2e235c9319
failure. * aoutx.h (NAME(aout,set_arch_mach)): Check return value of bfd_default_set_arch_mach.
2558 lines
76 KiB
C
2558 lines
76 KiB
C
/* BFD semi-generic back-end for a.out binaries.
|
||
Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
Written by Cygnus Support.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*
|
||
SECTION
|
||
a.out backends
|
||
|
||
|
||
DESCRIPTION
|
||
|
||
BFD supports a number of different flavours of a.out format,
|
||
though the major differences are only the sizes of the
|
||
structures on disk, and the shape of the relocation
|
||
information.
|
||
|
||
The support is split into a basic support file @code{aoutx.h}
|
||
and other files which derive functions from the base. One
|
||
derivation file is @code{aoutf1.h} (for a.out flavour 1), and
|
||
adds to the basic a.out functions support for sun3, sun4, 386
|
||
and 29k a.out files, to create a target jump vector for a
|
||
specific target.
|
||
|
||
This information is further split out into more specific files
|
||
for each machine, including @code{sunos.c} for sun3 and sun4,
|
||
@code{newsos3.c} for the Sony NEWS, and @code{demo64.c} for a
|
||
demonstration of a 64 bit a.out format.
|
||
|
||
The base file @code{aoutx.h} defines general mechanisms for
|
||
reading and writing records to and from disk, and various
|
||
other methods which BFD requires. It is included by
|
||
@code{aout32.c} and @code{aout64.c} to form the names
|
||
aout_32_swap_exec_header_in, aout_64_swap_exec_header_in, etc.
|
||
|
||
As an example, this is what goes on to make the back end for a
|
||
sun4, from aout32.c
|
||
|
||
| #define ARCH_SIZE 32
|
||
| #include "aoutx.h"
|
||
|
||
Which exports names:
|
||
|
||
| ...
|
||
| aout_32_canonicalize_reloc
|
||
| aout_32_find_nearest_line
|
||
| aout_32_get_lineno
|
||
| aout_32_get_reloc_upper_bound
|
||
| ...
|
||
|
||
from sunos.c
|
||
|
||
| #define ARCH 32
|
||
| #define TARGET_NAME "a.out-sunos-big"
|
||
| #define VECNAME sunos_big_vec
|
||
| #include "aoutf1.h"
|
||
|
||
requires all the names from aout32.c, and produces the jump vector
|
||
|
||
| sunos_big_vec
|
||
|
||
The file host-aout.c is a special case. It is for a large set
|
||
of hosts that use ``more or less standard'' a.out files, and
|
||
for which cross-debugging is not interesting. It uses the
|
||
standard 32-bit a.out support routines, but determines the
|
||
file offsets and addresses of the text, data, and BSS
|
||
sections, the machine architecture and machine type, and the
|
||
entry point address, in a host-dependent manner. Once these
|
||
values have been determined, generic code is used to handle
|
||
the object file.
|
||
|
||
When porting it to run on a new system, you must supply:
|
||
|
||
| HOST_PAGE_SIZE
|
||
| HOST_SEGMENT_SIZE
|
||
| HOST_MACHINE_ARCH (optional)
|
||
| HOST_MACHINE_MACHINE (optional)
|
||
| HOST_TEXT_START_ADDR
|
||
| HOST_STACK_END_ADDR
|
||
|
||
in the file <<../include/sys/h-XXX.h>> (for your host). These
|
||
values, plus the structures and macros defined in <<a.out.h>> on
|
||
your host system, will produce a BFD target that will access
|
||
ordinary a.out files on your host. To configure a new machine
|
||
to use <<host-aout.c>., specify:
|
||
|
||
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
|
||
| TDEPFILES= host-aout.o trad-core.o
|
||
|
||
in the <<config/mt-XXX>> file, and modify configure.in to use the
|
||
<<mt-XXX>> file (by setting "<<bfd_target=XXX>>") when your
|
||
configuration is selected.
|
||
|
||
*/
|
||
|
||
/* Some assumptions:
|
||
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
|
||
Doesn't matter what the setting of WP_TEXT is on output, but it'll
|
||
get set on input.
|
||
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
|
||
* Any BFD with both flags clear is OMAGIC.
|
||
(Just want to make these explicit, so the conditions tested in this
|
||
file make sense if you're more familiar with a.out than with BFD.) */
|
||
|
||
#define KEEPIT flags
|
||
#define KEEPITTYPE int
|
||
|
||
#include <assert.h>
|
||
#include <string.h> /* For strchr and friends */
|
||
#include "bfd.h"
|
||
#include <sysdep.h>
|
||
#include <ansidecl.h>
|
||
|
||
struct external_exec;
|
||
#include "libaout.h"
|
||
#include "libbfd.h"
|
||
#include "aout/aout64.h"
|
||
#include "aout/stab_gnu.h"
|
||
#include "aout/ar.h"
|
||
|
||
extern void (*bfd_error_trap)();
|
||
|
||
/*
|
||
SUBSECTION
|
||
relocations
|
||
|
||
DESCRIPTION
|
||
The file @code{aoutx.h} caters for both the @emph{standard}
|
||
and @emph{extended} forms of a.out relocation records.
|
||
|
||
The standard records are characterised by containing only an
|
||
address, a symbol index and a type field. The extended records
|
||
(used on 29ks and sparcs) also have a full integer for an
|
||
addend.
|
||
|
||
*/
|
||
#define CTOR_TABLE_RELOC_IDX 2
|
||
|
||
#define howto_table_ext NAME(aout,ext_howto_table)
|
||
#define howto_table_std NAME(aout,std_howto_table)
|
||
|
||
reloc_howto_type howto_table_ext[] =
|
||
{
|
||
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
|
||
HOWTO(RELOC_8, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", false, 0,0x000000ff, false),
|
||
HOWTO(RELOC_16, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", false, 0,0x0000ffff, false),
|
||
HOWTO(RELOC_32, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, complain_overflow_signed,0,"DISP8", false, 0,0x000000ff, false),
|
||
HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", false, 0,0x0000ffff, false),
|
||
HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, complain_overflow_signed,0,"DISP32", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, complain_overflow_signed,0,"WDISP30", false, 0,0x3fffffff, false),
|
||
HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, complain_overflow_signed,0,"WDISP22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_HI22, 10, 2, 22, false, 0, complain_overflow_bitfield,0,"HI22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"13", false, 0,0x00001fff, false),
|
||
HOWTO(RELOC_LO10, 0, 2, 10, false, 0, complain_overflow_dont,0,"LO10", false, 0,0x000003ff, false),
|
||
HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, complain_overflow_bitfield,0,"SFA_BASE", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, complain_overflow_bitfield,0,"SFA_OFF13",false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, complain_overflow_bitfield,0,"BASE10", false, 0,0x0000ffff, false),
|
||
HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"BASE13", false, 0,0x00001fff, false),
|
||
HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASE22", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_PC10, 0, 2, 10, false, 0, complain_overflow_bitfield,0,"PC10", false, 0,0x000003ff, false),
|
||
HOWTO(RELOC_PC22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"PC22", false, 0,0x003fffff, false),
|
||
HOWTO(RELOC_JMP_TBL,0, 2, 32, false, 0, complain_overflow_bitfield,0,"JMP_TBL", false, 0,0xffffffff, false),
|
||
HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, complain_overflow_bitfield,0,"SEGOFF16", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"GLOB_DAT", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_SLOT", false, 0,0x00000000, false),
|
||
HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false),
|
||
};
|
||
|
||
/* Convert standard reloc records to "arelent" format (incl byte swap). */
|
||
|
||
reloc_howto_type howto_table_std[] = {
|
||
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
|
||
HOWTO( 0, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", true, 0x000000ff,0x000000ff, false),
|
||
HOWTO( 1, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", true, 0x0000ffff,0x0000ffff, false),
|
||
HOWTO( 2, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", true, 0xffffffff,0xffffffff, false),
|
||
HOWTO( 3, 0, 3, 64, false, 0, complain_overflow_bitfield,0,"64", true, 0xdeaddead,0xdeaddead, false),
|
||
HOWTO( 4, 0, 0, 8, true, 0, complain_overflow_signed,0,"DISP8", true, 0x000000ff,0x000000ff, false),
|
||
HOWTO( 5, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", true, 0x0000ffff,0x0000ffff, false),
|
||
HOWTO( 6, 0, 2, 32, true, 0, complain_overflow_signed,0,"DISP32", true, 0xffffffff,0xffffffff, false),
|
||
HOWTO( 7, 0, 3, 64, true, 0, complain_overflow_signed,0,"DISP64", true, 0xfeedface,0xfeedface, false),
|
||
};
|
||
|
||
CONST struct reloc_howto_struct *
|
||
DEFUN(NAME(aout,reloc_type_lookup),(abfd,code),
|
||
bfd *abfd AND
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
#define EXT(i,j) case i: return &howto_table_ext[j]
|
||
#define STD(i,j) case i: return &howto_table_std[j]
|
||
int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
|
||
if (code == BFD_RELOC_CTOR)
|
||
switch (bfd_get_arch_info (abfd)->bits_per_address)
|
||
{
|
||
case 32:
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
}
|
||
if (ext)
|
||
switch (code)
|
||
{
|
||
EXT (BFD_RELOC_32, 2);
|
||
EXT (BFD_RELOC_HI22, 8);
|
||
EXT (BFD_RELOC_LO10, 11);
|
||
EXT (BFD_RELOC_32_PCREL_S2, 6);
|
||
default: return (CONST struct reloc_howto_struct *) 0;
|
||
}
|
||
else
|
||
/* std relocs */
|
||
switch (code)
|
||
{
|
||
STD (BFD_RELOC_16, 1);
|
||
STD (BFD_RELOC_32, 2);
|
||
STD (BFD_RELOC_8_PCREL, 4);
|
||
STD (BFD_RELOC_16_PCREL, 5);
|
||
STD (BFD_RELOC_32_PCREL, 6);
|
||
default: return (CONST struct reloc_howto_struct *) 0;
|
||
}
|
||
}
|
||
|
||
extern bfd_error_vector_type bfd_error_vector;
|
||
|
||
/*
|
||
SUBSECTION
|
||
Internal Entry Points
|
||
|
||
DESCRIPTION
|
||
@code{aoutx.h} exports several routines for accessing the
|
||
contents of an a.out file, which are gathered and exported in
|
||
turn by various format specific files (eg sunos.c).
|
||
|
||
*/
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_swap_exec_header_in
|
||
|
||
DESCRIPTION
|
||
Swaps the information in an executable header taken from a raw
|
||
byte stream memory image, into the internal exec_header
|
||
structure.
