int r_baserel = 0;
|
||
reloc_howto_type *howto;
|
||
struct aout_link_hash_entry *h = NULL;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
|
||
r_addr = GET_SWORD (input_bfd, rel->r_address);
|
||
|
||
#ifdef MY_reloc_howto
|
||
howto = MY_reloc_howto (input_bfd, rel, r_index, r_extern, r_pcrel);
|
||
#else
|
||
{
|
||
int r_jmptable;
|
||
int r_relative;
|
||
int r_length;
|
||
unsigned int howto_idx;
|
||
|
||
if (bfd_header_big_endian (input_bfd))
|
||
{
|
||
r_index = (((unsigned int) rel->r_index[0] << 16)
|
||
| ((unsigned int) rel->r_index[1] << 8)
|
||
| rel->r_index[2]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
|
||
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
|
||
r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
|
||
r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
|
||
r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
|
||
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
|
||
>> RELOC_STD_BITS_LENGTH_SH_BIG);
|
||
}
|
||
else
|
||
{
|
||
r_index = (((unsigned int) rel->r_index[2] << 16)
|
||
| ((unsigned int) rel->r_index[1] << 8)
|
||
| rel->r_index[0]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
|
||
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
|
||
r_baserel = (0 != (rel->r_type[0]
|
||
& RELOC_STD_BITS_BASEREL_LITTLE));
|
||
r_jmptable= (0 != (rel->r_type[0]
|
||
& RELOC_STD_BITS_JMPTABLE_LITTLE));
|
||
r_relative= (0 != (rel->r_type[0]
|
||
& RELOC_STD_BITS_RELATIVE_LITTLE));
|
||
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
|
||
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
|
||
}
|
||
|
||
howto_idx = (r_length + 4 * r_pcrel + 8 * r_baserel
|
||
+ 16 * r_jmptable + 32 * r_relative);
|
||
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std));
|
||
howto = howto_table_std + howto_idx;
|
||
}
|
||
#endif
|
||
|
||
if (relocatable)
|
||
{
|
||
/* We are generating a relocatable output file, and must
|
||
modify the reloc accordingly. */
|
||
if (r_extern)
|
||
{
|
||
/* If we know the symbol this relocation is against,
|
||
convert it into a relocation against a section. This
|
||
is what the native linker does. */
|
||
h = sym_hashes[r_index];
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
asection *output_section;
|
||
|
||
/* Change the r_extern value. */
|
||
if (bfd_header_big_endian (output_bfd))
|
||
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG;
|
||
else
|
||
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE;
|
||
|
||
/* Compute a new r_index. */
|
||
output_section = h->root.u.def.section->output_section;
|
||
if (output_section == obj_textsec (output_bfd))
|
||
r_index = N_TEXT;
|
||
else if (output_section == obj_datasec (output_bfd))
|
||
r_index = N_DATA;
|
||
else if (output_section == obj_bsssec (output_bfd))
|
||
r_index = N_BSS;
|
||
else
|
||
r_index = N_ABS;
|
||
|
||
/* Add the symbol value and the section VMA to the
|
||
addend stored in the contents. */
|
||
relocation = (h->root.u.def.value
|
||
+ output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
/* We must change r_index according to the symbol
|
||
map. */
|
||
r_index = symbol_map[r_index];
|
||
|
||
if (r_index == -1)
|
||
{
|
||
if (h != NULL)
|
||
{
|
||
/* We decided to strip this symbol, but it
|
||
turns out that we can't. Note that we
|
||
lose the other and desc information here.
|
||
I don't think that will ever matter for a
|
||
global symbol. */
|
||
if (h->indx < 0)
|
||
{
|
||
h->indx = -2;
|
||
h->written = FALSE;
|
||
if (! aout_link_write_other_symbol (h,
|
||
(void *) finfo))
|
||
return FALSE;
|
||
}
|
||
r_index = h->indx;
|
||
}
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
name = strings + GET_WORD (input_bfd,
|
||
syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->unattached_reloc)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr)))
|
||
return FALSE;
|
||
r_index = 0;
|
||
}
|
||
}
|
||
|
||
relocation = 0;
|
||
}
|
||
|
||
/* Write out the new r_index value. */
|
||
if (bfd_header_big_endian (output_bfd))
|
||
{
|
||
rel->r_index[0] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[2] = r_index;
|
||
}
|
||
else
|
||
{
|
||
rel->r_index[2] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[0] = r_index;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *section;
|
||
|
||
/* This is a relocation against a section. We must
|
||
adjust by the amount that the section moved. */
|
||
section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
relocation = (section->output_section->vma
|
||
+ section->output_offset
|
||
- section->vma);
|
||
}
|
||
|
||
/* Change the address of the relocation. */
|
||
PUT_WORD (output_bfd,
|
||
r_addr + input_section->output_offset,
|
||
rel->r_address);
|
||
|
||
/* Adjust a PC relative relocation by removing the reference
|
||
to the original address in the section and including the
|
||
reference to the new address. */
|
||
if (r_pcrel)
|
||
relocation -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
- input_section->vma);
|
||
|
||
#ifdef MY_relocatable_reloc
|
||
MY_relocatable_reloc (howto, output_bfd, rel, relocation, r_addr);
|
||
#endif
|
||
|
||
if (relocation == 0)
|
||
r = bfd_reloc_ok;
|
||
else
|
||
r = MY_relocate_contents (howto,
|
||
input_bfd, relocation,
|
||
contents + r_addr);
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean hundef;
|
||
|
||
/* We are generating an executable, and must do a full
|
||
relocation. */
|
||
hundef = FALSE;
|
||
|
||
if (r_extern)
|
||
{
|
||
h = sym_hashes[r_index];
|
||
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
relocation = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else if (h != NULL
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
relocation = 0;
|
||
else
|
||
{
|
||
hundef = TRUE;
|
||
relocation = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
asection *section;
|
||
|
||
section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
relocation = (section->output_section->vma
|
||
+ section->output_offset
|
||
- section->vma);
|
