1863 lines
52 KiB
C
1863 lines
52 KiB
C
/* ns32k.c -- Assemble on the National Semiconductor 32k series
|
||
Copyright (C) 1987, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*#define SHOW_NUM 1*/ /* uncomment for debugging */
|
||
|
||
#include <stdio.h>
|
||
#include <ctype.h>
|
||
#ifdef USG
|
||
#include <string.h>
|
||
#else
|
||
#include <strings.h>
|
||
#endif
|
||
#include "opcode/ns32k.h"
|
||
|
||
#include "as.h"
|
||
|
||
#include "obstack.h"
|
||
|
||
/* Macros */
|
||
#define IIF_ENTRIES 13 /* number of entries in iif */
|
||
#define PRIVATE_SIZE 256 /* size of my garbage memory */
|
||
#define MAX_ARGS 4
|
||
#define DEFAULT -1 /* addr_mode returns this value when plain constant or label is encountered */
|
||
|
||
#define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
|
||
iif.iifP[ptr].type= a1; \
|
||
iif.iifP[ptr].size= c1; \
|
||
iif.iifP[ptr].object= e1; \
|
||
iif.iifP[ptr].object_adjust= g1; \
|
||
iif.iifP[ptr].pcrel= i1; \
|
||
iif.iifP[ptr].pcrel_adjust= k1; \
|
||
iif.iifP[ptr].im_disp= m1; \
|
||
iif.iifP[ptr].relax_substate= o1; \
|
||
iif.iifP[ptr].bit_fixP= q1; \
|
||
iif.iifP[ptr].addr_mode= s1; \
|
||
iif.iifP[ptr].bsr= u1;
|
||
|
||
#ifdef SEQUENT_COMPATABILITY
|
||
#define LINE_COMMENT_CHARS "|"
|
||
#define ABSOLUTE_PREFIX '@'
|
||
#define IMMEDIATE_PREFIX '#'
|
||
#endif
|
||
|
||
#ifndef LINE_COMMENT_CHARS
|
||
#define LINE_COMMENT_CHARS "#"
|
||
#endif
|
||
|
||
char comment_chars[] = "#";
|
||
char line_comment_chars[] = LINE_COMMENT_CHARS;
|
||
#if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
|
||
#define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined */
|
||
#endif
|
||
|
||
struct addr_mode {
|
||
char mode; /* addressing mode of operand (0-31) */
|
||
char scaled_mode; /* mode combined with scaled mode */
|
||
char scaled_reg; /* register used in scaled+1 (1-8) */
|
||
char float_flag; /* set if R0..R7 was F0..F7 ie a floating-point-register */
|
||
char am_size; /* estimated max size of general addr-mode parts*/
|
||
char im_disp; /* if im_disp==1 we have a displacement */
|
||
char pcrel; /* 1 if pcrel, this is really redundant info */
|
||
char disp_suffix[2]; /* length of displacement(s), 0=undefined */
|
||
char *disp[2]; /* pointer(s) at displacement(s)
|
||
or immediates(s) (ascii) */
|
||
char index_byte; /* index byte */
|
||
};
|
||
typedef struct addr_mode addr_modeS;
|
||
|
||
|
||
char *freeptr,*freeptr_static; /* points at some number of free bytes */
|
||
struct hash_control *inst_hash_handle;
|
||
|
||
struct ns32k_opcode *desc; /* pointer at description of instruction */
|
||
addr_modeS addr_modeP;
|
||
char EXP_CHARS[] = "eE";
|
||
char FLT_CHARS[] = "fd"; /* we don't want to support lowercase, do we */
|
||
|
||
/* UPPERCASE denotes live names
|
||
* when an instruction is built, IIF is used as an intermidiate form to store
|
||
* the actual parts of the instruction. A ns32k machine instruction can
|
||
* be divided into a couple of sub PARTs. When an instruction is assembled
|
||
* the appropriate PART get an assignment. When an IIF has been completed it's
|
||
* converted to a FRAGment as specified in AS.H */
|
||
|
||
/* internal structs */
|
||
struct option {
|
||
char *pattern;
|
||
unsigned long or;
|
||
unsigned long and;
|
||
};
|
||
|
||
typedef struct {
|
||
int type; /* how to interpret object */
|
||
int size; /* Estimated max size of object */
|
||
unsigned long object; /* binary data */
|
||
int object_adjust; /* number added to object */
|
||
int pcrel; /* True if object is pcrel */
|
||
int pcrel_adjust; /* length in bytes from the
|
||
instruction start to the
|
||
displacement */
|
||
int im_disp; /* True if the object is a displacement */
|
||
relax_substateT relax_substate; /* Initial relaxsubstate */
|
||
bit_fixS *bit_fixP; /* Pointer at bit_fix struct */
|
||
int addr_mode; /* What addrmode do we associate with this iif-entry */
|
||
char bsr; /* Sequent hack */
|
||
}iif_entryT; /* Internal Instruction Format */
|
||
|
||
struct int_ins_form {
|
||
int instr_size; /* Max size of instruction in bytes. */
|
||
iif_entryT iifP[IIF_ENTRIES + 1];
|
||
};
|
||
struct int_ins_form iif;
|
||
expressionS exprP;
|
||
char *input_line_pointer;
|
||
/* description of the PARTs in IIF
|
||
*object[n]:
|
||
* 0 total length in bytes of entries in iif
|
||
* 1 opcode
|
||
* 2 index_byte_a
|
||
* 3 index_byte_b
|
||
* 4 disp_a_1
|
||
* 5 disp_a_2
|
||
* 6 disp_b_1
|
||
* 7 disp_b_2
|
||
* 8 imm_a
|
||
* 9 imm_b
|
||
* 10 implied1
|
||
* 11 implied2
|
||
*
|
||
* For every entry there is a datalength in bytes. This is stored in size[n].
|
||
* 0, the objectlength is not explicitly given by the instruction
|
||
* and the operand is undefined. This is a case for relaxation.
|
||
* Reserve 4 bytes for the final object.
|
||
*
|
||
* 1, the entry contains one byte
|
||
* 2, the entry contains two bytes
|
||
* 3, the entry contains three bytes
|
||
* 4, the entry contains four bytes
|
||
* etc
|
||
*
|
||
* Furthermore, every entry has a data type identifier in type[n].
|
||
*
|
||
* 0, the entry is void, ignore it.
|
||
* 1, the entry is a binary number.
|
||
* 2, the entry is a pointer at an expression.
|
||
* Where expression may be as simple as a single '1',
|
||
* and as complicated as foo-bar+12,
|
||
* foo and bar may be undefined but suffixed by :{b|w|d} to
|
||
* control the length of the object.
|
||
*
|
||
* 3, the entry is a pointer at a bignum struct
|
||
*
|
||
*
|
||
* The low-order-byte coresponds to low physical memory.
|
||
* Obviously a FRAGment must be created for each valid disp in PART whose
|
||
* datalength is undefined (to bad) .
|
||
* The case where just the expression is undefined is less severe and is
|
||
* handled by fix. Here the number of bytes in the objectfile is known.
