binutils-gdb/gdb/f-valprint.c
Stan Shebs 22d7f91e32 * c-typeprint.c (c_type_print_varspec_prefix,
c_type_print_varspec_suffix): Add cases for Fortran type codes.
	 * eval.c (evaluate_subexp): For OP_ARRAY expressions in Fortran,
	 call f77_value_literal_string instead.
	 * f_exp.y: Include <string.h>, move include of parser-defs.h.
	 (parse_number): Translate 'd' floats to 'e' so atof() works.
	 (yylex): Remove unused variables.
	 * f-lang.c: Include <string.h>.
	 (get_bf_for_fcn): Remove unused variable.
	 * f-typeprint.c (f_type_print_varspec_prefix,
	 f_type_print_varspec_suffix): Remove unused
	 variables, add cases to switch statements.
	 (f_type_print_base): Remove unused variables.
	 * f-valprint.c (gdbcore.h, command.h): Include.
	 (f77_get_dynamic_lowerbound, f77_get_dynamic_upperbound):
	 Call read_memory_integer with correct number of arguments.
	 (f77_get_dynamic_upperbound): Call f77_get_dynamic_lowerbound
	 with correct argument type.
	 (f77_print_array): Removed unused array array_size_array.
	 (f_val_print): Don't use a CORE_ADDR as a char *.
	 * valops.c (value_cast): Handle COMPLEX and BOOL types.
	 (value_assign): Handle Fortran literal string and complex values.
	 (f77_cast_into_complex, f77_assign_from_literal_string,
	 f77_assign_from_literal_complex): New functions.
1994-09-07 00:23:16 +00:00

889 lines
25 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Support for printing Fortran values for GDB, the GNU debugger.
Copyright 1993, 1994 Free Software Foundation, Inc.
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include <string.h>
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "value.h"
#include "demangle.h"
#include "valprint.h"
#include "language.h"
#include "f-lang.h"
#include "frame.h"
#include "gdbcore.h"
#include "command.h"
extern struct obstack dont_print_obstack;
extern unsigned int print_max; /* No of array elements to print */
extern int calc_f77_array_dims PARAMS ((struct type *));
int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];
/* Array which holds offsets to be applied to get a row's elements
for a given array. Array also holds the size of each subarray. */
/* The following macro gives us the size of the nth dimension, Where
n is 1 based. */
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
/* The following gives us the offset for row n where n is 1-based. */
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
int
f77_get_dynamic_lowerbound (type, lower_bound)
struct type *type;
int *lower_bound;
{
CORE_ADDR current_frame_addr;
CORE_ADDR ptr_to_lower_bound;
switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
{
case BOUND_BY_VALUE_ON_STACK:
current_frame_addr = selected_frame->frame;
if (current_frame_addr > 0)
{
*lower_bound =
read_memory_integer (current_frame_addr +
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
4);
}
else
{
*lower_bound = DEFAULT_LOWER_BOUND;
return BOUND_FETCH_ERROR;
}
break;
case BOUND_SIMPLE:
*lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
break;
case BOUND_CANNOT_BE_DETERMINED:
error ("Lower bound may not be '*' in F77");
break;
case BOUND_BY_REF_ON_STACK:
current_frame_addr = selected_frame->frame;
if (current_frame_addr > 0)
{
ptr_to_lower_bound =
read_memory_integer (current_frame_addr +
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
4);
*lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
}
else
{
*lower_bound = DEFAULT_LOWER_BOUND;
return BOUND_FETCH_ERROR;
}
break;
case BOUND_BY_REF_IN_REG:
case BOUND_BY_VALUE_IN_REG:
default:
error ("??? unhandled dynamic array bound type ???");
break;
}
return BOUND_FETCH_OK;
}
int
f77_get_dynamic_upperbound (type, upper_bound)