||
if (r_pcrel)
|
||
relocation += input_section->vma;
|
||
}
|
||
|
||
if (check_dynamic_reloc != NULL)
|
||
{
|
||
bfd_boolean skip;
|
||
|
||
if (! ((*check_dynamic_reloc)
|
||
(finfo->info, input_bfd, input_section, h,
|
||
(void *) rel, contents, &skip, &relocation)))
|
||
return FALSE;
|
||
if (skip)
|
||
continue;
|
||
}
|
||
|
||
/* Now warn if a global symbol is undefined. We could not
|
||
do this earlier, because check_dynamic_reloc might want
|
||
to skip this reloc. */
|
||
if (hundef && ! finfo->info->shared && ! r_baserel)
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->undefined_symbol)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr, TRUE)))
|
||
return FALSE;
|
||
}
|
||
|
||
r = MY_final_link_relocate (howto,
|
||
input_bfd, input_section,
|
||
contents, r_addr, relocation,
|
||
(bfd_vma) 0);
|
||
}
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
switch (r)
|
||
{
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = NULL;
|
||
else if (r_extern)
|
||
name = strings + GET_WORD (input_bfd,
|
||
syms[r_index].e_strx);
|
||
else
|
||
{
|
||
asection *s;
|
||
|
||
s = aout_reloc_index_to_section (input_bfd, r_index);
|
||
name = bfd_section_name (input_bfd, s);
|
||
}
|
||
if (! ((*finfo->info->callbacks->reloc_overflow)
|
||
(finfo->info, (h ? &h->root : NULL), name,
|
||
howto->name, (bfd_vma) 0, input_bfd,
|
||
input_section, r_addr)))
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Relocate an a.out section using extended a.out relocs. */
|
||
|
||
static bfd_boolean
|
||
aout_link_input_section_ext (struct aout_final_link_info *finfo,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
struct reloc_ext_external *relocs,
|
||
bfd_size_type rel_size,
|
||
bfd_byte *contents)
|
||
{
|
||
bfd_boolean (*check_dynamic_reloc)
|
||
(struct bfd_link_info *, bfd *, asection *,
|
||
struct aout_link_hash_entry *, void *, bfd_byte *, bfd_boolean *,
|
||
bfd_vma *);
|
||
bfd *output_bfd;
|
||
bfd_boolean relocatable;
|
||
struct external_nlist *syms;
|
||
char *strings;
|
||
struct aout_link_hash_entry **sym_hashes;
|
||
int *symbol_map;
|
||
bfd_size_type reloc_count;
|
||
struct reloc_ext_external *rel;
|
||
struct reloc_ext_external *rel_end;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
|
||
|
||
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE);
|
||
BFD_ASSERT (input_bfd->xvec->header_byteorder
|
||
== output_bfd->xvec->header_byteorder);
|
||
|
||
relocatable = finfo->info->relocatable;
|
||
syms = obj_aout_external_syms (input_bfd);
|
||
strings = obj_aout_external_strings (input_bfd);
|
||
sym_hashes = obj_aout_sym_hashes (input_bfd);
|
||
symbol_map = finfo->symbol_map;
|
||
|
||
reloc_count = rel_size / RELOC_EXT_SIZE;
|
||
rel = relocs;
|
||
rel_end = rel + reloc_count;
|
||
for (; rel < rel_end; rel++)
|
||
{
|
||
bfd_vma r_addr;
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
bfd_vma r_addend;
|
||
struct aout_link_hash_entry *h = NULL;
|
||
asection *r_section = NULL;
|
||
bfd_vma relocation;
|
||
|
||
r_addr = GET_SWORD (input_bfd, rel->r_address);
|
||
|
||
if (bfd_header_big_endian (input_bfd))
|
||
{
|
||
r_index = (((unsigned int) rel->r_index[0] << 16)
|
||
| ((unsigned int) rel->r_index[1] << 8)
|
||
| rel->r_index[2]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
|
||
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
||
>> RELOC_EXT_BITS_TYPE_SH_BIG);
|
||
}
|
||
else
|
||
{
|
||
r_index = (((unsigned int) rel->r_index[2] << 16)
|
||
| ((unsigned int) rel->r_index[1] << 8)
|
||
| rel->r_index[0]);
|
||
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
|
||
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
||
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
||
}
|
||
|
||
r_addend = GET_SWORD (input_bfd, rel->r_addend);
|
||
|
||
BFD_ASSERT (r_type < TABLE_SIZE (howto_table_ext));
|
||
|
||
if (relocatable)
|
||
{
|
||
/* We are generating a relocatable output file, and must
|
||
modify the reloc accordingly. */
|
||
if (r_extern
|
||
|| r_type == (unsigned int) RELOC_BASE10
|
||
|| r_type == (unsigned int) RELOC_BASE13
|
||
|| r_type == (unsigned int) RELOC_BASE22)
|
||
{
|
||
/* If we know the symbol this relocation is against,
|
||
convert it into a relocation against a section. This
|
||
is what the native linker does. */
|
||
if (r_type == (unsigned int) RELOC_BASE10
|
||
|| r_type == (unsigned int) RELOC_BASE13
|
||
|| r_type == (unsigned int) RELOC_BASE22)
|
||
h = NULL;
|
||
else
|
||
h = sym_hashes[r_index];
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
asection *output_section;
|
||
|
||
/* Change the r_extern value. */
|
||
if (bfd_header_big_endian (output_bfd))
|
||
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG;
|
||
else
|
||
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE;
|
||
|
||
/* Compute a new r_index. */
|
||
output_section = h->root.u.def.section->output_section;
|
||
if (output_section == obj_textsec (output_bfd))
|
||
r_index = N_TEXT;
|
||
else if (output_section == obj_datasec (output_bfd))
|
||
r_index = N_DATA;
|
||
else if (output_section == obj_bsssec (output_bfd))
|
||
r_index = N_BSS;
|
||
else
|
||
r_index = N_ABS;
|
||
|
||
/* Add the symbol value and the section VMA to the
|
||
addend. */
|
||
relocation = (h->root.u.def.value
|
||
+ output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
|
||
/* Now RELOCATION is the VMA of the final
|
||
destination. If this is a PC relative reloc,
|
||
then ADDEND is the negative of the source VMA.
|
||
We want to set ADDEND to the difference between
|
||
the destination VMA and the source VMA, which
|
||
means we must adjust RELOCATION by the change in
|
||
the source VMA. This is done below. */
|
||
}
|
||
else
|
||
{
|
||
/* We must change r_index according to the symbol
|
||
map. */
|
||
r_index = symbol_map[r_index];
|
||
|
||
if (r_index == -1)
|
||
{
|
||
if (h != NULL)
|
||
{
|
||
/* We decided to strip this symbol, but it
|
||
turns out that we can't. Note that we
|
||
lose the other and desc information here.
