binutils-gdb/gdb/score-tdep.c

1084 lines
31 KiB
C

/* Target-dependent code for the S+core architecture, for GDB,
the GNU Debugger.
Copyright (C) 2006, 2007 Free Software Foundation, Inc.
Contributed by Qinwei (qinwei@sunnorth.com.cn)
Contributed by Ching-Peng Lin (cplin@sunplus.com)
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "gdb_assert.h"
#include "inferior.h"
#include "symtab.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "dwarf2-frame.h"
#include "score-tdep.h"
#define G_FLD(_i,_ms,_ls) (((_i) << (31 - (_ms))) >> (31 - (_ms) + (_ls)))
#define RM_PBITS(_raw) ((G_FLD(_raw, 31, 16) << 15) | G_FLD(_raw, 14, 0))
typedef struct{
unsigned int v;
unsigned int raw;
char is15;
}inst_t;
struct score_frame_cache
{
CORE_ADDR base;
CORE_ADDR fp;
struct trad_frame_saved_reg *saved_regs;
};
#if 0
/* If S+core GCC will generate these instructions in the prologue:
lw rx, imm1
addi rx, -imm2
mv! r2, rx
then .pdr section is used. */
#define P_SIZE 8
#define PI_SYM 0
#define PI_R_MSK 1
#define PI_R_OFF 2
#define PI_R_LEF 4
#define PI_F_OFF 5
#define PI_F_REG 6
#define PI_RAREG 7
typedef struct frame_extra_info
{
CORE_ADDR p_frame;
unsigned int pdr[P_SIZE];
} extra_info_t;
struct obj_priv
{
bfd_size_type size;
char *contents;
};
static bfd *the_bfd;
static int
score_compare_pdr_entries (const void *a, const void *b)
{
CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
if (lhs < rhs)
return -1;
else if (lhs == rhs)
return 0;
else
return 1;
}
static void
score_analyze_pdr_section (CORE_ADDR startaddr, CORE_ADDR pc,
struct frame_info *next_frame,
struct score_frame_cache *this_cache)
{
struct symbol *sym;
struct obj_section *sec;
extra_info_t *fci_ext;
CORE_ADDR leaf_ra_stack_addr = -1;
gdb_assert (startaddr <= pc);
gdb_assert (this_cache != NULL);
fci_ext = frame_obstack_zalloc (sizeof (extra_info_t));
if ((sec = find_pc_section (pc)) == NULL)
{
error ("Error: Can't find section in file:%s, line:%d!",
__FILE__, __LINE__);
return;
}
/* Anylyze .pdr section and get coresponding fields. */
{
static struct obj_priv *priv = NULL;
if (priv == NULL)
{
asection *bfdsec;
priv = obstack_alloc (&sec->objfile->objfile_obstack,
sizeof (struct obj_priv));
if ((bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr")))
{
priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
priv->contents = obstack_alloc (&sec->objfile->objfile_obstack,
priv->size);
bfd_get_section_contents (sec->objfile->obfd, bfdsec,
priv->contents, 0, priv->size);
the_bfd = sec->objfile->obfd;
qsort (priv->contents, priv->size / 32, 32,
score_compare_pdr_entries);
the_bfd = NULL;
}
else
priv->size = 0;
}
if (priv->size != 0)
{
int low = 0, mid, high = priv->size / 32;
char *ptr;
do
{
CORE_ADDR pdr_pc;
mid = (low + high) / 2;
ptr = priv->contents + mid * 32;
pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
pdr_pc += ANOFFSET (sec->objfile->section_offsets,
SECT_OFF_TEXT (sec->objfile));
if (pdr_pc == startaddr)
break;
if (pdr_pc > startaddr)
high = mid;
else
low = mid + 1;
}
while (low != high);
if (low != high)
{
gdb_assert (bfd_get_32 (sec->objfile->obfd, ptr) == startaddr);
#define EXT_PDR(_pi) bfd_get_32(sec->objfile->obfd, ptr+((_pi)<<2))
fci_ext->pdr[PI_SYM] = EXT_PDR (PI_SYM);
fci_ext->pdr[PI_R_MSK] = EXT_PDR (PI_R_MSK);
fci_ext->pdr[PI_R_OFF] = EXT_PDR (PI_R_OFF);