|
||
|
||
SYNOPSIS
|
||
void aout_<size>_swap_exec_header_in,
|
||
(bfd *abfd,
|
||
struct external_exec *raw_bytes,
|
||
struct internal_exec *execp);
|
||
*/
|
||
|
||
#ifndef NAME_swap_exec_header_in
|
||
void
|
||
DEFUN(NAME(aout,swap_exec_header_in),(abfd, raw_bytes, execp),
|
||
bfd *abfd AND
|
||
struct external_exec *raw_bytes AND
|
||
struct internal_exec *execp)
|
||
{
|
||
struct external_exec *bytes = (struct external_exec *)raw_bytes;
|
||
|
||
/* The internal_exec structure has some fields that are unused in this
|
||
configuration (IE for i960), so ensure that all such uninitialized
|
||
fields are zero'd out. There are places where two of these structs
|
||
are memcmp'd, and thus the contents do matter. */
|
||
memset (execp, 0, sizeof (struct internal_exec));
|
||
/* Now fill in fields in the execp, from the bytes in the raw data. */
|
||
execp->a_info = bfd_h_get_32 (abfd, bytes->e_info);
|
||
execp->a_text = GET_WORD (abfd, bytes->e_text);
|
||
execp->a_data = GET_WORD (abfd, bytes->e_data);
|
||
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
|
||
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
|
||
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
|
||
execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
|
||
execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
|
||
}
|
||
#define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in)
|
||
#endif
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_swap_exec_header_out
|
||
|
||
DESCRIPTION
|
||
Swaps the information in an internal exec header structure
|
||
into the supplied buffer ready for writing to disk.
|
||
|
||
SYNOPSIS
|
||
void aout_<size>_swap_exec_header_out
|
||
(bfd *abfd,
|
||
struct internal_exec *execp,
|
||
struct external_exec *raw_bytes);
|
||
*/
|
||
void
|
||
DEFUN(NAME(aout,swap_exec_header_out),(abfd, execp, raw_bytes),
|
||
bfd *abfd AND
|
||
struct internal_exec *execp AND
|
||
struct external_exec *raw_bytes)
|
||
{
|
||
struct external_exec *bytes = (struct external_exec *)raw_bytes;
|
||
|
||
/* Now fill in fields in the raw data, from the fields in the exec struct. */
|
||
bfd_h_put_32 (abfd, execp->a_info , bytes->e_info);
|
||
PUT_WORD (abfd, execp->a_text , bytes->e_text);
|
||
PUT_WORD (abfd, execp->a_data , bytes->e_data);
|
||
PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
|
||
PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
|
||
PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
|
||
PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
|
||
PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_some_aout_object_p
|
||
|
||
DESCRIPTION
|
||
Some A.OUT variant thinks that the file whose format we're
|
||
checking is an a.out file. Do some more checking, and set up
|
||
for access if it really is. Call back to the calling
|
||
environments "finish up" function just before returning, to
|
||
handle any last-minute setup.
|
||
|
||
SYNOPSIS
|
||
bfd_target *aout_<size>_some_aout_object_p
|
||
(bfd *abfd,
|
||
bfd_target *(*callback_to_real_object_p)());
|
||
*/
|
||
|
||
bfd_target *
|
||
DEFUN(NAME(aout,some_aout_object_p),(abfd, execp, callback_to_real_object_p),
|
||
bfd *abfd AND
|
||
struct internal_exec *execp AND
|
||
bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *)))
|
||
{
|
||
struct aout_data_struct *rawptr, *oldrawptr;
|
||
bfd_target *result;
|
||
|
||
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
|
||
if (rawptr == NULL) {
|
||
bfd_error = no_memory;
|
||
return 0;
|
||
}
|
||
|
||
oldrawptr = abfd->tdata.aout_data;
|
||
abfd->tdata.aout_data = rawptr;
|
||
|
||
/* Copy the contents of the old tdata struct.
|
||
In particular, we want the subformat, since for hpux it was set in
|
||
hp300hpux.c:swap_exec_header_in and will be used in
|
||
hp300hpux.c:callback. */
|
||
if (oldrawptr != NULL)
|
||
*abfd->tdata.aout_data = *oldrawptr;
|
||
|
||
abfd->tdata.aout_data->a.hdr = &rawptr->e;
|
||
*(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */
|
||
execp = abfd->tdata.aout_data->a.hdr;
|
||
|
||
/* Set the file flags */
|
||
abfd->flags = NO_FLAGS;
|
||
if (execp->a_drsize || execp->a_trsize)
|
||
abfd->flags |= HAS_RELOC;
|
||
/* Setting of EXEC_P has been deferred to the bottom of this function */
|
||
if (execp->a_syms)
|
||
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
|
||
|
||
if (N_MAGIC (*execp) == ZMAGIC)
|
||
{
|
||
abfd->flags |= D_PAGED|WP_TEXT;
|
||
adata(abfd).magic = z_magic;
|
||
}
|
||
else if (N_MAGIC (*execp) == NMAGIC)
|
||
{
|
||
abfd->flags |= WP_TEXT;
|
||
adata(abfd).magic = n_magic;
|
||
}
|
||
else
|
||
adata(abfd).magic = o_magic;
|
||
|
||
bfd_get_start_address (abfd) = execp->a_entry;
|
||
|
||
obj_aout_symbols (abfd) = (aout_symbol_type *)NULL;
|
||
bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist);
|
||
|
||
/* The default relocation entry size is that of traditional V7 Unix. */
|
||
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
|
||
|
||
/* The default symbol entry size is that of traditional Unix. */
|
||
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
|
||
|
||
/* Create the sections. This is raunchy, but bfd_close wants to reclaim
|
||
them. */
|
||
|
||
obj_textsec (abfd) = bfd_make_section_old_way (abfd, ".text");
|
||
obj_datasec (abfd) = bfd_make_section_old_way (abfd, ".data");
|
||
obj_bsssec (abfd) = bfd_make_section_old_way (abfd, ".bss");
|
||
|
||
#if 0
|
||
(void)bfd_make_section (abfd, ".text");
|
||
(void)bfd_make_section (abfd, ".data");
|
||
(void)bfd_make_section (abfd, ".bss");
|
||
#endif
|
||
|
||
obj_datasec (abfd)->_raw_size = execp->a_data;
|
||
obj_bsssec (abfd)->_raw_size = execp->a_bss;
|
||
|
||
obj_textsec (abfd)->flags = (execp->a_trsize != 0 ?
|
||
(SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC) :
|
||
(SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
|
||
obj_datasec (abfd)->flags = (execp->a_drsize != 0 ?
|
||
(SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC) :
|
||
(SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
|
||
obj_bsssec (abfd)->flags = SEC_ALLOC;
|
||
|
||
#ifdef THIS_IS_ONLY_DOCUMENTATION
|
||
/* The common code can't fill in these things because they depend
|
||
on either the start address of the text segment, the rounding
|
||
up of virtual addersses between segments, or the starting file
|
||
position of the text segment -- all of which varies among different
|
||
versions of a.out. */
|
||
|
||
/* Call back to the format-dependent code to fill in the rest of the
|
||
fields and do any further cleanup. Things that should be filled
|
||
in by the callback: */
|
||
|
||
struct exec *execp = exec_hdr (abfd);
|
||
|
||
obj_textsec (abfd)->size = N_TXTSIZE(*execp);
|
||
obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp);
|
||
/* data and bss are already filled in since they're so standard */
|
||
|
||
/* The virtual memory addresses of the sections */
|
||
obj_textsec (abfd)->vma = N_TXTADDR(*execp);
|
||
obj_datasec (abfd)->vma = N_DATADDR(*execp);
|
||
obj_bsssec (abfd)->vma = N_BSSADDR(*execp);
|
||
|
||
/* The file offsets of the sections */
|
||
obj_textsec (abfd)->filepos = N_TXTOFF(*execp);
|
||
obj_datasec (abfd)->filepos = N_DATOFF(*execp);
|
||
|
||
/* The file offsets of the relocation info */
|
||
obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp);
|
||
obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp);
|
||
|
||
/* The file offsets of the string table and symbol table. */
|
||
obj_str_filepos (abfd) = N_STROFF (*execp);
|
||
obj_sym_filepos (abfd) = N_SYMOFF (*execp);
|
||
|
||
/* Determine the architecture and machine type of the object file. */
|
||
switch (N_MACHTYPE (*exec_hdr (abfd))) {
|
||
default:
|
||
abfd->obj_arch = bfd_arch_obscure;
|
||
break;
|
||
}
|
||
|
||
adata(abfd)->page_size = PAGE_SIZE;
|
||
adata(abfd)->segment_size = SEGMENT_SIZE;
|
||
adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
|
||
|
||
return abfd->xvec;
|
||
|
||
/* The architecture is encoded in various ways in various a.out variants,
|
||
or is not encoded at all in some of them. The relocation size depends
|
||
on the architecture and the a.out variant. Finally, the return value
|
||
is the bfd_target vector in use. If an error occurs, return zero and
|
||
set bfd_error to the appropriate error code.
|
||
|
||
Formats such as b.out, which have additional fields in the a.out
|
||
header, should cope with them in this callback as well. */
|
||
#endif /* DOCUMENTATION */
|
||
|
||
result = (*callback_to_real_object_p)(abfd);
|
||
|
||
/* Now that the segment addresses have been worked out, take a better
|
||
guess at whether the file is executable. If the entry point
|
||
is within the text segment, assume it is. (This makes files
|
||
executable even if their entry point address is 0, as long as
|
||
their text starts at zero.)
|
||
|
||
At some point we should probably break down and stat the file and
|
||
declare it executable if (one of) its 'x' bits are on... */
|
||
if ((execp->a_entry >= obj_textsec(abfd)->vma) &&
|
||
(execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size))
|
||
abfd->flags |= EXEC_P;
|
||
if (result)
|
||
{
|
||
#if 0 /* These should be set correctly anyways. */
|
||
abfd->sections = obj_textsec (abfd);
|
||
obj_textsec (abfd)->next = obj_datasec (abfd);
|
||
obj_datasec (abfd)->next = obj_bsssec (abfd);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
free (rawptr);
|
||
abfd->tdata.aout_data = oldrawptr;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_mkobject
|
||
|
||
DESCRIPTION
|
||
This routine initializes a BFD for use with a.out files.
|
||
|
||
SYNOPSIS
|
||
boolean aout_<size>_mkobject, (bfd *);
|
||
*/
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,mkobject),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
struct aout_data_struct *rawptr;
|
||
|
||
bfd_error = system_call_error;
|
||
|
||
/* Use an intermediate variable for clarity */
|
||
rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
|
||
|
||
if (rawptr == NULL) {
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
abfd->tdata.aout_data = rawptr;
|
||
exec_hdr (abfd) = &(rawptr->e);
|
||
|
||
/* For simplicity's sake we just make all the sections right here. */
|
||
|
||
obj_textsec (abfd) = (asection *)NULL;
|
||
obj_datasec (abfd) = (asection *)NULL;
|
||
obj_bsssec (abfd) = (asection *)NULL;
|
||
bfd_make_section (abfd, ".text");
|
||
bfd_make_section (abfd, ".data");
|
||
bfd_make_section (abfd, ".bss");
|
||
bfd_make_section (abfd, BFD_ABS_SECTION_NAME);
|
||
bfd_make_section (abfd, BFD_UND_SECTION_NAME);
|
||
bfd_make_section (abfd, BFD_COM_SECTION_NAME);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_machine_type
|
||
|
||
DESCRIPTION
|
||
Keep track of machine architecture and machine type for
|
||
a.out's. Return the machine_type for a particular
|
||
arch&machine, or M_UNKNOWN if that exact arch&machine can't be
|
||
represented in a.out format.
|
||
|
||
If the architecture is understood, machine type 0 (default)
|
||
should always be understood.