struct type *type;
int *upper_bound;
{
CORE_ADDR current_frame_addr = 0;
CORE_ADDR ptr_to_upper_bound;
switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
{
case BOUND_BY_VALUE_ON_STACK:
current_frame_addr = selected_frame->frame;
if (current_frame_addr > 0)
{
*upper_bound =
read_memory_integer (current_frame_addr +
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
4);
}
else
{
*upper_bound = DEFAULT_UPPER_BOUND;
return BOUND_FETCH_ERROR;
}
break;
case BOUND_SIMPLE:
*upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
break;
case BOUND_CANNOT_BE_DETERMINED:
/* we have an assumed size array on our hands. Assume that
upper_bound == lower_bound so that we show at least
1 element.If the user wants to see more elements, let
him manually ask for 'em and we'll subscript the
array and show him */
f77_get_dynamic_lowerbound (type, upper_bound);
break;
case BOUND_BY_REF_ON_STACK:
current_frame_addr = selected_frame->frame;
if (current_frame_addr > 0)
{
ptr_to_upper_bound =
read_memory_integer (current_frame_addr +
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
4);
*upper_bound = read_memory_integer(ptr_to_upper_bound, 4);
}
else
{
*upper_bound = DEFAULT_UPPER_BOUND;
return BOUND_FETCH_ERROR;
}
break;
case BOUND_BY_REF_IN_REG:
case BOUND_BY_VALUE_IN_REG:
default:
error ("??? unhandled dynamic array bound type ???");
break;
}
return BOUND_FETCH_OK;
}
/* Obtain F77 adjustable array dimensions */
void
f77_get_dynamic_length_of_aggregate (type)
struct type *type;
{
int upper_bound = -1;
int lower_bound = 1;
int retcode;
/* Recursively go all the way down into a possibly multi-dimensional
F77 array and get the bounds. For simple arrays, this is pretty
easy but when the bounds are dynamic, we must be very careful
to add up all the lengths correctly. Not doing this right
will lead to horrendous-looking arrays in parameter lists.
This function also works for strings which behave very
similarly to arrays. */
if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|| TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
/* Recursion ends here, start setting up lengths. */
retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
if (retcode == BOUND_FETCH_ERROR)
error ("Cannot obtain valid array lower bound");
retcode = f77_get_dynamic_upperbound (type, &upper_bound);
if (retcode == BOUND_FETCH_ERROR)
error ("Cannot obtain valid array upper bound");
/* Patch in a valid length value. */
TYPE_LENGTH (type) =
(upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
}
/* Print a FORTRAN COMPLEX value of type TYPE, pointed to in GDB by VALADDR,
on STREAM. which_complex indicates precision, which may be regular,
*16, or *32 */
void
f77_print_cmplx (valaddr, type, stream, which_complex)
char *valaddr;
struct type *type;
FILE *stream;
int which_complex;
{
float *f1,*f2;
double *d1, *d2;
switch (which_complex)
{
case TARGET_COMPLEX_BIT:
f1 = (float *) valaddr;
f2 = (float *) (valaddr + sizeof(float));
fprintf_filtered (stream, "(%.7e,%.7e)", *f1, *f2);
break;
case TARGET_DOUBLE_COMPLEX_BIT:
d1 = (double *) valaddr;
d2 = (double *) (valaddr + sizeof(double));
fprintf_filtered (stream, "(%.16e,%.16e)", *d1, *d2);
break;
#if 0
case TARGET_EXT_COMPLEX_BIT:
fprintf_filtered (stream, "<complex*32 format unavailable, "
"printing raw data>\n");
fprintf_filtered (stream, "( [ ");
for (i = 0;i<4;i++)
fprintf_filtered (stream, "0x%x ",
* ( (unsigned int *) valaddr+i));
fprintf_filtered (stream, "],\n [ ");
for (i=4;i<8;i++)
fprintf_filtered (stream, "0x%x ",
* ((unsigned int *) valaddr+i));
fprintf_filtered (stream, "] )");
break;
#endif
default:
fprintf_filtered (stream, "<cannot handle complex of this type>");