fci_ext->pdr[PI_R_LEF] = EXT_PDR (PI_R_LEF);
fci_ext->pdr[PI_F_OFF] = EXT_PDR (PI_F_OFF);
fci_ext->pdr[PI_F_REG] = EXT_PDR (PI_F_REG);
fci_ext->pdr[PI_RAREG] = EXT_PDR (PI_RAREG);
#undef EXT_PDR
}
}
}
}
#endif
#if 0
/* Open these functions if build with simulator. */
int
score_target_can_use_watch (int type, int cnt, int othertype)
{
if (strcmp (current_target.to_shortname, "sim") == 0)
{
return soc_gh_can_use_watch (type, cnt);
}
else
{
return (*current_target.to_can_use_hw_breakpoint) (type, cnt, othertype);
}
}
int
score_stopped_by_watch (void)
{
if (strcmp (current_target.to_shortname, "sim") == 0)
{
return soc_gh_stopped_by_watch ();
}
else
{
return (*current_target.to_stopped_by_watchpoint) ();
}
}
int
score_target_insert_watchpoint (CORE_ADDR addr, int len, int type)
{
if (strcmp (current_target.to_shortname, "sim") == 0)
{
return soc_gh_add_watch (addr, len, type);
}
else
{
return (*current_target.to_insert_watchpoint) (addr, len, type);
}
}
int
score_target_remove_watchpoint (CORE_ADDR addr, int len, int type)
{
if (strcmp (current_target.to_shortname, "sim") == 0)
{
return soc_gh_del_watch (addr, len, type);
}
else
{
return (*current_target.to_remove_watchpoint) (addr, len, type);
}
}
int
score_target_insert_hw_breakpoint (struct bp_target_info * bp_tgt)
{
if (strcmp (current_target.to_shortname, "sim") == 0)
{
return soc_gh_add_hardbp (bp_tgt->placed_address);
}
else
{
return (*current_target.to_insert_hw_breakpoint) (bp_tgt);
}
}
int
score_target_remove_hw_breakpoint (struct bp_target_info * bp_tgt)
{
if (strcmp (current_target.to_shortname, "sim") == 0)
{
return soc_gh_del_hardbp (bp_tgt->placed_address);
}
else
{
return (*current_target.to_remove_hw_breakpoint) (bp_tgt);
}
}
#endif
static struct type *
score_register_type (struct gdbarch *gdbarch, int regnum)
{
gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS);
return builtin_type_uint32;
}
static CORE_ADDR
score_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, SCORE_PC_REGNUM);
}
static CORE_ADDR
score_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, SCORE_SP_REGNUM);
}
static const char *
score_register_name (int regnum)
{
const char *score_register_names[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"PSR", "COND", "ECR", "EXCPVEC",
"CCR", "EPC", "EMA", "TLBLOCK",
"TLBPT", "PEADDR", "TLBRPT", "PEVN",
"PECTX", "LIMPFN", "LDMPFN", "PREV",
"DREG", "PC", "DSAVE", "COUNTER",
"LDCR", "STCR", "CEH", "CEL",
};
gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS);
return score_register_names[regnum];
}
static int
score_register_sim_regno (int regnum)
{
gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS);
return regnum;
}
static int
score_print_insn (bfd_vma memaddr, struct disassemble_info *info)
{
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
return print_insn_big_score (memaddr, info);
else
return print_insn_little_score (memaddr, info);
}
static const gdb_byte *
score_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
gdb_byte buf[SCORE_INSTLEN] = { 0 };
int ret;
unsigned int raw;
if ((ret = target_read_memory (*pcptr & ~0x3, buf, SCORE_INSTLEN)) != 0)
{
error ("Error: target_read_memory in file:%s, line:%d!",
__FILE__, __LINE__);
}
raw = extract_unsigned_integer (buf, SCORE_INSTLEN);
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
