binutils-gdb/sim/v850/simops.c

3612 lines
74 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "sim-main.h"
#include "v850_sim.h"
#include "simops.h"
#include <sys/types.h>
#ifdef HAVE_UTIME_H
#include <utime.h>
#endif
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "targ-vals.h"
#include "libiberty.h"
#include <errno.h>
#if !defined(__GO32__) && !defined(_WIN32)
#include <sys/stat.h>
#include <sys/times.h>
#include <sys/time.h>
#endif
/* This is an array of the bit positions of registers r20 .. r31 in
that order in a prepare/dispose instruction. */
int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
/* This is an array of the bit positions of registers r16 .. r31 in
that order in a push/pop instruction. */
int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
/* This is an array of the bit positions of registers r1 .. r15 in
that order in a push/pop instruction. */
int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
#ifdef DEBUG
#ifndef SIZE_INSTRUCTION
#define SIZE_INSTRUCTION 18
#endif
#ifndef SIZE_VALUES
#define SIZE_VALUES 11
#endif
unsigned32 trace_values[3];
int trace_num_values;
unsigned32 trace_pc;
const char * trace_name;
int trace_module;
void
trace_input (char *name, enum op_types type, int size)
{
if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
return;
trace_pc = PC;
trace_name = name;
trace_module = TRACE_ALU_IDX;
switch (type)
{
default:
case OP_UNKNOWN:
case OP_NONE:
case OP_TRAP:
trace_num_values = 0;
break;
case OP_REG:
case OP_REG_REG_MOVE:
trace_values[0] = State.regs[OP[0]];
trace_num_values = 1;
break;
case OP_BIT_CHANGE:
case OP_REG_REG:
case OP_REG_REG_CMP:
trace_values[0] = State.regs[OP[1]];
trace_values[1] = State.regs[OP[0]];
trace_num_values = 2;
break;
case OP_IMM_REG:
case OP_IMM_REG_CMP:
trace_values[0] = SEXT5 (OP[0]);
trace_values[1] = OP[1];
trace_num_values = 2;
break;
case OP_IMM_REG_MOVE:
trace_values[0] = SEXT5 (OP[0]);
trace_num_values = 1;
break;
case OP_COND_BR:
trace_values[0] = State.pc;
trace_values[1] = SEXT9 (OP[0]);
trace_values[2] = PSW;
trace_num_values = 3;
break;
case OP_LOAD16:
trace_values[0] = OP[1] * size;
trace_values[1] = State.regs[30];
trace_num_values = 2;
break;
case OP_STORE16:
trace_values[0] = State.regs[OP[0]];
trace_values[1] = OP[1] * size;
trace_values[2] = State.regs[30];
trace_num_values = 3;
break;
case OP_LOAD32:
trace_values[0] = EXTEND16 (OP[2]);
trace_values[1] = State.regs[OP[0]];
trace_num_values = 2;
break;
case OP_STORE32:
trace_values[0] = State.regs[OP[1]];
trace_values[1] = EXTEND16 (OP[2]);
trace_values[2] = State.regs[OP[0]];
trace_num_values = 3;
break;
case OP_JUMP:
trace_values[0] = SEXT22 (OP[0]);
trace_values[1] = State.pc;
trace_num_values = 2;
break;
case OP_IMM_REG_REG:
trace_values[0] = EXTEND16 (OP[0]) << size;
trace_values[1] = State.regs[OP[1]];
trace_num_values = 2;
break;
case OP_IMM16_REG_REG:
trace_values[0] = EXTEND16 (OP[2]) << size;
trace_values[1] = State.regs[OP[1]];
trace_num_values = 2;
break;
case OP_UIMM_REG_REG:
trace_values[0] = (OP[0] & 0xffff) << size;
trace_values[1] = State.regs[OP[1]];
trace_num_values = 2;
break;
case OP_UIMM16_REG_REG:
trace_values[0] = (OP[2]) << size;
trace_values[1] = State.regs[OP[1]];
trace_num_values = 2;
break;
case OP_BIT:
trace_num_values = 0;
break;
case OP_EX1:
trace_values[0] = PSW;
trace_num_values = 1;
break;
case OP_EX2:
trace_num_values = 0;
break;
case OP_LDSR:
trace_values[0] = State.regs[OP[0]];
trace_num_values = 1;
break;
case OP_STSR:
trace_values[0] = State.sregs[OP[1]];
trace_num_values = 1;
}
}
void
trace_result (int has_result, unsigned32 result)
{
char buf[1000];
char *chp;
buf[0] = '\0';
chp = buf;
/* write out the values saved during the trace_input call */
{
int i;
for (i = 0; i < trace_num_values; i++)
{
sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "",
(long) trace_values[i]);
chp = strchr (chp, '\0');
}
while (i++ < 3)
{
sprintf (chp, "%*s", SIZE_VALUES, "");
chp = strchr (chp, '\0');
}
}
/* append any result to the end of the buffer */
if (has_result)
sprintf (chp, " :: 0x%.8lx", (unsigned long) result);
trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, "%s", buf);
}
void
trace_output (enum op_types result)
{
if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
return;
switch (result)
{
default:
case OP_UNKNOWN:
case OP_NONE:
case OP_TRAP:
case OP_REG:
case OP_REG_REG_CMP:
case OP_IMM_REG_CMP:
case OP_COND_BR:
case OP_STORE16:
case OP_STORE32:
case OP_BIT:
case OP_EX2:
trace_result (0, 0);
break;
case OP_LOAD16:
case OP_STSR:
trace_result (1, State.regs[OP[0]]);
break;
case OP_REG_REG:
case OP_REG_REG_MOVE:
case OP_IMM_REG:
case OP_IMM_REG_MOVE:
case OP_LOAD32:
case OP_EX1:
trace_result (1, State.regs[OP[1]]);
break;
case OP_IMM_REG_REG:
case OP_UIMM_REG_REG:
case OP_IMM16_REG_REG:
case OP_UIMM16_REG_REG:
trace_result (1, State.regs[OP[1]]);
break;
case OP_JUMP:
if (OP[1] != 0)
trace_result (1, State.regs[OP[1]]);
else
trace_result (0, 0);
break;
case OP_LDSR:
trace_result (1, State.sregs[OP[1]]);
break;
}
}
#endif
/* Returns 1 if the specific condition is met, returns 0 otherwise. */
int
condition_met (unsigned code)
{
unsigned int psw = PSW;
switch (code & 0xf)
{
case 0x0: return ((psw & PSW_OV) != 0);
case 0x1: return ((psw & PSW_CY) != 0);
case 0x2: return ((psw & PSW_Z) != 0);
case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0);
case 0x4: return ((psw & PSW_S) != 0);
/*case 0x5: return 1;*/
case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0);
case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0);
case 0x8: return ((psw & PSW_OV) == 0);
case 0x9: return ((psw & PSW_CY) == 0);
case 0xa: return ((psw & PSW_Z) == 0);
case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0);
case 0xc: return ((psw & PSW_S) == 0);
case 0xd: return ((psw & PSW_SAT) != 0);
case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0);
case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0);
}
return 1;
}
unsigned long
Add32 (unsigned long a1, unsigned long a2, int * carry)
{
unsigned long result = (a1 + a2);
* carry = (result < a1);
return result;
}
static void
Multiply64 (int sign, unsigned long op0)
{
unsigned long op1;
unsigned long lo;
unsigned long mid1;
unsigned long mid2;
unsigned long hi;
unsigned long RdLo;
unsigned long RdHi;
int carry;
op1 = State.regs[ OP[1] ];
if (sign)
{
/* Compute sign of result and adjust operands if necessary. */
sign = (op0 ^ op1) & 0x80000000;
if (((signed long) op0) < 0)
op0 = - op0;
if (((signed long) op1) < 0)
op1 = - op1;
}
/* We can split the 32x32 into four 16x16 operations. This ensures
that we do not lose precision on 32bit only hosts: */
lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF));
mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF));
hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
/* We now need to add all of these results together, taking care
to propogate the carries from the additions: */
RdLo = Add32 (lo, (mid1 << 16), & carry);
RdHi = carry;
RdLo = Add32 (RdLo, (mid2 << 16), & carry);
RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi);
if (sign)
{
/* Negate result if necessary. */
RdLo = ~ RdLo;
RdHi = ~ RdHi;
if (RdLo == 0xFFFFFFFF)
{
RdLo = 0;
RdHi += 1;
}
else
RdLo += 1;
