0db3fe94c3
* config.in, configure.in, configure: Check for <objlist.h>. * configure.tgt: Handle mips*-sgi-irix6* like irix5 for now. * cp-valprint.c (cp_print_value_fields): Use SYMBOL_VALUE_ADDRESS instead of SYMBOL_BLOCK_VALUE to get the address of a static member. * dwarf2read.c: Turn warnings and recoverable errors into complaints, add new complaints where appropriate. gcc -Wall cleanup. (struct line_head): Change line_base from char to int to avoid problems with compilers whose plain char is represented by an unsigned char. (struct partial_die_info): Add is_declaration field. (dwarf2_tmp_obstack): New obstack for allocating temporary storage used during symbol reading. (cu_header_offset): New variable for resolving relative reference dies. (optimized_out, basereg, islocal, frame_base_reg, frame_base_offset): New interface variables for decode_locdesc. (struct dwarf2_pinfo): New structure for communication between psymtab and symtab reading, passed via pst->read_symtab_private. (dwarf2_has_info, dwarf2_build_psymtabs): Accept objects files without line number sections. (dwarf2_build_psymtabs_hard): Initialize temporary obstack for symbol reading. Allocate and initialize pst->read_symtab_private. Relocate pst->textlow and pst->texthigh with baseaddr. (scan_partial_symbols): Do not add DW_AT_declaration symbols to the partial symbol table. Add file scope enumerator symbols to the partial symbol table. Fix typo in highpc computation. If we didn't find a lowpc, set it to highpc to avoid complaints from `maint check. (add_partial_symbol): Relocate symbol values with baseaddr. Add static DW_TAG_subprogram and DW_TAG_variable symbols to the minimal symbol table. Obtain symbol values for DW_TAG_variable symbols from the location descriptor, skip symbols with missing location desciptors. Skip symbols for aggregate types without children. Handle enumerator symbols. (dwarf2_psymtab_to_symtab): Issue symbol reading message if verbose. (psymtab_to_symtab_1): Set local variables from pst->read_symtab_private, set cu_header_offset and baseaddr. Initialize temporary obstack for symbol reading, initialize buildsym and add a cleanup to really_free_pendings. Relocate highpc with baseaddr when calling end_symtab. If the compilation is from a C file generated by language preprocessors, do not set the symtab language if it was already deduced by start_subfile. Removed verbose sorting symbol table message. (process_die): Handle DW_TAG_ptr_to_member_type and DW_TAG_reference_type. Use read_subroutine_type to get the function type for DW_TAG_subprogram before calling read_func_scope. (read_file_scope): Initialize file name to <unknown>, start_subfile expects a non-NULL name. If we didn't find a lowpc, set it to highpc to avoid complaints from finish_symbol. Relocate lowpc and highpc with baseaddr. Get rid of Irix6.2 native cc compile machine prefix in comp_dir. Zero out ftypes for each new compilation unit (may be different language or different objfile). Accept compilation units without line number information, pass comp_dir to decode_lines. (read_func_scope): Initialize function name to <unknown> to avoid core dumps when DW_AT_name is missing. Relocate lowpc and highpc with baseaddr. Handle DW_AT_frame_base, keep result for DW_OP_fbreg operations. Pass function type to new_symbol. (read_lexical_block_scope): Relocate lowpc and highpc with baseaddr. (read_structure_scope): Set TYPE_TAG_NAME, not TYPE_NAME. Handle DW_TAG_class_type. Copy fields to type_obstack, release temporary storage for fields. Don't add symbol if die is a stub die and has no children. Handle C++ static member fields. (read_enumeration): Set TYPE_TAG_NAME, not TYPE_NAME. Copy fields to type_obstack, release temporary storage for fields. Let new_symbol handle the symbol creation for enumerators instead of handcrafting a symbol. Determine signedness of enum type from enumerators. (dwarf_read_array_type): Handle variable length arrays. Use lookup_pointer_type instead of handcrafting a type. Create array type only if a DW_TAG_subrange_type was found. (read_tag_pointer_type, read_tag_reference_type): Use lookup_pointer_type and lookup_reference_type instead of handcrafting a type. (read_tag_ptr_to_member_type): New function to handle DW_TAG_ptr_to_member_type. (read_subroutine_type): Handle parameter dies. Use lookup_function_type instead of handcrafting a type. (read_typedef): Allocate a TYPE_CODE_TYPEDEF type for the typedef. (read_base_type): If the type has a name, use init_type to create a new type instead of second guessing a fundamental type. (read_comp_unit): Reset die reference table before building a new one. (dwarf2_read_section): Read section contents into psymbol_obstack. (dwarf2_read_abbrevs): Handle