if (!(raw & 0x80008000))
{
/* 16bits instruction. */
static gdb_byte big_breakpoint16[] = { 0x60, 0x02 };
*pcptr &= ~0x1;
*lenptr = sizeof (big_breakpoint16);
return big_breakpoint16;
}
else
{
/* 32bits instruction. */
static gdb_byte big_breakpoint32[] = { 0x80, 0x00, 0x80, 0x06 };
*pcptr &= ~0x3;
*lenptr = sizeof (big_breakpoint32);
return big_breakpoint32;
}
}
else
{
if (!(raw & 0x80008000))
{
/* 16bits instruction. */
static gdb_byte little_breakpoint16[] = { 0x02, 0x60 };
*pcptr &= ~0x1;
*lenptr = sizeof (little_breakpoint16);
return little_breakpoint16;
}
else
{
/* 32bits instruction. */
static gdb_byte little_breakpoint32[] = { 0x06, 0x80, 0x00, 0x80 };
*pcptr &= ~0x3;
*lenptr = sizeof (little_breakpoint32);
return little_breakpoint32;
}
}
}
static CORE_ADDR
score_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
return align_down (addr, 16);
}
static void
score_xfer_register (struct regcache *regcache, int regnum, int length,
enum bfd_endian endian, gdb_byte *readbuf,
const gdb_byte *writebuf, int buf_offset)
{
int reg_offset = 0;
gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS);
switch (endian)
{
case BFD_ENDIAN_BIG:
reg_offset = SCORE_REGSIZE - length;
break;
case BFD_ENDIAN_LITTLE:
reg_offset = 0;
break;
case BFD_ENDIAN_UNKNOWN:
reg_offset = 0;
break;
default:
error ("Error: score_xfer_register in file:%s, line:%d!",
__FILE__, __LINE__);
}
if (readbuf != NULL)
regcache_cooked_read_part (regcache, regnum, reg_offset, length,
readbuf + buf_offset);
if (writebuf != NULL)
regcache_cooked_write_part (regcache, regnum, reg_offset, length,
writebuf + buf_offset);
}
static enum return_value_convention
score_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache,
gdb_byte * readbuf, const gdb_byte * writebuf)
{
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
return RETURN_VALUE_STRUCT_CONVENTION;
else
{
int offset;
int regnum;
for (offset = 0, regnum = SCORE_A0_REGNUM;
offset < TYPE_LENGTH (type);
offset += SCORE_REGSIZE, regnum++)
{
int xfer = SCORE_REGSIZE;
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
score_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
static struct frame_id
score_unwind_dummy_id (struct gdbarch *gdbarch,
struct frame_info *next_frame)
{
return frame_id_build (
frame_unwind_register_unsigned (next_frame, SCORE_SP_REGNUM),
frame_pc_unwind (next_frame));
}
static int
score_type_needs_double_align (struct type *type)
{
enum type_code typecode = TYPE_CODE (type);
if ((typecode == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
|| (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
return 1;
else if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
{
int i, n;
n = TYPE_NFIELDS (type);
for (i = 0; i < n; i++)
if (score_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
return 1;
return 0;
}
return 0;
}
static CORE_ADDR
score_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argnum;
int argreg;
int arglen = 0;
CORE_ADDR stack_offset = 0;
CORE_ADDR addr = 0;
/* Step 1, Save RA. */
regcache_cooked_write_unsigned (regcache, SCORE_RA_REGNUM, bp_addr);
/* Step 2, Make space on the stack for the args. */
struct_addr = align_down (struct_addr, 16);
sp = align_down (sp, 16);
for (argnum = 0; argnum < nargs; argnum++)
arglen += align_up (TYPE_LENGTH (value_type (args[argnum])),
SCORE_REGSIZE);