}
/* Don't store into register 0. */
if (OP[1])
State.regs[ OP[1] ] = RdLo;
if (OP[2] >> 11)
State.regs[ OP[2] >> 11 ] = RdHi;
return;
}
/* Read a null terminated string from memory, return in a buffer. */
static char *
fetch_str (SIM_DESC sd, address_word addr)
{
char *buf;
int nr = 0;
while (sim_core_read_1 (STATE_CPU (sd, 0),
PC, read_map, addr + nr) != 0)
nr++;
buf = NZALLOC (char, nr + 1);
sim_read (simulator, addr, (unsigned char *) buf, nr);
return buf;
}
/* Read a null terminated argument vector from memory, return in a
buffer. */
static char **
fetch_argv (SIM_DESC sd, address_word addr)
{
int max_nr = 64;
int nr = 0;
char **buf = xmalloc (max_nr * sizeof (char*));
while (1)
{
unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0),
PC, read_map, addr + nr * 4);
if (a == 0) break;
buf[nr] = fetch_str (sd, a);
nr ++;
if (nr == max_nr - 1)
{
max_nr += 50;
buf = xrealloc (buf, max_nr * sizeof (char*));
}
}
buf[nr] = 0;
return buf;
}
/* sst.b */
int
OP_380 (void)
{
trace_input ("sst.b", OP_STORE16, 1);
store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]);
trace_output (OP_STORE16);
return 2;
}
/* sst.h */
int
OP_480 (void)
{
trace_input ("sst.h", OP_STORE16, 2);
store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]);
trace_output (OP_STORE16);
return 2;
}
/* sst.w */
int
OP_501 (void)
{
trace_input ("sst.w", OP_STORE16, 4);
store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]);
trace_output (OP_STORE16);
return 2;
}
/* ld.b */
int
OP_700 (void)
{
int adr;
trace_input ("ld.b", OP_LOAD32, 1);
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1));
trace_output (OP_LOAD32);
return 4;
}
/* ld.h */
int
OP_720 (void)
{
int adr;
trace_input ("ld.h", OP_LOAD32, 2);
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
adr &= ~0x1;
State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2));
trace_output (OP_LOAD32);
return 4;
}
/* ld.w */
int
OP_10720 (void)
{
int adr;
trace_input ("ld.w", OP_LOAD32, 4);
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
adr &= ~0x3;
State.regs[ OP[1] ] = load_mem (adr, 4);
trace_output (OP_LOAD32);
return 4;
}
/* st.b */
int
OP_740 (void)
{
trace_input ("st.b", OP_STORE32, 1);
store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]);
trace_output (OP_STORE32);
return 4;
}
/* st.h */
int
OP_760 (void)
{
int adr;
trace_input ("st.h", OP_STORE32, 2);
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
adr &= ~1;
store_mem (adr, 2, State.regs[ OP[1] ]);
trace_output (OP_STORE32);
return 4;
}
/* st.w */
int
OP_10760 (void)
{
int adr;
trace_input ("st.w", OP_STORE32, 4);
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
adr &= ~3;
store_mem (adr, 4, State.regs[ OP[1] ]);
trace_output (OP_STORE32);
return 4;
}
/* add reg, reg */
int
OP_1C0 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
trace_input ("add", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 + op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (result < op0 || result < op1);
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_REG_REG);
return 2;
}
/* add sign_extend(imm5), reg */
int
OP_240 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
int temp;
trace_input ("add", OP_IMM_REG, 0);
/* Compute the result. */
temp = SEXT5 (OP[0]);
op0 = temp;
op1 = State.regs[OP[1]];
result = op0 + op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (result < op0 || result < op1);
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_IMM_REG);
return 2;
}
/* addi sign_extend(imm16), reg, reg */
int
OP_600 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
trace_input ("addi", OP_IMM16_REG_REG, 0);
/* Compute the result. */
op0 = EXTEND16 (OP[2]);
op1 = State.regs[ OP[0] ];
result = op0 + op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (result < op0 || result < op1);
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_IMM16_REG_REG);
return 4;
}
/* sub reg1, reg2 */
int
OP_1A0 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
trace_input ("sub", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op1 - op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 < op0);
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
&& (op1 & 0x80000000) != (result & 0x80000000));
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_REG_REG);
return 2;
}
/* subr reg1, reg2 */
int
OP_180 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
trace_input ("subr", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 - op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op0 < op1);
ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_REG_REG);
return 2;
}
/* sxh reg1 */
int
OP_E0 (void)
{
trace_input ("mulh", OP_REG_REG, 0);
State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ]));
trace_output (OP_REG_REG);
return 2;
}
/* mulh sign_extend(imm5), reg2 */
int
OP_2E0 (void)
{
trace_input ("mulh", OP_IMM_REG, 0);
State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]);
trace_output (OP_IMM_REG);
return 2;
}
/* mulhi imm16, reg1, reg2 */
int
OP_6E0 (void)
{
trace_input ("mulhi", OP_IMM16_REG_REG, 0);
State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]);
trace_output (OP_IMM16_REG_REG);
return 4;
}
/* cmp reg, reg */
int
OP_1E0 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
trace_input ("cmp", OP_REG_REG_CMP, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op1 - op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 < op0);
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
&& (op1 & 0x80000000) != (result & 0x80000000));
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_REG_REG_CMP);
return 2;
}
/* cmp sign_extend(imm5), reg */
int
OP_260 (void)
{
unsigned int op0, op1, result, z, s, cy, ov;
int temp;
/* Compute the result. */
trace_input ("cmp", OP_IMM_REG_CMP, 0);
temp = SEXT5 (OP[0]);
op0 = temp;
op1 = State.regs[OP[1]];
result = op1 - op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 < op0);
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
&& (op1 & 0x80000000) != (result & 0x80000000));
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
trace_output (OP_IMM_REG_CMP);
return 2;
}
/* setf cccc,reg2 */
int
OP_7E0 (void)
{
trace_input ("setf", OP_EX1, 0);
State.regs[ OP[1] ] = condition_met (OP[0]);
trace_output (OP_EX1);
return 4;
}
/* satadd reg,reg */
int
OP_C0 (void)
{
unsigned int op0, op1, result, z, s, cy, ov, sat;
trace_input ("satadd", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 + op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (result < op0 || result < op1);
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Handle saturated results. */
if (sat && s)
{
/* An overflow that results in a negative result implies that we
became too positive. */
result = 0x7fffffff;
s = 0;
}
else if (sat)
{
/* Any other overflow must have thus been too negative. */
result = 0x80000000;
s = 1;
z = 0;
}
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
trace_output (OP_REG_REG);
return 2;
}
/* satadd sign_extend(imm5), reg */
int
OP_220 (void)
{
unsigned int op0, op1, result, z, s, cy, ov, sat;
int temp;
trace_input ("satadd", OP_IMM_REG, 0);
/* Compute the result. */
temp = SEXT5 (OP[0]);
op0 = temp;
op1 = State.regs[OP[1]];
result = op0 + op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (result < op0 || result < op1);