unterminated abbreviations for a compile unit gracefully. (read_partial_die): Zero partial die before reading its info. Handle DW_AT_declaration. Fix typo in handling of DW_FORM_block4. (read_full_die): Fix typo in handling of DW_FORM_block4. (read_1_signed_byte, read_2_signed_bytes, read_4_signed_bytes): New routines to get signed values from a buffer. (read_n_bytes, read_string): Allocate storage from the temporary obstack. If the host char size permits it, return pointer to buffer instead of allocating storage. (set_cu_language): Handle DW_LANG_Mips_Assembler. (dwarf_attr): Return NULL if reference die for DW_AT_specification or DW_AT_abstract_origin die is not found. (record_minimal_symbol): Removed, replaced with a direct call to prim_record_minimal_symbol, it now handles saving the string itself. (convert_locdesc): Removed, partial symtab reading now uses decode_locdesc. (dwarf_attr): Use dwarf2_get_ref_die_offset to get the absolute offset for the die reference. (dwarf_decode_lines): Complain if the line section info is missing. Use read_1_signed_byte to extract lh.line_base to avoid problems with compilers whose plain char is represented by an unsigned char. Add cleanups for allocated temporary storage. Start a subfile for the first file in the state machine. Fix off by one problem with dirs.dirs access. Use comp_dir when directory index is 0. Support multiple sequences (from Jason Merrill <jason@cygnus.com>). (dwarf2_start_subfile): Try to keep line numbers from identical absolute and relative file names in a common subfile. (new_symbol): Allocate symbol and symbol name on the symbol_obstack. Set SYMBOL_LINE from DW_AT_decl_line if present. Set SYMBOL_TYPE from passed type if not NULL. Change DW_TAG_variable symbol types with missing type entries to a sensible type. Handle optimized_out, offreg and islocal storage classes. Add external symbols with type information whose address isn't known as LOC_UNRESOLVED symbols. Synthesize typedefs for C++ classes, structs, unions and enumerations. Handle DW_TAG_enumerator symbols, complain for unrecognized symbol tags. (die_type): A missing DW_AT_type represents a void type. Use dwarf2_get_ref_die_offset to get the absolute offset for the die reference. (die_containing_type): New function to build type from DW_AT_containing_type attribut. (read_type_die): Handle DW_TAG_ptr_to_member_type. Treat DW_TAG_subprogram like DW_TAG_subroutine_type. (dwarf_base_type): Fix typo with creation of FT_UNSIGNED_SHORT fundamental type. (create_name): Removed, symbol name allocation is now done in new_symbol. (dump_die): Use print_address_numeric to print a CORE_ADDR. (dwarf2_empty_die_ref_table): New function to clear the die reference table. (dwarf2_get_ref_die_offset): New function to get the absolute die offset from a die reference attribute. (decode_locdesc): Complete rewrite using a stack, code mostly borrowed from dwarfread.c:locval. (dwarf_alloc_type): Removed, replaced by direct calls to alloc_type. (dwarf_alloc_block): Allocate block on temporary obstack. * elfread.c (elf_symtab_read): When handling Irix dynamic symbols, skip section name symbols and relocate all others. (elf_symfile_read): Build dwarf2 psymtab even if offset is non-zero. * irix5-nat.c (fetch_core_registers): Handle core_reg_sect from N32 executables. Call registers_fetched after extracting the registers. (obj_list_variant, struct link_map, LM_OFFSET, LM_ADDR): New definitions to enable support of O32 and N32 format objlists. (struct so_list): New members offset, so_name and lmstart to eliminate dependencies from the objlist format used. (solib_map_sections, symbol_add_stub, solib_add, info_sharedlibrary_command, solib_address, clear_solib): Use so_name and LM_OFFSET. (first_link_map_member): Rewrite to enable support of O32 and N32 format objlists. (next_link_map_member, xfer_link_map_member): New functions to support O32 and N32 format objlists. (find_solib): Use first_link_map_member, next_link_map_member and xfer_link_map_member. (solib_create_inferior_hook): Use TARGET_SIGNAL_* instead of host signal numbers. * mdebugread.c (parse_partial_symbols, handle_psymbol_enumerators): Pass CORE_ADDR variant to add_psymbol_to_list. * mips-tdep.c (heuristic_proc_desc): Stop examining the prologue if we encounter a positive stack adjustment. Handle `move $30,$sp'. Handle `sd reg,offset($sp)' for 32 bit ABIs. * symmisc.c (dump_msymbols, print_partial_symbols): Use print_address_numeric to print a SYMBOL_VALUE_ADDRESS. (dump_symtab): Print compilation directory if it is not NULL. * valops.c (search_struct_field, value_struct_elt_for_reference): Use SYMBOL_VALUE_ADDRESS instead of SYMBOL_BLOCK_VALUE to get the address of a static member.