sp -= align_up (arglen, 16);
argreg = SCORE_BEGIN_ARG_REGNUM;
/* Step 3, Check if struct return then save the struct address to
r4 and increase the stack_offset by 4. */
if (struct_return)
{
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
stack_offset += SCORE_REGSIZE;
}
/* Step 4, Load arguments:
If arg length is too long (> 4 bytes), then split the arg and
save every parts. */
for (argnum = 0; argnum < nargs; argnum++)
{
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (value_type (arg));
enum type_code typecode = TYPE_CODE (arg_type);
const gdb_byte *val = value_contents (arg);
int downward_offset = 0;
int odd_sized_struct_p;
int arg_last_part_p = 0;
arglen = TYPE_LENGTH (arg_type);
odd_sized_struct_p = (arglen > SCORE_REGSIZE
&& arglen % SCORE_REGSIZE != 0);
/* If a arg should be aligned to 8 bytes (long long or double),
the value should be put to even register numbers. */
if (score_type_needs_double_align (arg_type))
{
if (argreg & 1)
argreg++;
}
/* If sizeof a block < SCORE_REGSIZE, then Score GCC will chose
the default "downward"/"upward" method:
Example:
struct struc
{
char a; char b; char c;
} s = {'a', 'b', 'c'};
Big endian: s = {X, 'a', 'b', 'c'}
Little endian: s = {'a', 'b', 'c', X}
Where X is a hole. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION)
&& argreg > SCORE_LAST_ARG_REGNUM
&& arglen < SCORE_REGSIZE)
downward_offset += (SCORE_REGSIZE - arglen);
while (arglen > 0)
{
int partial_len = arglen < SCORE_REGSIZE ? arglen : SCORE_REGSIZE;
ULONGEST regval = extract_unsigned_integer (val, partial_len);
/* The last part of a arg should shift left when
TARGET_BYTE_ORDER is BFD_ENDIAN_BIG. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
&& arg_last_part_p == 1
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION))
regval <<= ((SCORE_REGSIZE - partial_len) * TARGET_CHAR_BIT);
/* Always increase the stack_offset and save args to stack. */
addr = sp + stack_offset + downward_offset;
write_memory (addr, val, partial_len);
if (argreg <= SCORE_LAST_ARG_REGNUM)
{
regcache_cooked_write_unsigned (regcache, argreg++, regval);
if (arglen > SCORE_REGSIZE && arglen < SCORE_REGSIZE * 2)
arg_last_part_p = 1;
}
val += partial_len;
arglen -= partial_len;
stack_offset += align_up (partial_len, SCORE_REGSIZE);
}
}
/* Step 5, Save SP. */
regcache_cooked_write_unsigned (regcache, SCORE_SP_REGNUM, sp);
return sp;
}
static char *
score_malloc_and_get_memblock (CORE_ADDR addr, CORE_ADDR size)
{
int ret;
char *memblock = NULL;
if (size < 0)
{
error ("Error: malloc size < 0 in file:%s, line:%d!",
__FILE__, __LINE__);
return NULL;
}
else if (size == 0)
return NULL;
memblock = (char *) xmalloc (size);
memset (memblock, 0, size);
ret = target_read_memory (addr & ~0x3, memblock, size);
if (ret)
{
error ("Error: target_read_memory in file:%s, line:%d!",
__FILE__, __LINE__);
return NULL;
}
return memblock;
}
static void
score_free_memblock (char *memblock)
{
xfree (memblock);
}
static void
score_adjust_memblock_ptr (char **memblock, CORE_ADDR prev_pc,
CORE_ADDR cur_pc)
{
if (prev_pc == -1)
{
/* First time call this function, do nothing. */
}
else if (cur_pc - prev_pc == 2 && (cur_pc & 0x3) == 0)
{
/* First 16-bit instruction, then 32-bit instruction. */
*memblock += SCORE_INSTLEN;
}
else if (cur_pc - prev_pc == 4)
{