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Handle saturated results. */
if (sat && s)
{
/* An overflow that results in a negative result implies that we
became too positive. */
result = 0x7fffffff;
s = 0;
}
else if (sat)
{
/* Any other overflow must have thus been too negative. */
result = 0x80000000;
s = 1;
z = 0;
}
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
trace_output (OP_IMM_REG);
return 2;
}
/* satsub reg1, reg2 */
int
OP_A0 (void)
{
unsigned int op0, op1, result, z, s, cy, ov, sat;
trace_input ("satsub", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op1 - op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 < op0);
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
&& (op1 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Handle saturated results. */
if (sat && s)
{
/* An overflow that results in a negative result implies that we
became too positive. */
result = 0x7fffffff;
s = 0;
}
else if (sat)
{
/* Any other overflow must have thus been too negative. */
result = 0x80000000;
s = 1;
z = 0;
}
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
trace_output (OP_REG_REG);
return 2;
}
/* satsubi sign_extend(imm16), reg */
int
OP_660 (void)
{
unsigned int op0, op1, result, z, s, cy, ov, sat;
int temp;
trace_input ("satsubi", OP_IMM_REG, 0);
/* Compute the result. */
temp = EXTEND16 (OP[2]);
op0 = temp;
op1 = State.regs[ OP[0] ];
result = op1 - op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 < op0);
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
&& (op1 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Handle saturated results. */
if (sat && s)
{
/* An overflow that results in a negative result implies that we
became too positive. */
result = 0x7fffffff;
s = 0;
}
else if (sat)
{
/* Any other overflow must have thus been too negative. */
result = 0x80000000;
s = 1;
z = 0;
}
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
trace_output (OP_IMM_REG);
return 4;
}
/* satsubr reg,reg */
int
OP_80 (void)
{
unsigned int op0, op1, result, z, s, cy, ov, sat;
trace_input ("satsubr", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 - op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op0 < op1);
ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Handle saturated results. */
if (sat && s)
{
/* An overflow that results in a negative result implies that we
became too positive. */
result = 0x7fffffff;
s = 0;
}
else if (sat)
{
/* Any other overflow must have thus been too negative. */
result = 0x80000000;
s = 1;
z = 0;
}
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
trace_output (OP_REG_REG);
return 2;
}
/* tst reg,reg */
int
OP_160 (void)
{
unsigned int op0, op1, result, z, s;
trace_input ("tst", OP_REG_REG_CMP, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 & op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_REG_REG_CMP);
return 2;
}
/* mov sign_extend(imm5), reg */
int
OP_200 (void)
{
int value = SEXT5 (OP[0]);
trace_input ("mov", OP_IMM_REG_MOVE, 0);
State.regs[ OP[1] ] = value;
trace_output (OP_IMM_REG_MOVE);
return 2;
}
/* movhi imm16, reg, reg */
int
OP_640 (void)
{
trace_input ("movhi", OP_UIMM16_REG_REG, 16);
State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16);
trace_output (OP_UIMM16_REG_REG);
return 4;
}
/* sar zero_extend(imm5),reg1 */
int
OP_2A0 (void)
{
unsigned int op0, op1, result, z, s, cy;
trace_input ("sar", OP_IMM_REG, 0);
op0 = OP[0];
op1 = State.regs[ OP[1] ];
result = (signed)op1 >> op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
/* Store the result and condition codes. */
State.regs[ OP[1] ] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
trace_output (OP_IMM_REG);
return 2;
}
/* sar reg1, reg2 */
int
OP_A007E0 (void)
{
unsigned int op0, op1, result, z, s, cy;
trace_input ("sar", OP_REG_REG, 0);
op0 = State.regs[ OP[0] ] & 0x1f;
op1 = State.regs[ OP[1] ];
result = (signed)op1 >> op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
trace_output (OP_REG_REG);
return 4;
}
/* shl zero_extend(imm5),reg1 */
int
OP_2C0 (void)
{
unsigned int op0, op1, result, z, s, cy;
trace_input ("shl", OP_IMM_REG, 0);
op0 = OP[0];
op1 = State.regs[ OP[1] ];
result = op1 << op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = op0 ? (op1 & (1 << (32 - op0))) : 0;
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
trace_output (OP_IMM_REG);
return 2;
}
/* shl reg1, reg2 */
int
OP_C007E0 (void)
{
unsigned int op0, op1, result, z, s, cy;
trace_input ("shl", OP_REG_REG, 0);
op0 = State.regs[ OP[0] ] & 0x1f;
op1 = State.regs[ OP[1] ];
result = op1 << op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = op0 ? (op1 & (1 << (32 - op0))) : 0;
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
trace_output (OP_REG_REG);
return 4;
}
/* shr zero_extend(imm5),reg1 */
int
OP_280 (void)
{
unsigned int op0, op1, result, z, s, cy;
trace_input ("shr", OP_IMM_REG, 0);
op0 = OP[0];
op1 = State.regs[ OP[1] ];
result = op1 >> op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
trace_output (OP_IMM_REG);
return 2;
}
/* shr reg1, reg2 */
int
OP_8007E0 (void)
{
unsigned int op0, op1, result, z, s, cy;
trace_input ("shr", OP_REG_REG, 0);
op0 = State.regs[ OP[0] ] & 0x1f;
op1 = State.regs[ OP[1] ];
result = op1 >> op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = op0 ? (op1 & (1 << (op0 - 1))) : 0;
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
trace_output (OP_REG_REG);
return 4;
}
/* or reg, reg */
int
OP_100 (void)
{
unsigned int op0, op1, result, z, s;
trace_input ("or", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 | op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_REG_REG);
return 2;
}
/* ori zero_extend(imm16), reg, reg */
int
OP_680 (void)
{
unsigned int op0, op1, result, z, s;
trace_input ("ori", OP_UIMM16_REG_REG, 0);
op0 = OP[2];
op1 = State.regs[ OP[0] ];
result = op0 | op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_UIMM16_REG_REG);
return 4;
}
/* and reg, reg */
int
OP_140 (void)
{
unsigned int op0, op1, result, z, s;
trace_input ("and", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 & op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_REG_REG);
return 2;
}
/* andi zero_extend(imm16), reg, reg */
int
OP_6C0 (void)
{
unsigned int result, z;
trace_input ("andi", OP_UIMM16_REG_REG, 0);
result = OP[2] & State.regs[ OP[0] ];
/* Compute the condition codes. */
z = (result == 0);
/* Store the result and condition codes. */
State.regs[ OP[1] ] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= (z ? PSW_Z : 0);
trace_output (OP_UIMM16_REG_REG);
return 4;
}
/* xor reg, reg */
int
OP_120 (void)
{
unsigned int op0, op1, result, z, s;
trace_input ("xor", OP_REG_REG, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
op1 = State.regs[ OP[1] ];
result = op0 ^ op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_REG_REG);
return 2;
}
/* xori zero_extend(imm16), reg, reg */
int
OP_6A0 (void)
{
unsigned int op0, op1, result, z, s;
trace_input ("xori", OP_UIMM16_REG_REG, 0);
op0 = OP[2];
op1 = State.regs[ OP[0] ];
result = op0 ^ op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_UIMM16_REG_REG);
return 4;
}
/* not reg1, reg2 */
int
OP_20 (void)
{
unsigned int op0, result, z, s;