824 lines
25 KiB
C
824 lines
25 KiB
C
/* Read ELF (Executable and Linking Format) object files for GDB.
|
||
Copyright 1991, 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
|
||
Written by Fred Fish at Cygnus Support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h"
|
||
#include "gdb_string.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/mips.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "buildsym.h"
|
||
#include "stabsread.h"
|
||
#include "gdb-stabs.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
|
||
/* The struct elfinfo is available only during ELF symbol table and
|
||
psymtab reading. It is destroyed at the complation of psymtab-reading.
|
||
It's local to elf_symfile_read. */
|
||
|
||
struct elfinfo {
|
||
file_ptr dboffset; /* Offset to dwarf debug section */
|
||
unsigned int dbsize; /* Size of dwarf debug section */
|
||
file_ptr lnoffset; /* Offset to dwarf line number section */
|
||
unsigned int lnsize; /* Size of dwarf line number section */
|
||
asection *stabsect; /* Section pointer for .stab section */
|
||
asection *stabindexsect; /* Section pointer for .stab.index section */
|
||
asection *mdebugsect; /* Section pointer for .mdebug section */
|
||
};
|
||
|
||
/* Various things we might complain about... */
|
||
|
||
struct complaint section_info_complaint =
|
||
{"elf/stab section information %s without a preceding file symbol", 0, 0};
|
||
|
||
struct complaint section_info_dup_complaint =
|
||
{"duplicated elf/stab section information for %s", 0, 0};
|
||
|
||
struct complaint stab_info_mismatch_complaint =
|
||
{"elf/stab section information missing for %s", 0, 0};
|
||
|
||
struct complaint stab_info_questionable_complaint =
|
||
{"elf/stab section information questionable for %s", 0, 0};
|
||
|
||
static void
|
||
elf_symfile_init PARAMS ((struct objfile *));
|
||
|
||
static void
|
||
elf_new_init PARAMS ((struct objfile *));
|
||
|
||
static void
|
||
elf_symfile_read PARAMS ((struct objfile *, struct section_offsets *, int));
|
||
|
||
static void
|
||
elf_symfile_finish PARAMS ((struct objfile *));
|
||
|
||
static void
|
||
elf_symtab_read PARAMS ((bfd *, CORE_ADDR, struct objfile *, int));
|
||
|
||
static void
|
||
free_elfinfo PARAMS ((void *));
|
||
|
||
static struct minimal_symbol *
|
||
record_minimal_symbol_and_info PARAMS ((char *, CORE_ADDR,
|
||
enum minimal_symbol_type, char *,
|
||
struct objfile *));
|
||
|
||
static void
|
||
elf_locate_sections PARAMS ((bfd *, asection *, void *));
|
||
|
||
/* We are called once per section from elf_symfile_read. We
|
||
need to examine each section we are passed, check to see
|
||
if it is something we are interested in processing, and
|
||
if so, stash away some access information for the section.
|
||
|
||
For now we recognize the dwarf debug information sections and
|
||
line number sections from matching their section names. The
|
||
ELF definition is no real help here since it has no direct
|
||
knowledge of DWARF (by design, so any debugging format can be
|
||
used).
|
||
|
||
We also recognize the ".stab" sections used by the Sun compilers
|
||
released with Solaris 2.
|
||
|
||
FIXME: The section names should not be hardwired strings (what
|
||
should they be? I don't think most object file formats have enough
|
||
section flags to specify what kind of debug section it is
|
||
-kingdon). */
|
||
|
||
static void
|
||
elf_locate_sections (ignore_abfd, sectp, eip)
|
||
bfd *ignore_abfd;
|
||
asection *sectp;
|
||
PTR eip;
|
||
{
|
||
register struct elfinfo *ei;
|
||
|
||
ei = (struct elfinfo *) eip;
|
||
if (STREQ (sectp -> name, ".debug"))
|
||
{
|
||
ei -> dboffset = sectp -> filepos;
|
||
ei -> dbsize = bfd_get_section_size_before_reloc (sectp);
|
||
}
|
||
else if (STREQ (sectp -> name, ".line"))
|
||
{
|
||
ei -> lnoffset = sectp -> filepos;
|
||
ei -> lnsize = bfd_get_section_size_before_reloc (sectp);
|
||
}
|
||
else if (STREQ (sectp -> name, ".stab"))
|
||
{
|
||
ei -> stabsect = sectp;
|
||
}
|
||
else if (STREQ (sectp -> name, ".stab.index"))
|
||
{
|
||
ei -> stabindexsect = sectp;
|
||
}
|
||
else if (STREQ (sectp -> name, ".mdebug"))
|
||
{
|
||
ei -> mdebugsect = sectp;
|
||
}
|
||
}
|
||
|
||
#if 0 /* Currently unused */
|
||
|
||
char *
|
||
elf_interpreter (abfd)
|
||
bfd *abfd;
|
||
{
|
||
sec_ptr interp_sec;
|
||
unsigned size;
|
||
char *interp = NULL;
|
||
|
||
interp_sec = bfd_get_section_by_name (abfd, ".interp");
|
||
if (interp_sec)
|
||
{
|
||
size = bfd_section_size (abfd, interp_sec);
|
||
