1347 lines
33 KiB
C
1347 lines
33 KiB
C
/* Native debugging support for Intel x86 running DJGPP.
|
|
Copyright 1997, 1999 Free Software Foundation, Inc.
|
|
Written by Robert Hoehne.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include "defs.h"
|
|
#include "frame.h" /* required by inferior.h */
|
|
#include "inferior.h"
|
|
#include "target.h"
|
|
#include "wait.h"
|
|
#include "gdbcore.h"
|
|
#include "command.h"
|
|
#include "floatformat.h"
|
|
|
|
#include <stdio.h> /* required for __DJGPP_MINOR__ */
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <io.h>
|
|
#include <dpmi.h>
|
|
#include <debug/v2load.h>
|
|
#include <debug/dbgcom.h>
|
|
#if __DJGPP_MINOR__ > 2
|
|
#include <debug/redir.h>
|
|
#endif
|
|
|
|
#if __DJGPP_MINOR__ < 3
|
|
/* This code will be provided from DJGPP 2.03 on. Until then I code it
|
|
here */
|
|
typedef struct
|
|
{
|
|
unsigned short sig0;
|
|
unsigned short sig1;
|
|
unsigned short sig2;
|
|
unsigned short sig3;
|
|
unsigned short exponent:15;
|
|
unsigned short sign:1;
|
|
}
|
|
NPXREG;
|
|
|
|
typedef struct
|
|
{
|
|
unsigned int control;
|
|
unsigned int status;
|
|
unsigned int tag;
|
|
unsigned int eip;
|
|
unsigned int cs;
|
|
unsigned int dataptr;
|
|
unsigned int datasel;
|
|
NPXREG reg[8];
|
|
}
|
|
NPX;
|
|
|
|
static NPX npx;
|
|
|
|
static void save_npx (void); /* Save the FPU of the debugged program */
|
|
static void load_npx (void); /* Restore the FPU of the debugged program */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Store the contents of the NPX in the global variable `npx'. */
|
|
/* *INDENT-OFF* */
|
|
|
|
static void
|
|
save_npx (void)
|
|
{
|
|
asm ("inb $0xa0, %%al
|
|
testb $0x20, %%al
|
|
jz 1f
|
|
xorb %% al, %%al
|
|
outb %% al, $0xf0
|
|
movb $0x20, %%al
|
|
outb %% al, $0xa0
|
|
outb %% al, $0x20
|
|
1:
|
|
fnsave % 0
|
|
fwait "
|
|
: "=m" (npx)
|
|
: /* No input */
|
|
: "%eax");
|
|
}
|
|
|
|
/* *INDENT-ON* */
|
|
|
|
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Reload the contents of the NPX from the global variable `npx'. */
|
|
|
|
static void
|
|
load_npx (void)
|
|
{
|
|
asm ("frstor %0":"=m" (npx));
|
|
}
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Stubs for the missing redirection functions. */
|
|
typedef struct {
|
|
char *command;
|
|
int redirected;
|
|
} cmdline_t;
|
|
|
|
void redir_cmdline_delete (cmdline_t *ptr) {ptr->redirected = 0;}
|
|
int redir_cmdline_parse (const char *args, cmdline_t *ptr)
|
|
{
|
|
return -1;
|
|
}
|
|
int redir_to_child (cmdline_t *ptr)
|
|
{
|
|
return 1;
|
|
}
|
|
int redir_to_debugger (cmdline_t *ptr)
|
|
{
|
|
return 1;
|
|
}
|
|
int redir_debug_init (cmdline_t *ptr) { return 0; }
|
|
#endif /* __DJGPP_MINOR < 3 */
|
|
|
|
extern void _initialize_go32_nat (void);
|
|
|
|
struct env387
|
|
{
|
|
unsigned short control;
|
|
unsigned short r0;
|
|
unsigned short status;
|
|
unsigned short r1;
|
|
unsigned short tag;
|
|
unsigned short r2;
|
|
unsigned long eip;
|
|
unsigned short code_seg;
|
|
unsigned short opcode;
|
|
unsigned long operand;
|
|
unsigned short operand_seg;
|
|
unsigned short r3;
|
|
unsigned char regs[8][10];
|
|
};
|
|
|
|
typedef enum { wp_insert, wp_remove, wp_count } wp_op;
|
|
|
|
/* This holds the current reference counts for each debug register. */
|
|
static int dr_ref_count[4];
|
|
|
|
extern char **environ;
|
|
|
|
#define SOME_PID 42
|
|
|
|
static int prog_has_started = 0;
|
|
static void print_387_status (unsigned short status, struct env387 *ep);
|
|
static void go32_open (char *name, int from_tty);
|
|
static void go32_close (int quitting);
|
|
static void go32_attach (char *args, int from_tty);
|
|
static void go32_detach (char *args, int from_tty);
|
|
static void go32_resume (int pid, int step, enum target_signal siggnal);
|
|
static int go32_wait (int pid, struct target_waitstatus *status);
|
|
static void go32_fetch_registers (int regno);
|
|
static void store_register (int regno);
|
|
static void go32_store_registers (int regno);
|
|
static void go32_prepare_to_store (void);
|
|