|
||
I don't think that will ever matter for a
|
||
global symbol. */
|
||
if (h->indx < 0)
|
||
{
|
||
h->indx = -2;
|
||
h->written = FALSE;
|
||
if (! aout_link_write_other_symbol (h,
|
||
(void *) finfo))
|
||
return FALSE;
|
||
}
|
||
r_index = h->indx;
|
||
}
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
name = strings + GET_WORD (input_bfd,
|
||
syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->unattached_reloc)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr)))
|
||
return FALSE;
|
||
r_index = 0;
|
||
}
|
||
}
|
||
|
||
relocation = 0;
|
||
|
||
/* If this is a PC relative reloc, then the addend
|
||
is the negative of the source VMA. We must
|
||
adjust it by the change in the source VMA. This
|
||
is done below. */
|
||
}
|
||
|
||
/* Write out the new r_index value. */
|
||
if (bfd_header_big_endian (output_bfd))
|
||
{
|
||
rel->r_index[0] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[2] = r_index;
|
||
}
|
||
else
|
||
{
|
||
rel->r_index[2] = r_index >> 16;
|
||
rel->r_index[1] = r_index >> 8;
|
||
rel->r_index[0] = r_index;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is a relocation against a section. We must
|
||
adjust by the amount that the section moved. */
|
||
r_section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
relocation = (r_section->output_section->vma
|
||
+ r_section->output_offset
|
||
- r_section->vma);
|
||
|
||
/* If this is a PC relative reloc, then the addend is
|
||
the difference in VMA between the destination and the
|
||
source. We have just adjusted for the change in VMA
|
||
of the destination, so we must also adjust by the
|
||
change in VMA of the source. This is done below. */
|
||
}
|
||
|
||
/* As described above, we must always adjust a PC relative
|
||
reloc by the change in VMA of the source. However, if
|
||
pcrel_offset is set, then the addend does not include the
|
||
location within the section, in which case we don't need
|
||
to adjust anything. */
|
||
if (howto_table_ext[r_type].pc_relative
|
||
&& ! howto_table_ext[r_type].pcrel_offset)
|
||
relocation -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
- input_section->vma);
|
||
|
||
/* Change the addend if necessary. */
|
||
if (relocation != 0)
|
||
PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend);
|
||
|
||
/* Change the address of the relocation. */
|
||
PUT_WORD (output_bfd,
|
||
r_addr + input_section->output_offset,
|
||
rel->r_address);
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean hundef;
|
||
bfd_reloc_status_type r;
|
||
|
||
/* We are generating an executable, and must do a full
|
||
relocation. */
|
||
hundef = FALSE;
|
||
|
||
if (r_extern)
|
||
{
|
||
h = sym_hashes[r_index];
|
||
|
||
if (h != NULL
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
relocation = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else if (h != NULL
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
relocation = 0;
|
||
else
|
||
{
|
||
hundef = TRUE;
|
||
relocation = 0;
|
||
}
|
||
}
|
||
else if (r_type == (unsigned int) RELOC_BASE10
|
||
|| r_type == (unsigned int) RELOC_BASE13
|
||
|| r_type == (unsigned int) RELOC_BASE22)
|
||
{
|
||
struct external_nlist *sym;
|
||
int type;
|
||
|
||
/* For base relative relocs, r_index is always an index
|
||
into the symbol table, even if r_extern is 0. */
|
||
sym = syms + r_index;
|
||
type = H_GET_8 (input_bfd, sym->e_type);
|
||
if ((type & N_TYPE) == N_TEXT
|
||
|| type == N_WEAKT)
|
||
r_section = obj_textsec (input_bfd);
|
||
else if ((type & N_TYPE) == N_DATA
|
||
|| type == N_WEAKD)
|
||
r_section = obj_datasec (input_bfd);
|
||
else if ((type & N_TYPE) == N_BSS
|
||
|| type == N_WEAKB)
|
||
r_section = obj_bsssec (input_bfd);
|
||
else if ((type & N_TYPE) == N_ABS
|
||
|| type == N_WEAKA)
|
||
r_section = bfd_abs_section_ptr;
|
||
else
|
||
abort ();
|
||
relocation = (r_section->output_section->vma
|
||
+ r_section->output_offset
|
||
+ (GET_WORD (input_bfd, sym->e_value)
|
||
- r_section->vma));
|
||
}
|
||
else
|
||
{
|
||
r_section = aout_reloc_index_to_section (input_bfd, r_index);
|
||
|
||
/* If this is a PC relative reloc, then R_ADDEND is the
|
||
difference between the two vmas, or
|
||
old_dest_sec + old_dest_off - (old_src_sec + old_src_off)
|
||
where
|
||
old_dest_sec == section->vma
|
||
and
|
||
old_src_sec == input_section->vma
|
||
and
|
||
old_src_off == r_addr
|
||
|
||
_bfd_final_link_relocate expects RELOCATION +
|
||
R_ADDEND to be the VMA of the destination minus
|
||
r_addr (the minus r_addr is because this relocation
|
||
is not pcrel_offset, which is a bit confusing and
|
||
should, perhaps, be changed), or
|
||
new_dest_sec
|
||
where
|
||
new_dest_sec == output_section->vma + output_offset
|
||
We arrange for this to happen by setting RELOCATION to
|
||
new_dest_sec + old_src_sec - old_dest_sec
|
||
|
||
If this is not a PC relative reloc, then R_ADDEND is
|
||
simply the VMA of the destination, so we set
|
||
RELOCATION to the change in the destination VMA, or
|
||
new_dest_sec - old_dest_sec
|
||
*/
|
||
relocation = (r_section->output_section->vma
|
||
+ r_section->output_offset
|
||
- r_section->vma);
|
||
if (howto_table_ext[r_type].pc_relative)
|
||
relocation += input_section->vma;
|
||
}
|
||
|
||
if (check_dynamic_reloc != NULL)
|
||
{
|
||
bfd_boolean skip;
|
||
|
||
if (! ((*check_dynamic_reloc)
|
||
(finfo->info, input_bfd, input_section, h,
|
||
(void *) rel, contents, &skip, &relocation)))
|
||
return FALSE;
|
||
if (skip)
|
||
continue;
|
||
}
|
||
|
||
/* Now warn if a global symbol is undefined. We could not
|
||
do this earlier, because check_dynamic_reloc might want
|
||
to skip this reloc. */
|
||
if (hundef
|
||
&& ! finfo->info->shared
|
||
&& r_type != (unsigned int) RELOC_BASE10
|
||
&& r_type != (unsigned int) RELOC_BASE13
|
||
&& r_type != (unsigned int) RELOC_BASE22)
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
|
||
if (! ((*finfo->info->callbacks->undefined_symbol)
|
||
(finfo->info, name, input_bfd, input_section,
|
||
r_addr, TRUE)))
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_type != (unsigned int) RELOC_SPARC_REV32)