|
||
* With this representation we simplify the assembly and separates the
|
||
* machine dependent/independent parts in a more clean way (said OE)
|
||
*/
|
||
|
||
struct option opt1[]= /* restore, exit */
|
||
{
|
||
{ "r0", 0x80, 0xff },
|
||
{ "r1", 0x40, 0xff },
|
||
{ "r2", 0x20, 0xff },
|
||
{ "r3", 0x10, 0xff },
|
||
{ "r4", 0x08, 0xff },
|
||
{ "r5", 0x04, 0xff },
|
||
{ "r6", 0x02, 0xff },
|
||
{ "r7", 0x01, 0xff },
|
||
{ 0 , 0x00, 0xff }
|
||
};
|
||
struct option opt2[]= /* save, enter */
|
||
{
|
||
{ "r0", 0x01, 0xff },
|
||
{ "r1", 0x02, 0xff },
|
||
{ "r2", 0x04, 0xff },
|
||
{ "r3", 0x08, 0xff },
|
||
{ "r4", 0x10, 0xff },
|
||
{ "r5", 0x20, 0xff },
|
||
{ "r6", 0x40, 0xff },
|
||
{ "r7", 0x80, 0xff },
|
||
{ 0 , 0x00, 0xff }
|
||
};
|
||
struct option opt3[]= /* setcfg */
|
||
{
|
||
{ "c", 0x8, 0xff },
|
||
{ "m", 0x4, 0xff },
|
||
{ "f", 0x2, 0xff },
|
||
{ "i", 0x1, 0xff },
|
||
{ 0 , 0x0, 0xff }
|
||
};
|
||
struct option opt4[]= /* cinv */
|
||
{
|
||
{ "a", 0x4, 0xff },
|
||
{ "i", 0x2, 0xff },
|
||
{ "d", 0x1, 0xff },
|
||
{ 0 , 0x0, 0xff }
|
||
};
|
||
struct option opt5[]= /* string inst */
|
||
{
|
||
{ "b", 0x2, 0xff },
|
||
{ "u", 0xc, 0xff },
|
||
{ "w", 0x4, 0xff },
|
||
{ 0 , 0x0, 0xff }
|
||
};
|
||
struct option opt6[]= /* plain reg ext,cvtp etc */
|
||
{
|
||
{ "r0", 0x00, 0xff },
|
||
{ "r1", 0x01, 0xff },
|
||
{ "r2", 0x02, 0xff },
|
||
{ "r3", 0x03, 0xff },
|
||
{ "r4", 0x04, 0xff },
|
||
{ "r5", 0x05, 0xff },
|
||
{ "r6", 0x06, 0xff },
|
||
{ "r7", 0x07, 0xff },
|
||
{ 0 , 0x00, 0xff }
|
||
};
|
||
|
||
#if !defined(NS32032) && !defined(NS32532)
|
||
#define NS32032
|
||
#endif
|
||
|
||
struct option cpureg_532[]= /* lpr spr */
|
||
{
|
||
{ "us", 0x0, 0xff },
|
||
{ "dcr", 0x1, 0xff },
|
||
{ "bpc", 0x2, 0xff },
|
||
{ "dsr", 0x3, 0xff },
|
||
{ "car", 0x4, 0xff },
|
||
{ "fp", 0x8, 0xff },
|
||
{ "sp", 0x9, 0xff },
|
||
{ "sb", 0xa, 0xff },
|
||
{ "usp", 0xb, 0xff },
|
||
{ "cfg", 0xc, 0xff },
|
||
{ "psr", 0xd, 0xff },
|
||
{ "intbase", 0xe, 0xff },
|
||
{ "mod", 0xf, 0xff },
|
||
{ 0 , 0x00, 0xff }
|
||
};
|
||
struct option mmureg_532[]= /* lmr smr */
|
||
{
|
||
{ "mcr", 0x9, 0xff },
|
||
{ "msr", 0xa, 0xff },
|
||
{ "tear", 0xb, 0xff },
|
||
{ "ptb0", 0xc, 0xff },
|
||
{ "ptb1", 0xd, 0xff },
|
||
{ "ivar0", 0xe, 0xff },
|
||
{ "ivar1", 0xf, 0xff },
|
||
{ 0 , 0x0, 0xff }
|
||
};
|
||
|
||
struct option cpureg_032[]= /* lpr spr */
|
||
{
|
||
{ "upsr", 0x0, 0xff },
|
||
{ "fp", 0x8, 0xff },
|
||
{ "sp", 0x9, 0xff },
|
||
{ "sb", 0xa, 0xff },
|
||
{ "psr", 0xd, 0xff },
|
||
{ "intbase", 0xe, 0xff },
|
||
{ "mod", 0xf, 0xff },
|
||
{ 0 , 0x0, 0xff }
|
||
};
|
||
struct option mmureg_032[]= /* lmr smr */
|
||
{
|
||
{ "bpr0", 0x0, 0xff },
|
||
{ "bpr1", 0x1, 0xff },
|
||
{ "pf0", 0x4, 0xff },
|
||
{ "pf1", 0x5, 0xff },
|
||
{ "sc", 0x8, 0xff },
|
||
{ "msr", 0xa, 0xff },
|
||
{ "bcnt", 0xb, 0xff },
|
||
{ "ptb0", 0xc, 0xff },
|
||
{ "ptb1", 0xd, 0xff },
|
||
{ "eia", 0xf, 0xff },
|
||
{ 0 , 0x0, 0xff }
|
||
};
|
||
|
||
#if defined(NS32532)
|
||
struct option *cpureg = cpureg_532;
|
||
struct option *mmureg = mmureg_532;
|
||
#else
|
||
struct option *cpureg = cpureg_032;
|
||
struct option *mmureg = mmureg_032;
|
||
#endif
|
||
|
||
|
||
const pseudo_typeS md_pseudo_table[]={ /* so far empty */
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
#define IND(x,y) (((x)<<2)+(y))
|
||
|
||
/* those are index's to relax groups in md_relax_table
|
||
ie it must be multiplied by 4 to point at a group start. Viz IND(x,y)
|
||
Se function relax_segment in write.c for more info */
|
||
|
||
#define BRANCH 1
|
||
#define PCREL 2
|
||
|
||
/* those are index's to entries in a relax group */
|
||
|
||
#define BYTE 0
|
||
#define WORD 1
|
||
#define DOUBLE 2
|
||
#define UNDEF 3
|
||
/* Those limits are calculated from the displacement start in memory.
|
||
The ns32k uses the begining of the instruction as displacement base.
|
||
This type of displacements could be handled here by moving the limit window
|
||
up or down. I choose to use an internal displacement base-adjust as there
|
||
are other routines that must consider this. Also, as we have two various
|
||
offset-adjusts in the ns32k (acb versus br/brs/jsr/bcond), two set of limits
|
||
would have had to be used.
|
||
Now we dont have to think about that. */
|
||
|
||
|
||
const relax_typeS md_relax_table[] = {
|
||
{ 1, 1, 0, 0 },
|
||
{ 1, 1, 0, 0 },
|
||
{ 1, 1, 0, 0 },
|
||
{ 1, 1, 0, 0 },
|
||
|
||
{ (63), (-64), 1, IND(BRANCH,WORD) },
|
||
{ (8192), (-8192), 2, IND(BRANCH,DOUBLE) },
|
||
{ 0, 0, 4, 0 },
|
||
{ 1, 1, 0, 0 }
|
||
};
|
||
|
||
/* Array used to test if mode contains displacements.
|
||
Value is true if mode contains displacement. */
|
||
|
||
char disp_test[] = { 0,0,0,0,0,0,0,0,
|
||
1,1,1,1,1,1,1,1,
|
||
1,1,1,0,0,1,1,0,
|
||
1,1,1,1,1,1,1,1 };
|
||
|
||
/* Array used to calculate max size of displacements */
|
||
|
||
char disp_size[] = { 4,1,2,0,4 };
|
||
|
||
|
||
#if __STDC__ == 1
|
||
|
||
static segT evaluate_expr(expressionS *resultP, char *ptr);
|
||
static void md_number_to_disp(char *buf, long val, int n);
|
||
static void md_number_to_imm(char *buf, long val, int n);
|
||
|
||
#else /* not __STDC__ */
|
||
|
||
static segT evaluate_expr();
|
||
static void md_number_to_disp();
|
||
static void md_number_to_imm();
|
||
|
||
#endif /* not __STDC__ */
|
||
|
||
/* Parses a general operand into an addressingmode struct
|
||
|
||
in: pointer at operand in ascii form
|
||
pointer at addr_mode struct for result
|
||
the level of recursion. (always 0 or 1)
|
||
|
||
out: data in addr_mode struct
|
||
*/
|
||
int addr_mode(operand,addr_modeP,recursive_level)
|
||
char *operand;
|
||
register addr_modeS *addr_modeP;
|
||
int recursive_level;
|
||
{
|
||
register char *str;
|
||
register int i;
|
||
register int strl;
|
||
register int mode;
|
||
int j;
|
||
mode = DEFAULT; /* default */
|
||
addr_modeP->scaled_mode=0; /* why not */
|
||
addr_modeP->scaled_reg=0; /* if 0, not scaled index */
|
||
addr_modeP->float_flag=0;
|
||
addr_modeP->am_size=0;
|
||
addr_modeP->im_disp=0;
|
||
addr_modeP->pcrel=0; /* not set in this function */
|
||
addr_modeP->disp_suffix[0]=0;
|
||
addr_modeP->disp_suffix[1]=0;
|
||
addr_modeP->disp[0]=NULL;
|
||
addr_modeP->disp[1]=NULL;
|
||
str=operand;
|
||
if (str[0]==0) {return (0);} /* we don't want this */
|
||
strl=strlen(str);
|
||