static int go32_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
|
|
int write, struct target_ops *target);
|
|
static void go32_files_info (struct target_ops *target);
|
|
static void go32_stop (void);
|
|
static void go32_kill_inferior (void);
|
|
static void go32_create_inferior (char *exec_file, char *args, char **env);
|
|
static void cleanup_dregs (void);
|
|
static void go32_mourn_inferior (void);
|
|
static int go32_can_run (void);
|
|
static void ignore (void);
|
|
static void ignore2 (char *a, int b);
|
|
static int go32_insert_aligned_watchpoint (CORE_ADDR waddr, CORE_ADDR addr,
|
|
int len, int rw);
|
|
static int go32_remove_aligned_watchpoint (CORE_ADDR waddr, CORE_ADDR addr,
|
|
int len, int rw);
|
|
static int go32_handle_nonaligned_watchpoint (wp_op what, CORE_ADDR waddr,
|
|
CORE_ADDR addr, int len, int rw);
|
|
|
|
static struct target_ops go32_ops;
|
|
static void go32_terminal_init (void);
|
|
static void go32_terminal_inferior (void);
|
|
static void go32_terminal_ours (void);
|
|
|
|
static void
|
|
print_387_status (unsigned short status, struct env387 *ep)
|
|
{
|
|
int i;
|
|
int bothstatus;
|
|
int top;
|
|
int fpreg;
|
|
|
|
bothstatus = ((status != 0) && (ep->status != 0));
|
|
if (status != 0)
|
|
{
|
|
if (bothstatus)
|
|
printf_unfiltered ("u: ");
|
|
print_387_status_word (status);
|
|
}
|
|
|
|
if (ep->status != 0)
|
|
{
|
|
if (bothstatus)
|
|
printf_unfiltered ("e: ");
|
|
print_387_status_word (ep->status);
|
|
}
|
|
|
|
print_387_control_word (ep->control & 0xffff);
|
|
/* Other platforms say "last exception", but that's not true: the
|
|
FPU stores the last non-control instruction there. */
|
|
printf_unfiltered ("last FP instruction: ");
|
|
/* The ORing with D800h restores the upper 5 bits of the opcode that
|
|
are not stored by the FPU (since these bits are the same for all
|
|
floating-point instructions). */
|
|
printf_unfiltered ("opcode %s; ",
|
|
local_hex_string (ep->opcode ? (ep->opcode|0xd800) : 0));
|
|
printf_unfiltered ("pc %s:", local_hex_string (ep->code_seg));
|
|
printf_unfiltered ("%s; ", local_hex_string (ep->eip));
|
|
printf_unfiltered ("operand %s", local_hex_string (ep->operand_seg));
|
|
printf_unfiltered (":%s\n", local_hex_string (ep->operand));
|
|
|
|
top = (ep->status >> 11) & 7;
|
|
|
|
printf_unfiltered ("regno tag msb lsb value\n");
|
|
for (fpreg = 7; fpreg >= 0; fpreg--)
|
|
{
|
|
/* FNSAVE saves the FP registers in their logical TOP-relative
|
|
order, beginning with ST(0). Since we need to print them in
|
|
their physical order, we have to remap them. */
|
|
int regno = fpreg - top;
|
|
long double val;
|
|
|
|
if (regno < 0)
|
|
regno += 8;
|
|
|
|
printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
|
|
|
|
switch ((ep->tag >> (fpreg * 2)) & 3)
|
|
{
|
|
case 0:
|
|
printf_unfiltered ("valid ");
|
|
break;
|
|
case 1:
|
|
printf_unfiltered ("zero ");
|
|
break;
|
|
case 2:
|
|
/* All other versions of print_387_status use TRAP here, but I
|
|
think this is misleading, since Intel manuals say SPECIAL. */
|
|
printf_unfiltered ("special ");
|
|
break;
|
|
case 3:
|
|
printf_unfiltered ("empty ");
|
|
break;
|
|
}
|
|
for (i = 9; i >= 0; i--)
|
|
printf_unfiltered ("%02x", ep->regs[regno][i]);
|
|
|
|
REGISTER_CONVERT_TO_VIRTUAL (FP0_REGNUM+regno, builtin_type_long_double,
|
|
&ep->regs[regno], &val);
|
|
|
|
printf_unfiltered (" %.19LG\n", val);
|
|
}
|
|
}
|
|
|
|
void
|
|
i386_go32_float_info (void)
|
|
{
|
|
print_387_status (0, (struct env387 *) &npx);
|
|
}
|
|
|
|
#define r_ofs(x) (offsetof(TSS,x))
|
|
|
|
static struct
|
|
{
|
|
size_t tss_ofs;
|
|
size_t size;
|
|
}
|
|
regno_mapping[] =
|
|
{
|
|
r_ofs (tss_eax), 4, /* normal registers, from a_tss */
|
|
r_ofs (tss_ecx), 4,
|
|
r_ofs (tss_edx), 4,
|
|
r_ofs (tss_ebx), 4,
|
|
r_ofs (tss_esp), 4,
|
|
r_ofs (tss_ebp), 4,
|
|
r_ofs (tss_esi), 4,
|
|
r_ofs (tss_edi), 4,
|
|
r_ofs (tss_eip), 4,
|
|
r_ofs (tss_eflags), 4,
|
|
r_ofs (tss_cs), 2,
|
|
r_ofs (tss_ss), 2,
|
|
r_ofs (tss_ds), 2,
|
|
r_ofs (tss_es), 2,
|
|
r_ofs (tss_fs), 2,