|
||
r = MY_final_link_relocate (howto_table_ext + r_type,
|
||
input_bfd, input_section,
|
||
contents, r_addr, relocation,
|
||
r_addend);
|
||
else
|
||
{
|
||
bfd_vma x;
|
||
|
||
x = bfd_get_32 (input_bfd, contents + r_addr);
|
||
x = x + relocation + r_addend;
|
||
bfd_putl32 (/*input_bfd,*/ x, contents + r_addr);
|
||
r = bfd_reloc_ok;
|
||
}
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
switch (r)
|
||
{
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = NULL;
|
||
else if (r_extern
|
||
|| r_type == (unsigned int) RELOC_BASE10
|
||
|| r_type == (unsigned int) RELOC_BASE13
|
||
|| r_type == (unsigned int) RELOC_BASE22)
|
||
name = strings + GET_WORD (input_bfd,
|
||
syms[r_index].e_strx);
|
||
else
|
||
{
|
||
asection *s;
|
||
|
||
s = aout_reloc_index_to_section (input_bfd, r_index);
|
||
name = bfd_section_name (input_bfd, s);
|
||
}
|
||
if (! ((*finfo->info->callbacks->reloc_overflow)
|
||
(finfo->info, (h ? &h->root : NULL), name,
|
||
howto_table_ext[r_type].name,
|
||
r_addend, input_bfd, input_section, r_addr)))
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Link an a.out section into the output file. */
|
||
|
||
static bfd_boolean
|
||
aout_link_input_section (struct aout_final_link_info *finfo,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
file_ptr *reloff_ptr,
|
||
bfd_size_type rel_size)
|
||
{
|
||
bfd_size_type input_size;
|
||
void * relocs;
|
||
|
||
/* Get the section contents. */
|
||
input_size = input_section->size;
|
||
if (! bfd_get_section_contents (input_bfd, input_section,
|
||
(void *) finfo->contents,
|
||
(file_ptr) 0, input_size))
|
||
return FALSE;
|
||
|
||
/* Read in the relocs if we haven't already done it. */
|
||
if (aout_section_data (input_section) != NULL
|
||
&& aout_section_data (input_section)->relocs != NULL)
|
||
relocs = aout_section_data (input_section)->relocs;
|
||
else
|
||
{
|
||
relocs = finfo->relocs;
|
||
if (rel_size > 0)
|
||
{
|
||
if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0
|
||
|| bfd_bread (relocs, rel_size, input_bfd) != rel_size)
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Relocate the section contents. */
|
||
if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
|
||
{
|
||
if (! aout_link_input_section_std (finfo, input_bfd, input_section,
|
||
(struct reloc_std_external *) relocs,
|
||
rel_size, finfo->contents))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (! aout_link_input_section_ext (finfo, input_bfd, input_section,
|
||
(struct reloc_ext_external *) relocs,
|
||
rel_size, finfo->contents))
|
||
return FALSE;
|
||
}
|
||
|
||
/* Write out the section contents. */
|
||
if (! bfd_set_section_contents (finfo->output_bfd,
|
||
input_section->output_section,
|
||
(void *) finfo->contents,
|
||
(file_ptr) input_section->output_offset,
|
||
input_size))
|
||
return FALSE;
|
||
|
||
/* If we are producing relocatable output, the relocs were
|
||
modified, and we now write them out. */
|
||
if (finfo->info->relocatable && rel_size > 0)
|
||
{
|
||
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0)
|
||
return FALSE;
|
||
if (bfd_bwrite (relocs, rel_size, finfo->output_bfd) != rel_size)
|
||
return FALSE;
|
||
*reloff_ptr += rel_size;
|
||
|
||
/* Assert that the relocs have not run into the symbols, and
|
||
that if these are the text relocs they have not run into the
|
||
data relocs. */
|
||
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
|
||
&& (reloff_ptr != &finfo->treloff
|
||
|| (*reloff_ptr
|
||
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Adjust and write out the symbols for an a.out file. Set the new
|
||
symbol indices into a symbol_map. */
|
||
|
||
static bfd_boolean
|
||
aout_link_write_symbols (struct aout_final_link_info *finfo, bfd *input_bfd)
|
||
{
|
||
bfd *output_bfd;
|
||
bfd_size_type sym_count;
|
||
char *strings;
|
||
enum bfd_link_strip strip;
|
||
enum bfd_link_discard discard;
|
||
struct external_nlist *outsym;
|
||
bfd_size_type strtab_index;
|
||
struct external_nlist *sym;
|
||
struct external_nlist *sym_end;
|
||
struct aout_link_hash_entry **sym_hash;
|
||
int *symbol_map;
|
||
bfd_boolean pass;
|
||
bfd_boolean skip_next;
|
||
|
||
output_bfd = finfo->output_bfd;
|
||
sym_count = obj_aout_external_sym_count (input_bfd);
|
||
strings = obj_aout_external_strings (input_bfd);
|
||
strip = finfo->info->strip;
|
||
discard = finfo->info->discard;
|
||
outsym = finfo->output_syms;
|
||
|
||
/* First write out a symbol for this object file, unless we are
|
||
discarding such symbols. */
|
||
if (strip != strip_all
|
||
&& (strip != strip_some
|
||
|| bfd_hash_lookup (finfo->info->keep_hash, input_bfd->filename,
|
||
FALSE, FALSE) != NULL)
|
||
&& discard != discard_all)
|
||
{
|
||
H_PUT_8 (output_bfd, N_TEXT, outsym->e_type);
|
||
H_PUT_8 (output_bfd, 0, outsym->e_other);
|
||
H_PUT_16 (output_bfd, 0, outsym->e_desc);
|
||
strtab_index = add_to_stringtab (output_bfd, finfo->strtab,
|
||
input_bfd->filename, FALSE);
|
||
if (strtab_index == (bfd_size_type) -1)
|
||
return FALSE;
|
||
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
|
||
PUT_WORD (output_bfd,
|
||
(bfd_get_section_vma (output_bfd,
|
||
obj_textsec (input_bfd)->output_section)
|
||
+ obj_textsec (input_bfd)->output_offset),
|
||
outsym->e_value);
|
||
++obj_aout_external_sym_count (output_bfd);
|
||
++outsym;
|
||
}
|
||
|
||
pass = FALSE;
|
||
skip_next = FALSE;
|
||
sym = obj_aout_external_syms (input_bfd);
|
||
sym_end = sym + sym_count;
|
||
sym_hash = obj_aout_sym_hashes (input_bfd);
|
||
symbol_map = finfo->symbol_map;
|
||
memset (symbol_map, 0, (size_t) sym_count * sizeof *symbol_map);
|
||
for (; sym < sym_end; sym++, sym_hash++, symbol_map++)
|
||
{
|
||
const char *name;
|
||
int type;
|
||
struct aout_link_hash_entry *h;
|
||
bfd_boolean skip;
|
||
asection *symsec;
|
||
bfd_vma val = 0;
|
||
bfd_boolean copy;
|
||
|
||
/* We set *symbol_map to 0 above for all symbols. If it has
|
||
already been set to -1 for this symbol, it means that we are
|
||
discarding it because it appears in a duplicate header file.