/* Is 32-bit instruction, increase MEMBLOCK by 4. */
*memblock += SCORE_INSTLEN;
}
}
static inst_t *
score_fetch_inst (CORE_ADDR addr, char *memblock)
{
static inst_t inst = { 0, 0 };
char buf[SCORE_INSTLEN] = { 0 };
int big;
int ret;
if (target_has_execution && memblock != NULL)
{
/* Fetch instruction from local MEMBLOCK. */
memcpy (buf, memblock, SCORE_INSTLEN);
}
else
{
/* Fetch instruction from target. */
ret = target_read_memory (addr & ~0x3, buf, SCORE_INSTLEN);
if (ret)
{
error ("Error: target_read_memory in file:%s, line:%d!",
__FILE__, __LINE__);
return 0;
}
}
inst.raw = extract_unsigned_integer (buf, SCORE_INSTLEN);
inst.is15 = !(inst.raw & 0x80008000);
inst.v = RM_PBITS (inst.raw);
big = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
if (inst.is15)
{
if (big ^ ((addr & 0x2) == 2))
inst.v = G_FLD (inst.v, 29, 15);
else
inst.v = G_FLD (inst.v, 14, 0);
}
return &inst;
}
static CORE_ADDR
score_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR cpc = pc;
int iscan = 32, stack_sub = 0;
while (iscan-- > 0)
{
inst_t *inst = score_fetch_inst (cpc, NULL);
if (!inst)
break;
if (!inst->is15 && !stack_sub
&& (G_FLD (inst->v, 29, 25) == 0x1
&& G_FLD (inst->v, 24, 20) == 0x0))
{
/* addi r0, offset */
pc = stack_sub = cpc + SCORE_INSTLEN;
}
else if (!inst->is15
&& inst->v == RM_PBITS (0x8040bc56))
{
/* mv r2, r0 */
pc = cpc + SCORE_INSTLEN;
break;
}
else if (inst->is15
&& inst->v == RM_PBITS (0x0203))
{
/* mv! r2, r0 */
pc = cpc + SCORE16_INSTLEN;
break;
}
else if (inst->is15
&& ((G_FLD (inst->v, 14, 12) == 3) /* j15 form */
|| (G_FLD (inst->v, 14, 12) == 4) /* b15 form */
|| (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 3, 0) == 0x4))) /* br! */
break;
else if (!inst->is15
&& ((G_FLD (inst->v, 29, 25) == 2) /* j32 form */
|| (G_FLD (inst->v, 29, 25) == 4) /* b32 form */
|| (G_FLD (inst->v, 29, 25) == 0x0
&& G_FLD (inst->v, 6, 1) == 0x4))) /* br */
break;
cpc += inst->is15 ? SCORE16_INSTLEN : SCORE_INSTLEN;
}
return pc;
}
static int
score_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR cur_pc)
{
inst_t *inst = score_fetch_inst (cur_pc, NULL);
if (inst->v == 0x23)
return 1; /* mv! r0, r2 */
else if (G_FLD (inst->v, 14, 12) == 0x2
&& G_FLD (inst->v, 3, 0) == 0xa)
return 1; /* pop! */
else if (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 7, 0) == 0x34)
return 1; /* br! r3 */
else if (G_FLD (inst->v, 29, 15) == 0x2
&& G_FLD (inst->v, 6, 1) == 0x2b)
return 1; /* mv r0, r2 */
else if (G_FLD (inst->v, 29, 25) == 0x0
&& G_FLD (inst->v, 6, 1) == 0x4
&& G_FLD (inst->v, 19, 15) == 0x3)
return 1; /* br r3 */
else
return 0;
}
static void
score_analyze_prologue (CORE_ADDR startaddr, CORE_ADDR pc,
struct frame_info *next_frame,
struct score_frame_cache *this_cache)
{
CORE_ADDR sp;
CORE_ADDR fp;
CORE_ADDR cur_pc = startaddr;
int sp_offset = 0;
int ra_offset = 0;
int fp_offset = 0;
int ra_offset_p = 0;
int fp_offset_p = 0;
int inst_len = 0;
char *memblock = NULL;
char *memblock_ptr = NULL;
CORE_ADDR prev_pc = -1;
/* Allocate MEMBLOCK if PC - STARTADDR > 0. */
memblock_ptr = memblock =
score_malloc_and_get_memblock (startaddr, pc - startaddr);
sp = frame_unwind_register_unsigned (next_frame, SCORE_SP_REGNUM);
fp = frame_unwind_register_unsigned (next_frame, SCORE_FP_REGNUM);
for (; cur_pc < pc; prev_pc = cur_pc, cur_pc += inst_len)
{
inst_t *inst = NULL;