trace_input ("not", OP_REG_REG_MOVE, 0);
/* Compute the result. */
op0 = State.regs[ OP[0] ];
result = ~op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
/* Store the result and condition codes. */
State.regs[OP[1]] = result;
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
trace_output (OP_REG_REG_MOVE);
return 2;
}
/* set1 */
int
OP_7C0 (void)
{
unsigned int op0, op1, op2;
int temp;
trace_input ("set1", OP_BIT, 0);
op0 = State.regs[ OP[0] ];
op1 = OP[1] & 0x7;
temp = EXTEND16 (OP[2]);
op2 = temp;
temp = load_mem (op0 + op2, 1);
PSW &= ~PSW_Z;
if ((temp & (1 << op1)) == 0)
PSW |= PSW_Z;
temp |= (1 << op1);
store_mem (op0 + op2, 1, temp);
trace_output (OP_BIT);
return 4;
}
/* not1 */
int
OP_47C0 (void)
{
unsigned int op0, op1, op2;
int temp;
trace_input ("not1", OP_BIT, 0);
op0 = State.regs[ OP[0] ];
op1 = OP[1] & 0x7;
temp = EXTEND16 (OP[2]);
op2 = temp;
temp = load_mem (op0 + op2, 1);
PSW &= ~PSW_Z;
if ((temp & (1 << op1)) == 0)
PSW |= PSW_Z;
temp ^= (1 << op1);
store_mem (op0 + op2, 1, temp);
trace_output (OP_BIT);
return 4;
}
/* clr1 */
int
OP_87C0 (void)
{
unsigned int op0, op1, op2;
int temp;
trace_input ("clr1", OP_BIT, 0);
op0 = State.regs[ OP[0] ];
op1 = OP[1] & 0x7;
temp = EXTEND16 (OP[2]);
op2 = temp;
temp = load_mem (op0 + op2, 1);
PSW &= ~PSW_Z;
if ((temp & (1 << op1)) == 0)
PSW |= PSW_Z;
temp &= ~(1 << op1);
store_mem (op0 + op2, 1, temp);
trace_output (OP_BIT);
return 4;
}
/* tst1 */
int
OP_C7C0 (void)
{
unsigned int op0, op1, op2;
int temp;
trace_input ("tst1", OP_BIT, 0);
op0 = State.regs[ OP[0] ];
op1 = OP[1] & 0x7;
temp = EXTEND16 (OP[2]);
op2 = temp;
temp = load_mem (op0 + op2, 1);
PSW &= ~PSW_Z;
if ((temp & (1 << op1)) == 0)
PSW |= PSW_Z;
trace_output (OP_BIT);
return 4;
}
/* di */
int
OP_16007E0 (void)
{
trace_input ("di", OP_NONE, 0);
PSW |= PSW_ID;
trace_output (OP_NONE);
return 4;
}
/* ei */
int
OP_16087E0 (void)
{
trace_input ("ei", OP_NONE, 0);
PSW &= ~PSW_ID;
trace_output (OP_NONE);
return 4;
}
/* halt */
int
OP_12007E0 (void)
{
trace_input ("halt", OP_NONE, 0);
/* FIXME this should put processor into a mode where NMI still handled */
trace_output (OP_NONE);
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
sim_stopped, SIM_SIGTRAP);
return 0;
}
/* trap */
int
OP_10007E0 (void)
{
trace_input ("trap", OP_TRAP, 0);
trace_output (OP_TRAP);
/* Trap 31 is used for simulating OS I/O functions */
if (OP[0] == 31)
{
int save_errno = errno;
errno = 0;
/* Registers passed to trap 0 */
#define FUNC State.regs[6] /* function number, return value */
#define PARM1 State.regs[7] /* optional parm 1 */
#define PARM2 State.regs[8] /* optional parm 2 */
#define PARM3 State.regs[9] /* optional parm 3 */
/* Registers set by trap 0 */
#define RETVAL State.regs[10] /* return value */
#define RETERR State.regs[11] /* return error code */
/* Turn a pointer in a register into a pointer into real memory. */
#define MEMPTR(x) (map (x))
RETERR = 0;
switch (FUNC)
{
#ifdef HAVE_FORK
#ifdef TARGET_SYS_fork
case TARGET_SYS_fork:
RETVAL = fork ();
RETERR = errno;
break;
#endif
#endif
#ifdef HAVE_EXECVE
#ifdef TARGET_SYS_execv
case TARGET_SYS_execve:
{
char *path = fetch_str (simulator, PARM1);
char **argv = fetch_argv (simulator, PARM2);
char **envp = fetch_argv (simulator, PARM3);
RETVAL = execve (path, argv, envp);
free (path);
freeargv (argv);
freeargv (envp);
RETERR = errno;
break;
}
#endif
#endif
#if HAVE_EXECV
#ifdef TARGET_SYS_execv
case TARGET_SYS_execv:
{
char *path = fetch_str (simulator, PARM1);
char **argv = fetch_argv (simulator, PARM2);
RETVAL = execv (path, argv);
free (path);
freeargv (argv);
RETERR = errno;
break;
}
#endif
#endif
#if 0
#ifdef TARGET_SYS_pipe
case TARGET_SYS_pipe:
{
reg_t buf;
int host_fd[2];
buf = PARM1;
RETVAL = pipe (host_fd);
SW (buf, host_fd[0]);
buf += sizeof (uint16);
SW (buf, host_fd[1]);
RETERR = errno;
}
break;
#endif
#endif
#if 0
#ifdef TARGET_SYS_wait
case TARGET_SYS_wait:
{
int status;
RETVAL = wait (&status);
SW (PARM1, status);
RETERR = errno;
}
break;
#endif
#endif
#ifdef TARGET_SYS_read
case TARGET_SYS_read:
{
char *buf = zalloc (PARM3);
RETVAL = sim_io_read (simulator, PARM1, buf, PARM3);
sim_write (simulator, PARM2, (unsigned char *) buf, PARM3);
free (buf);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
break;
}
#endif
#ifdef TARGET_SYS_write
case TARGET_SYS_write:
{
char *buf = zalloc (PARM3);
sim_read (simulator, PARM2, (unsigned char *) buf, PARM3);
if (PARM1 == 1)
RETVAL = sim_io_write_stdout (simulator, buf, PARM3);
else
RETVAL = sim_io_write (simulator, PARM1, buf, PARM3);
free (buf);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
break;
}
#endif
#ifdef TARGET_SYS_lseek
case TARGET_SYS_lseek:
RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
break;
#endif
#ifdef TARGET_SYS_close
case TARGET_SYS_close:
RETVAL = sim_io_close (simulator, PARM1);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
break;
#endif
#ifdef TARGET_SYS_open
case TARGET_SYS_open:
{
char *buf = fetch_str (simulator, PARM1);
RETVAL = sim_io_open (simulator, buf, PARM2);
free (buf);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
break;
}
#endif
#ifdef TARGET_SYS_exit
case TARGET_SYS_exit:
if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0)
/* get signal encoded by kill */
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
sim_signalled, PARM1 & 0xffff);
else if (PARM1 == 0xdead)
/* old libraries */
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
sim_stopped, SIM_SIGABRT);
else
/* PARM1 has exit status */
sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
sim_exited, PARM1);
break;
#endif
#ifdef TARGET_SYS_stat
case TARGET_SYS_stat: /* added at hmsi */
/* stat system call */
{
struct stat host_stat;
reg_t buf;
char *path = fetch_str (simulator, PARM1);
RETVAL = sim_io_stat (simulator, path, &host_stat);
free (path);
buf = PARM2;
/* Just wild-assed guesses. */
store_mem (buf, 2, host_stat.st_dev);
store_mem (buf + 2, 2, host_stat.st_ino);
store_mem (buf + 4, 4, host_stat.st_mode);
store_mem (buf + 8, 2, host_stat.st_nlink);
store_mem (buf + 10, 2, host_stat.st_uid);
store_mem (buf + 12, 2, host_stat.st_gid);
store_mem (buf + 14, 2, host_stat.st_rdev);
store_mem (buf + 16, 4, host_stat.st_size);
store_mem (buf + 20, 4, host_stat.st_atime);
store_mem (buf + 28, 4, host_stat.st_mtime);
store_mem (buf + 36, 4, host_stat.st_ctime);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
}
break;
#endif
#ifdef TARGET_SYS_fstat
case TARGET_SYS_fstat:
/* fstat system call */
{
struct stat host_stat;
reg_t buf;
RETVAL = sim_io_fstat (simulator, PARM1, &host_stat);
buf = PARM2;
/* Just wild-assed guesses. */
store_mem (buf, 2, host_stat.st_dev);
store_mem (buf + 2, 2, host_stat.st_ino);
store_mem (buf + 4, 4, host_stat.st_mode);
store_mem (buf + 8, 2, host_stat.st_nlink);
store_mem (buf + 10, 2, host_stat.st_uid);
store_mem (buf + 12, 2, host_stat.st_gid);
store_mem (buf + 14, 2, host_stat.st_rdev);
store_mem (buf + 16, 4, host_stat.st_size);
store_mem (buf + 20, 4, host_stat.st_atime);
store_mem (buf + 28, 4, host_stat.st_mtime);
store_mem (buf + 36, 4, host_stat.st_ctime);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
}
break;
#endif
#ifdef TARGET_SYS_rename
case TARGET_SYS_rename:
{
char *oldpath = fetch_str (simulator, PARM1);