|
||
See the N_BINCL code below. */
|
||
if (*symbol_map == -1)
|
||
continue;
|
||
|
||
/* Initialize *symbol_map to -1, which means that the symbol was
|
||
not copied into the output file. We will change it later if
|
||
we do copy the symbol over. */
|
||
*symbol_map = -1;
|
||
|
||
type = H_GET_8 (input_bfd, sym->e_type);
|
||
name = strings + GET_WORD (input_bfd, sym->e_strx);
|
||
|
||
h = NULL;
|
||
|
||
if (pass)
|
||
{
|
||
/* Pass this symbol through. It is the target of an
|
||
indirect or warning symbol. */
|
||
val = GET_WORD (input_bfd, sym->e_value);
|
||
pass = FALSE;
|
||
}
|
||
else if (skip_next)
|
||
{
|
||
/* Skip this symbol, which is the target of an indirect
|
||
symbol that we have changed to no longer be an indirect
|
||
symbol. */
|
||
skip_next = FALSE;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
struct aout_link_hash_entry *hresolve;
|
||
|
||
/* We have saved the hash table entry for this symbol, if
|
||
there is one. Note that we could just look it up again
|
||
in the hash table, provided we first check that it is an
|
||
external symbol. */
|
||
h = *sym_hash;
|
||
|
||
/* Use the name from the hash table, in case the symbol was
|
||
wrapped. */
|
||
if (h != NULL
|
||
&& h->root.type != bfd_link_hash_warning)
|
||
name = h->root.root.string;
|
||
|
||
/* If this is an indirect or warning symbol, then change
|
||
hresolve to the base symbol. We also change *sym_hash so
|
||
that the relocation routines relocate against the real
|
||
symbol. */
|
||
hresolve = h;
|
||
if (h != (struct aout_link_hash_entry *) NULL
|
||
&& (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning))
|
||
{
|
||
hresolve = (struct aout_link_hash_entry *) h->root.u.i.link;
|
||
while (hresolve->root.type == bfd_link_hash_indirect
|
||
|| hresolve->root.type == bfd_link_hash_warning)
|
||
hresolve = ((struct aout_link_hash_entry *)
|
||
hresolve->root.u.i.link);
|
||
*sym_hash = hresolve;
|
||
}
|
||
|
||
/* If the symbol has already been written out, skip it. */
|
||
if (h != NULL
|
||
&& h->written)
|
||
{
|
||
if ((type & N_TYPE) == N_INDR
|
||
|| type == N_WARNING)
|
||
skip_next = TRUE;
|
||
*symbol_map = h->indx;
|
||
continue;
|
||
}
|
||
|
||
/* See if we are stripping this symbol. */
|
||
skip = FALSE;
|
||
switch (strip)
|
||
{
|
||
case strip_none:
|
||
break;
|
||
case strip_debugger:
|
||
if ((type & N_STAB) != 0)
|
||
skip = TRUE;
|
||
break;
|
||
case strip_some:
|
||
if (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
|
||
== NULL)
|
||
skip = TRUE;
|
||
break;
|
||
case strip_all:
|
||
skip = TRUE;
|
||
break;
|
||
}
|
||
if (skip)
|
||
{
|
||
if (h != NULL)
|
||
h->written = TRUE;
|
||
continue;
|
||
}
|
||
|
||
/* Get the value of the symbol. */
|
||
if ((type & N_TYPE) == N_TEXT
|
||
|| type == N_WEAKT)
|
||
symsec = obj_textsec (input_bfd);
|
||
else if ((type & N_TYPE) == N_DATA
|
||
|| type == N_WEAKD)
|
||
symsec = obj_datasec (input_bfd);
|
||
else if ((type & N_TYPE) == N_BSS
|
||
|| type == N_WEAKB)
|
||
symsec = obj_bsssec (input_bfd);
|
||
else if ((type & N_TYPE) == N_ABS
|
||
|| type == N_WEAKA)
|
||
symsec = bfd_abs_section_ptr;
|
||
else if (((type & N_TYPE) == N_INDR
|
||
&& (hresolve == NULL
|
||
|| (hresolve->root.type != bfd_link_hash_defined
|
||
&& hresolve->root.type != bfd_link_hash_defweak
|
||
&& hresolve->root.type != bfd_link_hash_common)))
|
||
|| type == N_WARNING)
|
||
{
|
||
/* Pass the next symbol through unchanged. The
|
||
condition above for indirect symbols is so that if
|
||
the indirect symbol was defined, we output it with
|
||
the correct definition so the debugger will
|
||
understand it. */
|
||
pass = TRUE;
|
||
val = GET_WORD (input_bfd, sym->e_value);
|
||
symsec = NULL;
|
||
}
|
||
else if ((type & N_STAB) != 0)
|
||
{
|
||
val = GET_WORD (input_bfd, sym->e_value);
|
||
symsec = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* If we get here with an indirect symbol, it means that
|
||
we are outputting it with a real definition. In such
|
||
a case we do not want to output the next symbol,
|
||
which is the target of the indirection. */
|
||
if ((type & N_TYPE) == N_INDR)
|
||
skip_next = TRUE;
|
||
|
||
symsec = NULL;
|
||
|
||
/* We need to get the value from the hash table. We use
|
||
hresolve so that if we have defined an indirect
|
||
symbol we output the final definition. */
|
||
if (h == NULL)
|
||
{
|
||
switch (type & N_TYPE)
|
||
{
|
||
case N_SETT:
|
||
symsec = obj_textsec (input_bfd);
|
||
break;
|
||
case N_SETD:
|
||
symsec = obj_datasec (input_bfd);
|
||
break;
|
||
case N_SETB:
|
||
symsec = obj_bsssec (input_bfd);
|
||
break;
|
||
case N_SETA:
|
||
symsec = bfd_abs_section_ptr;
|
||
break;
|
||
default:
|
||
val = 0;
|
||
break;
|
||
}
|
||
}
|
||
else if (hresolve->root.type == bfd_link_hash_defined
|
||
|| hresolve->root.type == bfd_link_hash_defweak)
|
||
{
|
||
asection *input_section;
|
||
asection *output_section;
|
||
|
||
/* This case usually means a common symbol which was
|
||
turned into a defined symbol. */
|
||
input_section = hresolve->root.u.def.section;
|
||
output_section = input_section->output_section;
|
||
BFD_ASSERT (bfd_is_abs_section (output_section)
|
||
|| output_section->owner == output_bfd);
|
||
val = (hresolve->root.u.def.value
|
||
+ bfd_get_section_vma (output_bfd, output_section)
|
||
+ input_section->output_offset);
|
||
|
||
/* Get the correct type based on the section. If
|
||
this is a constructed set, force it to be
|
||
globally visible. */
|
||
if (type == N_SETT
|
||
|| type == N_SETD
|
||
|| type == N_SETB
|
||
|| type == N_SETA)
|
||
type |= N_EXT;
|
||
|
||
type &=~ N_TYPE;
|
||
|
||
if (output_section == obj_textsec (output_bfd))
|
||
type |= (hresolve->root.type == bfd_link_hash_defined
|
||
? N_TEXT
|
||
: N_WEAKT);
|
||