|
||
|
||
SYNOPSIS
|
||
enum machine_type aout_<size>_machine_type
|
||
(enum bfd_architecture arch,
|
||
unsigned long machine));
|
||
*/
|
||
|
||
enum machine_type
|
||
DEFUN(NAME(aout,machine_type),(arch, machine),
|
||
enum bfd_architecture arch AND
|
||
unsigned long machine)
|
||
{
|
||
enum machine_type arch_flags;
|
||
|
||
arch_flags = M_UNKNOWN;
|
||
|
||
switch (arch) {
|
||
case bfd_arch_sparc:
|
||
if (machine == 0) arch_flags = M_SPARC;
|
||
break;
|
||
|
||
case bfd_arch_m68k:
|
||
switch (machine) {
|
||
case 0: arch_flags = M_68010; break;
|
||
case 68000: arch_flags = M_UNKNOWN; break;
|
||
case 68010: arch_flags = M_68010; break;
|
||
case 68020: arch_flags = M_68020; break;
|
||
default: arch_flags = M_UNKNOWN; break;
|
||
}
|
||
break;
|
||
|
||
case bfd_arch_i386:
|
||
if (machine == 0) arch_flags = M_386;
|
||
break;
|
||
|
||
case bfd_arch_a29k:
|
||
if (machine == 0) arch_flags = M_29K;
|
||
break;
|
||
|
||
case bfd_arch_mips:
|
||
switch (machine) {
|
||
case 0:
|
||
case 2000:
|
||
case 3000: arch_flags = M_MIPS1; break;
|
||
case 4000:
|
||
case 4400:
|
||
case 6000: arch_flags = M_MIPS2; break;
|
||
default: arch_flags = M_UNKNOWN; break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
arch_flags = M_UNKNOWN;
|
||
}
|
||
return arch_flags;
|
||
}
|
||
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_set_arch_mach
|
||
|
||
DESCRIPTION
|
||
Sets the architecture and the machine of the BFD to those
|
||
values supplied. Verifies that the format can support the
|
||
architecture required.
|
||
|
||
SYNOPSIS
|
||
boolean aout_<size>_set_arch_mach,
|
||
(bfd *,
|
||
enum bfd_architecture,
|
||
unsigned long machine));
|
||
*/
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,set_arch_mach),(abfd, arch, machine),
|
||
bfd *abfd AND
|
||
enum bfd_architecture arch AND
|
||
unsigned long machine)
|
||
{
|
||
if (! bfd_default_set_arch_mach (abfd, arch, machine))
|
||
return false;
|
||
|
||
if (arch != bfd_arch_unknown &&
|
||
NAME(aout,machine_type) (arch, machine) == M_UNKNOWN)
|
||
return false; /* We can't represent this type */
|
||
|
||
/* Determine the size of a relocation entry */
|
||
switch (arch) {
|
||
case bfd_arch_sparc:
|
||
case bfd_arch_a29k:
|
||
case bfd_arch_mips:
|
||
obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
|
||
break;
|
||
default:
|
||
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
|
||
break;
|
||
}
|
||
|
||
return (*aout_backend_info(abfd)->set_sizes) (abfd);
|
||
}
|
||
|
||
boolean
|
||
DEFUN (NAME (aout,adjust_sizes_and_vmas), (abfd, text_size, text_end),
|
||
bfd *abfd AND bfd_size_type *text_size AND file_ptr *text_end)
|
||
{
|
||
struct internal_exec *execp = exec_hdr (abfd);
|
||
if ((obj_textsec (abfd) == NULL) || (obj_datasec (abfd) == NULL))
|
||
{
|
||
bfd_error = invalid_operation;
|
||
return false;
|
||
}
|
||
if (adata(abfd).magic != undecided_magic) return true;
|
||
obj_textsec(abfd)->_raw_size =
|
||
align_power(obj_textsec(abfd)->_raw_size,
|
||
obj_textsec(abfd)->alignment_power);
|
||
|
||
*text_size = obj_textsec (abfd)->_raw_size;
|
||
/* Rule (heuristic) for when to pad to a new page. Note that there
|
||
* are (at least) two ways demand-paged (ZMAGIC) files have been
|
||
* handled. Most Berkeley-based systems start the text segment at
|
||
* (PAGE_SIZE). However, newer versions of SUNOS start the text
|
||
* segment right after the exec header; the latter is counted in the
|
||
* text segment size, and is paged in by the kernel with the rest of
|
||
* the text. */
|
||
|
||
/* This perhaps isn't the right way to do this, but made it simpler for me
|
||
to understand enough to implement it. Better would probably be to go
|
||
right from BFD flags to alignment/positioning characteristics. But the
|
||
old code was sloppy enough about handling the flags, and had enough
|
||
other magic, that it was a little hard for me to understand. I think
|
||
I understand it better now, but I haven't time to do the cleanup this
|
||
minute. */
|
||
if (adata(abfd).magic == undecided_magic)
|
||
{
|
||
if (abfd->flags & D_PAGED)
|
||
/* Whether or not WP_TEXT is set -- let D_PAGED override. */
|
||
/* @@ What about QMAGIC? */
|
||
adata(abfd).magic = z_magic;
|
||
else if (abfd->flags & WP_TEXT)
|
||
adata(abfd).magic = n_magic;
|
||
else
|
||
adata(abfd).magic = o_magic;
|
||
}
|
||
|
||
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
|
||
#if __GNUC__ >= 2
|
||
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
|
||
({ char *str;
|
||
switch (adata(abfd).magic) {
|
||
case n_magic: str = "NMAGIC"; break;
|
||
case o_magic: str = "OMAGIC"; break;
|
||
case z_magic: str = "ZMAGIC"; break;
|
||
default: abort ();
|
||
}
|
||
str;
|
||
}),
|
||
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->alignment_power,
|
||
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->alignment_power,
|
||
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size, obj_bsssec(abfd)->alignment_power);
|
||
#endif
|
||
#endif
|
||
|
||
switch (adata(abfd).magic)
|
||
{
|
||
case o_magic:
|
||
{
|
||
file_ptr pos = adata (abfd).exec_bytes_size;
|
||
bfd_vma vma = 0;
|
||
int pad = 0;
|
||
|
||
obj_textsec(abfd)->filepos = pos;
|
||
pos += obj_textsec(abfd)->_raw_size;
|
||
vma += obj_textsec(abfd)->_raw_size;
|
||
if (!obj_datasec(abfd)->user_set_vma)
|
||
{
|
||
#if 0 /* ?? Does alignment in the file image really matter? */
|
||
pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma;
|
||
#endif
|
||
obj_textsec(abfd)->_raw_size += pad;
|
||
pos += pad;
|
||
vma += pad;
|
||
obj_datasec(abfd)->vma = vma;
|
||
}
|
||
obj_datasec(abfd)->filepos = pos;
|
||
pos += obj_datasec(abfd)->_raw_size;
|
||
vma += obj_datasec(abfd)->_raw_size;
|
||
if (!obj_bsssec(abfd)->user_set_vma)
|
||
{
|
||
#if 0
|
||
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
|
||
#endif
|
||
obj_datasec(abfd)->_raw_size += pad;
|
||
pos += pad;
|
||
vma += pad;
|
||
obj_bsssec(abfd)->vma = vma;
|
||
}
|
||
obj_bsssec(abfd)->filepos = pos;
|
||
execp->a_text = obj_textsec(abfd)->_raw_size;
|
||
execp->a_data = obj_datasec(abfd)->_raw_size;
|
||
execp->a_bss = obj_bsssec(abfd)->_raw_size;
|
||
N_SET_MAGIC (*execp, OMAGIC);
|
||
}
|
||
break;
|
||
case z_magic:
|
||
{
|
||
bfd_size_type data_pad, text_pad;
|
||
file_ptr text_end;
|
||
CONST struct aout_backend_data *abdp;
|
||
int ztih;
|
||
bfd_vma data_vma;
|
||
|
||
abdp = aout_backend_info (abfd);
|
||
ztih = abdp && abdp->text_includes_header;
|
||
obj_textsec(abfd)->filepos = (ztih
|
||
? adata(abfd).exec_bytes_size
|
||
: adata(abfd).page_size);
|
||
if (! obj_textsec(abfd)->user_set_vma)
|
||
/* ?? Do we really need to check for relocs here? */
|
||
obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC)
|
||
? 0
|
||
: (ztih
|
||
? (abdp->default_text_vma
|
||
+ adata(abfd).exec_bytes_size)
|
||
: abdp->default_text_vma));
|
||
/* Could take strange alignment of text section into account here? */
|
||
|
||
/* Find start of data. */
|
||
text_end = obj_textsec(abfd)->filepos + obj_textsec(abfd)->_raw_size;
|
||
text_pad = BFD_ALIGN (text_end, adata(abfd).page_size) - text_end;
|
||
obj_textsec(abfd)->_raw_size += text_pad;
|
||
text_end += text_pad;
|
||
|
||
if (!obj_datasec(abfd)->user_set_vma)
|
||
{
|
||
bfd_vma vma;
|
||
vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size;
|
||
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
|
||
}
|
||
data_vma = obj_datasec(abfd)->vma;
|
||
if (abdp && abdp->zmagic_mapped_contiguous)
|
||
{
|
||
text_pad = (obj_datasec(abfd)->vma
|
||
- obj_textsec(abfd)->vma
|
||
- obj_textsec(abfd)->_raw_size);
|
||
obj_textsec(abfd)->_raw_size += text_pad;
|
||
}
|
||
obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos
|
||
+ obj_textsec(abfd)->_raw_size);
|
||
|
||
/* Fix up exec header while we're at it. */
|
||
execp->a_text = obj_textsec(abfd)->_raw_size;
|
||
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
|
||
execp->a_text += adata(abfd).exec_bytes_size;
|
||
N_SET_MAGIC (*execp, ZMAGIC);
|
||
/* Spec says data section should be rounded up to page boundary. */
|
||
/* If extra space in page is left after data section, fudge data
|
||
in the header so that the bss section looks smaller by that
|
||
amount. We'll start the bss section there, and lie to the OS. */
|
||
obj_datasec(abfd)->_raw_size
|
||
= align_power (obj_datasec(abfd)->_raw_size,
|
||
obj_bsssec(abfd)->alignment_power);
|
||
execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size,
|
||
adata(abfd).page_size);
|
||
data_pad = execp->a_data - obj_datasec(abfd)->_raw_size;
|
||
|
||
if (!obj_bsssec(abfd)->user_set_vma)
|
||
obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma
|
||
+ obj_datasec(abfd)->_raw_size);
|
||
if (data_pad > obj_bsssec(abfd)->_raw_size)
|
||
execp->a_bss = 0;
|
||
else
|
||
execp->a_bss = obj_bsssec(abfd)->_raw_size - data_pad;
|
||
}
|
||
break;
|
||
case n_magic:
|
||
{
|
||
file_ptr pos = adata(abfd).exec_bytes_size;
|
||
bfd_vma vma = 0;
|
||
int pad;
|
||
|
||
obj_textsec(abfd)->filepos = pos;
|
||
if (!obj_textsec(abfd)->user_set_vma)
|
||
obj_textsec(abfd)->vma = vma;
|
||
else
|
||
vma = obj_textsec(abfd)->vma;
|
||
pos += obj_textsec(abfd)->_raw_size;
|
||
vma += obj_textsec(abfd)->_raw_size;
|
||
obj_datasec(abfd)->filepos = pos;
|
||
if (!obj_datasec(abfd)->user_set_vma)
|
||
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
|
||
vma = obj_datasec(abfd)->vma;
|
||
|
||
/* Since BSS follows data immediately, see if it needs alignment. */
|
||
vma += obj_datasec(abfd)->_raw_size;
|
||
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
|
||
obj_datasec(abfd)->_raw_size += pad;
|
||
pos += obj_datasec(abfd)->_raw_size;
|
||
|
||
if (!obj_bsssec(abfd)->user_set_vma)
|
||
obj_bsssec(abfd)->vma = vma;
|
||
else
|
||
vma = obj_bsssec(abfd)->vma;
|
||
}
|
||
execp->a_text = obj_textsec(abfd)->_raw_size;
|
||
execp->a_data = obj_datasec(abfd)->_raw_size;
|
||
execp->a_bss = obj_bsssec(abfd)->_raw_size;
|
||
N_SET_MAGIC (*execp, NMAGIC);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
#ifdef BFD_AOUT_DEBUG
|
||
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
|
||
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size, obj_textsec(abfd)->filepos,
|
||
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size, obj_datasec(abfd)->filepos,
|
||
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size);
|
||
#endif
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
aout_<size>_new_section_hook
|
||
|
||
DESCRIPTION
|
||
Called by the BFD in response to a @code{bfd_make_section}
|
||
request.