interp = alloca (size);
|
||
if (bfd_get_section_contents (abfd, interp_sec, interp, (file_ptr)0,
|
||
size))
|
||
{
|
||
interp = savestring (interp, size - 1);
|
||
}
|
||
else
|
||
{
|
||
interp = NULL;
|
||
}
|
||
}
|
||
return (interp);
|
||
}
|
||
|
||
#endif
|
||
|
||
static struct minimal_symbol *
|
||
record_minimal_symbol_and_info (name, address, ms_type, info, objfile)
|
||
char *name;
|
||
CORE_ADDR address;
|
||
enum minimal_symbol_type ms_type;
|
||
char *info; /* FIXME, is this really char *? */
|
||
struct objfile *objfile;
|
||
{
|
||
int section;
|
||
|
||
/* Guess the section from the type. This is likely to be wrong in
|
||
some cases. */
|
||
switch (ms_type)
|
||
{
|
||
case mst_text:
|
||
case mst_file_text:
|
||
section = SECT_OFF_TEXT;
|
||
#ifdef SMASH_TEXT_ADDRESS
|
||
SMASH_TEXT_ADDRESS (address);
|
||
#endif
|
||
break;
|
||
case mst_data:
|
||
case mst_file_data:
|
||
section = SECT_OFF_DATA;
|
||
break;
|
||
case mst_bss:
|
||
case mst_file_bss:
|
||
section = SECT_OFF_BSS;
|
||
break;
|
||
default:
|
||
section = -1;
|
||
break;
|
||
}
|
||
|
||
return prim_record_minimal_symbol_and_info
|
||
(name, address, ms_type, info, section, objfile);
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
elf_symtab_read -- read the symbol table of an ELF file
|
||
|
||
SYNOPSIS
|
||
|
||
void elf_symtab_read (bfd *abfd, CORE_ADDR addr,
|
||
struct objfile *objfile, int dynamic)
|
||
|
||
DESCRIPTION
|
||
|
||
Given an open bfd, a base address to relocate symbols to, and a
|
||
flag that specifies whether or not this bfd is for an executable
|
||
or not (may be shared library for example), add all the global
|
||
function and data symbols to the minimal symbol table.
|
||
|
||
In stabs-in-ELF, as implemented by Sun, there are some local symbols
|
||
defined in the ELF symbol table, which can be used to locate
|
||
the beginnings of sections from each ".o" file that was linked to
|
||
form the executable objfile. We gather any such info and record it
|
||
in data structures hung off the objfile's private data.
|
||
|
||
*/
|
||
|
||
static void
|
||
elf_symtab_read (abfd, addr, objfile, dynamic)
|
||
bfd *abfd;
|
||
CORE_ADDR addr;
|
||
struct objfile *objfile;
|
||
int dynamic;
|
||
{
|
||
long storage_needed;
|
||
asymbol *sym;
|
||
asymbol **symbol_table;
|
||
long number_of_symbols;
|
||
long i;
|
||
int index;
|
||
struct cleanup *back_to;
|
||
CORE_ADDR symaddr;
|
||
enum minimal_symbol_type ms_type;
|
||
/* If sectinfo is nonNULL, it contains section info that should end up
|
||
filed in the objfile. */
|
||
struct stab_section_info *sectinfo = NULL;
|
||
/* If filesym is nonzero, it points to a file symbol, but we haven't
|
||
seen any section info for it yet. */
|
||
asymbol *filesym = 0;
|
||
#ifdef SOFUN_ADDRESS_MAYBE_MISSING
|
||
/* Name of filesym, as saved on the symbol_obstack. */
|
||
char *filesymname = obsavestring ("", 0, &objfile->symbol_obstack);
|
||
#endif
|
||
struct dbx_symfile_info *dbx = (struct dbx_symfile_info *)
|
||
objfile->sym_stab_info;
|
||
unsigned long size;
|
||
int stripped = (bfd_get_symcount (abfd) == 0);
|
||
|
||
if (dynamic)
|
||
{
|
||
storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
|
||
|
||
/* Nothing to be done if there is no dynamic symtab. */
|
||
if (storage_needed < 0)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
storage_needed = bfd_get_symtab_upper_bound (abfd);
|
||
if (storage_needed < 0)
|
||
error ("Can't read symbols from %s: %s", bfd_get_filename (abfd),
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
if (storage_needed > 0)
|
||
{
|
||
symbol_table = (asymbol **) xmalloc (storage_needed);
|
||
back_to = make_cleanup (free, symbol_table);
|
||
if (dynamic)
|
||
number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd,
|
||
symbol_table);
|
||
else
|
||
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
|
||
if (number_of_symbols < 0)
|
||
error ("Can't read symbols from %s: %s", bfd_get_filename (abfd),
|
||
bfd_errmsg (bfd_get_error ()));
|
||
for (i = 0; i < number_of_symbols; i++)
|
||
{
|
||
sym = symbol_table[i];
|
||
if (sym -> name == NULL || *sym -> name == '\0')
|
||
{
|
||
/* Skip names that don't exist (shouldn't happen), or names
|
||
that are null strings (may happen). */
|
||
continue;
|
||
}
|
||
|
||
if (dynamic
|
||
&& sym -> section == &bfd_und_section
|
||
&& (sym -> flags & BSF_FUNCTION))
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
/* Symbol is a reference to a function defined in
|
||
a shared library.
