binutils-gdb/gdb/gdbserver/low-linux.c

773 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Low level interface to ptrace, for the remote server for GDB.
Copyright (C) 1995, 1996 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include <sys/wait.h>
#include "frame.h"
#include "inferior.h"
#include <stdio.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/ptrace.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>
/***************Begin MY defs*********************/
int quit_flag = 0;
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
/* Index within `registers' of the first byte of the space for
register N. */
char buf2[MAX_REGISTER_RAW_SIZE];
/***************End MY defs*********************/
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
/* Default the type of the ptrace transfer to int. */
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#endif
extern char **environ;
extern int errno;
extern int inferior_pid;
void quit (), perror_with_name ();
int query ();
static void initialize_arch (void);
/* Start an inferior process and returns its pid.
ALLARGS is a vector of program-name and args.
ENV is the environment vector to pass. */
int
create_inferior (program, allargs)
char *program;
char **allargs;
{
int pid;
pid = fork ();
if (pid < 0)
perror_with_name ("fork");
if (pid == 0)
{
ptrace (PTRACE_TRACEME, 0, 0, 0);
execv (program, allargs);
fprintf (stderr, "Cannot exec %s: %s.\n", program,
errno < sys_nerr ? sys_errlist[errno] : "unknown error");
fflush (stderr);
_exit (0177);
}
return pid;
}
/* Kill the inferior process. Make us have no inferior. */
void
kill_inferior ()
{
if (inferior_pid == 0)
return;
ptrace (PTRACE_KILL, inferior_pid, 0, 0);
wait (0);
/*************inferior_died ();****VK**************/
}
/* Return nonzero if the given thread is still alive. */
int
mythread_alive (pid)
int pid;
{
return 1;
}
/* Wait for process, returns status */
unsigned char
mywait (status)
char *status;
{
int pid;
union wait w;
pid = wait (&w);
if (pid != inferior_pid)
perror_with_name ("wait");
if (WIFEXITED (w))
{
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
*status = 'W';
return ((unsigned char) WEXITSTATUS (w));
}
else if (!WIFSTOPPED (w))
{
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
*status = 'X';
return ((unsigned char) WTERMSIG (w));
}
fetch_inferior_registers (0);
*status = 'T';
return ((unsigned char) WSTOPSIG (w));
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
myresume (step, signal)
int step;
int signal;
{
errno = 0;
ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
if (errno)
perror_with_name ("ptrace");
}
#if !defined (offsetof)
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
#endif
/* U_REGS_OFFSET is the offset of the registers within the u area. */
#if !defined (U_REGS_OFFSET)
#define U_REGS_OFFSET \
ptrace (PT_READ_U, inferior_pid, \
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
- KERNEL_U_ADDR
#endif
#ifdef I386_GNULINUX_TARGET
/* i386_register_raw_size[i] is the number of bytes of storage in the
actual machine representation for register i. */
int i386_register_raw_size[MAX_NUM_REGS] = {
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
10, 10, 10, 10,
10, 10, 10, 10,
4, 4, 4, 4,
4, 4, 4, 4,
16, 16, 16, 16,
16, 16, 16, 16,
4
};
int i386_register_byte[MAX_NUM_REGS];
static void
initialize_arch ()
{
/* Initialize the table saying where each register starts in the
register file. */
{
int i, offset;
offset = 0;
for (i = 0; i < MAX_NUM_REGS; i++)
{
i386_register_byte[i] = offset;
offset += i386_register_raw_size[i];
}
}
}
/* this table must line up with REGISTER_NAMES in tm-i386v.h */
/* symbols like 'EAX' come from <sys/reg.h> */
static int regmap[] =
{
EAX, ECX, EDX, EBX,
UESP, EBP, ESI, EDI,
EIP, EFL, CS, SS,
DS, ES, FS, GS,
};
int
i386_register_u_addr (blockend, regnum)
int blockend;
int regnum;
{
#if 0
/* this will be needed if fp registers are reinstated */
/* for now, you can look at them with 'info float'
* sys5 wont let you change them with ptrace anyway