break;
}
}
/* Function that sets up the array offset,size table for the array
type "type". */
void
f77_create_arrayprint_offset_tbl (type, stream)
struct type *type;
FILE *stream;
{
struct type *tmp_type;
int eltlen;
int ndimen = 1;
int upper, lower, retcode;
tmp_type = type;
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
{
if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
fprintf_filtered (stream, "<assumed size array> ");
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
if (retcode == BOUND_FETCH_ERROR)
error ("Cannot obtain dynamic upper bound");
retcode = f77_get_dynamic_lowerbound(tmp_type,&lower);
if (retcode == BOUND_FETCH_ERROR)
error("Cannot obtain dynamic lower bound");
F77_DIM_SIZE (ndimen) = upper - lower + 1;
if (ndimen == 1)
F77_DIM_OFFSET (ndimen) = 1;
else
F77_DIM_OFFSET (ndimen) =
F77_DIM_OFFSET (ndimen - 1) * F77_DIM_SIZE(ndimen - 1);
tmp_type = TYPE_TARGET_TYPE (tmp_type);
ndimen++;
}
eltlen = TYPE_LENGTH (tmp_type);
/* Now we multiply eltlen by all the offsets, so that later we
can print out array elements correctly. Up till now we
know an offset to apply to get the item but we also
have to know how much to add to get to the next item */
tmp_type = type;
ndimen = 1;
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
{
F77_DIM_OFFSET (ndimen) *= eltlen;
ndimen++;
tmp_type = TYPE_TARGET_TYPE (tmp_type);
}
}
/* Actual function which prints out F77 arrays, Valaddr == address in
the superior. Address == the address in the inferior. */
void
f77_print_array_1 (nss, ndimensions, type, valaddr, address,
stream, format, deref_ref, recurse, pretty)
int nss;
int ndimensions;
char *valaddr;
struct type *type;
CORE_ADDR address;
FILE *stream;
int format;
int deref_ref;
int recurse;
enum val_prettyprint pretty;
{
int i;
if (nss != ndimensions)
{
for (i = 0; i< F77_DIM_SIZE(nss); i++)
{
fprintf_filtered (stream, "( ");
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
valaddr + i * F77_DIM_OFFSET (nss),
address + i * F77_DIM_OFFSET (nss),
stream, format, deref_ref, recurse, pretty, i);
fprintf_filtered (stream, ") ");
}
}
else
{
for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
{
val_print (TYPE_TARGET_TYPE (type),
valaddr + i * F77_DIM_OFFSET (ndimensions),
address + i * F77_DIM_OFFSET (ndimensions),
stream, format, deref_ref, recurse, pretty);
if (i != (F77_DIM_SIZE (nss) - 1))
fprintf_filtered (stream, ", ");
if (i == print_max - 1)
fprintf_filtered (stream, "...");
}
}
}
/* This function gets called to print an F77 array, we set up some
stuff and then immediately call f77_print_array_1() */
void
f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
pretty)
struct type *type;
char *valaddr;
CORE_ADDR address;
FILE *stream;
int format;
int deref_ref;
int recurse;
enum val_prettyprint pretty;
{
int ndimensions;
ndimensions = calc_f77_array_dims (type);
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
ndimensions, MAX_FORTRAN_DIMS);
/* Since F77 arrays are stored column-major, we set up an
offset table to get at the various row's elements. The
offset table contains entries for both offset and subarray size. */
f77_create_arrayprint_offset_tbl (type, stream);
f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
deref_ref, recurse, pretty);
}
/* Print data of type TYPE located at VALADDR (within GDB), which came from
the inferior at address ADDRESS, onto stdio stream STREAM according to
FORMAT (a letter or 0 for natural format). The data at VALADDR is in
target byte order.
If the data are a string pointer, returns the number of string characters
printed.
If DEREF_REF is nonzero, then dereference references, otherwise just print
them like pointers.