char *newpath = fetch_str (simulator, PARM2);
RETVAL = sim_io_rename (simulator, oldpath, newpath);
free (oldpath);
free (newpath);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
}
break;
#endif
#ifdef TARGET_SYS_unlink
case TARGET_SYS_unlink:
{
char *path = fetch_str (simulator, PARM1);
RETVAL = sim_io_unlink (simulator, path);
free (path);
if ((int) RETVAL < 0)
RETERR = sim_io_get_errno (simulator);
}
break;
#endif
#ifdef HAVE_CHOWN
#ifdef TARGET_SYS_chown
case TARGET_SYS_chown:
{
char *path = fetch_str (simulator, PARM1);
RETVAL = chown (path, PARM2, PARM3);
free (path);
RETERR = errno;
}
break;
#endif
#endif
#if HAVE_CHMOD
#ifdef TARGET_SYS_chmod
case TARGET_SYS_chmod:
{
char *path = fetch_str (simulator, PARM1);
RETVAL = chmod (path, PARM2);
free (path);
RETERR = errno;
}
break;
#endif
#endif
#ifdef TARGET_SYS_time
#if HAVE_TIME
case TARGET_SYS_time:
{
time_t now;
RETVAL = time (&now);
store_mem (PARM1, 4, now);
RETERR = errno;
}
break;
#endif
#endif
#if !defined(__GO32__) && !defined(_WIN32)
#ifdef TARGET_SYS_times
case TARGET_SYS_times:
{
struct tms tms;
RETVAL = times (&tms);
store_mem (PARM1, 4, tms.tms_utime);
store_mem (PARM1 + 4, 4, tms.tms_stime);
store_mem (PARM1 + 8, 4, tms.tms_cutime);
store_mem (PARM1 + 12, 4, tms.tms_cstime);
reterr = errno;
break;
}
#endif
#endif
#ifdef TARGET_SYS_gettimeofday
#if !defined(__GO32__) && !defined(_WIN32)
case TARGET_SYS_gettimeofday:
{
struct timeval t;
struct timezone tz;
RETVAL = gettimeofday (&t, &tz);
store_mem (PARM1, 4, t.tv_sec);
store_mem (PARM1 + 4, 4, t.tv_usec);
store_mem (PARM2, 4, tz.tz_minuteswest);
store_mem (PARM2 + 4, 4, tz.tz_dsttime);
RETERR = errno;
break;
}
#endif
#endif
#ifdef TARGET_SYS_utime
#if HAVE_UTIME
case TARGET_SYS_utime:
{
/* Cast the second argument to void *, to avoid type mismatch
if a prototype is present. */
sim_io_error (simulator, "Utime not supported");
/* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
}
break;
#endif
#endif
default:
abort ();
}
errno = save_errno;
return 4;
}
else
{ /* Trap 0 -> 30 */
EIPC = PC + 4;
EIPSW = PSW;
/* Mask out EICC */
ECR &= 0xffff0000;
ECR |= 0x40 + OP[0];
/* Flag that we are now doing exception processing. */
PSW |= PSW_EP | PSW_ID;
PC = (OP[0] < 0x10) ? 0x40 : 0x50;
return 0;
}
}
/* tst1 reg2, [reg1] */
int
OP_E607E0 (void)
{
int temp;
trace_input ("tst1", OP_BIT, 1);
temp = load_mem (State.regs[ OP[0] ], 1);
PSW &= ~PSW_Z;
if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0)
PSW |= PSW_Z;
trace_output (OP_BIT);
return 4;
}
/* mulu reg1, reg2, reg3 */
int
OP_22207E0 (void)
{
trace_input ("mulu", OP_REG_REG_REG, 0);
Multiply64 (0, State.regs[ OP[0] ]);
trace_output (OP_REG_REG_REG);
return 4;
}
#define BIT_CHANGE_OP( name, binop ) \
unsigned int bit; \
unsigned int temp; \
\
trace_input (name, OP_BIT_CHANGE, 0); \
\
bit = 1 << (State.regs[ OP[1] ] & 0x7); \
temp = load_mem (State.regs[ OP[0] ], 1); \
\
PSW &= ~PSW_Z; \
if ((temp & bit) == 0) \
PSW |= PSW_Z; \
temp binop bit; \
\
store_mem (State.regs[ OP[0] ], 1, temp); \
\
trace_output (OP_BIT_CHANGE); \
\
return 4;
/* clr1 reg2, [reg1] */
int
OP_E407E0 (void)
{
BIT_CHANGE_OP ("clr1", &= ~ );
}
/* not1 reg2, [reg1] */
int
OP_E207E0 (void)
{
BIT_CHANGE_OP ("not1", ^= );
}
/* set1 */
int
OP_E007E0 (void)
{
BIT_CHANGE_OP ("set1", |= );
}
/* sasf */
int
OP_20007E0 (void)
{
trace_input ("sasf", OP_EX1, 0);
State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]);
trace_output (OP_EX1);
return 4;
}
/* This function is courtesy of Sugimoto at NEC, via Seow Tan
(Soew_Tan@el.nec.com) */
void
divun
(
unsigned int N,
unsigned long int als,
unsigned long int sfi,
unsigned32 /*unsigned long int*/ * quotient_ptr,
unsigned32 /*unsigned long int*/ * remainder_ptr,
int * overflow_ptr
)
{
unsigned long ald = sfi >> (N - 1);
unsigned long alo = als;
unsigned int Q = 1;
unsigned int C;
unsigned int S = 0;
unsigned int i;
unsigned int R1 = 1;
unsigned int DBZ = (als == 0) ? 1 : 0;
unsigned long alt = Q ? ~als : als;
/* 1st Loop */
alo = ald + alt + Q;
C = (((alt >> 31) & (ald >> 31))
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
C = C ^ Q;
Q = ~(C ^ S) & 1;
R1 = (alo == 0) ? 0 : (R1 & Q);
if ((S ^ (alo>>31)) && !C)
{
DBZ = 1;
}
S = alo >> 31;
sfi = (sfi << (32-N+1)) | Q;
ald = (alo << 1) | (sfi >> 31);
/* 2nd - N-1th Loop */
for (i = 2; i < N; i++)
{
alt = Q ? ~als : als;
alo = ald + alt + Q;
C = (((alt >> 31) & (ald >> 31))
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
C = C ^ Q;
Q = ~(C ^ S) & 1;
R1 = (alo == 0) ? 0 : (R1 & Q);
if ((S ^ (alo>>31)) && !C && !DBZ)
{
DBZ = 1;
}
S = alo >> 31;
sfi = (sfi << 1) | Q;
ald = (alo << 1) | (sfi >> 31);
}
/* Nth Loop */
alt = Q ? ~als : als;
alo = ald + alt + Q;
C = (((alt >> 31) & (ald >> 31))
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
C = C ^ Q;
Q = ~(C ^ S) & 1;
R1 = (alo == 0) ? 0 : (R1 & Q);
if ((S ^ (alo>>31)) && !C)
{
DBZ = 1;
}
* quotient_ptr = (sfi << 1) | Q;
* remainder_ptr = Q ? alo : (alo + als);
* overflow_ptr = DBZ | R1;
}
/* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
void
divn
(
unsigned int N,
unsigned long int als,
unsigned long int sfi,
signed32 /*signed long int*/ * quotient_ptr,
signed32 /*signed long int*/ * remainder_ptr,
int * overflow_ptr
)
{
unsigned long ald = (signed long) sfi >> (N - 1);
unsigned long alo = als;
unsigned int SS = als >> 31;
unsigned int SD = sfi >> 31;
unsigned int R1 = 1;
unsigned int OV;
unsigned int DBZ = als == 0 ? 1 : 0;
unsigned int Q = ~(SS ^ SD) & 1;
unsigned int C;
unsigned int S;
unsigned int i;
unsigned long alt = Q ? ~als : als;
/* 1st Loop */
alo = ald + alt + Q;
C = (((alt >> 31) & (ald >> 31))
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
Q = C ^ SS;
R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
S = alo >> 31;
sfi = (sfi << (32-N+1)) | Q;
ald = (alo << 1) | (sfi >> 31);
if ((alo >> 31) ^ (ald >> 31))
{
DBZ = 1;
}
/* 2nd - N-1th Loop */
for (i = 2; i < N; i++)
{
alt = Q ? ~als : als;
alo = ald + alt + Q;
C = (((alt >> 31) & (ald >> 31))
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
Q = C ^ SS;
R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
S = alo >> 31;
sfi = (sfi << 1) | Q;
ald = (alo << 1) | (sfi >> 31);
if ((alo >> 31) ^ (ald >> 31))
{
DBZ = 1;
}
}
/* Nth Loop */
alt = Q ? ~als : als;
alo = ald + alt + Q;
C = (((alt >> 31) & (ald >> 31))
| (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
Q = C ^ SS;
R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
sfi = (sfi << (32-N+1));
ald = alo;
/* End */
if (alo != 0)
{
alt = Q ? ~als : als;
alo = ald + alt + Q;
}
R1 = R1 & ((~alo >> 31) ^ SD);
if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald;
if (N != 32)
ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q;
else
ald = sfi = sfi | Q;
OV = DBZ | ((alo == 0) ? 0 : R1);
* remainder_ptr = alo;
/* Adj */
if (((alo != 0) && ((SS ^ SD) ^ R1))
|| ((alo == 0) && (SS ^ R1)))
alo = ald + 1;
else
alo = ald;
OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31));
* quotient_ptr = alo;
* overflow_ptr = OV;
}
/* sdivun imm5, reg1, reg2, reg3 */
int
OP_1C207E0 (void)
{
unsigned32 /*unsigned long int*/ quotient;
unsigned32 /*unsigned long int*/ remainder;
unsigned long int divide_by;
unsigned long int divide_this;
int overflow = 0;