switch (str[0]) {
|
||
/* the following three case statements controls the mode-chars
|
||
this is the place to ed if you want to change them */
|
||
#ifdef ABSOLUTE_PREFIX
|
||
case ABSOLUTE_PREFIX:
|
||
if (str[strl-1]==']') break;
|
||
addr_modeP->mode=21; /* absolute */
|
||
addr_modeP->disp[0]=str+1;
|
||
return (-1);
|
||
#endif
|
||
#ifdef IMMEDIATE_PREFIX
|
||
case IMMEDIATE_PREFIX:
|
||
if (str[strl-1]==']') break;
|
||
addr_modeP->mode=20; /* immediate */
|
||
addr_modeP->disp[0]=str+1;
|
||
return (-1);
|
||
#endif
|
||
case '.':
|
||
if (str[strl-1]!=']') {
|
||
switch (str[1]) {
|
||
case'-':case'+':
|
||
if (str[2]!='\000') {
|
||
addr_modeP->mode=27; /* pc-relativ */
|
||
addr_modeP->disp[0]=str+2;
|
||
return (-1);
|
||
}
|
||
default:
|
||
as_warn("Invalid syntax in PC-relative addressing mode");
|
||
return(0);
|
||
}
|
||
}
|
||
break;
|
||
case'e':
|
||
if (str[strl-1]!=']') {
|
||
if((!strncmp(str,"ext(",4)) && strl>7) { /* external */
|
||
addr_modeP->disp[0]=str+4;
|
||
i=0;
|
||
j=2;
|
||
do { /* disp[0]'s termination point */
|
||
j+=1;
|
||
if (str[j]=='(') i++;
|
||
if (str[j]==')') i--;
|
||
} while (j<strl && i!=0);
|
||
if (i!=0 || !(str[j+1]=='-' || str[j+1]=='+') ) {
|
||
as_warn("Invalid syntax in External addressing mode");
|
||
return(0);
|
||
}
|
||
str[j]='\000'; /* null terminate disp[0] */
|
||
addr_modeP->disp[1]=str+j+2;
|
||
addr_modeP->mode=22;
|
||
return (-1);
|
||
}
|
||
}
|
||
break;
|
||
default:;
|
||
}
|
||
strl=strlen(str);
|
||
switch(strl) {
|
||
case 2:
|
||
switch (str[0]) {
|
||
case'f':addr_modeP->float_flag=1;
|
||
case'r':
|
||
if (str[1]>='0' && str[1]<'8') {
|
||
addr_modeP->mode=str[1]-'0';
|
||
return (-1);
|
||
}
|
||
}
|
||
case 3:
|
||
if (!strncmp(str,"tos",3)) {
|
||
addr_modeP->mode=23; /* TopOfStack */
|
||
return (-1);
|
||
}
|
||
default:;
|
||
}
|
||
if (strl>4) {
|
||
if (str[strl-1]==')') {
|
||
if (str[strl-2]==')') {
|
||
if (!strncmp(&str[strl-5],"(fp",3)) {
|
||
mode=16; /* Memory Relative */
|
||
}
|
||
if (!strncmp(&str[strl-5],"(sp",3)) {
|
||
mode=17;
|
||
}
|
||
if (!strncmp(&str[strl-5],"(sb",3)) {
|
||
mode=18;
|
||
}
|
||
if (mode!=DEFAULT) { /* memory relative */
|
||
addr_modeP->mode=mode;
|
||
j=strl-5; /* temp for end of disp[0] */
|
||
i=0;
|
||
do {
|
||
strl-=1;
|
||
if (str[strl]==')') i++;
|
||
if (str[strl]=='(') i--;
|
||
} while (strl>-1 && i!=0);
|
||
if (i!=0) {
|
||
as_warn("Invalid syntax in Memory Relative addressing mode");
|
||
return(0);
|
||
}
|
||
addr_modeP->disp[1]=str;
|
||
addr_modeP->disp[0]=str+strl+1;
|
||
str[j]='\000'; /* null terminate disp[0] */
|
||
str[strl]='\000'; /* null terminate disp[1] */
|
||
return (-1);
|
||
}
|
||
}
|
||
switch (str[strl-3]) {
|
||
case'r':case'R':
|
||
if (str[strl-2]>='0' && str[strl-2]<'8' && str[strl-4]=='(') {
|
||
addr_modeP->mode=str[strl-2]-'0'+8;
|
||
addr_modeP->disp[0]=str;
|
||
str[strl-4]=0;
|
||
return (-1); /* reg rel */
|
||
}
|
||
default:
|
||
if (!strncmp(&str[strl-4],"(fp",3)) {
|
||
mode=24;
|
||
}
|
||
if (!strncmp(&str[strl-4],"(sp",3)) {
|
||
mode=25;
|
||
}
|
||
if (!strncmp(&str[strl-4],"(sb",3)) {
|
||
mode=26;
|
||
}
|
||
if (!strncmp(&str[strl-4],"(pc",3)) {
|
||
mode=27;
|
||
}
|
||
if (mode!=DEFAULT) {
|
||
addr_modeP->mode=mode;
|
||
addr_modeP->disp[0]=str;
|
||
str[strl-4]='\0';
|
||
return (-1); /* memory space */
|
||
}
|
||
}
|
||
}
|
||
/* no trailing ')' do we have a ']' ? */
|
||
if (str[strl-1]==']') {
|
||
switch (str[strl-2]) {
|
||
case'b':mode=28;break;
|
||
case'w':mode=29;break;
|
||
case'd':mode=30;break;
|
||
case'q':mode=31;break;
|
||
default:;
|
||
as_warn("Invalid scaled-indexed mode, use (b,w,d,q)");
|
||
if (str[strl-3]!=':' || str[strl-6]!='[' ||
|
||
str[strl-5]=='r' || str[strl-4]<'0' || str[strl-4]>'7') {
|
||
as_warn("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}");
|
||
}
|
||
} /* scaled index */
|
||
{
|
||
if (recursive_level>0) {
|
||
as_warn("Scaled-indexed addressing mode combined with scaled-index");
|
||
return(0);
|
||
}
|
||
addr_modeP->am_size+=1; /* scaled index byte */
|
||
j=str[strl-4]-'0'; /* store temporary */
|
||
str[strl-6]='\000'; /* nullterminate for recursive call */
|
||
i=addr_mode(str,addr_modeP,1);
|
||
if (!i || addr_modeP->mode==20) {
|
||
as_warn("Invalid or illegal addressing mode combined with scaled-index");
|
||
return(0);
|
||
}
|
||
addr_modeP->scaled_mode=addr_modeP->mode; /* store the inferior mode */
|
||
addr_modeP->mode=mode;
|
||
addr_modeP->scaled_reg=j+1;
|
||
return (-1);
|
||
}
|
||
}
|
||
}
|
||
addr_modeP->mode = DEFAULT; /* default to whatever */
|
||
addr_modeP->disp[0]=str;
|
||
return (-1);
|
||
}
|
||
|
||
/* ptr points at string
|
||
addr_modeP points at struct with result
|
||
This routine calls addr_mode to determine the general addr.mode of
|
||
the operand. When this is ready it parses the displacements for size
|
||
specifying suffixes and determines size of immediate mode via ns32k-opcode.
|
||
Also builds index bytes if needed.
|
||
*/
|
||
int get_addr_mode(ptr,addr_modeP)
|
||
char *ptr;
|
||
addr_modeS *addr_modeP;
|
||
{
|
||
int tmp;
|
||
addr_mode(ptr,addr_modeP,0);
|
||
if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1) {
|
||
/* resolve ambigious operands, this shouldn't
|
||
be necessary if one uses standard NSC operand
|
||
syntax. But the sequent compiler doesn't!!!
|
||
This finds a proper addressinging mode if it
|
||
is implicitly stated. See ns32k-opcode.h */
|
||
(void)evaluate_expr(&exprP,ptr); /* this call takes time Sigh! */
|
||
if (addr_modeP->mode == DEFAULT) {
|
||
if (exprP.X_add_symbol || exprP.X_subtract_symbol) {
|
||
addr_modeP->mode=desc->default_model; /* we have a label */
|
||
} else {
|
||
addr_modeP->mode=desc->default_modec; /* we have a constant */
|
||
}
|
||
} else {
|
||
if (exprP.X_add_symbol || exprP.X_subtract_symbol) {
|
||
addr_modeP->scaled_mode=desc->default_model;
|
||
} else {
|
||
addr_modeP->scaled_mode=desc->default_modec;
|
||
}
|
||
}
|
||
/* must put this mess down in addr_mode to handle the scaled case better */
|
||
}
|
||
/* It appears as the sequent compiler wants an absolute when we have a
|
||
label without @. Constants becomes immediates besides the addr case.
|
||
Think it does so with local labels too, not optimum, pcrel is better.
|
||
When I have time I will make gas check this and select pcrel when possible
|
||
Actually that is trivial.