The PRETTY parameter controls prettyprinting. */
int
f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
pretty)
struct type *type;
char *valaddr;
CORE_ADDR address;
FILE *stream;
int format;
int deref_ref;
int recurse;
enum val_prettyprint pretty;
{
register unsigned int i = 0; /* Number of characters printed */
unsigned len;
struct type *elttype;
LONGEST val;
char *localstr;
char *straddr;
CORE_ADDR addr;
switch (TYPE_CODE (type))
{
case TYPE_CODE_LITERAL_STRING:
/* It is trivial to print out F77 strings allocated in the
superior process. The address field is actually a
pointer to the bytes of the literal. For an internalvar,
valaddr points to a ptr. which points to
VALUE_LITERAL_DATA(value->internalvar->value)
and for straight literals (i.e. of the form 'hello world'),
valaddr points a ptr to VALUE_LITERAL_DATA(value). */
/* First dereference valaddr. */
straddr = * (CORE_ADDR *) valaddr;
if (straddr)
{
len = TYPE_LENGTH (type);
localstr = alloca (len + 1);
strncpy (localstr, straddr, len);
localstr[len] = '\0';
fprintf_filtered (stream, "'%s'", localstr);
}
else
fprintf_filtered (stream, "Unable to print literal F77 string");
break;
/* Strings are a little bit funny. They can be viewed as
monolithic arrays that are dealt with as atomic data
items. As such they are the only atomic data items whose
contents are not located in the superior process. Instead
instead of having the actual data, they contain pointers
to addresses in the inferior where data is located. Thus
instead of using valaddr, we use address. */
case TYPE_CODE_STRING:
f77_get_dynamic_length_of_aggregate (type);
val_print_string (address, TYPE_LENGTH (type), stream);
break;
case TYPE_CODE_ARRAY:
fprintf_filtered (stream, "(");
f77_print_array (type, valaddr, address, stream, format,
deref_ref, recurse, pretty);
fprintf_filtered (stream, ")");
break;
#if 0
/* Array of unspecified length: treat like pointer to first elt. */
valaddr = (char *) &address;
/* FALL THROUGH */
#endif
case TYPE_CODE_PTR:
if (format && format != 's')
{
print_scalar_formatted (valaddr, type, format, 0, stream);
break;
}
else
{
addr = unpack_pointer (type, valaddr);
elttype = TYPE_TARGET_TYPE (type);
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
{
/* Try to print what function it points to. */
print_address_demangle (addr, stream, demangle);
/* Return value is irrelevant except for string pointers. */
return 0;
}
if (addressprint && format != 's')
fprintf_filtered (stream, "0x%x", addr);
/* For a pointer to char or unsigned char, also print the string
pointed to, unless pointer is null. */
if (TYPE_LENGTH (elttype) == 1
&& TYPE_CODE (elttype) == TYPE_CODE_INT
&& (format == 0 || format == 's')
&& addr != 0)
i = val_print_string (addr, 0, stream);
/* Return number of characters printed, plus one for the
terminating null if we have "reached the end". */
return (i + (print_max && i != print_max));
}
break;
case TYPE_CODE_FUNC:
if (format)
{
print_scalar_formatted (valaddr, type, format, 0, stream);
break;
}
/* FIXME, we should consider, at least for ANSI C language, eliminating
the distinction made between FUNCs and POINTERs to FUNCs. */
fprintf_filtered (stream, "{");
type_print (type, "", stream, -1);
fprintf_filtered (stream, "} ");
/* Try to print what function it points to, and its address. */
print_address_demangle (address, stream, demangle);
break;
case TYPE_CODE_INT:
format = format ? format : output_format;
if (format)
print_scalar_formatted (valaddr, type, format, 0, stream);
else
{
val_print_type_code_int (type, valaddr, stream);
/* C and C++ has no single byte int type, char is used instead.