|
|
r_ofs (tss_gs), 2,
|
|
0, 10, /* 8 FP registers, from npx.reg[] */
|
|
1, 10,
|
|
2, 10,
|
|
3, 10,
|
|
4, 10,
|
|
5, 10,
|
|
6, 10,
|
|
7, 10,
|
|
/* The order of the next 7 registers must be consistent
|
|
with their numbering in config/i386/tm-go32.h, which see. */
|
|
0, 2, /* control word, from npx */
|
|
4, 2, /* status word, from npx */
|
|
8, 2, /* tag word, from npx */
|
|
16, 2, /* last FP exception CS from npx */
|
|
24, 2, /* last FP exception operand selector from npx */
|
|
12, 4, /* last FP exception EIP from npx */
|
|
20, 4 /* last FP exception operand offset from npx */
|
|
};
|
|
|
|
static struct
|
|
{
|
|
int go32_sig;
|
|
int gdb_sig;
|
|
}
|
|
sig_map[] =
|
|
{
|
|
0, TARGET_SIGNAL_FPE,
|
|
1, TARGET_SIGNAL_TRAP,
|
|
/* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
|
|
but I think SIGBUS is better, since the NMI is usually activated
|
|
as a result of a memory parity check failure. */
|
|
2, TARGET_SIGNAL_BUS,
|
|
3, TARGET_SIGNAL_TRAP,
|
|
4, TARGET_SIGNAL_FPE,
|
|
5, TARGET_SIGNAL_SEGV,
|
|
6, TARGET_SIGNAL_ILL,
|
|
7, TARGET_SIGNAL_FPE,
|
|
8, TARGET_SIGNAL_SEGV,
|
|
9, TARGET_SIGNAL_SEGV,
|
|
10, TARGET_SIGNAL_BUS,
|
|
11, TARGET_SIGNAL_SEGV,
|
|
12, TARGET_SIGNAL_SEGV,
|
|
13, TARGET_SIGNAL_SEGV,
|
|
14, TARGET_SIGNAL_SEGV,
|
|
16, TARGET_SIGNAL_FPE,
|
|
17, TARGET_SIGNAL_BUS,
|
|
31, TARGET_SIGNAL_ILL,
|
|
0x1b, TARGET_SIGNAL_INT,
|
|
0x75, TARGET_SIGNAL_FPE,
|
|
0x78, TARGET_SIGNAL_ALRM,
|
|
0x79, TARGET_SIGNAL_INT,
|
|
0x7a, TARGET_SIGNAL_QUIT,
|
|
-1, -1
|
|
};
|
|
|
|
static struct {
|
|
enum target_signal gdb_sig;
|
|
int djgpp_excepno;
|
|
} excepn_map[] = {
|
|
TARGET_SIGNAL_0, -1,
|
|
TARGET_SIGNAL_ILL, 6, /* Invalid Opcode */
|
|
TARGET_SIGNAL_EMT, 7, /* triggers SIGNOFP */
|
|
TARGET_SIGNAL_SEGV, 13, /* GPF */
|
|
TARGET_SIGNAL_BUS, 17, /* Alignment Check */
|
|
/* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
|
|
details. */
|
|
TARGET_SIGNAL_TERM, 0x1b, /* triggers Ctrl-Break type of SIGINT */
|
|
TARGET_SIGNAL_FPE, 0x75,
|
|
TARGET_SIGNAL_INT, 0x79,
|
|
TARGET_SIGNAL_QUIT, 0x7a,
|
|
TARGET_SIGNAL_ALRM, 0x78, /* triggers SIGTIMR */
|
|
TARGET_SIGNAL_PROF, 0x78,
|
|
-1, -1
|
|
};
|
|
|
|
static void
|
|
go32_open (char *name, int from_tty)
|
|
{
|
|
printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
|
|
}
|
|
|
|
static void
|
|
go32_close (int quitting)
|
|
{
|
|
}
|
|
|
|
static void
|
|
go32_attach (char *args, int from_tty)
|
|
{
|
|
error ("\
|
|
You cannot attach to a running program on this platform.\n\
|
|
Use the `run' command to run DJGPP programs.");
|
|
}
|
|
|
|
static void
|
|
go32_detach (char *args, int from_tty)
|
|
{
|
|
}
|
|
|
|
static int resume_is_step;
|
|
static int resume_signal = -1;
|
|
|
|
static void
|
|
go32_resume (int pid, int step, enum target_signal siggnal)
|
|
{
|
|
int i;
|
|
|
|
resume_is_step = step;
|
|
|
|
if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP)
|
|
{
|
|
for (i = 0, resume_signal = -1; excepn_map[i].gdb_sig != -1; i++)
|
|
if (excepn_map[i].gdb_sig == siggnal)
|
|
{
|
|
resume_signal = excepn_map[i].djgpp_excepno;
|
|
break;
|
|
}
|
|
if (resume_signal == -1)
|
|
printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
|
|
target_signal_to_name (siggnal));
|
|
}
|
|
}
|
|
|
|
static char child_cwd[FILENAME_MAX];
|
|
|
|
static int
|
|
go32_wait (int pid, struct target_waitstatus *status)
|
|
{
|
|
int i;
|
|
unsigned char saved_opcode;
|
|
unsigned long INT3_addr;
|
|
int stepping_over_INT = 0;
|
|
|
|
a_tss.tss_eflags &= 0xfeff; /* reset the single-step flag (TF) */
|
|
if (resume_is_step)
|
|
{
|
|
/* If the next instruction is INT xx or INTO, we need to handle
|
|
them specially. Intel manuals say that these instructions
|
|
reset the single-step flag (a.k.a. TF). However, it seems
|
|
that, at least in the DPMI environment, and at least when
|
|
stepping over the DPMI interrupt 31h, the problem is having
|
|
TF set at all when INT 31h is executed: the debuggee either
|
|
crashes (and takes the system with it) or is killed by a
|
|
SIGTRAP.