|
||
*/
|
||
if (tmp=addr_modeP->scaled_reg) { /* build indexbyte */
|
||
tmp--; /* remember regnumber comes incremented for flagpurpose */
|
||
tmp|=addr_modeP->scaled_mode<<3;
|
||
addr_modeP->index_byte=(char)tmp;
|
||
addr_modeP->am_size+=1;
|
||
}
|
||
if (disp_test[addr_modeP->mode]) { /* there was a displacement, probe for length specifying suffix*/
|
||
{
|
||
register char c;
|
||
register char suffix;
|
||
register char suffix_sub;
|
||
register int i;
|
||
register char *toP;
|
||
register char *fromP;
|
||
|
||
addr_modeP->pcrel=0;
|
||
if (disp_test[addr_modeP->mode]) { /* there is a displacement */
|
||
if (addr_modeP->mode==27 || addr_modeP->scaled_mode==27) { /* do we have pcrel. mode */
|
||
addr_modeP->pcrel=1;
|
||
}
|
||
addr_modeP->im_disp=1;
|
||
for(i=0;i<2;i++) {
|
||
suffix_sub=suffix=0;
|
||
if (toP=addr_modeP->disp[i]) { /* suffix of expression, the largest size rules */
|
||
fromP=toP;
|
||
while (c = *fromP++) {
|
||
*toP++=c;
|
||
if (c==':') {
|
||
switch (*fromP) {
|
||
case '\0':
|
||
as_warn("Premature end of suffix--Defaulting to d");
|
||
suffix=4;
|
||
continue;
|
||
case 'b':suffix_sub=1;break;
|
||
case 'w':suffix_sub=2;break;
|
||
case 'd':suffix_sub=4;break;
|
||
default:
|
||
as_warn("Bad suffix after ':' use {b|w|d} Defaulting to d");
|
||
suffix=4;
|
||
}
|
||
fromP++;
|
||
toP--; /* So we write over the ':' */
|
||
if (suffix<suffix_sub) suffix=suffix_sub;
|
||
}
|
||
}
|
||
*toP='\0'; /* terminate properly */
|
||
addr_modeP->disp_suffix[i]=suffix;
|
||
addr_modeP->am_size+=suffix ? suffix : 4;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
if (addr_modeP->mode==20) { /* look in ns32k_opcode for size */
|
||
addr_modeP->disp_suffix[0]=addr_modeP->am_size=desc->im_size;
|
||
addr_modeP->im_disp=0;
|
||
}
|
||
}
|
||
return addr_modeP->mode;
|
||
}
|
||
|
||
|
||
/* read an optionlist */
|
||
void optlist(str,optionP,default_map)
|
||
char *str; /* the string to extract options from */
|
||
struct option *optionP; /* how to search the string */
|
||
unsigned long *default_map; /* default pattern and output */
|
||
{
|
||
register int i,j,k,strlen1,strlen2;
|
||
register char *patternP,*strP;
|
||
strlen1=strlen(str);
|
||
if (strlen1<1) {
|
||
as_fatal("Very short instr to option, ie you can't do it on a NULLstr");
|
||
}
|
||
for (i=0;optionP[i].pattern!=0;i++) {
|
||
strlen2=strlen(optionP[i].pattern);
|
||
for (j=0;j<strlen1;j++) {
|
||
patternP=optionP[i].pattern;
|
||
strP = &str[j];
|
||
for (k=0;k<strlen2;k++) {
|
||
if (*(strP++)!=*(patternP++)) break;
|
||
}
|
||
if (k==strlen2) { /* match */
|
||
*default_map|=optionP[i].or;
|
||
*default_map&=optionP[i].and;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/* search struct for symbols
|
||
This function is used to get the short integer form of reg names
|
||
in the instructions lmr, smr, lpr, spr
|
||
return true if str is found in list */
|
||
|
||
int list_search(str,optionP,default_map)
|
||
char *str; /* the string to match */
|
||
struct option *optionP; /* list to search */
|
||
unsigned long *default_map; /* default pattern and output */
|
||
{
|
||
register int i;
|
||
for (i=0;optionP[i].pattern!=0;i++) {
|
||
if (!strncmp(optionP[i].pattern,str,20)) { /* use strncmp to be safe */
|
||
*default_map|=optionP[i].or;
|
||
*default_map&=optionP[i].and;
|
||
return -1;
|
||
}
|
||
}
|
||
as_warn("No such entry in list. (cpu/mmu register)");
|
||
return 0;
|
||
}
|
||
static segT evaluate_expr(resultP,ptr)
|
||
expressionS *resultP;
|
||
char *ptr;
|
||
{
|
||
register char *tmp_line;
|
||
register segT segment;
|
||
tmp_line=input_line_pointer;
|
||
input_line_pointer=ptr;
|
||
segment=expression(&exprP);
|
||
input_line_pointer=tmp_line;
|
||
return (segment);
|
||
}
|
||
|
||
/* Convert operands to iif-format and adds bitfields to the opcode.
|
||
Operands are parsed in such an order that the opcode is updated from
|
||
its most significant bit, that is when the operand need to alter the
|
||
opcode.
|
||
Be carefull not to put to objects in the same iif-slot.
|
||
*/
|
||
|
||
void encode_operand(argc,argv,operandsP,suffixP,im_size,opcode_bit_ptr)
|
||
int argc;
|
||
char **argv;
|
||
char *operandsP;
|
||
char *suffixP;
|
||
char im_size;
|
||
char opcode_bit_ptr;
|
||
{
|
||
register int i,j;
|
||
int pcrel,tmp,b,loop,pcrel_adjust;
|
||
for(loop=0;loop<argc;loop++) {
|
||
i=operandsP[loop<<1]-'1'; /* what operand are we supposed to work on */
|
||
if (i>3) as_fatal("Internal consistency error. check ns32k-opcode.h");
|
||
pcrel=0;
|
||
pcrel_adjust=0;
|
||
tmp=0;
|
||
switch (operandsP[(loop<<1)+1]) {
|
||
case 'f': /* operand of sfsr turns out to be a nasty specialcase */
|
||
opcode_bit_ptr-=5;
|
||
case 'F': /* 32 bit float general form */
|
||
case 'L': /* 64 bit float */
|
||
case 'Q': /* quad-word */
|
||
case 'B': /* byte */
|
||
case 'W': /* word */
|
||
case 'D': /* double-word */
|
||
case 'A': /* double-word gen-address-form ie no regs allowed */
|
||
get_addr_mode(argv[i],&addr_modeP);
|
||
iif.instr_size+=addr_modeP.am_size;
|
||
if (opcode_bit_ptr==desc->opcode_size) b=4; else b=6;
|
||
for (j=b;j<(b+2);j++) {
|
||
if (addr_modeP.disp[j-b]) {
|
||
IIF(j,
|
||
2,
|
||
addr_modeP.disp_suffix[j-b],
|
||
(unsigned long)addr_modeP.disp[j-b],
|
||
0,
|
||
addr_modeP.pcrel,
|
||
iif.instr_size-addr_modeP.am_size, /* this aint used (now) */
|
||
addr_modeP.im_disp,
|
||
IND(BRANCH,BYTE),
|
||
NULL,
|
||
addr_modeP.scaled_reg ? addr_modeP.scaled_mode:addr_modeP.mode,
|
||
0);
|
||
}
|
||
}
|
||
opcode_bit_ptr-=5;
|
||
iif.iifP[1].object|=((long)addr_modeP.mode)<<opcode_bit_ptr;
|
||
if (addr_modeP.scaled_reg) {
|
||
j=b/2;
|
||
IIF(j,1,1, (unsigned long)addr_modeP.index_byte,0,0,0,0,0, NULL,-1,0);
|
||
}
|
||
break;
|
||
case 'b': /* multiple instruction disp */
|
||
freeptr++; /* OVE:this is an useful hack */
|
||
tmp = (int) sprintf(freeptr,
|
||
"((%s-1)*%d)\000",
|
||
argv[i], desc->im_size);
|
||
argv[i]=freeptr;
|
||
freeptr=(char*)tmp;
|
||
pcrel-=1; /* make pcrel 0 inspite of what case 'p': wants */
|
||
/* fall thru */
|
||
case 'p': /* displacement - pc relative addressing */
|
||
pcrel+=1;
|
||
/* fall thru */
|
||
case 'd': /* displacement */
|
||
iif.instr_size+=suffixP[i] ? suffixP[i] : 4;
|
||
IIF(12, 2, suffixP[i], (unsigned long)argv[i], 0,
|
||
pcrel, pcrel_adjust, 1, IND(BRANCH,BYTE), NULL,-1,0);
|
||
break;
|
||
case 'H': /* sequent-hack: the linker wants a bit set when bsr */
|
||
pcrel=1;
|
||
iif.instr_size+=suffixP[i] ? suffixP[i] : 4;
|
||
IIF(12, 2, suffixP[i], (unsigned long)argv[i], 0,
|
||
pcrel, pcrel_adjust, 1, IND(BRANCH,BYTE), NULL,-1,1);break;
|
||
case 'q': /* quick */
|
||
opcode_bit_ptr-=4;
|
||
IIF(11,2,42,(unsigned long)argv[i],0,0,0,0,0,
|
||
bit_fix_new(4,opcode_bit_ptr,-8,7,0,1,0),-1,0);
|
||
break;
|
||
case 'r': /* register number (3 bits) */
|
||
list_search(argv[i],opt6,&tmp);
|
||
opcode_bit_ptr-=3;
|
||
iif.iifP[1].object|=tmp<<opcode_bit_ptr;
|
||
break;
|
||
case 'O': /* setcfg instruction optionslist */