else if (output_section == obj_datasec (output_bfd))
|
||
type |= (hresolve->root.type == bfd_link_hash_defined
|
||
? N_DATA
|
||
: N_WEAKD);
|
||
else if (output_section == obj_bsssec (output_bfd))
|
||
type |= (hresolve->root.type == bfd_link_hash_defined
|
||
? N_BSS
|
||
: N_WEAKB);
|
||
else
|
||
type |= (hresolve->root.type == bfd_link_hash_defined
|
||
? N_ABS
|
||
: N_WEAKA);
|
||
}
|
||
else if (hresolve->root.type == bfd_link_hash_common)
|
||
val = hresolve->root.u.c.size;
|
||
else if (hresolve->root.type == bfd_link_hash_undefweak)
|
||
{
|
||
val = 0;
|
||
type = N_WEAKU;
|
||
}
|
||
else
|
||
val = 0;
|
||
}
|
||
if (symsec != NULL)
|
||
val = (symsec->output_section->vma
|
||
+ symsec->output_offset
|
||
+ (GET_WORD (input_bfd, sym->e_value)
|
||
- symsec->vma));
|
||
|
||
/* If this is a global symbol set the written flag, and if
|
||
it is a local symbol see if we should discard it. */
|
||
if (h != NULL)
|
||
{
|
||
h->written = TRUE;
|
||
h->indx = obj_aout_external_sym_count (output_bfd);
|
||
}
|
||
else if ((type & N_TYPE) != N_SETT
|
||
&& (type & N_TYPE) != N_SETD
|
||
&& (type & N_TYPE) != N_SETB
|
||
&& (type & N_TYPE) != N_SETA)
|
||
{
|
||
switch (discard)
|
||
{
|
||
case discard_none:
|
||
case discard_sec_merge:
|
||
break;
|
||
case discard_l:
|
||
if ((type & N_STAB) == 0
|
||
&& bfd_is_local_label_name (input_bfd, name))
|
||
skip = TRUE;
|
||
break;
|
||
case discard_all:
|
||
skip = TRUE;
|
||
break;
|
||
}
|
||
if (skip)
|
||
{
|
||
pass = FALSE;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* An N_BINCL symbol indicates the start of the stabs
|
||
entries for a header file. We need to scan ahead to the
|
||
next N_EINCL symbol, ignoring nesting, adding up all the
|
||
characters in the symbol names, not including the file
|
||
numbers in types (the first number after an open
|
||
parenthesis). */
|
||
if (type == (int) N_BINCL)
|
||
{
|
||
struct external_nlist *incl_sym;
|
||
int nest;
|
||
struct aout_link_includes_entry *incl_entry;
|
||
struct aout_link_includes_totals *t;
|
||
|
||
val = 0;
|
||
nest = 0;
|
||
for (incl_sym = sym + 1; incl_sym < sym_end; incl_sym++)
|
||
{
|
||
int incl_type;
|
||
|
||
incl_type = H_GET_8 (input_bfd, incl_sym->e_type);
|
||
if (incl_type == (int) N_EINCL)
|
||
{
|
||
if (nest == 0)
|
||
break;
|
||
--nest;
|
||
}
|
||
else if (incl_type == (int) N_BINCL)
|
||
++nest;
|
||
else if (nest == 0)
|
||
{
|
||
const char *s;
|
||
|
||
s = strings + GET_WORD (input_bfd, incl_sym->e_strx);
|
||
for (; *s != '\0'; s++)
|
||
{
|
||
val += *s;
|
||
if (*s == '(')
|
||
{
|
||
/* Skip the file number. */
|
||
++s;
|
||
while (ISDIGIT (*s))
|
||
++s;
|
||
--s;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we have already included a header file with the
|
||
same value, then replace this one with an N_EXCL
|
||
symbol. */
|
||
copy = (bfd_boolean) (! finfo->info->keep_memory);
|
||
incl_entry = aout_link_includes_lookup (&finfo->includes,
|
||
name, TRUE, copy);
|
||
if (incl_entry == NULL)
|
||
return FALSE;
|
||
for (t = incl_entry->totals; t != NULL; t = t->next)
|
||
if (t->total == val)
|
||
break;
|
||
if (t == NULL)
|
||
{
|
||
/* This is the first time we have seen this header
|
||
file with this set of stabs strings. */
|
||
t = bfd_hash_allocate (&finfo->includes.root,
|
||
sizeof *t);
|
||
if (t == NULL)
|
||
return FALSE;
|
||
t->total = val;
|
||
t->next = incl_entry->totals;
|
||
incl_entry->totals = t;
|
||
}
|
||
else
|
||
{
|
||
int *incl_map;
|
||
|
||
/* This is a duplicate header file. We must change
|
||
it to be an N_EXCL entry, and mark all the
|
||
included symbols to prevent outputting them. */
|
||
type = (int) N_EXCL;
|
||
|
||
nest = 0;
|
||
for (incl_sym = sym + 1, incl_map = symbol_map + 1;
|
||
incl_sym < sym_end;
|
||
incl_sym++, incl_map++)
|
||
{
|
||
int incl_type;
|
||
|
||
incl_type = H_GET_8 (input_bfd, incl_sym->e_type);
|
||
if (incl_type == (int) N_EINCL)
|
||
{
|
||
if (nest == 0)
|
||
{
|
||
*incl_map = -1;
|
||
break;
|
||
}
|
||
--nest;
|
||
}
|
||
else if (incl_type == (int) N_BINCL)
|
||
++nest;
|
||
else if (nest == 0)
|
||
*incl_map = -1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy this symbol into the list of symbols we are going to
|
||
write out. */
|
||
H_PUT_8 (output_bfd, type, outsym->e_type);
|
||
H_PUT_8 (output_bfd, H_GET_8 (input_bfd, sym->e_other), outsym->e_other);
|
||
H_PUT_16 (output_bfd, H_GET_16 (input_bfd, sym->e_desc), outsym->e_desc);
|
||
copy = FALSE;
|
||
if (! finfo->info->keep_memory)
|
||
{
|
||
/* name points into a string table which we are going to
|
||
free. If there is a hash table entry, use that string.
|
||
Otherwise, copy name into memory. */
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
copy = TRUE;
|
||
}
|
||
strtab_index = add_to_stringtab (output_bfd, finfo->strtab,
|
||
name, copy);
|
||
if (strtab_index == (bfd_size_type) -1)
|
||
return FALSE;
|
||
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
|
||
PUT_WORD (output_bfd, val, outsym->e_value);
|
||
*symbol_map = obj_aout_external_sym_count (output_bfd);
|
||
++obj_aout_external_sym_count (output_bfd);
|
||
++outsym;
|
||
}
|
||
|
||
/* Write out the output symbols we have just constructed. */
|
||
if (outsym > finfo->output_syms)
|
||
{
|
||
bfd_size_type outsym_size;
|
||
|
||
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0)
|
||
return FALSE;
|
||
outsym_size = outsym - finfo->output_syms;
|
||
outsym_size *= EXTERNAL_NLIST_SIZE;
|
||
if (bfd_bwrite ((void *) finfo->output_syms, outsym_size, output_bfd)
|
||
!= outsym_size)
|
||
return FALSE;
|
||
finfo->symoff += outsym_size;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Link an a.out input BFD into the output file. */
|
||
|
||
static bfd_boolean
|
||
aout_link_input_bfd (struct aout_final_link_info *finfo, bfd *input_bfd)