|
||
|
||
SYNOPSIS
|
||
boolean aout_<size>_new_section_hook,
|
||
(bfd *abfd,
|
||
asection *newsect));
|
||
*/
|
||
boolean
|
||
DEFUN(NAME(aout,new_section_hook),(abfd, newsect),
|
||
bfd *abfd AND
|
||
asection *newsect)
|
||
{
|
||
/* align to double at least */
|
||
newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power;
|
||
|
||
|
||
if (bfd_get_format (abfd) == bfd_object)
|
||
{
|
||
if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) {
|
||
obj_textsec(abfd)= newsect;
|
||
newsect->target_index = N_TEXT | N_EXT;
|
||
return true;
|
||
}
|
||
|
||
if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) {
|
||
obj_datasec(abfd) = newsect;
|
||
newsect->target_index = N_DATA | N_EXT;
|
||
return true;
|
||
}
|
||
|
||
if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) {
|
||
obj_bsssec(abfd) = newsect;
|
||
newsect->target_index = N_BSS | N_EXT;
|
||
return true;
|
||
}
|
||
|
||
}
|
||
|
||
/* We allow more than three sections internally */
|
||
return true;
|
||
}
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,set_section_contents),(abfd, section, location, offset, count),
|
||
bfd *abfd AND
|
||
sec_ptr section AND
|
||
PTR location AND
|
||
file_ptr offset AND
|
||
bfd_size_type count)
|
||
{
|
||
file_ptr text_end;
|
||
bfd_size_type text_size;
|
||
|
||
if (abfd->output_has_begun == false)
|
||
{
|
||
if (NAME(aout,adjust_sizes_and_vmas) (abfd,
|
||
&text_size,
|
||
&text_end) == false)
|
||
return false;
|
||
}
|
||
|
||
/* regardless, once we know what we're doing, we might as well get going */
|
||
if (section != obj_bsssec(abfd))
|
||
{
|
||
bfd_seek (abfd, section->filepos + offset, SEEK_SET);
|
||
|
||
if (count) {
|
||
return (bfd_write ((PTR)location, 1, count, abfd) == count) ?
|
||
true : false;
|
||
}
|
||
return true;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Classify stabs symbols */
|
||
|
||
#define sym_in_text_section(sym) \
|
||
(((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_TEXT)
|
||
|
||
#define sym_in_data_section(sym) \
|
||
(((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_DATA)
|
||
|
||
#define sym_in_bss_section(sym) \
|
||
(((sym)->type & (N_ABS | N_TEXT | N_DATA | N_BSS))== N_BSS)
|
||
|
||
/* Symbol is undefined if type is N_UNDF|N_EXT and if it has
|
||
zero in the "value" field. Nonzeroes there are fortrancommon
|
||
symbols. */
|
||
#define sym_is_undefined(sym) \
|
||
((sym)->type == (N_UNDF | N_EXT) && (sym)->symbol.value == 0)
|
||
|
||
/* Symbol is a global definition if N_EXT is on and if it has
|
||
a nonzero type field. */
|
||
#define sym_is_global_defn(sym) \
|
||
(((sym)->type & N_EXT) && (sym)->type & N_TYPE)
|
||
|
||
/* Symbol is debugger info if any bits outside N_TYPE or N_EXT
|
||
are on. */
|
||
#define sym_is_debugger_info(sym) \
|
||
((sym)->type & ~(N_EXT | N_TYPE))
|
||
|
||
#define sym_is_fortrancommon(sym) \
|
||
(((sym)->type == (N_EXT)) && (sym)->symbol.value != 0)
|
||
|
||
/* Symbol is absolute if it has N_ABS set */
|
||
#define sym_is_absolute(sym) \
|
||
(((sym)->type & N_TYPE)== N_ABS)
|
||
|
||
|
||
#define sym_is_indirect(sym) \
|
||
(((sym)->type & N_ABS)== N_ABS)
|
||
|
||
/* Only in their own functions for ease of debugging; when sym flags have
|
||
stabilised these should be inlined into their (single) caller */
|
||
|
||
static void
|
||
DEFUN (translate_from_native_sym_flags, (sym_pointer, cache_ptr, abfd),
|
||
struct external_nlist *sym_pointer AND
|
||
aout_symbol_type * cache_ptr AND
|
||
bfd * abfd)
|
||
{
|
||
cache_ptr->symbol.section = 0;
|
||
switch (cache_ptr->type & N_TYPE)
|
||
{
|
||
case N_SETA:
|
||
case N_SETT:
|
||
case N_SETD:
|
||
case N_SETB:
|
||
{
|
||
char *copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1);
|
||
asection *section;
|
||
asection *into_section;
|
||
|
||
arelent_chain *reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain));
|
||
strcpy (copy, cache_ptr->symbol.name);
|
||
|
||
/* Make sure that this bfd has a section with the right contructor
|
||
name */
|
||
section = bfd_get_section_by_name (abfd, copy);
|
||
if (!section)
|
||
section = bfd_make_section (abfd, copy);
|
||
|
||
/* Build a relocation entry for the constructor */
|
||
switch ((cache_ptr->type & N_TYPE))
|
||
{
|
||
case N_SETA:
|
||
into_section = &bfd_abs_section;
|
||
cache_ptr->type = N_ABS;
|
||
break;
|
||
case N_SETT:
|
||
into_section = (asection *) obj_textsec (abfd);
|
||
cache_ptr->type = N_TEXT;
|
||
break;
|
||
case N_SETD:
|
||
into_section = (asection *) obj_datasec (abfd);
|
||
cache_ptr->type = N_DATA;
|
||
break;
|
||
case N_SETB:
|
||
into_section = (asection *) obj_bsssec (abfd);
|
||
cache_ptr->type = N_BSS;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Build a relocation pointing into the constuctor section
|
||
pointing at the symbol in the set vector specified */
|
||
|
||
reloc->relent.addend = cache_ptr->symbol.value;
|
||
cache_ptr->symbol.section = into_section->symbol->section;
|
||
reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr;
|
||
|
||
|
||
/* We modify the symbol to belong to a section depending upon the
|
||
name of the symbol - probably __CTOR__ or __DTOR__ but we don't
|
||
really care, and add to the size of the section to contain a
|
||
pointer to the symbol. Build a reloc entry to relocate to this
|
||
symbol attached to this section. */
|
||
|
||
section->flags = SEC_CONSTRUCTOR;
|
||
|
||
|
||
section->reloc_count++;
|
||
section->alignment_power = 2;
|
||
|
||
reloc->next = section->constructor_chain;
|
||
section->constructor_chain = reloc;
|
||
reloc->relent.address = section->_raw_size;
|
||
section->_raw_size += sizeof (int *);
|
||
|
||
reloc->relent.howto
|
||
= (obj_reloc_entry_size(abfd) == RELOC_EXT_SIZE
|
||
? howto_table_ext : howto_table_std)
|
||
+ CTOR_TABLE_RELOC_IDX;
|
||
cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
|
||
}
|
||
break;
|
||
default:
|
||
if (cache_ptr->type == N_WARNING)
|
||
{
|
||
/* This symbol is the text of a warning message, the next symbol
|
||
is the symbol to associate the warning with */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
|
||
|
||
/* @@ Stuffing pointers into integers is a no-no.
|
||
We can usually get away with it if the integer is
|
||
large enough though. */
|
||
if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
|
||
abort ();
|
||
cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1));
|
||
|
||
/* We furgle with the next symbol in place.
|
||
We don't want it to be undefined, we'll trample the type */
|
||
(sym_pointer + 1)->e_type[0] = 0xff;
|
||
break;
|
||
}
|
||
if ((cache_ptr->type | N_EXT) == (N_INDR | N_EXT))
|
||
{
|
||
/* Two symbols in a row for an INDR message. The first symbol
|
||
contains the name we will match, the second symbol contains
|
||
the name the first name is translated into. It is supplied to
|
||
us undefined. This is good, since we want to pull in any files
|
||
which define it */
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT;
|
||
|
||
/* @@ Stuffing pointers into integers is a no-no.
|
||
We can usually get away with it if the integer is
|
||
large enough though. */
|
||
if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
|
||
abort ();
|
||
|
||
cache_ptr->symbol.value = (bfd_vma) ((cache_ptr + 1));
|
||
cache_ptr->symbol.section = &bfd_ind_section;
|
||
}
|
||
|
||
else if (sym_is_debugger_info (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = BSF_DEBUGGING;
|
||
/* Work out the section correct for this symbol */
|
||
switch (cache_ptr->type & N_TYPE)
|
||
{
|
||
case N_TEXT:
|
||
case N_FN:
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
cache_ptr->symbol.value -= obj_textsec (abfd)->vma;
|
||
break;
|
||
case N_DATA:
|
||
cache_ptr->symbol.value -= obj_datasec (abfd)->vma;
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
break;
|
||
case N_BSS:
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
cache_ptr->symbol.value -= obj_bsssec (abfd)->vma;
|
||
break;
|
||
default:
|
||
case N_ABS:
|
||
|
||
cache_ptr->symbol.section = &bfd_abs_section;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
|
||
if (sym_is_fortrancommon (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = 0;
|
||
cache_ptr->symbol.section = &bfd_com_section;
|
||
}
|
||
else
|
||
{
|
||
|
||
|
||
}
|
||
|
||
/* In a.out, the value of a symbol is always relative to the
|
||
* start of the file, if this is a data symbol we'll subtract
|
||
* the size of the text section to get the section relative
|
||
* value. If this is a bss symbol (which would be strange)
|
||
* we'll subtract the size of the previous two sections
|
||
* to find the section relative address.