|
||
If its value is non zero then it is usually the address
|
||
of the corresponding entry in the procedure linkage table,
|
||
relative to the base address.
|
||
If its value is zero then the dynamic linker has to resolve
|
||
the symbol. We are unable to find any meaningful address
|
||
for this symbol in the executable file, so we skip it. */
|
||
symaddr = sym -> value;
|
||
if (symaddr == 0)
|
||
continue;
|
||
symaddr += addr;
|
||
msym = record_minimal_symbol_and_info
|
||
((char *) sym -> name, symaddr,
|
||
mst_solib_trampoline, NULL, objfile);
|
||
#ifdef SOFUN_ADDRESS_MAYBE_MISSING
|
||
if (msym != NULL)
|
||
msym->filename = filesymname;
|
||
#endif
|
||
continue;
|
||
}
|
||
|
||
/* If it is a nonstripped executable, do not enter dynamic
|
||
symbols, as the dynamic symbol table is usually a subset
|
||
of the main symbol table. */
|
||
if (dynamic && !stripped)
|
||
continue;
|
||
if (sym -> flags & BSF_FILE)
|
||
{
|
||
/* STT_FILE debugging symbol that helps stabs-in-elf debugging.
|
||
Chain any old one onto the objfile; remember new sym. */
|
||
if (sectinfo != NULL)
|
||
{
|
||
sectinfo -> next = dbx -> stab_section_info;
|
||
dbx -> stab_section_info = sectinfo;
|
||
sectinfo = NULL;
|
||
}
|
||
filesym = sym;
|
||
#ifdef SOFUN_ADDRESS_MAYBE_MISSING
|
||
filesymname =
|
||
obsavestring ((char *)filesym->name, strlen (filesym->name),
|
||
&objfile->symbol_obstack);
|
||
#endif
|
||
}
|
||
else if (sym -> flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
/* Select global/local/weak symbols. Note that bfd puts abs
|
||
symbols in their own section, so all symbols we are
|
||
interested in will have a section. */
|
||
/* Bfd symbols are section relative. */
|
||
symaddr = sym -> value + sym -> section -> vma;
|
||
/* Relocate all non-absolute symbols by base address. */
|
||
if (sym -> section != &bfd_abs_section)
|
||
{
|
||
symaddr += addr;
|
||
}
|
||
/* For non-absolute symbols, use the type of the section
|
||
they are relative to, to intuit text/data. Bfd provides
|
||
no way of figuring this out for absolute symbols. */
|
||
if (sym -> section == &bfd_abs_section)
|
||
{
|
||
/* This is a hack to get the minimal symbol type
|
||
right for Irix 5, which has absolute adresses
|
||
with special section indices for dynamic symbols. */
|
||
unsigned short shndx =
|
||
((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
|
||
|
||
switch (shndx)
|
||
{
|
||
case SHN_MIPS_TEXT:
|
||
ms_type = mst_text;
|
||
break;
|
||
case SHN_MIPS_DATA:
|
||
ms_type = mst_data;
|
||
break;
|
||
case SHN_MIPS_ACOMMON:
|
||
ms_type = mst_bss;
|
||
break;
|
||
default:
|
||
ms_type = mst_abs;
|
||
}
|
||
|
||
/* If it is an Irix dynamic symbol, skip section name
|
||
symbols, relocate all others. */
|
||
if (ms_type != mst_abs)
|
||
{
|
||
if (sym->name[0] == '.')
|
||
continue;
|
||
symaddr += addr;
|
||
}
|
||
}
|
||
else if (sym -> section -> flags & SEC_CODE)
|
||
{
|
||
if (sym -> flags & BSF_GLOBAL)
|
||
{
|
||
ms_type = mst_text;
|
||
}
|
||
else if ((sym->name[0] == '.' && sym->name[1] == 'L')
|
||
|| ((sym -> flags & BSF_LOCAL)
|
||
&& sym->name[0] == '$'
|
||
&& sym->name[1] == 'L'))
|
||
/* Looks like a compiler-generated label. Skip it.
|
||
The assembler should be skipping these (to keep
|
||
executables small), but apparently with gcc on the
|
||
delta m88k SVR4, it loses. So to have us check too
|
||
should be harmless (but I encourage people to fix this
|
||
in the assembler instead of adding checks here). */
|
||
continue;
|
||
#ifdef HARRIS_TARGET
|
||
else if (sym->name[0] == '.' && sym->name[1] == '.')