Since we don't know whether the value is really intended to
be used as an integer or a character, print the character
equivalent as well. */
if (TYPE_LENGTH (type) == 1)
{
fputs_filtered (" ", stream);
LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
stream);
}
}
break;
case TYPE_CODE_FLT:
if (format)
print_scalar_formatted (valaddr, type, format, 0, stream);
else
print_floating (valaddr, type, stream);
break;
case TYPE_CODE_VOID:
fprintf_filtered (stream, "VOID");
break;
case TYPE_CODE_ERROR:
fprintf_filtered (stream, "<error type>");
break;
case TYPE_CODE_RANGE:
/* FIXME, we should not ever have to print one of these yet. */
fprintf_filtered (stream, "<range type>");
break;
case TYPE_CODE_BOOL:
format = format ? format : output_format;
if (format)
print_scalar_formatted (valaddr, type, format, 0, stream);
else
{
val = 0;
switch (TYPE_LENGTH(type))
{
case 1:
val = unpack_long (builtin_type_f_logical_s1, valaddr);
break ;
case 2:
val = unpack_long (builtin_type_f_logical_s2, valaddr);
break ;
case 4:
val = unpack_long (builtin_type_f_logical, valaddr);
break ;
default:
error ("Logicals of length %d bytes not supported",
TYPE_LENGTH (type));
}
if (val == 0)
fprintf_filtered (stream, ".FALSE.");
else
if (val == 1)
fprintf_filtered (stream, ".TRUE.");
else
/* Not a legitimate logical type, print as an integer. */
{
/* Bash the type code temporarily. */
TYPE_CODE (type) = TYPE_CODE_INT;
f_val_print (type, valaddr, address, stream, format,
deref_ref, recurse, pretty);
/* Restore the type code so later uses work as intended. */
TYPE_CODE (type) = TYPE_CODE_BOOL;
}
}
break;
case TYPE_CODE_LITERAL_COMPLEX:
/* We know that the literal complex is stored in the superior
process not the inferior and that it is 16 bytes long.
Just like the case above with a literal array, the
bytes for the the literal complex number are stored
at the address pointed to by valaddr */
if (TYPE_LENGTH (type) == 32)
error ("Cannot currently print out complex*32 literals");
/* First dereference valaddr. */
addr = * (CORE_ADDR *) valaddr;
if (addr)
{
fprintf_filtered (stream, "(");
if (TYPE_LENGTH(type) == 16)
{
fprintf_filtered (stream, "%.16f", * (double *) addr);
fprintf_filtered (stream, ", %.16f", * (double *)
(addr + sizeof(double)));
}
else
{
fprintf_filtered (stream, "%.8f", * (float *) addr);
fprintf_filtered (stream, ", %.8f", * (float *)
(addr + sizeof(float)));
}
fprintf_filtered (stream, ") ");
}
else
fprintf_filtered (stream, "Unable to print literal F77 array");
break;
case TYPE_CODE_COMPLEX:
switch (TYPE_LENGTH (type))
{
case 8:
f77_print_cmplx (valaddr, type, stream, TARGET_COMPLEX_BIT);
break;
case 16:
f77_print_cmplx(valaddr, type, stream, TARGET_DOUBLE_COMPLEX_BIT);
break;
#if 0
case 32:
f77_print_cmplx(valaddr, type, stream, TARGET_EXT_COMPLEX_BIT);
break;
#endif
default:
error ("Cannot print out complex*%d variables", TYPE_LENGTH(type));
}
break;
case TYPE_CODE_UNDEF:
/* This happens (without TYPE_FLAG_STUB set) on systems which don't use
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
and no complete type for struct foo in that file. */
fprintf_filtered (stream, "<incomplete type>");
break;
default:
error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
}
fflush (stream);
return 0;
}
void
list_all_visible_commons (funname)
char *funname;
{
SAVED_F77_COMMON_PTR tmp;
tmp = head_common_list;
printf_filtered ("All COMMON blocks visible at this level:\n\n");
while (tmp != NULL)
{
if (STREQ(tmp->owning_function,funname))
printf_filtered ("%s\n", tmp->name);
tmp = tmp->next;
}
}
/* This function is used to print out the values in a given COMMON
block. It will always use the most local common block of the
given name */
static void
info_common_command (comname, from_tty)
char *comname;
int from_tty;
{
SAVED_F77_COMMON_PTR the_common;
COMMON_ENTRY_PTR entry;
struct frame_info *fi;
register char *funname = 0;
struct symbol *func;
/* We have been told to display the contents of F77 COMMON
block supposedly visible in this function. Let us
first make sure that it is visible and if so, let
us display its contents */
fi = selected_frame;
if (fi == NULL)
error ("No frame selected");
/* The following is generally ripped off from stack.c's routine
print_frame_info() */
func = find_pc_function (fi->pc);
if (func)
{
/* In certain pathological cases, the symtabs give the wrong
function (when we are in the first function in a file which
is compiled without debugging symbols, the previous function
is compiled with debugging symbols, and the "foo.o" symbol
that is supposed to tell us where the file with debugging symbols
ends has been truncated by ar because it is longer than 15
characters).