|
||
{
|
||
bfd_size_type sym_count;
|
||
|
||
BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object);
|
||
|
||
/* If this is a dynamic object, it may need special handling. */
|
||
if ((input_bfd->flags & DYNAMIC) != 0
|
||
&& aout_backend_info (input_bfd)->link_dynamic_object != NULL)
|
||
return ((*aout_backend_info (input_bfd)->link_dynamic_object)
|
||
(finfo->info, input_bfd));
|
||
|
||
/* Get the symbols. We probably have them already, unless
|
||
finfo->info->keep_memory is FALSE. */
|
||
if (! aout_get_external_symbols (input_bfd))
|
||
return FALSE;
|
||
|
||
sym_count = obj_aout_external_sym_count (input_bfd);
|
||
|
||
/* Write out the symbols and get a map of the new indices. The map
|
||
is placed into finfo->symbol_map. */
|
||
if (! aout_link_write_symbols (finfo, input_bfd))
|
||
return FALSE;
|
||
|
||
/* Relocate and write out the sections. These functions use the
|
||
symbol map created by aout_link_write_symbols. The linker_mark
|
||
field will be set if these sections are to be included in the
|
||
link, which will normally be the case. */
|
||
if (obj_textsec (input_bfd)->linker_mark)
|
||
{
|
||
if (! aout_link_input_section (finfo, input_bfd,
|
||
obj_textsec (input_bfd),
|
||
&finfo->treloff,
|
||
exec_hdr (input_bfd)->a_trsize))
|
||
return FALSE;
|
||
}
|
||
if (obj_datasec (input_bfd)->linker_mark)
|
||
{
|
||
if (! aout_link_input_section (finfo, input_bfd,
|
||
obj_datasec (input_bfd),
|
||
&finfo->dreloff,
|
||
exec_hdr (input_bfd)->a_drsize))
|
||
return FALSE;
|
||
}
|
||
|
||
/* If we are not keeping memory, we don't need the symbols any
|
||
longer. We still need them if we are keeping memory, because the
|
||
strings in the hash table point into them. */
|
||
if (! finfo->info->keep_memory)
|
||
{
|
||
if (! aout_link_free_symbols (input_bfd))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Do the final link step. This is called on the output BFD. The
|
||
INFO structure should point to a list of BFDs linked through the
|
||
link_next field which can be used to find each BFD which takes part
|
||
in the output. Also, each section in ABFD should point to a list
|
||
of bfd_link_order structures which list all the input sections for
|
||
the output section. */
|
||
|
||
bfd_boolean
|
||
NAME (aout, final_link) (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
void (*callback) (bfd *, file_ptr *, file_ptr *, file_ptr *))
|
||
{
|
||
struct aout_final_link_info aout_info;
|
||
bfd_boolean includes_hash_initialized = FALSE;
|
||
bfd *sub;
|
||
bfd_size_type trsize, drsize;
|
||
bfd_size_type max_contents_size;
|
||
bfd_size_type max_relocs_size;
|
||
bfd_size_type max_sym_count;
|
||
bfd_size_type text_size;
|
||
file_ptr text_end;
|
||
struct bfd_link_order *p;
|
||
asection *o;
|
||
bfd_boolean have_link_order_relocs;
|
||
|
||
if (info->shared)
|
||
abfd->flags |= DYNAMIC;
|
||
|
||
aout_info.info = info;
|
||
aout_info.output_bfd = abfd;
|
||
aout_info.contents = NULL;
|
||
aout_info.relocs = NULL;
|
||
aout_info.symbol_map = NULL;
|
||
aout_info.output_syms = NULL;
|
||
|
||
if (!bfd_hash_table_init_n (&aout_info.includes.root,
|
||
aout_link_includes_newfunc,
|
||
sizeof (struct aout_link_includes_entry),
|
||
251))
|
||
goto error_return;
|
||
includes_hash_initialized = TRUE;
|
||
|
||
/* Figure out the largest section size. Also, if generating
|
||
relocatable output, count the relocs. */
|
||
trsize = 0;
|
||
drsize = 0;
|
||
max_contents_size = 0;
|
||
max_relocs_size = 0;
|
||
max_sym_count = 0;
|
||
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
||
{
|
||
bfd_size_type sz;
|
||
|
||
if (info->relocatable)
|
||
{
|
||
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
|
||
{
|
||
trsize += exec_hdr (sub)->a_trsize;
|
||
drsize += exec_hdr (sub)->a_drsize;
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: We need to identify the .text and .data sections
|
||
and call get_reloc_upper_bound and canonicalize_reloc to
|
||
work out the number of relocs needed, and then multiply
|
||
by the reloc size. */
|
||
(*_bfd_error_handler)
|
||
(_("%s: relocatable link from %s to %s not supported"),
|
||
bfd_get_filename (abfd),
|
||
sub->xvec->name, abfd->xvec->name);
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
|
||
{
|
||
sz = obj_textsec (sub)->size;
|
||
if (sz > max_contents_size)
|
||
max_contents_size = sz;
|
||
sz = obj_datasec (sub)->size;
|
||
if (sz > max_contents_size)
|
||
max_contents_size = sz;
|
||
|
||
sz = exec_hdr (sub)->a_trsize;
|
||
if (sz > max_relocs_size)
|
||
max_relocs_size = sz;
|
||
sz = exec_hdr (sub)->a_drsize;
|
||
if (sz > max_relocs_size)
|
||
max_relocs_size = sz;
|
||
|
||
sz = obj_aout_external_sym_count (sub);
|
||
if (sz > max_sym_count)
|
||
max_sym_count = sz;
|
||
}
|
||
}
|
||
|
||
if (info->relocatable)
|
||
{
|
||
if (obj_textsec (abfd) != NULL)
|
||
trsize += (_bfd_count_link_order_relocs (obj_textsec (abfd)
|
||
->map_head.link_order)
|
||
* obj_reloc_entry_size (abfd));
|
||
if (obj_datasec (abfd) != NULL)
|
||
drsize += (_bfd_count_link_order_relocs (obj_datasec (abfd)
|
||
->map_head.link_order)
|
||
* obj_reloc_entry_size (abfd));
|
||
}
|
||
|
||
exec_hdr (abfd)->a_trsize = trsize;
|
||
exec_hdr (abfd)->a_drsize = drsize;
|
||
|
||
exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd);
|
||
|
||
/* Adjust the section sizes and vmas according to the magic number.
|
||
This sets a_text, a_data and a_bss in the exec_hdr and sets the
|
||
filepos for each section. */
|
||
if (! NAME (aout, adjust_sizes_and_vmas) (abfd, &text_size, &text_end))
|
||
goto error_return;
|
||
|
||
/* The relocation and symbol file positions differ among a.out
|
||
targets. We are passed a callback routine from the backend
|
||
specific code to handle this.