|
|
|
|
So we need to emulate single-step mode: we put an INT3 opcode
|
|
right after the INT xx instruction, let the debuggee run
|
|
until it hits INT3 and stops, then restore the original
|
|
instruction which we overwrote with the INT3 opcode, and back
|
|
up the debuggee's EIP to that instruction. */
|
|
read_child (a_tss.tss_eip, &saved_opcode, 1);
|
|
if (saved_opcode == 0xCD || saved_opcode == 0xCE)
|
|
{
|
|
unsigned char INT3_opcode = 0xCC;
|
|
|
|
INT3_addr
|
|
= saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
|
|
stepping_over_INT = 1;
|
|
read_child (INT3_addr, &saved_opcode, 1);
|
|
write_child (INT3_addr, &INT3_opcode, 1);
|
|
}
|
|
else
|
|
a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
|
|
}
|
|
|
|
/* The special value FFFFh in tss_trap indicates to run_child that
|
|
tss_irqn holds a signal to be delivered to the debuggee. */
|
|
if (resume_signal <= -1)
|
|
{
|
|
a_tss.tss_trap = 0;
|
|
a_tss.tss_irqn = 0xff;
|
|
}
|
|
else
|
|
{
|
|
a_tss.tss_trap = 0xffff; /* run_child looks for this */
|
|
a_tss.tss_irqn = resume_signal;
|
|
}
|
|
|
|
/* The child might change working directory behind our back. The
|
|
GDB users won't like the side effects of that when they work with
|
|
relative file names, and GDB might be confused by its current
|
|
directory not being in sync with the truth. So we always make a
|
|
point of changing back to where GDB thinks is its cwd, when we
|
|
return control to the debugger, but restore child's cwd before we
|
|
run it. */
|
|
chdir (child_cwd);
|
|
|
|
#if __DJGPP_MINOR__ < 3
|
|
load_npx ();
|
|
#endif
|
|
run_child ();
|
|
#if __DJGPP_MINOR__ < 3
|
|
save_npx ();
|
|
#endif
|
|
|
|
/* Did we step over an INT xx instruction? */
|
|
if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
|
|
{
|
|
/* Restore the original opcode. */
|
|
a_tss.tss_eip--; /* EIP points *after* the INT3 instruction */
|
|
write_child (a_tss.tss_eip, &saved_opcode, 1);
|
|
/* Simulate a TRAP exception. */
|
|
a_tss.tss_irqn = 1;
|
|
a_tss.tss_eflags |= 0x0100;
|
|
}
|
|
|
|
getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
|
|
chdir (current_directory);
|
|
|
|
if (a_tss.tss_irqn == 0x21)
|
|
{
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
|
status->value.integer = a_tss.tss_eax & 0xff;
|
|
}
|
|
else
|
|
{
|
|
status->value.sig = TARGET_SIGNAL_UNKNOWN;
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
for (i = 0; sig_map[i].go32_sig != -1; i++)
|
|
{
|
|
if (a_tss.tss_irqn == sig_map[i].go32_sig)
|
|
{
|
|
#if __DJGPP_MINOR__ < 3
|
|
if ((status->value.sig = sig_map[i].gdb_sig) !=
|
|
TARGET_SIGNAL_TRAP)
|
|
status->kind = TARGET_WAITKIND_SIGNALLED;
|
|
#else
|
|
status->value.sig = sig_map[i].gdb_sig;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return SOME_PID;
|
|
}
|
|
|
|
static void
|
|
go32_fetch_registers (int regno)
|
|
{
|
|
/*JHW */
|
|
int end_reg = regno + 1; /* just one reg initially */
|
|
|
|
if (regno < 0) /* do the all registers */
|
|
{
|
|
regno = 0; /* start at first register */
|
|
/* # regs in table */
|
|
end_reg = sizeof (regno_mapping) / sizeof (regno_mapping[0]);
|
|
}
|
|
|
|
for (; regno < end_reg; regno++)
|
|
{
|
|
if (regno < 16)
|
|
supply_register (regno,
|
|
(char *) &a_tss + regno_mapping[regno].tss_ofs);
|
|
else if (regno < 24)
|
|
supply_register (regno,
|
|
(char *) &npx.reg[regno_mapping[regno].tss_ofs]);
|
|
else if (regno < 31)
|
|
supply_register (regno,
|
|
(char *) &npx + regno_mapping[regno].tss_ofs);
|
|
else
|
|
fatal ("Invalid register no. %d in go32_fetch_register.", regno);
|
|
}
|
|
}
|
|
|
|
static void
|
|
store_register (int regno)
|
|
{
|
|
void *rp;
|
|
void *v = (void *) ®isters[REGISTER_BYTE (regno)];
|
|
|
|
if (regno < 16)
|
|
rp = (char *) &a_tss + regno_mapping[regno].tss_ofs;
|
|
else if (regno < 24)
|
|
rp = (char *) &npx.reg[regno_mapping[regno].tss_ofs];
|
|
else if (regno < 31)
|
|
rp = (char *) &npx + regno_mapping[regno].tss_ofs;
|
|
else
|
|
fatal ("Invalid register no. %d in store_register.", regno);
|
|
memcpy (rp, v, regno_mapping[regno].size);
|
|
}
|
|
|
|
static void
|
|
go32_store_registers (int regno)
|
|
{
|
|
int r;
|
|
|
|
if (regno >= 0)
|
|
store_register (regno);
|
|
else
|
|
{
|
|
for (r = 0; r < sizeof (regno_mapping) / sizeof (regno_mapping[0]); r++)
|
|
store_register (r);
|
|
}
|
|
}
|
|
|
|
static void
|
|
go32_prepare_to_store (void)
|
|
{
|
|
}
|
|
|
|
static int
|
|
go32_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
|
struct target_ops *target)
|
|
{
|
|
if (write)
|
|
{
|
|
if (write_child (memaddr, myaddr, len))
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return len;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (read_child (memaddr, myaddr, len))
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return len;
|
|
}
|
|
}
|
|
}
|
|
|
|
static cmdline_t child_cmd; /* parsed child's command line kept here */
|
|
|
|
static void
|
|
go32_files_info (struct target_ops *target)
|
|
{
|
|
printf_unfiltered ("You are running a DJGPP V2 program.\n");
|
|
}
|
|
|
|
static void
|
|
go32_stop (void)
|
|
{
|
|
normal_stop ();
|
|
cleanup_client ();
|
|
inferior_pid = 0;
|
|
prog_has_started = 0;
|
|
}
|
|
|
|
static void
|
|
go32_kill_inferior (void)
|
|
{
|
|
redir_cmdline_delete (&child_cmd);
|
|
resume_signal = -1;
|
|
resume_is_step = 0;
|
|
unpush_target (&go32_ops);
|
|
}
|
|
|
|
static void
|
|
go32_create_inferior (char *exec_file, char *args, char **env)
|
|
{
|
|