|
||
*/
|
||
|
||
if (sym_in_text_section (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.value -= obj_textsec (abfd)->vma;
|
||
cache_ptr->symbol.section = obj_textsec (abfd);
|
||
}
|
||
else if (sym_in_data_section (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.value -= obj_datasec (abfd)->vma;
|
||
cache_ptr->symbol.section = obj_datasec (abfd);
|
||
}
|
||
else if (sym_in_bss_section (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.section = obj_bsssec (abfd);
|
||
cache_ptr->symbol.value -= obj_bsssec (abfd)->vma;
|
||
}
|
||
else if (sym_is_undefined (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = 0;
|
||
cache_ptr->symbol.section = &bfd_und_section;
|
||
}
|
||
else if (sym_is_absolute (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.section = &bfd_abs_section;
|
||
}
|
||
|
||
if (sym_is_global_defn (cache_ptr))
|
||
{
|
||
cache_ptr->symbol.flags = BSF_GLOBAL | BSF_EXPORT;
|
||
}
|
||
else
|
||
{
|
||
cache_ptr->symbol.flags = BSF_LOCAL;
|
||
}
|
||
}
|
||
}
|
||
if (cache_ptr->symbol.section == 0)
|
||
abort ();
|
||
}
|
||
|
||
|
||
|
||
static void
|
||
DEFUN(translate_to_native_sym_flags,(sym_pointer, cache_ptr, abfd),
|
||
struct external_nlist *sym_pointer AND
|
||
asymbol *cache_ptr AND
|
||
bfd *abfd)
|
||
{
|
||
bfd_vma value = cache_ptr->value;
|
||
|
||
/* mask out any existing type bits in case copying from one section
|
||
to another */
|
||
sym_pointer->e_type[0] &= ~N_TYPE;
|
||
|
||
|
||
/* We attempt to order these tests by decreasing frequency of success,
|
||
according to tcov when linking the linker. */
|
||
if (bfd_get_output_section(cache_ptr) == &bfd_abs_section) {
|
||
sym_pointer->e_type[0] |= N_ABS;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == obj_textsec (abfd)) {
|
||
sym_pointer->e_type[0] |= N_TEXT;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == obj_datasec (abfd)) {
|
||
sym_pointer->e_type[0] |= N_DATA;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == obj_bsssec (abfd)) {
|
||
sym_pointer->e_type[0] |= N_BSS;
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == &bfd_und_section)
|
||
{
|
||
sym_pointer->e_type[0] = (N_UNDF | N_EXT);
|
||
}
|
||
else if (bfd_get_output_section(cache_ptr) == &bfd_ind_section)
|
||
{
|
||
sym_pointer->e_type[0] = N_INDR;
|
||
}
|
||
else if (bfd_is_com_section (bfd_get_output_section (cache_ptr))) {
|
||
sym_pointer->e_type[0] = (N_UNDF | N_EXT);
|
||
}
|
||
else {
|
||
if (cache_ptr->section->output_section)
|
||
{
|
||
|
||
bfd_error_vector.nonrepresentable_section(abfd,
|
||
bfd_get_output_section(cache_ptr)->name);
|
||
}
|
||
else
|
||
{
|
||
bfd_error_vector.nonrepresentable_section(abfd,
|
||
cache_ptr->section->name);
|
||
|
||
}
|
||
|
||
}
|
||
/* Turn the symbol from section relative to absolute again */
|
||
|
||
value += cache_ptr->section->output_section->vma + cache_ptr->section->output_offset ;
|
||
|
||
|
||
if (cache_ptr->flags & (BSF_WARNING)) {
|
||
(sym_pointer+1)->e_type[0] = 1;
|
||
}
|
||
|
||
if (cache_ptr->flags & BSF_DEBUGGING) {
|
||
sym_pointer->e_type[0] = ((aout_symbol_type *)cache_ptr)->type;
|
||
}
|
||
else if (cache_ptr->flags & (BSF_GLOBAL | BSF_EXPORT)) {
|
||
sym_pointer->e_type[0] |= N_EXT;
|
||
}
|
||
if (cache_ptr->flags & BSF_CONSTRUCTOR) {
|
||
int type = ((aout_symbol_type *)cache_ptr)->type;
|
||
switch (type)
|
||
{
|
||
case N_ABS: type = N_SETA; break;
|
||
case N_TEXT: type = N_SETT; break;
|
||
case N_DATA: type = N_SETD; break;
|
||
case N_BSS: type = N_SETB; break;
|
||
}
|
||
sym_pointer->e_type[0] = type;
|
||
}
|
||
|
||
PUT_WORD(abfd, value, sym_pointer->e_value);
|
||
}
|
||
|
||
/* Native-level interface to symbols. */
|
||
|
||
/* We read the symbols into a buffer, which is discarded when this
|
||
function exits. We read the strings into a buffer large enough to
|
||
hold them all plus all the cached symbol entries. */
|
||
|
||
asymbol *
|
||
DEFUN(NAME(aout,make_empty_symbol),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
aout_symbol_type *new =
|
||
(aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type));
|
||
new->symbol.the_bfd = abfd;
|
||
|
||
return &new->symbol;
|
||
}
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,slurp_symbol_table),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
bfd_size_type symbol_size;
|
||
bfd_size_type string_size;
|
||
unsigned char string_chars[BYTES_IN_WORD];
|
||
struct external_nlist *syms;
|
||
char *strings;
|
||
aout_symbol_type *cached;
|
||
|
||
/* If there's no work to be done, don't do any */
|
||
if (obj_aout_symbols (abfd) != (aout_symbol_type *)NULL) return true;
|
||
symbol_size = exec_hdr(abfd)->a_syms;
|
||
if (symbol_size == 0)
|
||
{
|
||
bfd_error = no_symbols;
|
||
return false;
|
||
}
|
||
|
||
bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET);
|
||
if (bfd_read ((PTR)string_chars, BYTES_IN_WORD, 1, abfd) != BYTES_IN_WORD)
|
||
return false;
|
||
string_size = GET_WORD (abfd, string_chars);
|
||
|
||
strings =(char *) bfd_alloc(abfd, string_size + 1);
|
||
cached = (aout_symbol_type *)
|
||
bfd_zalloc(abfd, (bfd_size_type)(bfd_get_symcount (abfd) * sizeof(aout_symbol_type)));
|
||
|
||
/* malloc this, so we can free it if simply. The symbol caching
|
||
might want to allocate onto the bfd's obstack */
|
||
syms = (struct external_nlist *) bfd_xmalloc(symbol_size);
|
||
bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET);
|
||
if (bfd_read ((PTR)syms, 1, symbol_size, abfd) != symbol_size)
|
||
{
|
||
bailout:
|
||
if (syms)
|
||
free (syms);
|
||
if (cached)
|
||
bfd_release (abfd, cached);
|
||
if (strings)
|
||
bfd_release (abfd, strings);
|
||
return false;
|
||
}
|
||
|
||
bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET);
|
||
if (bfd_read ((PTR)strings, 1, string_size, abfd) != string_size)
|
||
{
|
||
goto bailout;
|
||
}
|
||
strings[string_size] = 0; /* Just in case. */
|
||
|
||
/* OK, now walk the new symtable, cacheing symbol properties */
|
||
{
|
||
register struct external_nlist *sym_pointer;
|
||
register struct external_nlist *sym_end = syms + bfd_get_symcount (abfd);
|
||
register aout_symbol_type *cache_ptr = cached;
|
||
|
||
/* Run through table and copy values */
|
||
for (sym_pointer = syms, cache_ptr = cached;
|
||
sym_pointer < sym_end; sym_pointer ++, cache_ptr++)
|
||
{
|
||
long x = GET_WORD(abfd, sym_pointer->e_strx);
|
||
cache_ptr->symbol.the_bfd = abfd;
|
||
if (x == 0)
|
||
cache_ptr->symbol.name = "";
|
||
else if (x >= 0 && x < string_size)
|
||
cache_ptr->symbol.name = x + strings;
|
||
else
|
||
goto bailout;
|
||
|
||
cache_ptr->symbol.value = GET_SWORD(abfd, sym_pointer->e_value);
|
||
cache_ptr->desc = bfd_h_get_16(abfd, sym_pointer->e_desc);
|
||
cache_ptr->other = bfd_h_get_8(abfd, sym_pointer->e_other);
|
||
cache_ptr->type = bfd_h_get_8(abfd, sym_pointer->e_type);
|
||
cache_ptr->symbol.udata = 0;
|
||
translate_from_native_sym_flags (sym_pointer, cache_ptr, abfd);
|
||
}
|
||
}
|
||
|
||
obj_aout_symbols (abfd) = cached;
|
||
free((PTR)syms);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Possible improvements:
|
||
+ look for strings matching trailing substrings of other strings
|
||
+ better data structures? balanced trees?
|
||
+ smaller per-string or per-symbol data? re-use some of the symbol's
|
||
data fields?
|
||
+ also look at reducing memory use elsewhere -- maybe if we didn't have to
|
||
construct the entire symbol table at once, we could get by with smaller
|
||
amounts of VM? (What effect does that have on the string table
|
||
reductions?)
|
||
+ rip this out of here, put it into its own file in bfd or libiberty, so
|
||
coff and elf can use it too. I'll work on this soon, but have more
|
||
pressing tasks right now.
|
||
|
||
A hash table might(?) be more efficient for handling exactly the cases that
|
||
are handled now, but for trailing substring matches, I think we want to
|
||
examine the `nearest' values (reverse-)lexically, not merely impose a strict
|
||
order, nor look only for exact-match or not-match. I don't think a hash
|
||
table would be very useful for that, and I don't feel like fleshing out two
|
||
completely different implementations. [raeburn:930419.0331EDT] */
|
||
|
||
struct stringtab_entry {
|
||
/* Hash value for this string. Only useful so long as we aren't doing
|
||
substring matches. */
|
||
unsigned int hash;
|
||
|
||
/* Next node to look at, depending on whether the hash value of the string
|
||
being searched for is less than or greater than the hash value of the
|
||
current node. For now, `equal to' is lumped in with `greater than', for
|
||
space efficiency. It's not a common enough case to warrant another field
|
||
to be used for all nodes. */
|
||
struct stringtab_entry *less;
|
||
struct stringtab_entry *greater;
|
||
|
||
/* The string itself. */
|
||
CONST char *string;
|
||
|
||
/* The index allocated for this string. */
|
||
bfd_size_type index;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* How many references have there been to this string? (Not currently used;
|
||
could be dumped out for anaylsis, if anyone's interested.) */
|
||
unsigned long count;
|
||
#endif
|
||
|
||
/* Next node in linked list, in suggested output order. */
|
||
struct stringtab_entry *next_to_output;
|
||
};
|
||
|
||
struct stringtab_data {
|
||
/* Tree of string table entries. */
|
||
struct stringtab_entry *strings;
|
||
|
||
/* Fudge factor used to center top node of tree. */
|
||
int hash_zero;
|
||
|
||
/* Next index value to issue. */
|
||
bfd_size_type index;
|
||
|
||
/* Index used for empty strings. Cached here because checking for them
|
||
is really easy, and we can avoid searching the tree. */
|
||
bfd_size_type empty_string_index;
|
||
|
||
/* These fields indicate the two ends of a singly-linked list that indicates
|
||
the order strings should be written out in. Use this order, and no
|
||
seeking will need to be done, so output efficiency should be maximized. */
|
||
struct stringtab_entry **end;
|
||
struct stringtab_entry *output_order;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Number of strings which duplicate strings already in the table. */
|
||
unsigned long duplicates;
|
||
|
||
/* Number of bytes saved by not having to write all the duplicate strings. */
|
||
unsigned long bytes_saved;
|
||
|
||
/* Number of zero-length strings. Currently, these all turn into
|
||
references to the null byte at the end of the first string. In some
|
||
cases (possibly not all? explore this...), it should be possible to
|
||
simply write out a zero index value. */
|
||
unsigned long empty_strings;
|
||
|
||
/* Number of times the hash values matched but the strings were different.