if (memblock != NULL)
{
/* Reading memory block from target succefully and got all
the instructions(from STARTADDR to PC) needed. */
score_adjust_memblock_ptr (&memblock, prev_pc, cur_pc);
inst = score_fetch_inst (cur_pc, memblock);
}
else
{
/* Otherwise, we fetch 4 bytes from target, and GDB also
work correctly. */
inst = score_fetch_inst (cur_pc, NULL);
}
if (inst->is15 == 1)
{
inst_len = SCORE16_INSTLEN;
if (G_FLD (inst->v, 14, 12) == 0x2
&& G_FLD (inst->v, 3, 0) == 0xe)
{
/* push! */
sp_offset += 4;
if (G_FLD (inst->v, 11, 7) == 0x6
&& ra_offset_p == 0)
{
/* push! r3, [r0] */
ra_offset = sp_offset;
ra_offset_p = 1;
}
else if (G_FLD (inst->v, 11, 7) == 0x4
&& fp_offset_p == 0)
{
/* push! r2, [r0] */
fp_offset = sp_offset;
fp_offset_p = 1;
}
}
else if (G_FLD (inst->v, 14, 12) == 0x2
&& G_FLD (inst->v, 3, 0) == 0xa)
{
/* pop! */
sp_offset -= 4;
}
else if (G_FLD (inst->v, 14, 7) == 0xc1
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* subei! r0, n */
sp_offset += (int) pow (2, G_FLD (inst->v, 6, 3));
}
else if (G_FLD (inst->v, 14, 7) == 0xc0
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* addei! r0, n */
sp_offset -= (int) pow (2, G_FLD (inst->v, 6, 3));
}
}
else
{
inst_len = SCORE_INSTLEN;
if (G_FLD (inst->v, 29, 15) == 0xc60
&& G_FLD (inst->v, 2, 0) == 0x4)
{
/* sw r3, [r0, offset]+ */
sp_offset += SCORE_INSTLEN;
if (ra_offset_p == 0)
{
ra_offset = sp_offset;
ra_offset_p = 1;
}
}
if (G_FLD (inst->v, 29, 15) == 0xc40
&& G_FLD (inst->v, 2, 0) == 0x4)
{
/* sw r2, [r0, offset]+ */
sp_offset += SCORE_INSTLEN;
if (fp_offset_p == 0)
{
fp_offset = sp_offset;
fp_offset_p = 1;
}
}
else if (G_FLD (inst->v, 29, 15) == 0x1c60
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* lw r3, [r0]+, 4 */
sp_offset -= SCORE_INSTLEN;
ra_offset_p = 1;
}
else if (G_FLD (inst->v, 29, 15) == 0x1c40
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* lw r2, [r0]+, 4 */
sp_offset -= SCORE_INSTLEN;
fp_offset_p = 1;
}
else if (G_FLD (inst->v, 29, 17) == 0x100
&& G_FLD (inst->v, 0, 0) == 0x0)
{
/* addi r0, -offset */
sp_offset += 65536 - G_FLD (inst->v, 16, 1);
}
else if (G_FLD (inst->v, 29, 17) == 0x110
&& G_FLD (inst->v, 0, 0) == 0x0)
{
/* addi r2, offset */
if (pc - cur_pc > 4)
{
unsigned int save_v = inst->v;
inst_t *inst2 =
score_fetch_inst (cur_pc + SCORE_INSTLEN, NULL);
if (inst2->v == 0x23)
{
/* mv! r0, r2 */
sp_offset -= G_FLD (save_v, 16, 1);
}
}
}
}
}
/* Save RA. */
if (ra_offset_p == 1)
{
if (this_cache->saved_regs[SCORE_PC_REGNUM].addr == -1)
this_cache->saved_regs[SCORE_PC_REGNUM].addr =
sp + sp_offset - ra_offset;
}
else
{
this_cache->saved_regs[SCORE_PC_REGNUM] =
this_cache->saved_regs[SCORE_RA_REGNUM];
}
/* Save FP. */
if (fp_offset_p == 1)
{
if (this_cache->saved_regs[SCORE_FP_REGNUM].addr == -1)
this_cache->saved_regs[SCORE_FP_REGNUM].addr =
sp + sp_offset - fp_offset;
}
/* Save SP and FP. */
this_cache->base = sp + sp_offset;
this_cache->fp = fp;
/* Don't forget to free MEMBLOCK if we allocated it. */
if (memblock_ptr != NULL)
score_free_memblock (memblock_ptr);
}
static struct score_frame_cache *
score_make_prologue_cache (struct frame_info *next_frame, void **this_cache)
{
struct score_frame_cache *cache;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct score_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
/* Analyze the prologue. */