unsigned int imm5;
trace_input ("sdivun", OP_IMM_REG_REG_REG, 0);
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
divide_by = State.regs[ OP[0] ];
divide_this = State.regs[ OP[1] ] << imm5;
divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
State.regs[ OP[1] ] = quotient;
State.regs[ OP[2] >> 11 ] = remainder;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient & 0x80000000) PSW |= PSW_S;
trace_output (OP_IMM_REG_REG_REG);
return 4;
}
/* sdivn imm5, reg1, reg2, reg3 */
int
OP_1C007E0 (void)
{
signed32 /*signed long int*/ quotient;
signed32 /*signed long int*/ remainder;
signed long int divide_by;
signed long int divide_this;
int overflow = 0;
unsigned int imm5;
trace_input ("sdivn", OP_IMM_REG_REG_REG, 0);
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
divide_by = (signed32) State.regs[ OP[0] ];
divide_this = (signed32) (State.regs[ OP[1] ] << imm5);
divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
State.regs[ OP[1] ] = quotient;
State.regs[ OP[2] >> 11 ] = remainder;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient < 0) PSW |= PSW_S;
trace_output (OP_IMM_REG_REG_REG);
return 4;
}
/* sdivhun imm5, reg1, reg2, reg3 */
int
OP_18207E0 (void)
{
unsigned32 /*unsigned long int*/ quotient;
unsigned32 /*unsigned long int*/ remainder;
unsigned long int divide_by;
unsigned long int divide_this;
int overflow = 0;
unsigned int imm5;
trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0);
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
divide_by = State.regs[ OP[0] ] & 0xffff;
divide_this = State.regs[ OP[1] ] << imm5;
divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
State.regs[ OP[1] ] = quotient;
State.regs[ OP[2] >> 11 ] = remainder;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient & 0x80000000) PSW |= PSW_S;
trace_output (OP_IMM_REG_REG_REG);
return 4;
}
/* sdivhn imm5, reg1, reg2, reg3 */
int
OP_18007E0 (void)
{
signed32 /*signed long int*/ quotient;
signed32 /*signed long int*/ remainder;
signed long int divide_by;
signed long int divide_this;
int overflow = 0;
unsigned int imm5;
trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0);
imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
divide_by = EXTEND16 (State.regs[ OP[0] ]);
divide_this = (signed32) (State.regs[ OP[1] ] << imm5);
divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
State.regs[ OP[1] ] = quotient;
State.regs[ OP[2] >> 11 ] = remainder;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient < 0) PSW |= PSW_S;
trace_output (OP_IMM_REG_REG_REG);
return 4;
}
/* divu reg1, reg2, reg3 */
int
OP_2C207E0 (void)
{
unsigned long int quotient;
unsigned long int remainder;
unsigned long int divide_by;
unsigned long int divide_this;
int overflow = 0;
trace_input ("divu", OP_REG_REG_REG, 0);
/* Compute the result. */
divide_by = State.regs[ OP[0] ];
divide_this = State.regs[ OP[1] ];
if (divide_by == 0)
{
PSW |= PSW_OV;
}
else
{
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient & 0x80000000) PSW |= PSW_S;
}
trace_output (OP_REG_REG_REG);
return 4;
}
/* div reg1, reg2, reg3 */
int
OP_2C007E0 (void)
{
signed long int quotient;
signed long int remainder;
signed long int divide_by;
signed long int divide_this;
trace_input ("div", OP_REG_REG_REG, 0);
/* Compute the result. */
divide_by = (signed32) State.regs[ OP[0] ];
divide_this = State.regs[ OP[1] ];
if (divide_by == 0)
{
PSW |= PSW_OV;
}
else if (divide_by == -1 && divide_this == (1L << 31))
{
PSW &= ~PSW_Z;
PSW |= PSW_OV | PSW_S;
State.regs[ OP[1] ] = (1 << 31);
State.regs[ OP[2] >> 11 ] = 0;
}
else
{
divide_this = (signed32) divide_this;
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (quotient == 0) PSW |= PSW_Z;
if (quotient < 0) PSW |= PSW_S;
}
trace_output (OP_REG_REG_REG);
return 4;
}
/* divhu reg1, reg2, reg3 */
int
OP_28207E0 (void)
{
unsigned long int quotient;
unsigned long int remainder;
unsigned long int divide_by;
unsigned long int divide_this;
int overflow = 0;
trace_input ("divhu", OP_REG_REG_REG, 0);
/* Compute the result. */
divide_by = State.regs[ OP[0] ] & 0xffff;
divide_this = State.regs[ OP[1] ];
if (divide_by == 0)
{
PSW |= PSW_OV;
}
else
{
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient & 0x80000000) PSW |= PSW_S;
}
trace_output (OP_REG_REG_REG);
return 4;
}
/* divh reg1, reg2, reg3 */
int
OP_28007E0 (void)
{
signed long int quotient;
signed long int remainder;
signed long int divide_by;
signed long int divide_this;
int overflow = 0;
trace_input ("divh", OP_REG_REG_REG, 0);
/* Compute the result. */
divide_by = EXTEND16 (State.regs[ OP[0] ]);
divide_this = State.regs[ OP[1] ];
if (divide_by == 0)
{
PSW |= PSW_OV;
}
else if (divide_by == -1 && divide_this == (1L << 31))
{
PSW &= ~PSW_Z;
PSW |= PSW_OV | PSW_S;
State.regs[ OP[1] ] = (1 << 31);
State.regs[ OP[2] >> 11 ] = 0;
}
else
{
divide_this = (signed32) divide_this;
State.regs[ OP[1] ] = quotient = divide_this / divide_by;
State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (quotient == 0) PSW |= PSW_Z;
if (quotient < 0) PSW |= PSW_S;
}
trace_output (OP_REG_REG_REG);
return 4;
}
/* mulu imm9, reg2, reg3 */
int
OP_24207E0 (void)
{
trace_input ("mulu", OP_IMM_REG_REG, 0);
Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
trace_output (OP_IMM_REG_REG);
return 4;
}
/* mul imm9, reg2, reg3 */
int
OP_24007E0 (void)
{
trace_input ("mul", OP_IMM_REG_REG, 0);
Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)));
trace_output (OP_IMM_REG_REG);
return 4;
}
/* ld.hu */
int
OP_107E0 (void)
{
int adr;
trace_input ("ld.hu", OP_LOAD32, 2);
adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
adr &= ~0x1;
State.regs[ OP[1] ] = load_mem (adr, 2);
trace_output (OP_LOAD32);
return 4;
}
/* ld.bu */
int
OP_10780 (void)
{
int adr;
trace_input ("ld.bu", OP_LOAD32, 1);
adr = (State.regs[ OP[0] ]
+ (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1)));
State.regs[ OP[1] ] = load_mem (adr, 1);
trace_output (OP_LOAD32);
return 4;
}
/* prepare list12, imm5, imm32 */
int
OP_1B0780 (void)
{
int i;
trace_input ("prepare", OP_PUSHPOP1, 0);
/* Store the registers with lower number registers being placed at higher addresses. */
for (i = 0; i < 12; i++)
if ((OP[3] & (1 << type1_regs[ i ])))
{
SP -= 4;
store_mem (SP, 4, State.regs[ 20 + i ]);
}
SP -= (OP[3] & 0x3e) << 1;
EP = load_mem (PC + 4, 4);
trace_output (OP_PUSHPOP1);
return 8;
}
/* prepare list12, imm5, imm16-32 */
int
OP_130780 (void)
{
int i;
trace_input ("prepare", OP_PUSHPOP1, 0);
/* Store the registers with lower number registers being placed at higher addresses. */
for (i = 0; i < 12; i++)
if ((OP[3] & (1 << type1_regs[ i ])))
{
SP -= 4;
store_mem (SP, 4, State.regs[ 20 + i ]);
}
SP -= (OP[3] & 0x3e) << 1;
EP = load_mem (PC + 4, 2) << 16;
trace_output (OP_PUSHPOP1);
return 6;
}
/* prepare list12, imm5, imm16 */
int
OP_B0780 (void)
{
int i;
trace_input ("prepare", OP_PUSHPOP1, 0);
/* Store the registers with lower number registers being placed at higher addresses. */
for (i = 0; i < 12; i++)
if ((OP[3] & (1 << type1_regs[ i ])))
{
SP -= 4;
store_mem (SP, 4, State.regs[ 20 + i ]);
}
SP -= (OP[3] & 0x3e) << 1;
EP = EXTEND16 (load_mem (PC + 4, 2));
trace_output (OP_PUSHPOP1);
return 6;
}
/* prepare list12, imm5, sp */
int
OP_30780 (void)
{
int i;