|
||
Note that this includes the number of times the other string(s) occurs, so
|
||
there may only be two strings hashing to the same value, even if this
|
||
number is very large. */
|
||
unsigned long bad_hash_matches;
|
||
|
||
/* Null strings aren't counted in this one.
|
||
This will probably only be nonzero if we've got an input file
|
||
which was produced by `ld -r' (i.e., it's already been processed
|
||
through this code). Under some operating systems, native tools
|
||
may make all empty strings have the same index; but the pointer
|
||
check won't catch those, because to get to that stage we'd already
|
||
have to compute the checksum, which requires reading the string,
|
||
so we short-circuit that case with empty_string_index above. */
|
||
unsigned long pointer_matches;
|
||
|
||
/* Number of comparisons done. I figure with the algorithms in use below,
|
||
the average number of comparisons done (per symbol) should be roughly
|
||
log-base-2 of the number of unique strings. */
|
||
unsigned long n_compares;
|
||
#endif
|
||
};
|
||
|
||
/* Some utility functions for the string table code. */
|
||
|
||
/* For speed, only hash on the first this many bytes of strings.
|
||
This number was chosen by profiling ld linking itself, with -g. */
|
||
#define HASHMAXLEN 25
|
||
|
||
#define HASH_CHAR(c) (sum ^= sum >> 20, sum ^= sum << 7, sum += (c))
|
||
|
||
static INLINE unsigned int
|
||
hash (string, len)
|
||
unsigned char *string;
|
||
register unsigned int len;
|
||
{
|
||
register unsigned int sum = 0;
|
||
|
||
if (len > HASHMAXLEN)
|
||
{
|
||
HASH_CHAR (len);
|
||
len = HASHMAXLEN;
|
||
}
|
||
|
||
while (len--)
|
||
{
|
||
HASH_CHAR (*string++);
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
static INLINE void
|
||
stringtab_init (tab)
|
||
struct stringtab_data *tab;
|
||
{
|
||
tab->strings = 0;
|
||
tab->output_order = 0;
|
||
tab->end = &tab->output_order;
|
||
|
||
/* Initial string table length includes size of length field. */
|
||
tab->index = BYTES_IN_WORD;
|
||
tab->empty_string_index = -1;
|
||
#ifdef GATHER_STATISTICS
|
||
tab->duplicates = 0;
|
||
tab->empty_strings = 0;
|
||
tab->bad_hash_matches = 0;
|
||
tab->pointer_matches = 0;
|
||
tab->bytes_saved = 0;
|
||
tab->n_compares = 0;
|
||
#endif
|
||
}
|
||
|
||
static INLINE int
|
||
compare (entry, str, hash)
|
||
struct stringtab_entry *entry;
|
||
CONST char *str;
|
||
unsigned int hash;
|
||
{
|
||
return hash - entry->hash;
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Don't want to have to link in math library with all bfd applications... */
|
||
static INLINE double
|
||
log2 (num)
|
||
int num;
|
||
{
|
||
double d = num;
|
||
int n = 0;
|
||
while (d >= 2.0)
|
||
n++, d /= 2.0;
|
||
return ((d > 1.41) ? 0.5 : 0) + n;
|
||
}
|
||
#endif
|
||
|
||
/* Main string table routines. */
|
||
/* Returns index in string table. Whether or not this actually adds an
|
||
entry into the string table should be irrelevant -- it just has to
|
||
return a valid index. */
|
||
static bfd_size_type
|
||
add_to_stringtab (abfd, str, tab, check)
|
||
bfd *abfd;
|
||
CONST char *str;
|
||
struct stringtab_data *tab;
|
||
int check;
|
||
{
|
||
struct stringtab_entry **ep;
|
||
register struct stringtab_entry *entry;
|
||
unsigned int hashval, len;
|
||
|
||
if (str[0] == 0)
|
||
{
|
||
bfd_size_type index;
|
||
CONST bfd_size_type minus_one = -1;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tab->empty_strings++;
|
||
#endif
|
||
index = tab->empty_string_index;
|
||
if (index != minus_one)
|
||
{
|
||
got_empty:
|
||
#ifdef GATHER_STATISTICS
|
||
tab->bytes_saved++;
|
||
tab->duplicates++;
|
||
#endif
|
||
return index;
|
||
}
|
||
|
||
/* Need to find it. */
|
||
entry = tab->strings;
|
||
if (entry)
|
||
{
|
||
index = entry->index + strlen (entry->string);
|
||
tab->empty_string_index = index;
|
||
goto got_empty;
|
||
}
|
||
len = 0;
|
||
}
|
||
else
|
||
len = strlen (str);
|
||
|
||
/* The hash_zero value is chosen such that the first symbol gets a value of
|
||
zero. With a balanced tree, this wouldn't be very useful, but without it,
|
||
we might get a more even split at the top level, instead of skewing it
|
||
badly should hash("/usr/lib/crt0.o") (or whatever) be far from zero. */
|
||
hashval = hash (str, len) ^ tab->hash_zero;
|
||
ep = &tab->strings;
|
||
if (!*ep)
|
||
{
|
||
tab->hash_zero = hashval;
|
||
hashval = 0;
|
||
goto add_it;
|
||
}
|
||
|
||
while (*ep)
|
||
{
|
||
register int cmp;
|
||
|
||
entry = *ep;
|
||
#ifdef GATHER_STATISTICS
|
||
tab->n_compares++;
|
||
#endif
|
||
cmp = compare (entry, str, hashval);
|
||
/* The not-equal cases are more frequent, so check them first. */
|
||
if (cmp > 0)
|
||
ep = &entry->greater;
|
||
else if (cmp < 0)
|
||
ep = &entry->less;
|
||
else
|
||
{
|
||
if (entry->string == str)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
tab->pointer_matches++;
|
||
#endif
|
||
goto match;
|
||
}
|
||
/* Compare the first bytes to save a function call if they
|
||
don't match. */
|
||
if (entry->string[0] == str[0] && !strcmp (entry->string, str))
|
||
{
|
||
match:
|
||
#ifdef GATHER_STATISTICS
|
||
entry->count++;
|
||
tab->bytes_saved += len + 1;
|
||
tab->duplicates++;
|
||
#endif
|
||
/* If we're in the linker, and the new string is from a new
|
||
input file which might have already had these reductions
|
||
run over it, we want to keep the new string pointer. I
|
||
don't think we're likely to see any (or nearly as many,
|
||
at least) cases where a later string is in the same location
|
||
as an earlier one rather than this one. */
|
||
entry->string = str;
|
||
return entry->index;
|
||
}
|
||
#ifdef GATHER_STATISTICS
|
||
tab->bad_hash_matches++;
|
||
#endif
|
||
ep = &entry->greater;
|
||
}
|
||
}
|
||
|
||
/* If we get here, nothing that's in the table already matched.
|
||
EP points to the `next' field at the end of the chain; stick a
|
||
new entry on here. */
|
||
add_it:
|
||
entry = (struct stringtab_entry *)
|
||
bfd_alloc_by_size_t (abfd, sizeof (struct stringtab_entry));
|
||
|
||
entry->less = entry->greater = 0;
|
||
entry->hash = hashval;
|
||
entry->index = tab->index;
|
||
entry->string = str;
|
||
entry->next_to_output = 0;
|
||
#ifdef GATHER_STATISTICS
|
||
entry->count = 1;
|
||
#endif
|
||
|
||
assert (*tab->end == 0);
|
||
*(tab->end) = entry;
|
||
tab->end = &entry->next_to_output;
|
||
assert (*tab->end == 0);
|
||
|
||
{
|
||
tab->index += len + 1;
|
||
if (len == 0)
|
||
tab->empty_string_index = entry->index;
|
||
}
|
||
assert (*ep == 0);
|
||
*ep = entry;
|
||
return entry->index;
|
||
}
|
||
|
||
static void
|
||
emit_strtab (abfd, tab)
|
||
bfd *abfd;
|
||
struct stringtab_data *tab;
|
||
{
|
||
struct stringtab_entry *entry;
|
||
#ifdef GATHER_STATISTICS
|
||
int count = 0;
|
||
#endif
|
||
|
||
/* Be sure to put string length into correct byte ordering before writing
|
||
it out. */
|
||
char buffer[BYTES_IN_WORD];
|
||
|
||
PUT_WORD (abfd, tab->index, (unsigned char *) buffer);
|
||
bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd);
|
||
|
||
for (entry = tab->output_order; entry; entry = entry->next_to_output)
|
||
{
|
||
bfd_write ((PTR) entry->string, 1, strlen (entry->string) + 1, abfd);
|
||
#ifdef GATHER_STATISTICS
|
||
count++;
|
||
#endif
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Short form only, for now.