|
||
optlist(argv[i],opt3,&tmp);
|
||
opcode_bit_ptr-=4;
|
||
iif.iifP[1].object|=tmp<<15;
|
||
break;
|
||
case 'C': /* cinv instruction optionslist */
|
||
optlist(argv[i],opt4,&tmp);
|
||
opcode_bit_ptr-=4;
|
||
iif.iifP[1].object|=tmp<<15;/*insert the regtype in opcode */
|
||
break;
|
||
case 'S': /* stringinstruction optionslist */
|
||
optlist(argv[i],opt5,&tmp);
|
||
opcode_bit_ptr-=4;
|
||
iif.iifP[1].object|=tmp<<15;
|
||
break;
|
||
case 'u':case 'U': /* registerlist */
|
||
IIF(10,1,1,0,0,0,0,0,0,NULL,-1,0);
|
||
switch (operandsP[(i<<1)+1]) {
|
||
case 'u': /* restore, exit */
|
||
optlist(argv[i],opt1,&iif.iifP[10].object);
|
||
break;
|
||
case 'U': /* save,enter */
|
||
optlist(argv[i],opt2,&iif.iifP[10].object);
|
||
break;
|
||
}
|
||
iif.instr_size+=1;
|
||
break;
|
||
case 'M': /* mmu register */
|
||
list_search(argv[i],mmureg,&tmp);
|
||
opcode_bit_ptr-=4;
|
||
iif.iifP[1].object|=tmp<<opcode_bit_ptr;
|
||
break;
|
||
case 'P': /* cpu register */
|
||
list_search(argv[i],cpureg,&tmp);
|
||
opcode_bit_ptr-=4;
|
||
iif.iifP[1].object|=tmp<<opcode_bit_ptr;
|
||
break;
|
||
case 'g': /* inss exts */
|
||
iif.instr_size+=1; /* 1 byte is allocated after the opcode */
|
||
IIF(10,2,1,
|
||
(unsigned long)argv[i], /* i always 2 here */
|
||
0,0,0,0,0,
|
||
bit_fix_new(3,5,0,7,0,0,0), /* a bit_fix is targeted to the byte */
|
||
-1,0);
|
||
case 'G':
|
||
IIF(11,2,42,
|
||
(unsigned long)argv[i], /* i always 3 here */
|
||
0,0,0,0,0,
|
||
bit_fix_new(5,0,1,32,-1,0,-1),-1,0);
|
||
break;
|
||
case 'i':
|
||
iif.instr_size+=1;
|
||
b=2+i; /* put the extension byte after opcode */
|
||
IIF(b,2,1,0,0,0,0,0,0,0,-1,0);
|
||
default:
|
||
as_fatal("Bad opcode-table-option, check in file ns32k-opcode.h");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* in: instruction line
|
||
out: internal structure of instruction
|
||
that has been prepared for direct conversion to fragment(s) and
|
||
fixes in a systematical fashion
|
||
Return-value = recursive_level
|
||
*/
|
||
/* build iif of one assembly text line */
|
||
int parse(line,recursive_level)
|
||
char *line;
|
||
int recursive_level;
|
||
{
|
||
register char *lineptr,c,suffix_separator;
|
||
register int i;
|
||
int argc,arg_type;
|
||
char sqr,sep;
|
||
char suffix[MAX_ARGS],*argv[MAX_ARGS];/* no more than 4 operands */
|
||
if (recursive_level<=0) { /* called from md_assemble */
|
||
for (lineptr=line;(*lineptr)!='\0' && (*lineptr)!=' ';lineptr++);
|
||
c = *lineptr;
|
||
*lineptr='\0';
|
||
if (!(desc=(struct ns32k_opcode*)hash_find(inst_hash_handle,line))) {
|
||
as_fatal("No such opcode");
|
||
}
|
||
*lineptr=c;
|
||
} else {
|
||
lineptr=line;
|
||
}
|
||
argc=0;
|
||
if (*desc->operands) {
|
||
if (*lineptr++!='\0') {
|
||
sqr='[';
|
||
sep=',';
|
||
while (*lineptr!='\0') {
|
||
if (desc->operands[argc<<1]) {
|
||
suffix[argc]=0;
|
||
arg_type=desc->operands[(argc<<1)+1];
|
||
switch (arg_type) {
|
||
case 'd': case 'b': case 'p': case 'H': /* the operand is supposed to be a displacement */
|
||
/* Hackwarning: do not forget to update the 4 cases above when editing ns32k-opcode.h */
|
||
suffix_separator=':';
|
||
break;
|
||
default:
|
||
suffix_separator='\255'; /* if this char occurs we loose */
|
||
}
|
||
suffix[argc]=0; /* 0 when no ':' is encountered */
|
||
argv[argc]=freeptr;
|
||
*freeptr='\0';
|
||
while ((c = *lineptr)!='\0' && c!=sep) {
|
||
if (c==sqr) {
|
||
if (sqr=='[') {
|
||
sqr=']';sep='\0';
|
||
} else {
|
||
sqr='[';sep=',';
|
||
}
|
||
}
|
||
if (c==suffix_separator) { /* ':' - label/suffix separator */
|
||
switch (lineptr[1]) {
|
||
case 'b':suffix[argc]=1;break;
|
||
case 'w':suffix[argc]=2;break;
|
||
case 'd':suffix[argc]=4;break;
|
||
default: as_warn("Bad suffix, defaulting to d");
|
||
suffix[argc]=4;
|
||
if (lineptr[1]=='\0' || lineptr[1]==sep) {
|
||
lineptr+=1;
|
||
continue;
|
||
}
|
||
}
|
||
lineptr+=2;
|
||
continue;
|
||
}
|
||
*freeptr++=c;
|
||
lineptr++;
|
||
}
|
||
*freeptr++='\0';
|
||
argc+=1;
|
||
if (*lineptr=='\0') continue;
|
||
lineptr+=1;
|
||
} else {
|
||
as_fatal("Too many operands passed to instruction");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (argc!=strlen(desc->operands)/2) {
|
||
if (strlen(desc->default_args)) { /* we can apply default, dont goof */
|
||
if (parse(desc->default_args,1)!=1) { /* check error in default */
|
||
as_fatal("Wrong numbers of operands in default, check ns32k-opcodes.h");
|
||
}
|
||
} else {
|
||
as_fatal("Wrong number of operands");
|
||
}
|
||
|
||
}
|
||
for (i=0;i<IIF_ENTRIES;i++) {
|
||
iif.iifP[i].type=0; /* mark all entries as void*/
|
||
}
|
||
|
||
/* build opcode iif-entry */
|
||
iif.instr_size=desc->opcode_size/8;
|
||
IIF(1,1,iif.instr_size,desc->opcode_seed,0,0,0,0,0,0,-1,0);
|
||
|
||
/* this call encodes operands to iif format */
|
||
if (argc) {
|
||
encode_operand(argc,
|
||
argv,
|
||
&desc->operands[0],
|
||
&suffix[0],
|
||
desc->im_size,
|
||
desc->opcode_size);
|
||
}
|
||
return recursive_level;
|
||
}
|
||
|
||
|
||
/* Convert iif to fragments.
|
||
From this point we start to dribble with functions in other files than
|
||
this one.(Except hash.c) So, if it's possible to make an iif for an other
|
||
CPU, you don't need to know what frags, relax, obstacks, etc is in order
|
||
to port this assembler. You only need to know if it's possible to reduce
|
||
your cpu-instruction to iif-format (takes some work) and adopt the other
|
||
md_? parts according to given instructions
|
||
Note that iif was invented for the clean ns32k`s architecure.
|
||
*/
|
||
void convert_iif() {
|
||
int i;
|
||
int j;
|
||
fragS *inst_frag;
|
||
char *inst_offset;
|
||
char **inst_opcode;
|
||
char *memP;
|
||
segT segment;
|
||
int l;
|
||
int k;
|
||
int rem_size; /* count the remaining bytes of instruction */
|
||
char type;
|
||
char size = 0;
|
||
int size_so_far = 0; /* used to calculate pcrel_adjust */
|
||
|
||
rem_size=iif.instr_size;
|
||
memP=frag_more(iif.instr_size); /* make sure we have enough bytes for instruction */
|
||
inst_opcode=memP;
|
||
inst_offset=(char*)(memP-frag_now->fr_literal);
|
||
inst_frag=frag_now;
|
||
for (i=0;i<IIF_ENTRIES;i++) {
|
||
if (type=iif.iifP[i].type) { /* the object exist, so handle it */
|
||
switch (size=iif.iifP[i].size) {
|
||
case 42: size=0; /* it's a bitfix that operates on an existing object*/
|
||
if (iif.iifP[i].bit_fixP->fx_bit_base) { /* expand fx_bit_base to point at opcode */
|
||
iif.iifP[i].bit_fixP->fx_bit_base=(long)inst_opcode;
|
||
}
|
||
case 8: /* bignum or doublefloat */
|
||
memset(memP, '\0', 8);
|
||
case 1:case 2:case 3:case 4:/* the final size in objectmemory is known */
|
||
j=(unsigned long)iif.iifP[i].bit_fixP;
|
||
switch (type) {
|
||
case 1: /* the object is pure binary */
|
||
if (j || iif.iifP[i].pcrel) {
|
||
fix_new_ns32k(frag_now,
|
||
(long)(memP-frag_now->fr_literal),
|
||
size,
|
||
0,
|
||
0,
|
||
iif.iifP[i].object,
|
||
iif.iifP[i].pcrel,
|
||
(char)size_so_far, /*iif.iifP[i].pcrel_adjust,*/