|
||
FIXME: At this point we do not know how much space the symbol
|
||
table will require. This will not work for any (nonstandard)
|
||
a.out target that needs to know the symbol table size before it
|
||
can compute the relocation file positions. This may or may not
|
||
be the case for the hp300hpux target, for example. */
|
||
(*callback) (abfd, &aout_info.treloff, &aout_info.dreloff,
|
||
&aout_info.symoff);
|
||
obj_textsec (abfd)->rel_filepos = aout_info.treloff;
|
||
obj_datasec (abfd)->rel_filepos = aout_info.dreloff;
|
||
obj_sym_filepos (abfd) = aout_info.symoff;
|
||
|
||
/* We keep a count of the symbols as we output them. */
|
||
obj_aout_external_sym_count (abfd) = 0;
|
||
|
||
/* We accumulate the string table as we write out the symbols. */
|
||
aout_info.strtab = _bfd_stringtab_init ();
|
||
if (aout_info.strtab == NULL)
|
||
goto error_return;
|
||
|
||
/* Allocate buffers to hold section contents and relocs. */
|
||
aout_info.contents = bfd_malloc (max_contents_size);
|
||
aout_info.relocs = bfd_malloc (max_relocs_size);
|
||
aout_info.symbol_map = bfd_malloc (max_sym_count * sizeof (int *));
|
||
aout_info.output_syms = bfd_malloc ((max_sym_count + 1)
|
||
* sizeof (struct external_nlist));
|
||
if ((aout_info.contents == NULL && max_contents_size != 0)
|
||
|| (aout_info.relocs == NULL && max_relocs_size != 0)
|
||
|| (aout_info.symbol_map == NULL && max_sym_count != 0)
|
||
|| aout_info.output_syms == NULL)
|
||
goto error_return;
|
||
|
||
/* If we have a symbol named __DYNAMIC, force it out now. This is
|
||
required by SunOS. Doing this here rather than in sunos.c is a
|
||
hack, but it's easier than exporting everything which would be
|
||
needed. */
|
||
{
|
||
struct aout_link_hash_entry *h;
|
||
|
||
h = aout_link_hash_lookup (aout_hash_table (info), "__DYNAMIC",
|
||
FALSE, FALSE, FALSE);
|
||
if (h != NULL)
|
||
aout_link_write_other_symbol (h, &aout_info);
|
||
}
|
||
|
||
/* The most time efficient way to do the link would be to read all
|
||
the input object files into memory and then sort out the
|
||
information into the output file. Unfortunately, that will
|
||
probably use too much memory. Another method would be to step
|
||
through everything that composes the text section and write it
|
||
out, and then everything that composes the data section and write
|
||
it out, and then write out the relocs, and then write out the
|
||
symbols. Unfortunately, that requires reading stuff from each
|
||
input file several times, and we will not be able to keep all the
|
||
input files open simultaneously, and reopening them will be slow.
|
||
|
||
What we do is basically process one input file at a time. We do
|
||
everything we need to do with an input file once--copy over the
|
||
section contents, handle the relocation information, and write
|
||
out the symbols--and then we throw away the information we read
|
||
from it. This approach requires a lot of lseeks of the output
|
||
file, which is unfortunate but still faster than reopening a lot
|
||
of files.
|
||
|
||
We use the output_has_begun field of the input BFDs to see
|
||
whether we have already handled it. */
|
||
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
||
sub->output_has_begun = FALSE;
|
||
|
||
/* Mark all sections which are to be included in the link. This
|
||
will normally be every section. We need to do this so that we
|
||
can identify any sections which the linker has decided to not
|
||
include. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
if (p->type == bfd_indirect_link_order)
|
||
p->u.indirect.section->linker_mark = TRUE;
|
||
}
|
||
|
||
have_link_order_relocs = FALSE;
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->map_head.link_order;
|
||
p != NULL;
|
||
p = p->next)
|
||
{
|
||
if (p->type == bfd_indirect_link_order
|
||
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
||
== bfd_target_aout_flavour))
|
||
{
|
||
bfd *input_bfd;
|
||
|
||
input_bfd = p->u.indirect.section->owner;
|
||
if (! input_bfd->output_has_begun)
|
||
{
|
||
if (! aout_link_input_bfd (&aout_info, input_bfd))
|
||
goto error_return;
|
||
input_bfd->output_has_begun = TRUE;
|
||
}
|
||
}
|
||
else if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
{
|
||
/* These are handled below. */
|
||
have_link_order_relocs = TRUE;
|
||
}
|
||
else
|
||
{
|
||
if (! _bfd_default_link_order (abfd, info, o, p))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Write out any symbols that we have not already written out. */
|
||
aout_link_hash_traverse (aout_hash_table (info),
|
||
aout_link_write_other_symbol,
|
||
(void *) &aout_info);
|
||
|
||
/* Now handle any relocs we were asked to create by the linker.
|
||
These did not come from any input file. We must do these after
|
||
we have written out all the symbols, so that we know the symbol
|
||
indices to use. */
|
||
if (have_link_order_relocs)
|
||
{
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->map_head.link_order;
|
||
p != NULL;
|
||
p = p->next)
|
||
{
|
||
if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
{
|
||
if (! aout_link_reloc_link_order (&aout_info, o, p))
|
||
goto error_return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (aout_info.contents != NULL)
|
||
{
|
||
free (aout_info.contents);
|
||
aout_info.contents = NULL;
|
||
}
|
||
if (aout_info.relocs != NULL)
|
||
{
|
||
free (aout_info.relocs);
|
||
aout_info.relocs = NULL;
|
||
}
|
||
if (aout_info.symbol_map != NULL)
|
||
{
|
||
free (aout_info.symbol_map);
|
||
aout_info.symbol_map = NULL;
|
||
}
|
||
if (aout_info.output_syms != NULL)
|
||
{
|
||
free (aout_info.output_syms);
|
||
aout_info.output_syms = NULL;
|
||
}
|
||
if (includes_hash_initialized)
|
||
{
|
||
bfd_hash_table_free (&aout_info.includes.root);
|
||
includes_hash_initialized = FALSE;
|
||
}
|
||
|
||
/* Finish up any dynamic linking we may be doing. */
|
||
if (aout_backend_info (abfd)->finish_dynamic_link != NULL)
|
||
{
|
||
if (! (*aout_backend_info (abfd)->finish_dynamic_link) (abfd, info))
|
||
goto error_return;
|
||
}
|
||
|
||
/* Update the header information. */
|
||
abfd->symcount = obj_aout_external_sym_count (abfd);
|
||
exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE;
|
||
obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms;
|
||
obj_textsec (abfd)->reloc_count =
|
||
exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
|
||
obj_datasec (abfd)->reloc_count =
|
||
exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
|
||
|
||
/* Write out the string table, unless there are no symbols. */
|
||
if (abfd->symcount > 0)
|
||
{
|
||
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|
||
|| ! emit_stringtab (abfd, aout_info.strtab))
|
||
goto error_return;
|
||
}
|
||
else if (obj_textsec (abfd)->reloc_count == 0
|
||
&& obj_datasec (abfd)->reloc_count == 0)
|
||
{
|
||
bfd_byte b;
|
||
file_ptr pos;
|
||
|
||
b = 0;
|
||
pos = obj_datasec (abfd)->filepos + exec_hdr (abfd)->a_data - 1;
|
||
if (bfd_seek (abfd, pos, SEEK_SET) != 0
|
||
|| bfd_bwrite (&b, (bfd_size_type) 1, abfd) != 1)
|
||
goto error_return;
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (aout_info.contents != NULL)
|
||
free (aout_info.contents);
|
||
if (aout_info.relocs != NULL)
|
||
free (aout_info.relocs);
|
||
if (aout_info.symbol_map != NULL)
|
||
free (aout_info.symbol_map);
|
||
if (aout_info.output_syms != NULL)
|
||
free (aout_info.output_syms);
|
||
if (includes_hash_initialized)
|
||
bfd_hash_table_free (&aout_info.includes.root);
|
||
return FALSE;
|
||
}
|