|
||
{
|
||
/* Looks like a Harris compiler generated label for the
|
||
purpose of marking instructions that are relevant to
|
||
DWARF dies. The assembler can't get rid of these
|
||
because they are relocatable addresses that the
|
||
linker needs to resolve. */
|
||
continue;
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
ms_type = mst_file_text;
|
||
}
|
||
}
|
||
else if (sym -> section -> flags & SEC_ALLOC)
|
||
{
|
||
if (sym -> flags & BSF_GLOBAL)
|
||
{
|
||
if (sym -> section -> flags & SEC_LOAD)
|
||
{
|
||
ms_type = mst_data;
|
||
}
|
||
else
|
||
{
|
||
ms_type = mst_bss;
|
||
}
|
||
}
|
||
else if (sym -> flags & BSF_LOCAL)
|
||
{
|
||
/* Named Local variable in a Data section. Check its
|
||
name for stabs-in-elf. The STREQ macro checks the
|
||
first character inline, so we only actually do a
|
||
strcmp function call on names that start with 'B'
|
||
or 'D' */
|
||
index = SECT_OFF_MAX;
|
||
if (STREQ ("Bbss.bss", sym -> name))
|
||
{
|
||
index = SECT_OFF_BSS;
|
||
}
|
||
else if (STREQ ("Ddata.data", sym -> name))
|
||
{
|
||
index = SECT_OFF_DATA;
|
||
}
|
||
else if (STREQ ("Drodata.rodata", sym -> name))
|
||
{
|
||
index = SECT_OFF_RODATA;
|
||
}
|
||
if (index != SECT_OFF_MAX)
|
||
{
|
||
/* Found a special local symbol. Allocate a
|
||
sectinfo, if needed, and fill it in. */
|
||
if (sectinfo == NULL)
|
||
{
|
||
sectinfo = (struct stab_section_info *)
|
||
xmmalloc (objfile -> md, sizeof (*sectinfo));
|
||
memset ((PTR) sectinfo, 0, sizeof (*sectinfo));
|
||
if (filesym == NULL)
|
||
{
|
||
complain (§ion_info_complaint,
|
||
sym -> name);
|
||
}
|
||
else
|
||
{
|
||
sectinfo -> filename =
|
||
(char *) filesym -> name;
|
||
}
|
||
}
|
||
if (sectinfo -> sections[index] != 0)
|
||
{
|
||
complain (§ion_info_dup_complaint,
|
||
sectinfo -> filename);
|
||
}
|
||
/* Bfd symbols are section relative. */
|
||
symaddr = sym -> value + sym -> section -> vma;
|
||
/* Relocate non-absolute symbols by base address. */
|
||
if (sym -> section != &bfd_abs_section)
|
||
{
|
||
symaddr += addr;
|
||
}
|
||
sectinfo -> sections[index] = symaddr;
|
||
/* The special local symbols don't go in the
|
||
minimal symbol table, so ignore this one. */
|
||
continue;
|
||
}
|
||
/* Not a special stabs-in-elf symbol, do regular
|
||
symbol processing. */
|
||
if (sym -> section -> flags & SEC_LOAD)
|
||
{
|
||
ms_type = mst_file_data;
|
||
}
|
||
else
|
||
{
|
||
ms_type = mst_file_bss;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ms_type = mst_unknown;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: Solaris2 shared libraries include lots of
|
||
odd "absolute" and "undefined" symbols, that play
|
||
hob with actions like finding what function the PC
|
||
is in. Ignore them if they aren't text, data, or bss. */
|
||
/* ms_type = mst_unknown; */
|
||
continue; /* Skip this symbol. */
|
||
}
|
||
/* Pass symbol size field in via BFD. FIXME!!! */
|
||
size = ((elf_symbol_type *) sym) -> internal_elf_sym.st_size;
|
||
msym = record_minimal_symbol_and_info
|
||
((char *) sym -> name, symaddr,
|
||
ms_type, (PTR) size, objfile);
|
||
#ifdef SOFUN_ADDRESS_MAYBE_MISSING
|
||
if (msym != NULL)
|
||
msym->filename = filesymname;
|
||
#endif
|
||
}
|
||
}
|
||
do_cleanups (back_to);
|
||
}
|
||
}
|
||
|
||
/* Scan and build partial symbols for a symbol file.
|
||
We have been initialized by a call to elf_symfile_init, which
|
||
currently does nothing.
|
||
|
||
SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
|
||
in each section. We simplify it down to a single offset for all
|
||
symbols. FIXME.
|
||
|
||
MAINLINE is true if we are reading the main symbol
|
||
table (as opposed to a shared lib or dynamically loaded file).
|
||
|
||
This function only does the minimum work necessary for letting the
|
||
user "name" things symbolically; it does not read the entire symtab.
|
||
Instead, it reads the external and static symbols and puts them in partial
|
||
symbol tables. When more extensive information is requested of a
|
||
file, the corresponding partial symbol table is mutated into a full
|
||
fledged symbol table by going back and reading the symbols
|
||
for real.
|
||
|
||
We look for sections with specific names, to tell us what debug
|
||
format to look for: FIXME!!!
|
||
|
||
dwarf_build_psymtabs() builds psymtabs for DWARF symbols;
|
||
elfstab_build_psymtabs() handles STABS symbols;
|
||
mdebug_build_psymtabs() handles ECOFF debugging information.