{
const CORE_ADDR pc = frame_pc_unwind (next_frame);
CORE_ADDR start_addr;
find_pc_partial_function (pc, NULL, &start_addr, NULL);
if (start_addr == 0)
return cache;
score_analyze_prologue (start_addr, pc, next_frame, *this_cache);
}
/* Save SP. */
trad_frame_set_value (cache->saved_regs, SCORE_SP_REGNUM, cache->base);
return (*this_cache);
}
static void
score_prologue_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct score_frame_cache *info = score_make_prologue_cache (next_frame,
this_cache);
(*this_id) = frame_id_build (info->base,
frame_func_unwind (next_frame, NORMAL_FRAME));
}
static void
score_prologue_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR * addrp,
int *realnump, gdb_byte * valuep)
{
struct score_frame_cache *info = score_make_prologue_cache (next_frame,
this_cache);
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind score_prologue_unwind =
{
NORMAL_FRAME,
score_prologue_this_id,
score_prologue_prev_register
};
static const struct frame_unwind *
score_prologue_sniffer (struct frame_info *next_frame)
{
return &score_prologue_unwind;
}
static CORE_ADDR
score_prologue_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct score_frame_cache *info =
score_make_prologue_cache (next_frame, this_cache);
return info->fp;
}
static const struct frame_base score_prologue_frame_base =
{
&score_prologue_unwind,
score_prologue_frame_base_address,
score_prologue_frame_base_address,
score_prologue_frame_base_address,
};
static const struct frame_base *
score_prologue_frame_base_sniffer (struct frame_info *next_frame)
{
return &score_prologue_frame_base;
}
static struct gdbarch *
score_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
{
return (arches->gdbarch);
}
gdbarch = gdbarch_alloc (&info, 0);
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_register_sim_regno (gdbarch, score_register_sim_regno);
set_gdbarch_pc_regnum (gdbarch, SCORE_PC_REGNUM);
set_gdbarch_sp_regnum (gdbarch, SCORE_SP_REGNUM);
set_gdbarch_num_regs (gdbarch, SCORE_NUM_REGS);
set_gdbarch_register_name (gdbarch, score_register_name);
set_gdbarch_breakpoint_from_pc (gdbarch, score_breakpoint_from_pc);
set_gdbarch_register_type (gdbarch, score_register_type);
set_gdbarch_frame_align (gdbarch, score_frame_align);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_unwind_pc (gdbarch, score_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, score_unwind_sp);
set_gdbarch_print_insn (gdbarch, score_print_insn);
set_gdbarch_skip_prologue (gdbarch, score_skip_prologue);
set_gdbarch_in_function_epilogue_p (gdbarch, score_in_function_epilogue_p);
/* Watchpoint hooks. */
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
/* Dummy frame hooks. */
set_gdbarch_return_value (gdbarch, score_return_value);
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_unwind_dummy_id (gdbarch, score_unwind_dummy_id);
set_gdbarch_push_dummy_call (gdbarch, score_push_dummy_call);
/* Normal frame hooks. */
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
frame_unwind_append_sniffer (gdbarch, score_prologue_sniffer);
frame_base_append_sniffer (gdbarch, score_prologue_frame_base_sniffer);
return gdbarch;
}
extern initialize_file_ftype _initialize_score_tdep;
void
_initialize_score_tdep (void)
{
gdbarch_register (bfd_arch_score, score_gdbarch_init, NULL);
}