|
||
iif.iifP[i].im_disp,
|
||
j,
|
||
iif.iifP[i].bsr); /* sequent hack */
|
||
} else { /* good, just put them bytes out */
|
||
switch (iif.iifP[i].im_disp) {
|
||
case 0:
|
||
md_number_to_chars(memP,iif.iifP[i].object,size);break;
|
||
case 1:
|
||
md_number_to_disp(memP,iif.iifP[i].object,size);break;
|
||
default: as_fatal("iif convert internal pcrel/binary");
|
||
}
|
||
}
|
||
memP+=size;
|
||
rem_size-=size;
|
||
break;
|
||
case 2: /* the object is a pointer at an expression, so unpack
|
||
it, note that bignums may result from the expression
|
||
*/
|
||
if ((segment=evaluate_expr(&exprP,(char*)iif.iifP[i].object))==SEG_BIG || size==8) {
|
||
if ((k=exprP.X_add_number)>0) { /* we have a bignum ie a quad */
|
||
/* this can only happens in a long suffixed instruction */
|
||
memset(memP, '\0', size); /* size normally is 8 */
|
||
if (k*2>size) as_warn("Bignum too big for long");
|
||
if (k==3) memP+=2;
|
||
for (l=0;k>0;k--,l+=2) {
|
||
md_number_to_chars(memP+l,generic_bignum[l>>1],sizeof(LITTLENUM_TYPE));
|
||
}
|
||
} else { /* flonum */
|
||
LITTLENUM_TYPE words[4];
|
||
|
||
switch(size) {
|
||
case 4:
|
||
gen_to_words(words,2,8);
|
||
md_number_to_imm(memP ,(long)words[0],sizeof(LITTLENUM_TYPE));
|
||
md_number_to_imm(memP+sizeof(LITTLENUM_TYPE),(long)words[1],sizeof(LITTLENUM_TYPE));
|
||
break;
|
||
case 8:
|
||
gen_to_words(words,4,11);
|
||
md_number_to_imm(memP ,(long)words[0],sizeof(LITTLENUM_TYPE));
|
||
md_number_to_imm(memP+sizeof(LITTLENUM_TYPE) ,(long)words[1],sizeof(LITTLENUM_TYPE));
|
||
md_number_to_imm(memP+2*sizeof(LITTLENUM_TYPE),(long)words[2],sizeof(LITTLENUM_TYPE));
|
||
md_number_to_imm(memP+3*sizeof(LITTLENUM_TYPE),(long)words[3],sizeof(LITTLENUM_TYPE));
|
||
break;
|
||
}
|
||
}
|
||
memP+=size;
|
||
rem_size-=size;
|
||
break;
|
||
}
|
||
if (j ||
|
||
exprP.X_add_symbol ||
|
||
exprP.X_subtract_symbol ||
|
||
iif.iifP[i].pcrel) { /* fixit */
|
||
/* the expression was undefined due to an undefined label */
|
||
/* create a fix so we can fix the object later */
|
||
exprP.X_add_number+=iif.iifP[i].object_adjust;
|
||
fix_new_ns32k(frag_now,
|
||
(long)(memP-frag_now->fr_literal),
|
||
size,
|
||
exprP.X_add_symbol,
|
||
exprP.X_subtract_symbol,
|
||
exprP.X_add_number,
|
||
iif.iifP[i].pcrel,
|
||
(char)size_so_far, /*iif.iifP[i].pcrel_adjust,*/
|
||
iif.iifP[i].im_disp,
|
||
j,
|
||
iif.iifP[i].bsr); /* sequent hack */
|
||
|
||
} else { /* good, just put them bytes out */
|
||
switch (iif.iifP[i].im_disp) {
|
||
case 0:
|
||
md_number_to_imm(memP,exprP.X_add_number,size);break;
|
||
case 1:
|
||
md_number_to_disp(memP,exprP.X_add_number,size);break;
|
||
default: as_fatal("iif convert internal pcrel/pointer");
|
||
}
|
||
}
|
||
memP+=size;
|
||
rem_size-=size;
|
||
break;
|
||
default: as_fatal("Internal logic error in iif.iifP[n].type");
|
||
}
|
||
break;
|
||
case 0: /* To bad, the object may be undefined as far as its final
|
||
nsize in object memory is concerned. The size of the object
|
||
in objectmemory is not explicitly given.
|
||
If the object is defined its length can be determined and
|
||
a fix can replace the frag.
|
||
*/
|
||
{
|
||
int temp;
|
||
segment=evaluate_expr(&exprP,(char*)iif.iifP[i].object);
|
||
if ((exprP.X_add_symbol || exprP.X_subtract_symbol) &&
|
||
!iif.iifP[i].pcrel) { /* OVE: hack, clamp to 4 bytes */
|
||
size=4; /* we dont wan't to frag this, use 4 so it reaches */
|
||
fix_new_ns32k(frag_now,
|
||
(long)(memP-frag_now->fr_literal),
|
||
size,
|
||
exprP.X_add_symbol,
|
||
exprP.X_subtract_symbol,
|
||
exprP.X_add_number,
|
||
0, /* never iif.iifP[i].pcrel, */
|
||
(char)size_so_far, /*iif.iifP[i].pcrel_adjust,*/
|
||
1, /* always iif.iifP[i].im_disp, */
|
||
0,0);
|
||
memP+=size;
|
||
rem_size-=4;
|
||
break; /* exit this absolute hack */
|
||
}
|
||
|
||
if (exprP.X_add_symbol || exprP.X_subtract_symbol) { /* frag it */
|
||
if (exprP.X_subtract_symbol) { /* We cant relax this case */
|
||
as_fatal("Can't relax difference");
|
||
}
|
||
else {
|
||
/* at this stage we must undo some of the effect caused
|
||
by frag_more, ie we must make sure that frag_var causes
|
||
frag_new to creat a valid fix-size in the frag it`s closing
|
||
*/
|
||
temp = -(rem_size-4);
|
||
obstack_blank_fast(&frags,temp);
|
||
/* we rewind none, some or all of the requested size we
|
||
requested by the first frag_more for this iif chunk.
|
||
Note: that we allocate 4 bytes to an object we NOT YET
|
||
know the size of, thus rem_size-4.
|
||
*/
|
||
(void)frag_variant(rs_machine_dependent,
|
||
4,
|
||
0,
|
||
IND(BRANCH,UNDEF), /* expecting the worst */
|
||
exprP.X_add_symbol,
|
||
exprP.X_add_number,
|
||
(char*)inst_opcode,
|
||
(char)size_so_far, /*iif.iifP[i].pcrel_adjust);*/
|
||
iif.iifP[i].bsr); /* sequent linker hack */
|
||
rem_size-=4;
|
||
if (rem_size>0) {
|
||
memP=frag_more(rem_size);
|
||
}
|
||
}
|
||
}
|
||
else {/* Double work, this is done in md_number_to_disp */
|
||
/* exprP.X_add_number; what was this supposed to be?
|
||
xoxorich. */
|
||
if (-64<=exprP.X_add_number && exprP.X_add_number<=63) {
|
||
size=1;
|
||
} else {
|
||
if (-8192<=exprP.X_add_number && exprP.X_add_number<=8191) {
|
||
size=2;
|
||
} else {
|
||
if (-0x1f000000<=exprP.X_add_number &&
|
||
exprP.X_add_number<=0x1fffffff)
|
||
/* if (-0x40000000<=exprP.X_add_number &&
|
||
exprP.X_add_number<=0x3fffffff) */
|
||
{
|
||
size=4;
|
||
} else {
|
||
as_warn("Displacement to large for :d");
|
||
size=4;
|
||
}
|
||
}
|
||
}
|
||
/* rewind the bytes not used */
|
||
temp = -(4-size);
|
||
md_number_to_disp(memP,exprP.X_add_number,size);
|
||
obstack_blank_fast(&frags,temp);
|
||
memP+=size;
|
||
rem_size-=4; /* we allocated this amount */
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
as_fatal("Internal logic error in iif.iifP[].type");
|
||
}
|
||
size_so_far+=size;
|
||
size=0;
|
||
}
|
||
}
|
||
}
|
||
|
||
void md_assemble(line)
|
||
char *line;
|
||
{
|
||
freeptr=freeptr_static;
|
||
parse(line,0); /* explode line to more fix form in iif */
|
||
convert_iif(); /* convert iif to frags, fix's etc */
|
||
#ifdef SHOW_NUM
|
||
printf(" \t\t\t%s\n",line);
|
||
#endif
|
||
}
|
||
|
||
|
||
void md_begin() {
|
||
/* build a hashtable of the instructions */
|
||
register const struct ns32k_opcode *ptr;
|
||
register char *stat;
|
||
inst_hash_handle=hash_new();
|
||
for (ptr=ns32k_opcodes;ptr<endop;ptr++) {
|
||
if (*(stat=hash_insert(inst_hash_handle,ptr->name,(char*)ptr))) {
|
||
as_fatal("Can't hash %s: %s", ptr->name,stat); /*fatal*/
|
||
exit(0);
|
||
}
|
||
}
|
||
freeptr_static=(char*)malloc(PRIVATE_SIZE); /* some private space please! */
|
||
}
|
||
|
||
|
||
void
|
||
md_end() {
|
||
free(freeptr_static);
|
||
}
|
||
|
||
/* Must be equal to MAX_PRECISON in atof-ieee.c */
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant of type
|
||
type, and emit the appropriate bytes. The number of LITTLENUMS emitted
|
||
is stored in *sizeP . An error message is returned, or NULL on OK.