jmp_buf start_state;
|
|
char *cmdline;
|
|
char **env_save = environ;
|
|
|
|
if (prog_has_started)
|
|
{
|
|
go32_stop ();
|
|
go32_kill_inferior ();
|
|
}
|
|
resume_signal = -1;
|
|
resume_is_step = 0;
|
|
/* Init command line storage. */
|
|
if (redir_debug_init (&child_cmd) == -1)
|
|
fatal ("Cannot allocate redirection storage: not enough memory.\n");
|
|
|
|
/* Parse the command line and create redirections. */
|
|
if (strpbrk (args, "<>"))
|
|
{
|
|
if (redir_cmdline_parse (args, &child_cmd) == 0)
|
|
args = child_cmd.command;
|
|
else
|
|
error ("Syntax error in command line.");
|
|
}
|
|
else
|
|
child_cmd.command = strdup (args);
|
|
|
|
cmdline = (char *) alloca (strlen (args) + 4);
|
|
cmdline[0] = strlen (args);
|
|
strcpy (cmdline + 1, args);
|
|
cmdline[strlen (args) + 1] = 13;
|
|
|
|
environ = env;
|
|
|
|
if (v2loadimage (exec_file, cmdline, start_state))
|
|
{
|
|
environ = env_save;
|
|
printf_unfiltered ("Load failed for image %s\n", exec_file);
|
|
exit (1);
|
|
}
|
|
environ = env_save;
|
|
|
|
edi_init (start_state);
|
|
#if __DJGPP_MINOR__ < 3
|
|
save_npx ();
|
|
#endif
|
|
|
|
inferior_pid = SOME_PID;
|
|
push_target (&go32_ops);
|
|
clear_proceed_status ();
|
|
insert_breakpoints ();
|
|
proceed ((CORE_ADDR) - 1, TARGET_SIGNAL_0, 0);
|
|
prog_has_started = 1;
|
|
}
|
|
|
|
static void
|
|
go32_mourn_inferior (void)
|
|
{
|
|
/* We need to make sure all the breakpoint enable bits in the DR7
|
|
register are reset when the inferior exits. Otherwise, if they
|
|
rerun the inferior, the uncleared bits may cause random SIGTRAPs,
|
|
failure to set more watchpoints, and other calamities. It would
|
|
be nice if GDB itself would take care to remove all breakpoints
|
|
at all times, but it doesn't, probably under an assumption that
|
|
the OS cleans up when the debuggee exits. */
|
|
cleanup_dregs ();
|
|
go32_kill_inferior ();
|
|
generic_mourn_inferior ();
|
|
}
|
|
|
|
static int
|
|
go32_can_run (void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ignore (void)
|
|
{
|
|
}
|
|
|
|
/* Hardware watchpoint support. */
|
|
|
|
#define DR_STATUS 6
|
|
#define DR_CONTROL 7
|
|
#define DR_ENABLE_SIZE 2
|
|
#define DR_LOCAL_ENABLE_SHIFT 0
|
|
#define DR_GLOBAL_ENABLE_SHIFT 1
|
|
#define DR_LOCAL_SLOWDOWN 0x100
|
|
#define DR_GLOBAL_SLOWDOWN 0x200
|
|
#define DR_CONTROL_SHIFT 16
|
|
#define DR_CONTROL_SIZE 4
|
|
#define DR_RW_READWRITE 0x3
|
|
#define DR_RW_WRITE 0x1
|
|
#define DR_CONTROL_MASK 0xf
|
|
#define DR_ENABLE_MASK 0x3
|
|
#define DR_LEN_1 0x0
|
|
#define DR_LEN_2 0x4
|
|
#define DR_LEN_4 0xc
|
|
|
|
#define D_REGS edi.dr
|
|
#define CONTROL D_REGS[DR_CONTROL]
|
|
#define STATUS D_REGS[DR_STATUS]
|
|
|
|
#define IS_REG_FREE(index) \
|
|
(!(CONTROL & (3 << (DR_ENABLE_SIZE * (index)))))
|
|
|
|
#define LOCAL_ENABLE_REG(index) \
|
|
(CONTROL |= (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (index))))
|
|
|
|
#define GLOBAL_ENABLE_REG(index) \
|
|
(CONTROL |= (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (index))))
|
|
|
|
#define DISABLE_REG(index) \
|
|
(CONTROL &= ~(3 << (DR_ENABLE_SIZE * (index))))
|
|
|
|
#define SET_LOCAL_EXACT() \
|
|
(CONTROL |= DR_LOCAL_SLOWDOWN)
|
|
|
|
#define SET_GLOBAL_EXACT() \
|
|
(CONTROL |= DR_GLOBAL_SLOWDOWN)
|
|
|
|
#define RESET_LOCAL_EXACT() \
|
|
(CONTROL &= ~(DR_LOCAL_SLOWDOWN))
|
|
|
|
#define RESET_GLOBAL_EXACT() \
|
|
(CONTROL &= ~(DR_GLOBAL_SLOWDOWN))
|
|
|
|
#define SET_BREAK(index,address) \
|
|
do {\
|
|
CONTROL &= ~(DR_CONTROL_MASK << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (index)));\
|
|
D_REGS[index] = address;\
|
|
} while(0)
|
|
|
|
#define SET_WATCH(index,address,rw,len) \
|
|
do {\
|
|
SET_BREAK(index,address);\
|
|
CONTROL |= ((len)|(rw)) << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (index));\
|
|
} while (0)
|
|
|
|
#define IS_WATCH(index) \
|
|
(CONTROL & (DR_CONTROL_MASK << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE*(index))))
|
|
|
|
#define WATCH_HIT(index) \
|
|
(\
|
|
(STATUS & (1 << index)) && \
|
|
(CONTROL & (DR_CONTROL_MASK << (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * index)))\
|
|
)
|
|
|
|
#define DR_DEF(index) \
|
|
((CONTROL >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (index))) & 0x0f)
|
|
|
|
|
|
#if 0 /* use debugging macro */
|
|
#define SHOW_DR(text,len) \
|
|
do { \
|
|
if (!getenv ("GDB_SHOW_DR")) break; \
|
|
fprintf(stderr,"%08x %08x ",edi.dr[7],edi.dr[6]); \
|
|
fprintf(stderr,"%08x %d %08x %d ", \
|
|
edi.dr[0],dr_ref_count[0],edi.dr[1],dr_ref_count[1]); \
|
|
fprintf(stderr,"%08x %d %08x %d ", \
|
|
edi.dr[2],dr_ref_count[2],edi.dr[3],dr_ref_count[3]); \
|
|
fprintf(stderr,(len)?"(%s:%d)\n":"(%s)\n",#text,len); \
|
|
} while (0)
|
|
#else
|
|
#define SHOW_DR(text,len) do {} while (0)
|
|
#endif
|
|
|
|
static void
|
|
cleanup_dregs (void)
|
|
{
|
|
int i;
|
|
|
|
CONTROL = 0;
|
|
STATUS = 0;
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
D_REGS[i] = 0;
|
|
dr_ref_count[i] = 0;
|
|
}
|
|
}
|
|
|
|
/* Insert a watchpoint. */
|
|
|
|
int
|
|
go32_insert_watchpoint (int pid, CORE_ADDR addr, int len, int rw)
|
|
{
|
|
int ret = go32_insert_aligned_watchpoint (addr, addr, len, rw);
|
|
|
|
SHOW_DR (insert_watch, len);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
go32_insert_aligned_watchpoint (CORE_ADDR waddr, CORE_ADDR addr,
|
|
int len, int rw)
|
|
{
|
|
int i;
|
|
int read_write_bits, len_bits;
|
|
|
|
/* Values of rw: 0 - write, 1 - read, 2 - access (read and write).