*/
if (regnum >= FP0_REGNUM && regnum <= FP7_REGNUM)
{
int ubase, fpstate;
struct user u;
ubase = blockend + 4 * (SS + 1) - KSTKSZ;
fpstate = ubase + ((char *) &u.u_fpstate - (char *) &u);
return (fpstate + 0x1c + 10 * (regnum - FP0_REGNUM));
}
else
#endif
return (blockend + 4 * regmap[regnum]);
}
#elif defined(TARGET_M68K)
static void
initialize_arch ()
{
return;
}
/* This table must line up with REGISTER_NAMES in tm-m68k.h */
static int regmap[] =
{
#ifdef PT_D0
PT_D0, PT_D1, PT_D2, PT_D3, PT_D4, PT_D5, PT_D6, PT_D7,
PT_A0, PT_A1, PT_A2, PT_A3, PT_A4, PT_A5, PT_A6, PT_USP,
PT_SR, PT_PC,
#else
14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15,
17, 18,
#endif
#ifdef PT_FP0
PT_FP0, PT_FP1, PT_FP2, PT_FP3, PT_FP4, PT_FP5, PT_FP6, PT_FP7,
PT_FPCR, PT_FPSR, PT_FPIAR
#else
21, 24, 27, 30, 33, 36, 39, 42, 45, 46, 47
#endif
};
/* BLOCKEND is the value of u.u_ar0, and points to the place where GS
is stored. */
int
m68k_linux_register_u_addr (blockend, regnum)
int blockend;
int regnum;
{
return (blockend + 4 * regmap[regnum]);
}
#elif defined(IA64_GNULINUX_TARGET)
#undef NUM_FREGS
#define NUM_FREGS 0
#include <asm/ptrace_offsets.h>
static int u_offsets[] =
{
/* general registers */
-1, /* gr0 not available; i.e, it's always zero */
PT_R1,
PT_R2,
PT_R3,
PT_R4,
PT_R5,
PT_R6,
PT_R7,
PT_R8,
PT_R9,
PT_R10,
PT_R11,
PT_R12,
PT_R13,
PT_R14,
PT_R15,
PT_R16,
PT_R17,
PT_R18,
PT_R19,
PT_R20,
PT_R21,
PT_R22,
PT_R23,
PT_R24,
PT_R25,
PT_R26,
PT_R27,
PT_R28,
PT_R29,
PT_R30,
PT_R31,
/* gr32 through gr127 not directly available via the ptrace interface */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
/* Floating point registers */
-1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
PT_F2,
PT_F3,
PT_F4,
PT_F5,
PT_F6,
PT_F7,
PT_F8,
PT_F9,
PT_F10,
PT_F11,
PT_F12,
PT_F13,
PT_F14,
PT_F15,
PT_F16,
PT_F17,
PT_F18,
PT_F19,
PT_F20,
PT_F21,
PT_F22,
PT_F23,
PT_F24,
PT_F25,
PT_F26,
PT_F27,
PT_F28,
PT_F29,
PT_F30,
PT_F31,
PT_F32,
PT_F33,
PT_F34,
PT_F35,
PT_F36,
PT_F37,
PT_F38,
PT_F39,
PT_F40,
PT_F41,
PT_F42,
PT_F43,
PT_F44,
PT_F45,
PT_F46,
PT_F47,
PT_F48,
PT_F49,
PT_F50,
PT_F51,
PT_F52,
PT_F53,
PT_F54,
PT_F55,
PT_F56,
PT_F57,
PT_F58,
PT_F59,
PT_F60,
PT_F61,
PT_F62,
PT_F63,
PT_F64,
PT_F65,
PT_F66,
PT_F67,
PT_F68,
PT_F69,
PT_F70,
PT_F71,
PT_F72,
PT_F73,
PT_F74,
PT_F75,
PT_F76,
PT_F77,
PT_F78,
PT_F79,
PT_F80,
PT_F81,
PT_F82,
PT_F83,
PT_F84,
PT_F85,
PT_F86,
PT_F87,
PT_F88,
PT_F89,
PT_F90,
PT_F91,
PT_F92,
PT_F93,
PT_F94,
PT_F95,
PT_F96,
PT_F97,
PT_F98,
PT_F99,
PT_F100,
PT_F101,
PT_F102,
PT_F103,
PT_F104,
PT_F105,
PT_F106,
PT_F107,
PT_F108,
PT_F109,
PT_F110,
PT_F111,
PT_F112,
PT_F113,
PT_F114,
PT_F115,
PT_F116,
PT_F117,
PT_F118,
PT_F119,
PT_F120,
PT_F121,
PT_F122,
PT_F123,
PT_F124,
PT_F125,
PT_F126,
PT_F127,
/* predicate registers - we don't fetch these individually */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* branch registers */
PT_B0,
PT_B1,
PT_B2,
PT_B3,
PT_B4,
PT_B5,
PT_B6,
PT_B7,
/* virtual frame pointer and virtual return address pointer */
-1, -1,
/* other registers */
PT_PR,
PT_CR_IIP, /* ip */
PT_CR_IPSR, /* psr */
PT_CR_IFS, /* cfm */
/* kernel registers not visible via ptrace interface (?) */
-1, -1, -1, -1, -1, -1, -1, -1,
/* hole */
-1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_RSC,
PT_AR_BSP,
PT_AR_BSPSTORE,
PT_AR_RNAT,
-1,
-1, /* Not available: FCR, IA32 floating control register */
-1, -1,
-1, /* Not available: EFLAG */
-1, /* Not available: CSD */
-1, /* Not available: SSD */
-1, /* Not available: CFLG */
-1, /* Not available: FSR */
-1, /* Not available: FIR */
-1, /* Not available: FDR */
-1,
PT_AR_CCV,
-1, -1, -1,
PT_AR_UNAT,
-1, -1, -1,
PT_AR_FPSR,
-1, -1, -1,
-1, /* Not available: ITC */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_PFS,
PT_AR_LC,
-1, /* Not available: EC, the Epilog Count register */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1,
/* nat bits - not fetched directly; instead we obtain these bits from
either rnat or unat or from memory. */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