|
||
*/
|
||
char *
|
||
md_atof(type,litP,sizeP)
|
||
char type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
|
||
switch(type) {
|
||
case 'f':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
prec = 4;
|
||
break;
|
||
default:
|
||
*sizeP=0;
|
||
return "Bad call to MD_ATOF()";
|
||
}
|
||
t=atof_ieee(input_line_pointer,type,words);
|
||
if(t)
|
||
input_line_pointer=t;
|
||
|
||
*sizeP=prec * sizeof(LITTLENUM_TYPE);
|
||
for(wordP=words+prec;prec--;) {
|
||
md_number_to_chars(litP,(long)(*--wordP),sizeof(LITTLENUM_TYPE));
|
||
litP+=sizeof(LITTLENUM_TYPE);
|
||
}
|
||
return ""; /* Someone should teach Dean about null pointers */
|
||
}
|
||
|
||
/* Convert number to chars in correct order */
|
||
|
||
void
|
||
md_number_to_chars (buf, value, nbytes)
|
||
char *buf;
|
||
long value;
|
||
int nbytes;
|
||
{
|
||
while (nbytes--) {
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",value & 0xff);
|
||
#endif
|
||
*buf++ = value; /* Lint wants & MASK_CHAR. */
|
||
value >>= BITS_PER_CHAR;
|
||
}
|
||
} /* md_number_to_chars() */
|
||
|
||
|
||
/* This is a variant of md_numbers_to_chars. The reason for its' existence
|
||
is the fact that ns32k uses Huffman coded displacements. This implies
|
||
that the bit order is reversed in displacements and that they are prefixed
|
||
with a size-tag.
|
||
|
||
binary: msb -> lsb
|
||
0xxxxxxx byte
|
||
10xxxxxx xxxxxxxx word
|
||
11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
|
||
|
||
This must be taken care of and we do it here!
|
||
*/
|
||
static void md_number_to_disp(buf, val, n)
|
||
char *buf;
|
||
long val;
|
||
char n;
|
||
{
|
||
switch(n) {
|
||
case 1:
|
||
if (val < -64 || val > 63)
|
||
as_warn("Byte displacement out of range. line number not valid");
|
||
val&=0x7f;
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val & 0xff);
|
||
#endif
|
||
*buf++=val;
|
||
break;
|
||
case 2:
|
||
if (val < -8192 || val > 8191)
|
||
as_warn("Word displacement out of range. line number not valid");
|
||
val&=0x3fff;
|
||
val|=0x8000;
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>8 & 0xff);
|
||
#endif
|
||
*buf++=(val>>8);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val & 0xff);
|
||
#endif
|
||
*buf++=val;
|
||
break;
|
||
case 4:
|
||
if (val < -0x1f000000 || val >= 0x20000000)
|
||
/* if (val < -0x20000000 || val >= 0x20000000) */
|
||
as_warn("Double word displacement out of range");
|
||
val|=0xc0000000;
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>24 & 0xff);
|
||
#endif
|
||
*buf++=(val>>24);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>16 & 0xff);
|
||
#endif
|
||
*buf++=(val>>16);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>8 & 0xff);
|
||
#endif
|
||
*buf++=(val>>8);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val & 0xff);
|
||
#endif
|
||
*buf++=val;
|
||
break;
|
||
default:
|
||
as_fatal("Internal logic error. line %s, file \"%s\"", __LINE__, __FILE__);
|
||
}
|
||
}
|
||
|
||
static void md_number_to_imm(buf,val,n)
|
||
char *buf;
|
||
long val;
|
||
char n;
|
||
{
|
||
switch(n) {
|
||
case 1:
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val & 0xff);
|
||
#endif
|
||
*buf++=val;
|
||
break;
|
||
case 2:
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>8 & 0xff);
|
||
#endif
|
||
*buf++=(val>>8);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val & 0xff);
|
||
#endif
|
||
*buf++=val;
|
||
break;
|
||
case 4:
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>24 & 0xff);
|
||
#endif
|
||
*buf++=(val>>24);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>16 & 0xff);
|
||
#endif
|
||
*buf++=(val>>16);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val>>8 & 0xff);
|
||
#endif
|
||
*buf++=(val>>8);
|
||
#ifdef SHOW_NUM
|
||
printf("%x ",val & 0xff);
|
||
#endif
|
||
*buf++=val;
|
||
break;
|
||
default:
|
||
as_fatal("Internal logic error. line %s, file \"%s\"", __LINE__, __FILE__);
|
||
}
|
||
}
|
||
|
||
/* Translate internal representation of relocation info into target format.
|
||
|
||
OVE: on a ns32k the twiddling continues at an even deeper level
|
||
here we have to distinguish between displacements and immediates.
|
||
|
||
The sequent has a bit for this. It also has a bit for relocobjects that
|
||
points at the target for a bsr (BranchSubRoutine) !?!?!?!
|
||
|
||
This md_ri.... is tailored for sequent.
|
||
*/
|
||
|
||
#ifdef comment
|
||
void
|
||
md_ri_to_chars(the_bytes, ri)
|
||
char *the_bytes;
|
||
struct reloc_info_generic *ri;
|
||
{
|
||
if (ri->r_bsr) { ri->r_pcrel = 0; } /* sequent seems to want this */
|
||
md_number_to_chars(the_bytes, ri->r_address, sizeof(ri->r_address));
|
||
md_number_to_chars(the_bytes+4, ((long)(ri->r_symbolnum )
|
||
| (long)(ri->r_pcrel << 24 )
|
||
| (long)(ri->r_length << 25 )
|
||
| (long)(ri->r_extern << 27 )
|
||
| (long)(ri->r_bsr << 28 )
|
||
| (long)(ri->r_disp << 29 )),
|
||
4);
|
||
/* the first and second md_number_to_chars never overlaps (32bit cpu case) */
|
||
}
|
||
#endif /* comment */
|
||
|
||
/* fast bitfiddling support */
|
||
/* mask used to zero bitfield before oring in the true field */
|
||
|
||
static unsigned long l_mask[]={ 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
|
||
0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
|
||
0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
|
||
0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
|
||
0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
|
||
0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
|
||
0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
|
||
0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
|
||
};
|
||
static unsigned long r_mask[]={ 0x00000000, 0x00000001, 0x00000003, 0x00000007,
|
||
0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
|
||
0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
|
||
0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
|
||
0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
|
||
0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
|
||
0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
|
||
0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
|
||
};
|
||
#define MASK_BITS 31
|
||
/* Insert bitfield described by field_ptr and val at buf
|
||
This routine is written for modification of the first 4 bytes pointed
|
||
to by buf, to yield speed.
|
||
The ifdef stuff is for selection between a ns32k-dependent routine
|
||
and a general version. (My advice: use the general version!)
|
||
*/
|
||
|
||
static void
|
||
md_number_to_field(buf,val,field_ptr)
|
||
register char *buf;
|
||
register long val;
|
||
register bit_fixS *field_ptr;
|
||
{
|
||
register unsigned long object;
|
||
register unsigned long mask;
|
||
/* define ENDIAN on a ns32k machine */
|
||
#ifdef ENDIAN
|
||
register unsigned long *mem_ptr;
|
||
#else
|
||
register char *mem_ptr;
|
||
#endif
|
||
if (field_ptr->fx_bit_min<=val && val<=field_ptr->fx_bit_max) {
|
||
#ifdef ENDIAN
|
||
if (field_ptr->fx_bit_base) { /* override buf */
|
||
mem_ptr=(unsigned long*)field_ptr->fx_bit_base;
|
||
} else {
|
||
mem_ptr=(unsigned long*)buf;
|
||
}
|
||
#else
|
||
if (field_ptr->fx_bit_base) { /* override buf */
|
||
mem_ptr=(char*)field_ptr->fx_bit_base;
|
||
} else {
|
||
mem_ptr=buf;
|
||
}
|
||
#endif
|
||
mem_ptr+=field_ptr->fx_bit_base_adj;
|
||
#ifdef ENDIAN /* we have a nice ns32k machine with lowbyte at low-physical mem */
|
||
object = *mem_ptr; /* get some bytes */
|
||
#else /* OVE Goof! the machine is a m68k or dito */
|
||
/* That takes more byte fiddling */
|
||
object=0;
|
||
object|=mem_ptr[3] & 0xff;
|
||
object<<=8;
|
||
object|=mem_ptr[2] & 0xff;
|
||
object<<=8;
|
||
object|=mem_ptr[1] & 0xff;
|
||
object<<=8;
|
||
object|=mem_ptr[0] & 0xff;
|
||
#endif
|
||
mask=0;
|
||
mask|=(r_mask[field_ptr->fx_bit_offset]);
|
||
mask|=(l_mask[field_ptr->fx_bit_offset+field_ptr->fx_bit_size]);
|
||
object&=mask;
|
||
val+=field_ptr->fx_bit_add;
|
||
object|=((val<<field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
|
||
#ifdef ENDIAN
|
||
*mem_ptr=object;
|
||
#else
|
||
mem_ptr[0]=(char)object;
|
||
object>>=8;
|
||
mem_ptr[1]=(char)object;
|
||
object>>=8;
|
||
mem_ptr[2]=(char)object;
|
||
object>>=8;
|
||
mem_ptr[3]=(char)object;
|
||
#endif
|
||
} else {
|
||
as_warn("Bit field out of range");
|
||
}
|
||
}
|
||
|
||
/* Apply a fixS (fixup of an instruction or data that we didn't have
|
||
enough info to complete immediately) to the data in a frag.
|
||
|
||
On the ns32k, everything is in a different format, so we have broken
|
||
out separate functions for each kind of thing we could be fixing.