|
|
However, x86 doesn't support read-only data breakpoints. */
|
|
read_write_bits = rw ? DR_RW_READWRITE : DR_RW_WRITE;
|
|
|
|
switch (len)
|
|
{
|
|
case 4:
|
|
len_bits = DR_LEN_4;
|
|
break;
|
|
case 2:
|
|
len_bits = DR_LEN_2;
|
|
break;
|
|
case 1:
|
|
len_bits = DR_LEN_1;
|
|
break;
|
|
default:
|
|
/* The debug registers only have 2 bits for the length, so
|
|
so this value will always fail the loop below. */
|
|
len_bits = 0x10;
|
|
}
|
|
|
|
/* Look for an occupied debug register with the same address and the
|
|
same RW and LEN definitions. If we find one, we can use it for
|
|
this watchpoint as well (and save a register). */
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
if (!IS_REG_FREE (i) && D_REGS[i] == addr
|
|
&& DR_DEF (i) == (len_bits | read_write_bits))
|
|
{
|
|
dr_ref_count[i]++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Look for a free debug register. */
|
|
for (i = 0; i <= 3; i++)
|
|
{
|
|
if (IS_REG_FREE (i))
|
|
break;
|
|
}
|
|
|
|
/* No more debug registers! */
|
|
if (i > 3)
|
|
return -1;
|
|
|
|
if (len == 2)
|
|
{
|
|
if (addr % 2)
|
|
return go32_handle_nonaligned_watchpoint (wp_insert, waddr, addr,
|
|
len, rw);
|
|
}
|
|
else if (len == 4)
|
|
{
|
|
if (addr % 4)
|
|
return go32_handle_nonaligned_watchpoint (wp_insert, waddr, addr,
|
|
len, rw);
|
|
}
|
|
else if (len != 1)
|
|
return go32_handle_nonaligned_watchpoint (wp_insert, waddr, addr, len, rw);
|
|
|
|
SET_WATCH (i, addr, read_write_bits, len_bits);
|
|
LOCAL_ENABLE_REG (i);
|
|
SET_LOCAL_EXACT ();
|
|
SET_GLOBAL_EXACT ();
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
go32_handle_nonaligned_watchpoint (wp_op what, CORE_ADDR waddr, CORE_ADDR addr,
|
|
int len, int rw)
|
|
{
|
|
int align;
|
|
int size;
|
|
int rv = 0, status = 0;
|
|
|
|
static int size_try_array[16] =
|
|
{
|
|
1, 1, 1, 1, /* trying size one */
|
|
2, 1, 2, 1, /* trying size two */
|
|
2, 1, 2, 1, /* trying size three */
|
|
4, 1, 2, 1 /* trying size four */
|
|
};
|
|
|
|
while (len > 0)
|
|
{
|
|
align = addr % 4;
|
|
/* Four is the maximum length for 386. */
|
|
size = (len > 4) ? 3 : len - 1;
|
|
size = size_try_array[size * 4 + align];
|
|
if (what == wp_insert)
|
|
status = go32_insert_aligned_watchpoint (waddr, addr, size, rw);
|
|
else if (what == wp_remove)
|
|
status = go32_remove_aligned_watchpoint (waddr, addr, size, rw);
|
|
else if (what == wp_count)
|
|
rv++;
|
|
else
|
|
status = -1;
|
|
/* We keep the loop going even after a failure, because some of
|
|
the other aligned watchpoints might still succeed, e.g. if
|
|
they watch addresses that are already watched, and thus just
|
|
increment the reference counts of occupied debug registers.
|
|
If we break out of the loop too early, we could cause those
|
|
addresses watched by other watchpoints to be disabled when
|
|
GDB reacts to our failure to insert this watchpoint and tries
|
|
to remove it. */
|
|
if (status)
|
|
rv = status;
|
|
addr += size;
|
|
len -= size;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/* Remove a watchpoint. */
|
|
|
|
int
|
|
go32_remove_watchpoint (int pid, CORE_ADDR addr, int len, int rw)
|
|
{
|
|
int ret = go32_remove_aligned_watchpoint (addr, addr, len, rw);
|
|
|
|
SHOW_DR (remove_watch, len);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
go32_remove_aligned_watchpoint (CORE_ADDR waddr, CORE_ADDR addr,
|
|
int len, int rw)
|
|
{
|
|
int i;
|
|
int read_write_bits, len_bits;
|
|
|
|
/* Values of rw: 0 - write, 1 - read, 2 - access (read and write).