};
int
ia64_register_u_addr (int blockend, int regnum)
{
int addr;
if (regnum < 0 || regnum >= NUM_REGS)
error ("Invalid register number %d.", regnum);
addr = u_offsets[regnum];
if (addr == -1)
addr = 0;
return addr;
}
static void
initialize_arch ()
{
return;
}
#endif
CORE_ADDR
register_addr (regno, blockend)
int regno;
CORE_ADDR blockend;
{
CORE_ADDR addr;
if (regno < 0 || regno >= ARCH_NUM_REGS)
error ("Invalid register number %d.", regno);
REGISTER_U_ADDR (addr, blockend, regno);
return addr;
}
/* Fetch one register. */
static void
fetch_register (regno)
int regno;
{
CORE_ADDR regaddr;
register int i;
/* Offset of registers within the u area. */
unsigned int offset;
offset = U_REGS_OFFSET;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
*(PTRACE_XFER_TYPE *) &registers[REGISTER_BYTE (regno) + i] =
ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
regaddr += sizeof (PTRACE_XFER_TYPE);
if (errno != 0)
{
/* Warning, not error, in case we are attached; sometimes the
kernel doesn't let us at the registers. */
char *err = strerror (errno);
char *msg = alloca (strlen (err) + 128);
sprintf (msg, "reading register %d: %s", regno, err);
error (msg);
goto error_exit;
}
}
error_exit:;
}
/* Fetch all registers, or just one, from the child process. */
void
fetch_inferior_registers (regno)
int regno;
{
if (regno == -1 || regno == 0)
for (regno = 0; regno < NUM_REGS - NUM_FREGS; regno++)
fetch_register (regno);
else
fetch_register (regno);
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (regno)
int regno;
{
CORE_ADDR regaddr;
int i;
unsigned int offset = U_REGS_OFFSET;
if (regno >= 0)
{
#if 0
if (CANNOT_STORE_REGISTER (regno))
return;
#endif
regaddr = register_addr (regno, offset);
errno = 0;
#if 0
if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
{
scratch = *(int *) &registers[REGISTER_BYTE (regno)] | 0x3;
ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
scratch, 0);
if (errno != 0)
{
/* Error, even if attached. Failing to write these two
registers is pretty serious. */
sprintf (buf, "writing register number %d", regno);
perror_with_name (buf);
}
}
else
#endif
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
{
errno = 0;
ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) &registers[REGISTER_BYTE (regno) + i]);
if (errno != 0)
{
/* Warning, not error, in case we are attached; sometimes the
kernel doesn't let us at the registers. */
char *err = strerror (errno);
char *msg = alloca (strlen (err) + 128);
sprintf (msg, "writing register %d: %s",
regno, err);
error (msg);
return;
}
regaddr += sizeof (int);
}
}
else
for (regno = 0; regno < NUM_REGS - NUM_FREGS; regno++)
store_inferior_registers (regno);
}
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. */
void
read_inferior_memory (memaddr, myaddr, len)
CORE_ADDR memaddr;
char *myaddr;
int len;
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
/ sizeof (PTRACE_XFER_TYPE);
/* Allocate buffer of that many longwords. */
register PTRACE_XFER_TYPE *buffer
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, addr, 0);
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
}
/* Copy LEN bytes of data from debugger memory at MYADDR
to inferior's memory at MEMADDR.
On failure (cannot write the inferior)
returns the value of errno. */
int
write_inferior_memory (memaddr, myaddr, len)
CORE_ADDR memaddr;
char *myaddr;
int len;
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
/* Allocate buffer of that many longwords. */
register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
extern int errno;
/* Fill start and end extra bytes of buffer with existing memory data. */
buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid, addr, 0);
if (count > 1)
{
buffer[count - 1]
= ptrace (PTRACE_PEEKTEXT, inferior_pid,
addr + (count - 1) * sizeof (PTRACE_XFER_TYPE), 0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
ptrace (PTRACE_POKETEXT, inferior_pid, addr, buffer[i]);
if (errno)
return errno;
}
return 0;
}
void
initialize_low ()
{
initialize_arch ();
}