So look in the minimal symbol tables as well, and if it comes
up with a larger address for the function use that instead.
I don't think this can ever cause any problems; there shouldn't
be any minimal symbols in the middle of a function.
FIXME: (Not necessarily true. What about text labels) */
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
if (msymbol != NULL
&& (SYMBOL_VALUE_ADDRESS (msymbol)
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
funname = SYMBOL_NAME (msymbol);
else
funname = SYMBOL_NAME (func);
}
else
{
register struct minimal_symbol *msymbol =
lookup_minimal_symbol_by_pc (fi->pc);
if (msymbol != NULL)
funname = SYMBOL_NAME (msymbol);
}
/* If comnname is NULL, we assume the user wishes to see the
which COMMON blocks are visible here and then return */
if (strlen (comname) == 0)
{
list_all_visible_commons (funname);
return;
}
the_common = find_common_for_function (comname,funname);
if (the_common)
{
if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
printf_filtered ("Contents of blank COMMON block:\n");
else
printf_filtered ("Contents of F77 COMMON block '%s':\n",comname);
printf_filtered ("\n");
entry = the_common->entries;
while (entry != NULL)
{
printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol));
print_variable_value (entry->symbol,fi,stdout);
printf_filtered ("\n");
entry = entry->next;
}
}
else
printf_filtered ("Cannot locate the common block %s in function '%s'\n",
comname, funname);
}
/* This function is used to determine whether there is a
F77 common block visible at the current scope called 'comname'. */
int
there_is_a_visible_common_named (comname)
char *comname;
{
SAVED_F77_COMMON_PTR the_common;
struct frame_info *fi;
register char *funname = 0;
struct symbol *func;
if (comname == NULL)
error ("Cannot deal with NULL common name!");
fi = selected_frame;
if (fi == NULL)
error ("No frame selected");
/* The following is generally ripped off from stack.c's routine
print_frame_info() */
func = find_pc_function (fi->pc);
if (func)
{
/* In certain pathological cases, the symtabs give the wrong
function (when we are in the first function in a file which
is compiled without debugging symbols, the previous function
is compiled with debugging symbols, and the "foo.o" symbol
that is supposed to tell us where the file with debugging symbols
ends has been truncated by ar because it is longer than 15
characters).
So look in the minimal symbol tables as well, and if it comes
up with a larger address for the function use that instead.
I don't think this can ever cause any problems; there shouldn't
be any minimal symbols in the middle of a function.
FIXME: (Not necessarily true. What about text labels) */
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
if (msymbol != NULL
&& (SYMBOL_VALUE_ADDRESS (msymbol)
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
funname = SYMBOL_NAME (msymbol);
else
funname = SYMBOL_NAME (func);
}
else
{
register struct minimal_symbol *msymbol =
lookup_minimal_symbol_by_pc (fi->pc);
if (msymbol != NULL)
funname = SYMBOL_NAME (msymbol);
}
the_common = find_common_for_function (comname, funname);
return (the_common ? 1 : 0);
}
void
_initialize_f_valprint ()
{
add_info ("common", info_common_command,
"Print out the values contained in a Fortran COMMON block.");
}