|
|
However, x86 doesn't support read-only data breakpoints. */
|
|
read_write_bits = rw ? DR_RW_READWRITE : DR_RW_WRITE;
|
|
|
|
switch (len)
|
|
{
|
|
case 4:
|
|
len_bits = DR_LEN_4;
|
|
break;
|
|
case 2:
|
|
len_bits = DR_LEN_2;
|
|
break;
|
|
case 1:
|
|
len_bits = DR_LEN_1;
|
|
break;
|
|
default:
|
|
/* The debug registers only have 2 bits for the length, so
|
|
so this value will always fail the loop below. */
|
|
len_bits = 0x10;
|
|
}
|
|
|
|
if (len == 2)
|
|
{
|
|
if (addr % 2)
|
|
return go32_handle_nonaligned_watchpoint (wp_remove, waddr, addr,
|
|
len, rw);
|
|
}
|
|
else if (len == 4)
|
|
{
|
|
if (addr % 4)
|
|
return go32_handle_nonaligned_watchpoint (wp_remove, waddr, addr,
|
|
len, rw);
|
|
}
|
|
else if (len != 1)
|
|
return go32_handle_nonaligned_watchpoint (wp_remove, waddr, addr, len, rw);
|
|
|
|
for (i = 0; i <= 3; i++)
|
|
{
|
|
if (!IS_REG_FREE (i) && D_REGS[i] == addr
|
|
&& DR_DEF (i) == (len_bits | read_write_bits))
|
|
{
|
|
dr_ref_count[i]--;
|
|
if (dr_ref_count[i] == 0)
|
|
DISABLE_REG (i);
|
|
}
|
|
}
|
|
RESET_LOCAL_EXACT ();
|
|
RESET_GLOBAL_EXACT ();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Can we use debug registers to watch a region whose address is ADDR
|
|
and whose length is LEN bytes? */
|
|
|
|
int
|
|
go32_region_ok_for_watchpoint (CORE_ADDR addr, int len)
|
|
{
|
|
/* Compute how many aligned watchpoints we would need to cover this
|
|
region. */
|
|
int nregs = go32_handle_nonaligned_watchpoint (wp_count, addr, addr, len, 0);
|
|
|
|
return nregs <= 4 ? 1 : 0;
|
|
}
|
|
|
|
/* Check if stopped by a data watchpoint. If so, return the address
|
|
whose access triggered the watchpoint. */
|
|
|
|
CORE_ADDR
|
|
go32_stopped_by_watchpoint (int pid, int data_watchpoint)
|
|
{
|
|
int i, ret = 0;
|
|
int status;
|
|
|
|
status = edi.dr[DR_STATUS];
|
|
SHOW_DR (stopped_by, 0);
|
|
for (i = 0; i <= 3; i++)
|
|
{
|
|
if (WATCH_HIT (i) && data_watchpoint)
|
|
{
|
|
SHOW_DR (WP_HIT, 0);
|
|
ret = D_REGS[i];
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Remove a breakpoint. */
|
|
|
|
int
|
|
go32_remove_hw_breakpoint (CORE_ADDR addr, CORE_ADDR shadow)
|
|
{
|
|
int i;
|
|
for (i = 0; i <= 3; i++)
|
|
{
|
|
if (!IS_REG_FREE (i) && D_REGS[i] == addr && DR_DEF (i) == 0)
|
|
{
|
|
dr_ref_count[i]--;
|
|
if (dr_ref_count[i] == 0)
|
|
DISABLE_REG (i);
|
|
}
|
|
}
|
|
SHOW_DR (remove_hw, 0);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
go32_insert_hw_breakpoint (CORE_ADDR addr, CORE_ADDR shadow)
|
|
{
|
|
int i;
|
|
int read_write_bits, len_bits;
|
|
int free_debug_register;
|
|
int register_number;
|
|
|
|
/* Look for an occupied debug register with the same address and the
|
|
same RW and LEN definitions. If we find one, we can use it for
|
|
this breakpoint as well (and save a register). */
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
if (!IS_REG_FREE (i) && D_REGS[i] == addr && DR_DEF (i) == 0)
|
|
{
|
|
dr_ref_count[i]++;
|
|
SHOW_DR (insert_hw, 0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Look for a free debug register. */
|
|
for (i = 0; i <= 3; i++)
|
|
{
|
|
if (IS_REG_FREE (i))
|
|
break;
|
|
}
|
|
|
|
/* No more debug registers? */
|
|
if (i < 4)
|
|
{
|
|
SET_BREAK (i, addr);
|
|
LOCAL_ENABLE_REG (i);
|
|
}
|
|
SHOW_DR (insert_hw, 0);
|
|
|
|
return i < 4 ? 0 : -1;
|
|
}
|
|
|
|
static int inf_flags_valid = 0;
|
|
static int inf_in_flag;
|
|
static int inf_out_flag;
|
|
|
|
/* Put the device open on handle FD into either raw or cooked
|
|
mode, return 1 if it was in raw mode, zero otherwise. */
|
|
|
|
static int
|
|
device_mode (int fd, int raw_p)
|
|
{
|
|
int oldmode, newmode;
|
|
__dpmi_regs regs;
|
|
|
|
regs.x.ax = 0x4400;
|
|
regs.x.bx = fd;
|
|
__dpmi_int (0x21, ®s);
|
|
if (regs.x.flags & 1)
|
|
return -1;
|
|
newmode = oldmode = regs.x.dx;
|
|
|
|
if (raw_p)
|
|
newmode |= 0x20;
|
|
else
|
|
newmode &= ~0x20;
|
|
|
|
if (oldmode & 0x80) /* Only for character dev */
|
|
{
|
|
regs.x.ax = 0x4401;
|
|
regs.x.bx = fd;
|
|
regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails */
|
|
__dpmi_int (0x21, ®s);
|
|
if (regs.x.flags & 1)
|
|
return -1;
|
|
}
|
|
return (oldmode & 0x20) == 0x20;
|
|
}
|
|
|
|
|
|
static int inf_mode_valid = 0;
|
|
static int inf_terminal_mode;
|
|
|
|
/* This semaphore is needed because, amazingly enough, GDB calls
|
|
target.to_terminal_ours more than once after the inferior stops.