|
||
|
||
Note that ELF files have a "minimal" symbol table, which looks a lot
|
||
like a COFF symbol table, but has only the minimal information necessary
|
||
for linking. We process this also, and use the information to
|
||
build gdb's minimal symbol table. This gives us some minimal debugging
|
||
capability even for files compiled without -g. */
|
||
|
||
static void
|
||
elf_symfile_read (objfile, section_offsets, mainline)
|
||
struct objfile *objfile;
|
||
struct section_offsets *section_offsets;
|
||
int mainline;
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
struct elfinfo ei;
|
||
struct cleanup *back_to;
|
||
CORE_ADDR offset;
|
||
|
||
init_minimal_symbol_collection ();
|
||
back_to = make_cleanup (discard_minimal_symbols, 0);
|
||
|
||
memset ((char *) &ei, 0, sizeof (ei));
|
||
|
||
/* Allocate struct to keep track of the symfile */
|
||
objfile->sym_stab_info = (PTR)
|
||
xmmalloc (objfile -> md, sizeof (struct dbx_symfile_info));
|
||
memset ((char *) objfile->sym_stab_info, 0, sizeof (struct dbx_symfile_info));
|
||
make_cleanup (free_elfinfo, (PTR) objfile);
|
||
|
||
/* Process the normal ELF symbol table first. This may write some
|
||
chain of info into the dbx_symfile_info in objfile->sym_stab_info,
|
||
which can later be used by elfstab_offset_sections. */
|
||
|
||
/* FIXME, should take a section_offsets param, not just an offset. */
|
||
offset = ANOFFSET (section_offsets, 0);
|
||
elf_symtab_read (abfd, offset, objfile, 0);
|
||
|
||
/* Add the dynamic symbols. */
|
||
|
||
elf_symtab_read (abfd, offset, objfile, 1);
|
||
|
||
/* Now process debugging information, which is contained in
|
||
special ELF sections. We first have to find them... */
|
||
|
||
bfd_map_over_sections (abfd, elf_locate_sections, (PTR) &ei);
|
||
if (dwarf2_has_info (abfd))
|
||
{
|
||
/* DWARF 2 sections */
|
||
dwarf2_build_psymtabs (objfile, section_offsets, mainline);
|
||
}
|
||
else if (ei.dboffset && ei.lnoffset)
|
||
{
|
||
/* DWARF sections */
|
||
dwarf_build_psymtabs (objfile,
|
||
section_offsets, mainline,
|
||
ei.dboffset, ei.dbsize,
|
||
ei.lnoffset, ei.lnsize);
|
||
}
|
||
if (ei.stabsect)
|
||
{
|
||
asection *str_sect;
|
||
|
||
/* Stab sections have an associated string table that looks like
|
||
a separate section. */
|
||
str_sect = bfd_get_section_by_name (abfd, ".stabstr");
|
||
|
||
/* FIXME should probably warn about a stab section without a stabstr. */
|
||
if (str_sect)
|
||
elfstab_build_psymtabs (objfile,
|
||
section_offsets,
|
||
mainline,
|
||
ei.stabsect->filepos,
|
||
bfd_section_size (abfd, ei.stabsect),
|
||
str_sect->filepos,
|
||
bfd_section_size (abfd, str_sect));
|
||
}
|
||
if (ei.mdebugsect)
|
||
{
|
||
const struct ecoff_debug_swap *swap;
|
||
|
||
/* .mdebug section, presumably holding ECOFF debugging
|
||
information. */
|
||
swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
||
if (swap)
|
||
elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect,
|
||
section_offsets);
|
||
}
|
||
|
||
/* Install any minimal symbols that have been collected as the current
|
||
minimal symbols for this objfile. */
|
||
|
||
install_minimal_symbols (objfile);
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* This cleans up the objfile's sym_stab_info pointer, and the chain of
|
||
stab_section_info's, that might be dangling from it. */
|
||
|
||
static void
|
||
free_elfinfo (objp)
|
||
PTR objp;
|
||
{
|
||
struct objfile *objfile = (struct objfile *)objp;
|
||
struct dbx_symfile_info *dbxinfo = (struct dbx_symfile_info *)
|
||
objfile->sym_stab_info;
|
||
struct stab_section_info *ssi, *nssi;
|
||
|
||
ssi = dbxinfo->stab_section_info;
|
||
while (ssi)
|
||
{
|
||
nssi = ssi->next;
|
||
mfree (objfile->md, ssi);
|
||
ssi = nssi;
|
||
}
|
||
|
||
dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
|
||
}
|
||
|
||
|
||
/* Initialize anything that needs initializing when a completely new symbol
|
||
file is specified (not just adding some symbols from another file, e.g. a
|
||
shared library).