|
||
They all get called from here. */
|
||
|
||
void
|
||
md_apply_fix(fixP, val)
|
||
fixS *fixP;
|
||
long val;
|
||
{
|
||
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
|
||
if (fixP->fx_bit_fixP) { /* Bitfields to fix, sigh */
|
||
md_number_to_field (buf, val, fixP->fx_bit_fixP);
|
||
} else switch (fixP->fx_im_disp) {
|
||
|
||
case 0: /* Immediate field */
|
||
md_number_to_imm (buf, val, fixP->fx_size);
|
||
break;
|
||
|
||
case 1: /* Displacement field */
|
||
md_number_to_disp (buf,
|
||
fixP->fx_pcrel? val + fixP->fx_pcrel_adjust: val,
|
||
fixP->fx_size);
|
||
break;
|
||
|
||
case 2: /* Pointer in a data object */
|
||
md_number_to_chars (buf, val, fixP->fx_size);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Convert a relaxed displacement to ditto in final output */
|
||
|
||
void
|
||
md_convert_frag(headers, fragP)
|
||
object_headers *headers;
|
||
register fragS *fragP;
|
||
{
|
||
long disp;
|
||
long ext = 0;
|
||
|
||
/* Address in gas core of the place to store the displacement. */
|
||
register char *buffer_address = fragP->fr_fix + fragP->fr_literal;
|
||
/* Address in object code of the displacement. */
|
||
register int object_address = fragP->fr_fix + fragP->fr_address;
|
||
|
||
know(fragP->fr_symbol);
|
||
|
||
/* The displacement of the address, from current location. */
|
||
disp = (S_GET_VALUE(fragP->fr_symbol) + fragP->fr_offset) - object_address;
|
||
disp+= fragP->fr_pcrel_adjust;
|
||
|
||
switch(fragP->fr_subtype) {
|
||
case IND(BRANCH,BYTE):
|
||
ext=1;
|
||
break;
|
||
case IND(BRANCH,WORD):
|
||
ext=2;
|
||
break;
|
||
case IND(BRANCH,DOUBLE):
|
||
ext=4;
|
||
break;
|
||
}
|
||
if(ext) {
|
||
md_number_to_disp(buffer_address,(long)disp,(int)ext);
|
||
fragP->fr_fix+=ext;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This function returns the estimated size a variable object will occupy,
|
||
one can say that we tries to guess the size of the objects before we
|
||
actually know it */
|
||
|
||
int md_estimate_size_before_relax(fragP, segment)
|
||
register fragS *fragP;
|
||
segT segment;
|
||
{
|
||
int old_fix;
|
||
old_fix=fragP->fr_fix;
|
||
switch(fragP->fr_subtype) {
|
||
case IND(BRANCH,UNDEF):
|
||
if(S_GET_SEGMENT(fragP->fr_symbol) == segment) {
|
||
/* the symbol has been assigned a value */
|
||
fragP->fr_subtype=IND(BRANCH,BYTE);
|
||
} else {
|
||
/* we don't relax symbols defined in an other segment
|
||
the thing to do is to assume the object will occupy 4 bytes */
|
||
fix_new_ns32k(fragP,
|
||
(int)(fragP->fr_fix),
|
||
4,
|
||
fragP->fr_symbol,
|
||
(symbolS *)0,
|
||
fragP->fr_offset,
|
||
1,
|
||
fragP->fr_pcrel_adjust,
|
||
1,
|
||
0,
|
||
fragP->fr_bsr); /*sequent hack */
|
||
fragP->fr_fix+=4;
|
||
/* fragP->fr_opcode[1]=0xff; */
|
||
frag_wane(fragP);
|
||
break;
|
||
}
|
||
case IND(BRANCH,BYTE):
|
||
fragP->fr_var+=1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return fragP->fr_var + fragP->fr_fix - old_fix;
|
||
}
|
||
|
||
int md_short_jump_size = 3;
|
||
int md_long_jump_size = 5;
|
||
int md_reloc_size = 8; /* Size of relocation record */
|
||
|
||
void
|
||
md_create_short_jump(ptr,from_addr,to_addr,frag,to_symbol)
|
||
char *ptr;
|
||
long from_addr,
|
||
to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
offset = to_addr - from_addr;
|
||
md_number_to_chars(ptr, (long)0xEA ,1);
|
||
md_number_to_disp(ptr+1,(long)offset,2);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
|
||
char *ptr;
|
||
long from_addr,
|
||
to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
offset= to_addr - from_addr;
|
||
md_number_to_chars(ptr, (long)0xEA, 2);
|
||
md_number_to_disp(ptr+2,(long)offset,4);
|
||
}
|
||
|
||
/* JF this is a new function to parse machine-dep options */
|
||
int
|
||
md_parse_option(argP,cntP,vecP)
|
||
char **argP;
|
||
int *cntP;
|
||
char ***vecP;
|
||
{
|
||
switch(**argP) {
|
||
case 'm':
|
||
(*argP)++;
|
||
|
||
if(!strcmp(*argP,"32032")) {
|
||
cpureg = cpureg_032;
|
||
mmureg = mmureg_032;
|
||
} else if(!strcmp(*argP, "32532")) {
|
||
cpureg = cpureg_532;
|
||
mmureg = mmureg_532;
|
||
} else
|
||
as_warn("Unknown -m option ignored");
|
||
|
||
while(**argP)
|
||
(*argP)++;
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* bit_fix_new()
|
||
*
|
||
* Create a bit_fixS in obstack 'notes'.
|
||
* This struct is used to profile the normal fix. If the bit_fixP is a
|
||
* valid pointer (not NULL) the bit_fix data will be used to format the fix.
|
||
*/
|
||
bit_fixS *bit_fix_new(size, offset, min, max, add, base_type, base_adj)
|
||
char size; /* Length of bitfield */
|
||
char offset; /* Bit offset to bitfield */
|
||
long base_type; /* 0 or 1, if 1 it's exploded to opcode ptr */
|
||
long base_adj;
|
||
long min; /* Signextended min for bitfield */
|
||
long max; /* Signextended max for bitfield */
|
||
long add; /* Add mask, used for huffman prefix */
|
||
{
|
||
register bit_fixS * bit_fixP;
|
||
|
||
bit_fixP = (bit_fixS *)obstack_alloc(¬es,sizeof(bit_fixS));
|
||
|
||
bit_fixP->fx_bit_size = size;
|
||
bit_fixP->fx_bit_offset = offset;
|
||
bit_fixP->fx_bit_base = base_type;
|
||
bit_fixP->fx_bit_base_adj = base_adj;
|
||
bit_fixP->fx_bit_max = max;
|
||
bit_fixP->fx_bit_min = min;
|
||
bit_fixP->fx_bit_add = add;
|
||
|
||
return(bit_fixP);
|
||
}
|
||
|
||
void
|
||
fix_new_ns32k(frag, where, size, add_symbol, sub_symbol, offset, pcrel,
|
||
pcrel_adjust, im_disp, bit_fixP, bsr)
|
||
fragS *frag; /* Which frag? */
|
||
int where; /* Where in that frag? */
|
||
int size; /* 1, 2 or 4 usually. */
|
||
symbolS *add_symbol; /* X_add_symbol. */
|
||
symbolS *sub_symbol; /* X_subtract_symbol. */
|
||
long offset; /* X_add_number. */
|
||
int pcrel; /* TRUE if PC-relative relocation. */
|
||
char pcrel_adjust; /* not zero if adjustment of pcrel offset is needed */
|
||
char im_disp; /* true if the value to write is a displacement */
|
||
bit_fixS *bit_fixP; /* pointer at struct of bit_fix's, ignored if NULL */
|
||
char bsr; /* sequent-linker-hack: 1 when relocobject is a bsr */
|
||
|
||
{
|
||
fixS *fixP = fix_new(frag, where, size, add_symbol, sub_symbol,
|
||
offset, pcrel, NO_RELOC);
|
||
|
||
fixP->fx_pcrel_adjust = pcrel_adjust;
|
||
fixP->fx_im_disp = im_disp;
|
||
fixP->fx_bit_fixP = bit_fixP;
|
||
fixP->fx_bsr = bsr;
|
||
} /* fix_new_ns32k() */
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Parse an operand that is machine-specific.
|
||
We just return without modifying the expression if we have nothing
|
||
to do. */
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
md_operand (expressionP)
|
||
expressionS *expressionP;
|
||
{
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
long
|
||
md_section_align (segment, size)
|
||
segT segment;
|
||
long size;
|
||
{
|
||
return size; /* Byte alignment is fine */
|
||
}
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO?
|
||
On the National warts, they're relative to the address of the offset,
|
||
with some funny adjustments in some circumstances during blue moons.
|
||
(??? Is this right? FIXME-SOON) */
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
long res;
|
||
res = fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#ifdef SEQUENT_COMPATABILITY
|
||
if (fixP->fx_frag->fr_bsr)
|
||
res += 0x12 /* FOO Kludge alert! */
|
||
#endif
|
||
return res;
|
||
}
|
||
|
||
void tc_aout_fix_to_chars(char *where, struct fix *fixP,
|
||
relax_addressT segment_address) {
|
||
know(0); /* know nothing */
|
||
}
|
||
|
||
/*
|
||
* Local Variables:
|
||
* comment-column: 0
|
||
* End:
|
||
*/
|
||
|
||
/* end of tc-ns32k.c */
|