|
|
But we need the information from the first call only, since the
|
|
second call will always see GDB's own cooked terminal. */
|
|
static int terminal_is_ours = 1;
|
|
|
|
static void
|
|
go32_terminal_init (void)
|
|
{
|
|
inf_mode_valid = 0; /* reinitialize, in case they are restarting child */
|
|
terminal_is_ours = 1;
|
|
}
|
|
|
|
static void
|
|
go32_terminal_info (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered ("Inferior's terminal is in %s mode.\n",
|
|
!inf_mode_valid
|
|
? "default" : inf_terminal_mode ? "raw" : "cooked");
|
|
|
|
#if __DJGPP_MINOR__ > 2
|
|
if (child_cmd.redirection)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DBG_HANDLES; i++)
|
|
{
|
|
if (child_cmd.redirection[i]->file_name)
|
|
printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
|
|
i, child_cmd.redirection[i]->file_name);
|
|
else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
|
|
printf_unfiltered
|
|
("\tFile handle %d appears to be closed by inferior.\n", i);
|
|
/* Mask off the raw/cooked bit when comparing device info words. */
|
|
else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
|
|
!= (_get_dev_info (i) & 0xdf))
|
|
printf_unfiltered
|
|
("\tFile handle %d appears to be redirected by inferior.\n", i);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
go32_terminal_inferior (void)
|
|
{
|
|
/* Redirect standard handles as child wants them. */
|
|
errno = 0;
|
|
if (redir_to_child (&child_cmd) == -1)
|
|
{
|
|
redir_to_debugger (&child_cmd);
|
|
error ("Cannot redirect standard handles for program: %s.",
|
|
strerror (errno));
|
|
}
|
|
/* set the console device of the inferior to whatever mode
|
|
(raw or cooked) we found it last time */
|
|
if (terminal_is_ours)
|
|
{
|
|
if (inf_mode_valid)
|
|
device_mode (0, inf_terminal_mode);
|
|
terminal_is_ours = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
go32_terminal_ours (void)
|
|
{
|
|
/* Switch to cooked mode on the gdb terminal and save the inferior
|
|
terminal mode to be restored when it is resumed */
|
|
if (!terminal_is_ours)
|
|
{
|
|
inf_terminal_mode = device_mode (0, 0);
|
|
if (inf_terminal_mode != -1)
|
|
inf_mode_valid = 1;
|
|
else
|
|
/* If device_mode returned -1, we don't know what happens with
|
|
handle 0 anymore, so make the info invalid. */
|
|
inf_mode_valid = 0;
|
|
terminal_is_ours = 1;
|
|
|
|
/* Restore debugger's standard handles. */
|
|
errno = 0;
|
|
if (redir_to_debugger (&child_cmd) == -1)
|
|
{
|
|
redir_to_child (&child_cmd);
|
|
error ("Cannot redirect standard handles for debugger: %s.",
|
|
strerror (errno));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
init_go32_ops (void)
|
|
{
|
|
go32_ops.to_shortname = "djgpp";
|
|
go32_ops.to_longname = "djgpp target process";
|
|
go32_ops.to_doc =
|
|
"Program loaded by djgpp, when gdb is used as an external debugger";
|
|
go32_ops.to_open = go32_open;
|
|
go32_ops.to_close = go32_close;
|
|
go32_ops.to_attach = go32_attach;
|
|
go32_ops.to_detach = go32_detach;
|
|
go32_ops.to_resume = go32_resume;
|
|
go32_ops.to_wait = go32_wait;
|
|
go32_ops.to_fetch_registers = go32_fetch_registers;
|
|
go32_ops.to_store_registers = go32_store_registers;
|
|
go32_ops.to_prepare_to_store = go32_prepare_to_store;
|
|
go32_ops.to_xfer_memory = go32_xfer_memory;
|
|
go32_ops.to_files_info = go32_files_info;
|
|
go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
|
|
go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
|
|
go32_ops.to_terminal_init = go32_terminal_init;
|
|
go32_ops.to_terminal_inferior = go32_terminal_inferior;
|
|
go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
|
|
go32_ops.to_terminal_ours = go32_terminal_ours;
|
|
go32_ops.to_terminal_info = go32_terminal_info;
|
|
go32_ops.to_kill = go32_kill_inferior;
|
|
go32_ops.to_create_inferior = go32_create_inferior;
|
|
go32_ops.to_mourn_inferior = go32_mourn_inferior;
|
|
go32_ops.to_can_run = go32_can_run;
|
|
go32_ops.to_stop = go32_stop;
|
|
go32_ops.to_stratum = process_stratum;
|
|
go32_ops.to_has_all_memory = 1;
|
|
go32_ops.to_has_memory = 1;
|
|
go32_ops.to_has_stack = 1;
|
|
go32_ops.to_has_registers = 1;
|
|
go32_ops.to_has_execution = 1;
|
|
go32_ops.to_magic = OPS_MAGIC;
|
|
|
|
/* Initialize child's cwd with the current one. */
|
|
getcwd (child_cwd, sizeof (child_cwd));
|
|
|
|
/* Initialize child's command line storage. */
|
|
if (redir_debug_init (&child_cmd) == -1)
|
|
fatal ("Cannot allocate redirection storage: not enough memory.\n");
|
|
}
|
|
|
|
void
|
|
_initialize_go32_nat (void)
|
|
{
|
|
init_go32_ops ();
|
|
add_target (&go32_ops);
|
|
}
|
|
|
|
pid_t
|
|
tcgetpgrp (int fd)
|
|
{
|
|
if (isatty (fd))
|
|
return SOME_PID;
|
|
errno = ENOTTY;
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
tcsetpgrp (int fd, pid_t pgid)
|
|
{
|
|
if (isatty (fd) && pgid == SOME_PID)
|
|
return 0;
|
|
errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
|
|
return -1;
|
|
}
|