trace_input ("prepare", OP_PUSHPOP1, 0);
/* Store the registers with lower number registers being placed at higher addresses. */
for (i = 0; i < 12; i++)
if ((OP[3] & (1 << type1_regs[ i ])))
{
SP -= 4;
store_mem (SP, 4, State.regs[ 20 + i ]);
}
SP -= (OP[3] & 0x3e) << 1;
EP = SP;
trace_output (OP_PUSHPOP1);
return 4;
}
/* mul reg1, reg2, reg3 */
int
OP_22007E0 (void)
{
trace_input ("mul", OP_REG_REG_REG, 0);
Multiply64 (1, State.regs[ OP[0] ]);
trace_output (OP_REG_REG_REG);
return 4;
}
/* popmh list18 */
int
OP_307F0 (void)
{
int i;
trace_input ("popmh", OP_PUSHPOP2, 0);
if (OP[3] & (1 << 19))
{
if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
{
FEPSW = load_mem ( SP & ~ 3, 4);
FEPC = load_mem ((SP + 4) & ~ 3, 4);
}
else
{
EIPSW = load_mem ( SP & ~ 3, 4);
EIPC = load_mem ((SP + 4) & ~ 3, 4);
}
SP += 8;
}
/* Load the registers with lower number registers being retrieved from higher addresses. */
for (i = 16; i--;)
if ((OP[3] & (1 << type2_regs[ i ])))
{
State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4);
SP += 4;
}
trace_output (OP_PUSHPOP2);
return 4;
}
/* popml lsit18 */
int
OP_107F0 (void)
{
int i;
trace_input ("popml", OP_PUSHPOP3, 0);
if (OP[3] & (1 << 19))
{
if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
{
FEPSW = load_mem ( SP & ~ 3, 4);
FEPC = load_mem ((SP + 4) & ~ 3, 4);
}
else
{
EIPSW = load_mem ( SP & ~ 3, 4);
EIPC = load_mem ((SP + 4) & ~ 3, 4);
}
SP += 8;
}
if (OP[3] & (1 << 3))
{
PSW = load_mem (SP & ~ 3, 4);
SP += 4;
}
/* Load the registers with lower number registers being retrieved from higher addresses. */
for (i = 15; i--;)
if ((OP[3] & (1 << type3_regs[ i ])))
{
State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4);
SP += 4;
}
trace_output (OP_PUSHPOP2);
return 4;
}
/* pushmh list18 */
int
OP_307E0 (void)
{
int i;
trace_input ("pushmh", OP_PUSHPOP2, 0);
/* Store the registers with lower number registers being placed at higher addresses. */
for (i = 0; i < 16; i++)
if ((OP[3] & (1 << type2_regs[ i ])))
{
SP -= 4;
store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]);
}
if (OP[3] & (1 << 19))
{
SP -= 8;
if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
{
store_mem ((SP + 4) & ~ 3, 4, FEPC);
store_mem ( SP & ~ 3, 4, FEPSW);
}
else
{
store_mem ((SP + 4) & ~ 3, 4, EIPC);
store_mem ( SP & ~ 3, 4, EIPSW);
}
}
trace_output (OP_PUSHPOP2);
return 4;
}
/* V850E2R FPU functions */
/*
sim_fpu_status_invalid_snan = 1, -V--- (sim spec.)
sim_fpu_status_invalid_qnan = 2, ----- (sim spec.)
sim_fpu_status_invalid_isi = 4, (inf - inf) -V---
sim_fpu_status_invalid_idi = 8, (inf / inf) -V---
sim_fpu_status_invalid_zdz = 16, (0 / 0) -V---
sim_fpu_status_invalid_imz = 32, (inf * 0) -V---
sim_fpu_status_invalid_cvi = 64, convert to integer -V---
sim_fpu_status_invalid_div0 = 128, (X / 0) --Z--
sim_fpu_status_invalid_cmp = 256, compare ----- (sim spec.)
sim_fpu_status_invalid_sqrt = 512, -V---
sim_fpu_status_rounded = 1024, I----
sim_fpu_status_inexact = 2048, I---- (sim spec.)
sim_fpu_status_overflow = 4096, I--O-
sim_fpu_status_underflow = 8192, I---U
sim_fpu_status_denorm = 16384, ----U (sim spec.)
*/
void
update_fpsr (SIM_DESC sd, sim_fpu_status status, unsigned int mask, unsigned int double_op_p)
{
unsigned int fpsr = FPSR & mask;
unsigned int flags = 0;
if (fpsr & FPSR_XEI
&& ((status & (sim_fpu_status_rounded
| sim_fpu_status_overflow
| sim_fpu_status_inexact))
|| (status & sim_fpu_status_underflow
&& (fpsr & (FPSR_XEU | FPSR_XEI)) == 0
&& fpsr & FPSR_FS)))
{
flags |= FPSR_XCI | FPSR_XPI;
}
if (fpsr & FPSR_XEV
&& (status & (sim_fpu_status_invalid_isi
| sim_fpu_status_invalid_imz
| sim_fpu_status_invalid_zdz
| sim_fpu_status_invalid_idi
| sim_fpu_status_invalid_cvi
| sim_fpu_status_invalid_sqrt
| sim_fpu_status_invalid_snan)))
{
flags |= FPSR_XCV | FPSR_XPV;
}
if (fpsr & FPSR_XEZ
&& (status & sim_fpu_status_invalid_div0))
{
flags |= FPSR_XCV | FPSR_XPV;
}
if (fpsr & FPSR_XEO
&& (status & sim_fpu_status_overflow))
{
flags |= FPSR_XCO | FPSR_XPO;
}
if (((fpsr & FPSR_XEU) || (fpsr & FPSR_FS) == 0)
&& (status & (sim_fpu_status_underflow
| sim_fpu_status_denorm)))
{
flags |= FPSR_XCU | FPSR_XPU;
}
if (flags)
{
FPSR &= ~FPSR_XC;
FPSR |= flags;
SignalExceptionFPE (sd, double_op_p);
}
}
/* Exception. */
void
SignalException (SIM_DESC sd)
{
if (MPM & MPM_AUE)
{
PSW = PSW & ~(PSW_NPV | PSW_DMP | PSW_IMP);
}
}
void
SignalExceptionFPE (SIM_DESC sd, unsigned int double_op_p)
{
if (((PSW & (PSW_NP|PSW_ID)) == 0)
|| !(FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM)))
{
EIPC = PC;
EIPSW = PSW;
EIIC = (FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM))
? 0x71 : 0x72;
PSW |= (PSW_EP | PSW_ID);
PC = 0x70;
SignalException (sd);
}
}
void
check_invalid_snan (SIM_DESC sd, sim_fpu_status status, unsigned int double_op_p)
{
if ((FPSR & FPSR_XEI)
&& (status & sim_fpu_status_invalid_snan))
{
FPSR &= ~FPSR_XC;
FPSR |= FPSR_XCV;
FPSR |= FPSR_XPV;
SignalExceptionFPE (sd, double_op_p);
}
}
int
v850_float_compare (SIM_DESC sd, int cmp, sim_fpu wop1, sim_fpu wop2, int double_op_p)
{
int result = -1;
if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2))
{
if (cmp & 0x8)
{
if (FPSR & FPSR_XEV)
{
FPSR |= FPSR_XCV | FPSR_XPV;
SignalExceptionFPE (sd, double_op_p);
}
}
switch (cmp)
{
case FPU_CMP_F:
result = 0;
break;
case FPU_CMP_UN:
result = 1;
break;
case FPU_CMP_EQ:
result = 0;
break;
case FPU_CMP_UEQ:
result = 1;
break;
case FPU_CMP_OLT:
result = 0;
break;
case FPU_CMP_ULT:
result = 1;
break;
case FPU_CMP_OLE:
result = 0;
break;
case FPU_CMP_ULE:
result = 1;
break;
case FPU_CMP_SF:
result = 0;
break;
case FPU_CMP_NGLE:
result = 1;
break;
case FPU_CMP_SEQ:
result = 0;
break;
case FPU_CMP_NGL:
result = 1;
break;
case FPU_CMP_LT:
result = 0;
break;
case FPU_CMP_NGE:
result = 1;
break;
case FPU_CMP_LE:
result = 0;
break;
case FPU_CMP_NGT:
result = 1;
break;
default:
abort ();
}
}
else if (sim_fpu_is_infinity (&wop1) && sim_fpu_is_infinity (&wop2)
&& sim_fpu_sign (&wop1) == sim_fpu_sign (&wop2))
{
switch (cmp)
{
case FPU_CMP_F:
result = 0;
break;
case FPU_CMP_UN:
result = 0;
break;
case FPU_CMP_EQ:
result = 1;
break;
case FPU_CMP_UEQ:
result = 1;
break;
case FPU_CMP_OLT:
result = 0;
break;
case FPU_CMP_ULT:
result = 0;
break;
case FPU_CMP_OLE:
result = 1;
break;
case FPU_CMP_ULE:
result = 1;
break;
case FPU_CMP_SF:
result = 0;
break;
case FPU_CMP_NGLE:
result = 0;
break;
case FPU_CMP_SEQ:
result = 1;
break;
case FPU_CMP_NGL:
result = 1;
break;
case FPU_CMP_LT:
result = 0;
break;
case FPU_CMP_NGE:
result = 0;
break;
case FPU_CMP_LE:
result = 1;
break;
case FPU_CMP_NGT:
result = 1;
break;
default:
abort ();
}
}
else
{
int gt = 0,lt = 0,eq = 0, status;
status = sim_fpu_cmp (&wop1, &wop2);
switch (status)
{
case SIM_FPU_IS_SNAN:
case SIM_FPU_IS_QNAN:
abort ();
break;
case SIM_FPU_IS_NINF:
lt = 1;
break;
case SIM_FPU_IS_PINF:
gt = 1;
break;
case SIM_FPU_IS_NNUMBER:
lt = 1;
break;
case SIM_FPU_IS_PNUMBER:
gt = 1;
break;
case SIM_FPU_IS_NDENORM:
lt = 1;
break;
case SIM_FPU_IS_PDENORM:
gt = 1;
break;
case SIM_FPU_IS_NZERO:
case SIM_FPU_IS_PZERO:
eq = 1;
break;
}
switch (cmp)
{
case FPU_CMP_F:
result = 0;
break;
case FPU_CMP_UN:
result = 0;
break;
case FPU_CMP_EQ:
result = eq;
break;
case FPU_CMP_UEQ:
result = eq;
break;
case FPU_CMP_OLT:
result = lt;
break;