|
||
|
||
We reinitialize buildsym, since we may be reading stabs from an ELF file. */
|
||
|
||
static void
|
||
elf_new_init (ignore)
|
||
struct objfile *ignore;
|
||
{
|
||
stabsread_new_init ();
|
||
buildsym_new_init ();
|
||
}
|
||
|
||
/* Perform any local cleanups required when we are done with a particular
|
||
objfile. I.E, we are in the process of discarding all symbol information
|
||
for an objfile, freeing up all memory held for it, and unlinking the
|
||
objfile struct from the global list of known objfiles. */
|
||
|
||
static void
|
||
elf_symfile_finish (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
if (objfile -> sym_stab_info != NULL)
|
||
{
|
||
mfree (objfile -> md, objfile -> sym_stab_info);
|
||
}
|
||
}
|
||
|
||
/* ELF specific initialization routine for reading symbols.
|
||
|
||
It is passed a pointer to a struct sym_fns which contains, among other
|
||
things, the BFD for the file whose symbols are being read, and a slot for
|
||
a pointer to "private data" which we can fill with goodies.
|
||
|
||
For now at least, we have nothing in particular to do, so this function is
|
||
just a stub. */
|
||
|
||
static void
|
||
elf_symfile_init (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
/* ELF objects may be reordered, so set OBJF_REORDERED. If we
|
||
find this causes a significant slowdown in gdb then we could
|
||
set it in the debug symbol readers only when necessary. */
|
||
objfile->flags |= OBJF_REORDERED;
|
||
}
|
||
|
||
/* When handling an ELF file that contains Sun STABS debug info,
|
||
some of the debug info is relative to the particular chunk of the
|
||
section that was generated in its individual .o file. E.g.
|
||
offsets to static variables are relative to the start of the data
|
||
segment *for that module before linking*. This information is
|
||
painfully squirreled away in the ELF symbol table as local symbols
|
||
with wierd names. Go get 'em when needed. */
|
||
|
||
void
|
||
elfstab_offset_sections (objfile, pst)
|
||
struct objfile *objfile;
|
||
struct partial_symtab *pst;
|
||
{
|
||
char *filename = pst->filename;
|
||
struct dbx_symfile_info *dbx = (struct dbx_symfile_info *)
|
||
objfile->sym_stab_info;
|
||
struct stab_section_info *maybe = dbx->stab_section_info;
|
||
struct stab_section_info *questionable = 0;
|
||
int i;
|
||
char *p;
|
||
|
||
/* The ELF symbol info doesn't include path names, so strip the path
|
||
(if any) from the psymtab filename. */
|
||
while (0 != (p = strchr (filename, '/')))
|
||
filename = p+1;
|
||
|
||
/* FIXME: This linear search could speed up significantly
|
||
if it was chained in the right order to match how we search it,
|
||
and if we unchained when we found a match. */
|
||
for (; maybe; maybe = maybe->next)
|
||
{
|
||
if (filename[0] == maybe->filename[0]
|
||
&& STREQ (filename, maybe->filename))
|
||
{
|
||
/* We found a match. But there might be several source files
|
||
(from different directories) with the same name. */
|
||
if (0 == maybe->found)
|
||
break;
|
||
questionable = maybe; /* Might use it later. */
|
||
}
|
||
}
|
||
|
||
if (maybe == 0 && questionable != 0)
|
||
{
|
||
complain (&stab_info_questionable_complaint, filename);
|
||
maybe = questionable;
|
||
}
|
||
|
||
if (maybe)
|
||
{
|
||
/* Found it! Allocate a new psymtab struct, and fill it in. */
|
||
maybe->found++;
|
||
pst->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile -> psymbol_obstack,
|
||
sizeof (struct section_offsets) +
|
||
sizeof (pst->section_offsets->offsets) * (SECT_OFF_MAX-1));
|
||
|
||
for (i = 0; i < SECT_OFF_MAX; i++)
|
||
ANOFFSET (pst->section_offsets, i) = maybe->sections[i];
|
||
return;
|
||
}
|
||
|
||
/* We were unable to find any offsets for this file. Complain. */
|
||
if (dbx->stab_section_info) /* If there *is* any info, */
|
||
complain (&stab_info_mismatch_complaint, filename);
|
||
}
|
||
|
||
/* Register that we are able to handle ELF object file formats. */
|
||
|
||
static struct sym_fns elf_sym_fns =
|
||
{
|
||
bfd_target_elf_flavour,
|
||
elf_new_init, /* sym_new_init: init anything gbl to entire symtab */
|
||
elf_symfile_init, /* sym_init: read initial info, setup for sym_read() */
|
||
elf_symfile_read, /* sym_read: read a symbol file into symtab */
|
||
elf_symfile_finish, /* sym_finish: finished with file, cleanup */
|
||
default_symfile_offsets,
|
||
/* sym_offsets: Translate ext. to int. relocation */
|
||
NULL /* next: pointer to next struct sym_fns */
|
||
};
|
||
|
||
void
|
||
_initialize_elfread ()
|
||
{
|
||
add_symtab_fns (&elf_sym_fns);
|
||
}
|