|
||
To do: Specify output file. Conditionalize on environment? Detailed
|
||
analysis if desired. */
|
||
{
|
||
int n_syms = bfd_get_symcount (abfd);
|
||
|
||
fprintf (stderr, "String table data for output file:\n");
|
||
fprintf (stderr, " %8d symbols output\n", n_syms);
|
||
fprintf (stderr, " %8d duplicate strings\n", tab->duplicates);
|
||
fprintf (stderr, " %8d empty strings\n", tab->empty_strings);
|
||
fprintf (stderr, " %8d unique strings output\n", count);
|
||
fprintf (stderr, " %8d pointer matches\n", tab->pointer_matches);
|
||
fprintf (stderr, " %8d bytes saved\n", tab->bytes_saved);
|
||
fprintf (stderr, " %8d bad hash matches\n", tab->bad_hash_matches);
|
||
fprintf (stderr, " %8d hash-val comparisons\n", tab->n_compares);
|
||
if (n_syms)
|
||
{
|
||
double n_compares = tab->n_compares;
|
||
double avg_compares = n_compares / n_syms;
|
||
/* The second value here should usually be near one. */
|
||
fprintf (stderr,
|
||
"\t average %f comparisons per symbol (%f * log2 nstrings)\n",
|
||
avg_compares, avg_compares / log2 (count));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Old code:
|
||
unsigned int count;
|
||
generic = bfd_get_outsymbols(abfd);
|
||
for (count = 0; count < bfd_get_symcount(abfd); count++)
|
||
{
|
||
asymbol *g = *(generic++);
|
||
|
||
if (g->name)
|
||
{
|
||
size_t length = strlen(g->name)+1;
|
||
bfd_write((PTR)g->name, 1, length, abfd);
|
||
}
|
||
g->KEEPIT = (KEEPITTYPE) count;
|
||
} */
|
||
}
|
||
|
||
void
|
||
DEFUN(NAME(aout,write_syms),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
unsigned int count ;
|
||
asymbol **generic = bfd_get_outsymbols (abfd);
|
||
struct stringtab_data strtab;
|
||
|
||
stringtab_init (&strtab);
|
||
|
||
for (count = 0; count < bfd_get_symcount (abfd); count++)
|
||
{
|
||
asymbol *g = generic[count];
|
||
struct external_nlist nsp;
|
||
|
||
if (g->name)
|
||
PUT_WORD (abfd, add_to_stringtab (abfd, g->name, &strtab),
|
||
(unsigned char *) nsp.e_strx);
|
||
else
|
||
PUT_WORD (abfd, 0, (unsigned char *)nsp.e_strx);
|
||
|
||
if (bfd_asymbol_flavour(g) == abfd->xvec->flavour)
|
||
{
|
||
bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc);
|
||
bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other);
|
||
bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type);
|
||
}
|
||
else
|
||
{
|
||
bfd_h_put_16(abfd,0, nsp.e_desc);
|
||
bfd_h_put_8(abfd, 0, nsp.e_other);
|
||
bfd_h_put_8(abfd, 0, nsp.e_type);
|
||
}
|
||
|
||
translate_to_native_sym_flags (&nsp, g, abfd);
|
||
|
||
bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd);
|
||
|
||
/* NB: `KEEPIT' currently overlays `flags', so set this only
|
||
here, at the end. */
|
||
g->KEEPIT = count;
|
||
}
|
||
|
||
emit_strtab (abfd, &strtab);
|
||
}
|
||
|
||
|
||
unsigned int
|
||
DEFUN(NAME(aout,get_symtab),(abfd, location),
|
||
bfd *abfd AND
|
||
asymbol **location)
|
||
{
|
||
unsigned int counter = 0;
|
||
aout_symbol_type *symbase;
|
||
|
||
if (!NAME(aout,slurp_symbol_table)(abfd)) return 0;
|
||
|
||
for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);)
|
||
*(location++) = (asymbol *)( symbase++);
|
||
*location++ =0;
|
||
return bfd_get_symcount (abfd);
|
||
}
|
||
|
||
|
||
/* Standard reloc stuff */
|
||
/* Output standard relocation information to a file in target byte order. */
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_std_reloc_out),(abfd, g, natptr),
|
||
bfd *abfd AND
|
||
arelent *g AND
|
||
struct reloc_std_external *natptr)
|
||
{
|
||
int r_index;
|
||
asymbol *sym = *(g->sym_ptr_ptr);
|
||
int r_extern;
|
||
unsigned int r_length;
|
||
int r_pcrel;
|
||
int r_baserel, r_jmptable, r_relative;
|
||
unsigned int r_addend;
|
||
asection *output_section = sym->section->output_section;
|
||
|
||
PUT_WORD(abfd, g->address, natptr->r_address);
|
||
|
||
r_length = g->howto->size ; /* Size as a power of two */
|
||
r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
|
||
/* r_baserel, r_jmptable, r_relative??? FIXME-soon */
|
||
r_baserel = 0;
|
||
r_jmptable = 0;
|
||
r_relative = 0;
|
||
|
||
r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
|
||
|
||
/* name was clobbered by aout_write_syms to be symbol index */
|
||
|
||
/* If this relocation is relative to a symbol then set the
|
||
r_index to the symbols index, and the r_extern bit.
|
||
|
||
Absolute symbols can come in in two ways, either as an offset
|
||
from the abs section, or as a symbol which has an abs value.
|
||
check for that here
|
||
*/
|
||
|
||
|
||
if (bfd_is_com_section (output_section)
|
||
|| output_section == &bfd_abs_section
|
||
|| output_section == &bfd_und_section)
|
||
{
|
||
if (bfd_abs_section.symbol == sym)
|
||
{
|
||
/* Whoops, looked like an abs symbol, but is really an offset
|
||
from the abs section */
|
||
r_index = 0;
|
||
r_extern = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Fill in symbol */
|
||
r_extern = 1;
|
||
r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
|
||
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Just an ordinary section */
|
||
r_extern = 0;
|
||
r_index = output_section->target_index;
|
||
}
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
natptr->r_index[0] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[2] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_STD_BITS_EXTERN_BIG: 0)
|
||
| (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0)
|
||
| (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0)
|
||
| (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0)
|
||
| (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG);
|
||
} else {
|
||
natptr->r_index[2] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[0] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0)
|
||
| (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0)
|
||
| (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0)
|
||
| (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0)
|
||
| (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0)
|
||
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE);
|
||
}
|
||
}
|
||
|
||
|
||
/* Extended stuff */
|
||
/* Output extended relocation information to a file in target byte order. */
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_ext_reloc_out),(abfd, g, natptr),
|
||
bfd *abfd AND
|
||
arelent *g AND
|
||
register struct reloc_ext_external *natptr)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
unsigned int r_addend;
|
||
asymbol *sym = *(g->sym_ptr_ptr);
|
||
asection *output_section = sym->section->output_section;
|
||
|
||
PUT_WORD (abfd, g->address, natptr->r_address);
|
||
|
||
r_type = (unsigned int) g->howto->type;
|
||
|
||
r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
|
||
|
||
|
||
/* If this relocation is relative to a symbol then set the
|
||
r_index to the symbols index, and the r_extern bit.
|
||
|
||
Absolute symbols can come in in two ways, either as an offset
|
||
from the abs section, or as a symbol which has an abs value.
|
||
check for that here
|
||
*/
|
||
|
||
if (bfd_is_com_section (output_section)
|
||
|| output_section == &bfd_abs_section
|
||
|| output_section == &bfd_und_section)
|
||
{
|
||
if (bfd_abs_section.symbol == sym)
|
||
{
|
||
/* Whoops, looked like an abs symbol, but is really an offset
|
||
from the abs section */
|
||
r_index = 0;
|
||
r_extern = 0;
|
||
}
|
||
else
|
||
{
|
||
r_extern = 1;
|
||
r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Just an ordinary section */
|
||
r_extern = 0;
|
||
r_index = output_section->target_index;
|
||
}
|
||
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
natptr->r_index[0] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[2] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0)
|
||
| (r_type << RELOC_EXT_BITS_TYPE_SH_BIG);
|
||
} else {
|
||
natptr->r_index[2] = r_index >> 16;
|
||
natptr->r_index[1] = r_index >> 8;
|
||
natptr->r_index[0] = r_index;
|
||
natptr->r_type[0] =
|
||
(r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0)
|
||
| (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
||
}
|
||
|
||
PUT_WORD (abfd, r_addend, natptr->r_addend);
|
||
}
|
||
|
||
/* BFD deals internally with all things based from the section they're
|
||
in. so, something in 10 bytes into a text section with a base of
|
||
50 would have a symbol (.text+10) and know .text vma was 50.
|
||
|
||
Aout keeps all it's symbols based from zero, so the symbol would
|
||
contain 60. This macro subs the base of each section from the value
|
||
to give the true offset from the section */
|
||
|
||
|
||
#define MOVE_ADDRESS(ad) \
|
||
if (r_extern) { \
|
||
/* undefined symbol */ \
|
||
cache_ptr->sym_ptr_ptr = symbols + r_index; \
|
||
cache_ptr->addend = ad; \
|
||
} else { \
|
||
/* defined, section relative. replace symbol with pointer to \
|
||
symbol which points to section */ \
|
||
switch (r_index) { \
|
||
case N_TEXT: \
|
||
case N_TEXT | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->textsec->vma; \
|
||
break; \
|
||
case N_DATA: \
|
||
case N_DATA | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->datasec->vma; \
|
||
break; \
|
||
case N_BSS: \
|
||
case N_BSS | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad - su->bsssec->vma; \
|
||
break; \
|
||
default: \
|
||
case N_ABS: \
|
||
case N_ABS | N_EXT: \
|
||
cache_ptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr; \
|
||
cache_ptr->addend = ad; \
|
||
break; \
|
||
} \
|
||
} \
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_ext_reloc_in), (abfd, bytes, cache_ptr, symbols),
|
||
bfd *abfd AND
|
||
struct reloc_ext_external *bytes AND
|
||
arelent *cache_ptr AND
|
||
asymbol **symbols)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_type;
|
||
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
||
|
||
cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
r_index = (bytes->r_index[0] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[2];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
|
||
r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
||
>> RELOC_EXT_BITS_TYPE_SH_BIG;
|
||
} else {
|
||
r_index = (bytes->r_index[2] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[0];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
|
||
r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
||
>> RELOC_EXT_BITS_TYPE_SH_LITTLE;
|
||
}
|
||
|
||
cache_ptr->howto = howto_table_ext + r_type;
|
||
MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend));
|
||
}
|
||
|
||
void
|
||
DEFUN(NAME(aout,swap_std_reloc_in), (abfd, bytes, cache_ptr, symbols),
|
||
bfd *abfd AND
|
||
struct reloc_std_external *bytes AND
|
||
arelent *cache_ptr AND
|
||
asymbol **symbols)
|
||
{
|
||
int r_index;
|
||
int r_extern;
|
||
unsigned int r_length;
|
||
int r_pcrel;
|
||
int r_baserel, r_jmptable, r_relative;
|
||
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
||
|
||
cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address);
|
||
|
||
/* now the fun stuff */
|
||
if (abfd->xvec->header_byteorder_big_p != false) {
|
||
r_index = (bytes->r_index[0] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[2];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
|
||
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
|
||
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
|
||
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
|
||