case FPU_CMP_ULT:
result = lt;
break;
case FPU_CMP_OLE:
result = lt || eq;
break;
case FPU_CMP_ULE:
result = lt || eq;
break;
case FPU_CMP_SF:
result = 0;
break;
case FPU_CMP_NGLE:
result = 0;
break;
case FPU_CMP_SEQ:
result = eq;
break;
case FPU_CMP_NGL:
result = eq;
break;
case FPU_CMP_LT:
result = lt;
break;
case FPU_CMP_NGE:
result = lt;
break;
case FPU_CMP_LE:
result = lt || eq;
break;
case FPU_CMP_NGT:
result = lt || eq;
break;
}
}
ASSERT (result != -1);
return result;
}
void
v850_div (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p)
{
signed long int quotient;
signed long int remainder;
signed long int divide_by;
signed long int divide_this;
bfd_boolean overflow = FALSE;
/* Compute the result. */
divide_by = op0;
divide_this = op1;
if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
{
overflow = TRUE;
divide_by = 1;
}
quotient = divide_this / divide_by;
remainder = divide_this % divide_by;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient < 0) PSW |= PSW_S;
*op2p = quotient;
*op3p = remainder;
}
void
v850_divu (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p)
{
unsigned long int quotient;
unsigned long int remainder;
unsigned long int divide_by;
unsigned long int divide_this;
bfd_boolean overflow = FALSE;
/* Compute the result. */
divide_by = op0;
divide_this = op1;
if (divide_by == 0)
{
overflow = TRUE;
divide_by = 1;
}
quotient = divide_this / divide_by;
remainder = divide_this % divide_by;
/* Set condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV);
if (overflow) PSW |= PSW_OV;
if (quotient == 0) PSW |= PSW_Z;
if (quotient & 0x80000000) PSW |= PSW_S;
*op2p = quotient;
*op3p = remainder;
}
void
v850_sar (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
{
unsigned int result, z, s, cy;
op0 &= 0x1f;
result = (signed)op1 >> op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 & (1 << (op0 - 1)));
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
*op2p = result;
}
void
v850_shl (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
{
unsigned int result, z, s, cy;
op0 &= 0x1f;
result = op1 << op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 & (1 << (32 - op0)));
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
*op2p = result;
}
void
v850_rotl (SIM_DESC sd, unsigned int amount, unsigned int src, unsigned int * dest)
{
unsigned int result, z, s, cy;
amount &= 0x1f;
result = src << amount;
result |= src >> (32 - amount);
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = ! (result & 1);
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
* dest = result;
}
void
v850_bins (SIM_DESC sd, unsigned int source, unsigned int lsb, unsigned int msb,
unsigned int * dest)
{
unsigned int mask;
unsigned int result, pos, width;
unsigned int z, s;
pos = lsb;
width = (msb - lsb) + 1;
mask = ~ (-1 << width);
source &= mask;
mask <<= pos;
result = (* dest) & ~ mask;
result |= source << pos;
/* Compute the condition codes. */
z = (result == 0);
s = result & 0x80000000;
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV );
PSW |= (z ? PSW_Z : 0) | (s ? PSW_S : 0);
* dest = result;
}
void
v850_shr (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
{
unsigned int result, z, s, cy;
op0 &= 0x1f;
result = op1 >> op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 & (1 << (op0 - 1)));
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0));
*op2p = result;
}
void
v850_satadd (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
{
unsigned int result, z, s, cy, ov, sat;
result = op0 + op1;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (result < op0 || result < op1);
ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
&& (op0 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
/* Handle saturated results. */
if (sat && s)
{
result = 0x7fffffff;
PSW &= ~PSW_S;
}
else if (sat)
{
result = 0x80000000;
PSW |= PSW_S;
}
*op2p = result;
}
void
v850_satsub (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p)
{
unsigned int result, z, s, cy, ov, sat;
/* Compute the result. */
result = op1 - op0;
/* Compute the condition codes. */
z = (result == 0);
s = (result & 0x80000000);
cy = (op1 < op0);
ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
&& (op1 & 0x80000000) != (result & 0x80000000));
sat = ov;
/* Store the result and condition codes. */
PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
| (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
| (sat ? PSW_SAT : 0));
/* Handle saturated results. */
if (sat && s)
{
result = 0x7fffffff;
PSW &= ~PSW_S;
}
else if (sat)
{
result = 0x80000000;
PSW |= PSW_S;
}
*op2p = result;
}
unsigned32
load_data_mem (SIM_DESC sd,
SIM_ADDR addr,
int len)
{
uint32 data;
switch (len)
{
case 1:
data = sim_core_read_unaligned_1 (STATE_CPU (sd, 0),
PC, read_map, addr);
break;
case 2:
data = sim_core_read_unaligned_2 (STATE_CPU (sd, 0),
PC, read_map, addr);
break;
case 4:
data = sim_core_read_unaligned_4 (STATE_CPU (sd, 0),
PC, read_map, addr);
break;
default:
abort ();
}
return data;
}
void
store_data_mem (SIM_DESC sd,
SIM_ADDR addr,
int len,
unsigned32 data)
{
switch (len)
{
case 1:
store_mem (addr, 1, data);
break;
case 2:
store_mem (addr, 2, data);
break;
case 4:
store_mem (addr, 4, data);
break;
default:
abort ();
}
}
int
mpu_load_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg)
{
int result = 1;
if (PSW & PSW_DMP)
{
if (IPE0 && addr >= IPA2ADDR (IPA0L) && addr <= IPA2ADDR (IPA0L) && IPR0)
{
/* text area */
}
else if (IPE1 && addr >= IPA2ADDR (IPA1L) && addr <= IPA2ADDR (IPA1L) && IPR1)
{
/* text area */
}
else if (IPE2 && addr >= IPA2ADDR (IPA2L) && addr <= IPA2ADDR (IPA2L) && IPR2)
{
/* text area */
}
else if (IPE3 && addr >= IPA2ADDR (IPA3L) && addr <= IPA2ADDR (IPA3L) && IPR3)
{
/* text area */
}
else if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM))
{
/* preifarallel area */
}
else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU))
{
/* stack area */
}
else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPR0
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPR1
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPR2
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPR3
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else
{
VMECR &= ~(VMECR_VMW | VMECR_VMX);
VMECR |= VMECR_VMR;
VMADR = addr;
VMTID = TID;
FEIC = 0x431;
PC = 0x30;
SignalException (sd);
result = 0;
}
}
return result;
}
int
mpu_store_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg)
{
int result = 1;
if (PSW & PSW_DMP)
{
if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM))
{
/* preifarallel area */
}
else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU))
{
/* stack area */
}
else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPW0
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPW1
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPW2
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPW3
&& ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1))
{
/* data area */
}
else
{
if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM))
{
FEIC = 0x432;
VPTID = TID;
VPADR = PC;
#ifdef NOT_YET
VIP_PP;
VPECR;
#endif
}
else
{
FEIC = 0x431;
VMTID = TID;
VMADR = VMECR;
VMECR &= ~(VMECR_VMW | VMECR_VMX);
VMECR |= VMECR_VMR;
PC = 0x30;
}
result = 0;
}
}
return result;
}