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
|
||
r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
|
||
>> RELOC_STD_BITS_LENGTH_SH_BIG;
|
||
} else {
|
||
r_index = (bytes->r_index[2] << 16)
|
||
| (bytes->r_index[1] << 8)
|
||
| bytes->r_index[0];
|
||
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
|
||
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
|
||
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
|
||
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
|
||
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
|
||
r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
|
||
>> RELOC_STD_BITS_LENGTH_SH_LITTLE;
|
||
}
|
||
|
||
cache_ptr->howto = howto_table_std + r_length + 4 * r_pcrel;
|
||
/* FIXME-soon: Roll baserel, jmptable, relative bits into howto setting */
|
||
|
||
MOVE_ADDRESS(0);
|
||
}
|
||
|
||
/* Reloc hackery */
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,slurp_reloc_table),(abfd, asect, symbols),
|
||
bfd *abfd AND
|
||
sec_ptr asect AND
|
||
asymbol **symbols)
|
||
{
|
||
unsigned int count;
|
||
bfd_size_type reloc_size;
|
||
PTR relocs;
|
||
arelent *reloc_cache;
|
||
size_t each_size;
|
||
|
||
if (asect->relocation) return true;
|
||
|
||
if (asect->flags & SEC_CONSTRUCTOR) return true;
|
||
|
||
if (asect == obj_datasec (abfd)) {
|
||
reloc_size = exec_hdr(abfd)->a_drsize;
|
||
goto doit;
|
||
}
|
||
|
||
if (asect == obj_textsec (abfd)) {
|
||
reloc_size = exec_hdr(abfd)->a_trsize;
|
||
goto doit;
|
||
}
|
||
|
||
bfd_error = invalid_operation;
|
||
return false;
|
||
|
||
doit:
|
||
bfd_seek (abfd, asect->rel_filepos, SEEK_SET);
|
||
each_size = obj_reloc_entry_size (abfd);
|
||
|
||
count = reloc_size / each_size;
|
||
|
||
|
||
reloc_cache = (arelent *) bfd_zalloc (abfd, (size_t)(count * sizeof
|
||
(arelent)));
|
||
if (!reloc_cache) {
|
||
nomem:
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
relocs = (PTR) bfd_alloc (abfd, reloc_size);
|
||
if (!relocs) {
|
||
bfd_release (abfd, reloc_cache);
|
||
goto nomem;
|
||
}
|
||
|
||
if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size) {
|
||
bfd_release (abfd, relocs);
|
||
bfd_release (abfd, reloc_cache);
|
||
bfd_error = system_call_error;
|
||
return false;
|
||
}
|
||
|
||
if (each_size == RELOC_EXT_SIZE) {
|
||
register struct reloc_ext_external *rptr = (struct reloc_ext_external *) relocs;
|
||
unsigned int counter = 0;
|
||
arelent *cache_ptr = reloc_cache;
|
||
|
||
for (; counter < count; counter++, rptr++, cache_ptr++) {
|
||
NAME(aout,swap_ext_reloc_in)(abfd, rptr, cache_ptr, symbols);
|
||
}
|
||
} else {
|
||
register struct reloc_std_external *rptr = (struct reloc_std_external*) relocs;
|
||
unsigned int counter = 0;
|
||
arelent *cache_ptr = reloc_cache;
|
||
|
||
for (; counter < count; counter++, rptr++, cache_ptr++) {
|
||
NAME(aout,swap_std_reloc_in)(abfd, rptr, cache_ptr, symbols);
|
||
}
|
||
|
||
}
|
||
|
||
bfd_release (abfd,relocs);
|
||
asect->relocation = reloc_cache;
|
||
asect->reloc_count = count;
|
||
return true;
|
||
}
|
||
|
||
|
||
|
||
/* Write out a relocation section into an object file. */
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,squirt_out_relocs),(abfd, section),
|
||
bfd *abfd AND
|
||
asection *section)
|
||
{
|
||
arelent **generic;
|
||
unsigned char *native, *natptr;
|
||
size_t each_size;
|
||
|
||
unsigned int count = section->reloc_count;
|
||
size_t natsize;
|
||
|
||
if (count == 0) return true;
|
||
|
||
each_size = obj_reloc_entry_size (abfd);
|
||
natsize = each_size * count;
|
||
native = (unsigned char *) bfd_zalloc (abfd, natsize);
|
||
if (!native) {
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
generic = section->orelocation;
|
||
|
||
if (each_size == RELOC_EXT_SIZE)
|
||
{
|
||
for (natptr = native;
|
||
count != 0;
|
||
--count, natptr += each_size, ++generic)
|
||
NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr);
|
||
}
|
||
else
|
||
{
|
||
for (natptr = native;
|
||
count != 0;
|
||
--count, natptr += each_size, ++generic)
|
||
NAME(aout,swap_std_reloc_out)(abfd, *generic, (struct reloc_std_external *)natptr);
|
||
}
|
||
|
||
if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) {
|
||
bfd_release(abfd, native);
|
||
return false;
|
||
}
|
||
bfd_release (abfd, native);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This is stupid. This function should be a boolean predicate */
|
||
unsigned int
|
||
DEFUN(NAME(aout,canonicalize_reloc),(abfd, section, relptr, symbols),
|
||
bfd *abfd AND
|
||
sec_ptr section AND
|
||
arelent **relptr AND
|
||
asymbol **symbols)
|
||
{
|
||
arelent *tblptr = section->relocation;
|
||
unsigned int count;
|
||
|
||
if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols)))
|
||
return 0;
|
||
|
||
if (section->flags & SEC_CONSTRUCTOR) {
|
||
arelent_chain *chain = section->constructor_chain;
|
||
for (count = 0; count < section->reloc_count; count ++) {
|
||
*relptr ++ = &chain->relent;
|
||
chain = chain->next;
|
||
}
|
||
}
|
||
else {
|
||
tblptr = section->relocation;
|
||
if (!tblptr) return 0;
|
||
|
||
for (count = 0; count++ < section->reloc_count;)
|
||
{
|
||
*relptr++ = tblptr++;
|
||
}
|
||
}
|
||
*relptr = 0;
|
||
|
||
return section->reloc_count;
|
||
}
|
||
|
||
unsigned int
|
||
DEFUN(NAME(aout,get_reloc_upper_bound),(abfd, asect),
|
||
bfd *abfd AND
|
||
sec_ptr asect)
|
||
{
|
||
if (bfd_get_format (abfd) != bfd_object) {
|
||
bfd_error = invalid_operation;
|
||
return 0;
|
||
}
|
||
if (asect->flags & SEC_CONSTRUCTOR) {
|
||
return (sizeof (arelent *) * (asect->reloc_count+1));
|
||
}
|
||
|
||
|
||
if (asect == obj_datasec (abfd))
|
||
return (sizeof (arelent *) *
|
||
((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd))
|
||
+1));
|
||
|
||
if (asect == obj_textsec (abfd))
|
||
return (sizeof (arelent *) *
|
||
((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd))
|
||
+1));
|
||
|
||
bfd_error = invalid_operation;
|
||
return 0;
|
||
}
|
||
|
||
|
||
unsigned int
|
||
DEFUN(NAME(aout,get_symtab_upper_bound),(abfd),
|
||
bfd *abfd)
|
||
{
|
||
if (!NAME(aout,slurp_symbol_table)(abfd)) return 0;
|
||
|
||
return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
|
||
}
|
||
alent *
|
||
DEFUN(NAME(aout,get_lineno),(ignore_abfd, ignore_symbol),
|
||
bfd *ignore_abfd AND
|
||
asymbol *ignore_symbol)
|
||
{
|
||
return (alent *)NULL;
|
||
}
|
||
|
||
void
|
||
DEFUN(NAME(aout,get_symbol_info),(ignore_abfd, symbol, ret),
|
||
bfd *ignore_abfd AND
|
||
asymbol *symbol AND
|
||
symbol_info *ret)
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
|
||
if (ret->type == '?')
|
||
{
|
||
int type_code = aout_symbol(symbol)->type & 0xff;
|
||
CONST char *stab_name = aout_stab_name(type_code);
|
||
static char buf[10];
|
||
|
||
if (stab_name == NULL)
|
||
{
|
||
sprintf(buf, "(%d)", type_code);
|
||
stab_name = buf;
|
||
}
|
||
ret->type = '-';
|
||
ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff);
|
||
ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff);
|
||
ret->stab_name = stab_name;
|
||
}
|
||
}
|
||
|
||
void
|
||
DEFUN(NAME(aout,print_symbol),(ignore_abfd, afile, symbol, how),
|
||
bfd *ignore_abfd AND
|
||
PTR afile AND
|
||
asymbol *symbol AND
|
||
bfd_print_symbol_type how)
|
||
{
|
||
FILE *file = (FILE *)afile;
|
||
|
||
switch (how) {
|
||
case bfd_print_symbol_name:
|
||
if (symbol->name)
|
||
fprintf(file,"%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff),
|
||
(unsigned)(aout_symbol(symbol)->other & 0xff),
|
||
(unsigned)(aout_symbol(symbol)->type));
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
CONST char *section_name = symbol->section->name;
|
||
|
||
|
||
bfd_print_symbol_vandf((PTR)file,symbol);
|
||
|
||
fprintf(file," %-5s %04x %02x %02x",
|
||
section_name,
|
||
(unsigned)(aout_symbol(symbol)->desc & 0xffff),
|
||
(unsigned)(aout_symbol(symbol)->other & 0xff),
|
||
(unsigned)(aout_symbol(symbol)->type & 0xff));
|
||
if (symbol->name)
|
||
fprintf(file," %s", symbol->name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*
|
||
provided a BFD, a section and an offset into the section, calculate
|
||
and return the name of the source file and the line nearest to the
|
||
wanted location.
|
||
*/
|
||
|
||
boolean
|
||
DEFUN(NAME(aout,find_nearest_line),(abfd,
|
||
section,
|
||
symbols,
|
||
offset,
|
||
filename_ptr,
|
||
functionname_ptr,
|
||
line_ptr),
|
||
bfd *abfd AND
|
||
asection *section AND
|
||
asymbol **symbols AND
|
||
bfd_vma offset AND
|
||
CONST char **filename_ptr AND
|
||
CONST char **functionname_ptr AND
|
||
unsigned int *line_ptr)
|
||
{
|
||
/* Run down the file looking for the filename, function and linenumber */
|
||
asymbol **p;
|
||
static char buffer[100];
|
||
static char filename_buffer[200];
|
||
CONST char *directory_name = NULL;
|
||
CONST char *main_file_name = NULL;
|
||
CONST char *current_file_name = NULL;
|
||
CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */
|
||
bfd_vma high_line_vma = ~0;
|
||
bfd_vma low_func_vma = 0;
|
||
asymbol *func = 0;
|
||
*filename_ptr = abfd->filename;
|
||
*functionname_ptr = 0;
|
||
*line_ptr = 0;
|
||
if (symbols != (asymbol **)NULL) {
|
||
for (p = symbols; *p; p++) {
|
||
aout_symbol_type *q = (aout_symbol_type *)(*p);
|
||
next:
|
||
switch (q->type){
|
||
case N_SO:
|
||
main_file_name = current_file_name = q->symbol.name;
|
||
/* Look ahead to next symbol to check if that too is an N_SO. */
|
||
p++;
|
||
if (*p == NULL)
|
||
break;
|
||
q = (aout_symbol_type *)(*p);
|
||
if (q->type != (int)N_SO)
|
||
goto next;
|
||
|
||
/* Found a second N_SO First is directory; second is filename. */
|
||
directory_name = current_file_name;
|
||
main_file_name = current_file_name = q->symbol.name;
|
||
if (obj_textsec(abfd) != section)
|
||
goto done;
|
||
break;
|
||
case N_SOL:
|
||
current_file_name = q->symbol.name;
|
||
break;
|
||
|
||
case N_SLINE:
|
||
|
||
case N_DSLINE:
|
||
case N_BSLINE:
|
||
/* We'll keep this if it resolves nearer than the one we have already */
|
||
if (q->symbol.value >= offset &&
|
||
q->symbol.value < high_line_vma) {
|
||
*line_ptr = q->desc;
|
||
high_line_vma = q->symbol.value;
|
||
line_file_name = current_file_name;
|
||
}
|
||
break;
|
||
case N_FUN:
|
||
{
|
||
/* We'll keep this if it is nearer than the one we have already */
|
||
if (q->symbol.value >= low_func_vma &&
|
||
q->symbol.value <= offset) {
|
||
low_func_vma = q->symbol.value;
|
||
func = (asymbol *)q;
|
||
}
|
||
if (*line_ptr && func) {
|
||
CONST char *function = func->name;
|
||
char *p;
|
||
strncpy(buffer, function, sizeof(buffer)-1);
|
||
buffer[sizeof(buffer)-1] = 0;
|
||
/* Have to remove : stuff */
|
||
p = strchr(buffer,':');
|
||
if (p != NULL) { *p = '\0'; }
|
||
*functionname_ptr = buffer;
|
||
goto done;
|
||
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
done:
|
||
if (*line_ptr)
|
||
main_file_name = line_file_name;
|
||
if (main_file_name) {
|
||
if (main_file_name[0] == '/' || directory_name == NULL)
|
||
*filename_ptr = main_file_name;
|
||
else {
|
||
sprintf(filename_buffer, "%.140s%.50s",
|
||
directory_name, main_file_name);
|
||
*filename_ptr = filename_buffer;
|
||
}
|
||
}
|
||
return true;
|
||
|
||
}
|
||
|
||
int
|
||
DEFUN(NAME(aout,sizeof_headers),(abfd, execable),
|
||
bfd *abfd AND
|
||
boolean execable)
|
||
{
|
||
return adata(abfd).exec_bytes_size;
|
||
}
|