binutils-gdb/gdb/remote.c
1999-09-09 00:02:17 +00:00

5233 lines
135 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Remote target communications for serial-line targets in custom GDB protocol
Copyright 1988, 91, 92, 93, 94, 95, 96, 97, 98, 1999
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* See the GDB User Guide for details of the GDB remote protocol. */
#include "defs.h"
#include "gdb_string.h"
#include <ctype.h>
#include <fcntl.h>
#include "frame.h"
#include "inferior.h"
#include "bfd.h"
#include "symfile.h"
#include "target.h"
#include "wait.h"
/*#include "terminal.h" */
#include "gdbcmd.h"
#include "objfiles.h"
#include "gdb-stabs.h"
#include "gdbthread.h"
#include "dcache.h"
#include <ctype.h>
#include <sys/time.h>
#ifdef USG
#include <sys/types.h>
#endif
#include "event-loop.h"
#include <signal.h>
#include "serial.h"
/* Prototypes for local functions */
static void initialize_sigint_signal_handler PARAMS ((void));
static void handle_remote_sigint PARAMS ((int));
static void handle_remote_sigint_twice PARAMS ((int));
static void async_remote_interrupt PARAMS ((gdb_client_data));
static void async_remote_interrupt_twice PARAMS ((gdb_client_data));
static void set_extended_protocol PARAMS ((struct continuation_arg *));
static void build_remote_gdbarch_data PARAMS ((void));
static int remote_write_bytes PARAMS ((CORE_ADDR memaddr,
char *myaddr, int len));
static int remote_read_bytes PARAMS ((CORE_ADDR memaddr,
char *myaddr, int len));
static void remote_files_info PARAMS ((struct target_ops * ignore));
static int remote_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr,
int len, int should_write,
struct target_ops * target));
static void remote_prepare_to_store PARAMS ((void));
static void remote_fetch_registers PARAMS ((int regno));
static void remote_resume PARAMS ((int pid, int step,
enum target_signal siggnal));
static void remote_async_resume PARAMS ((int pid, int step,
enum target_signal siggnal));
static int remote_start_remote PARAMS ((PTR));
static void remote_open PARAMS ((char *name, int from_tty));
static void remote_async_open PARAMS ((char *name, int from_tty));
static void extended_remote_open PARAMS ((char *name, int from_tty));
static void extended_remote_async_open PARAMS ((char *name, int from_tty));
static void remote_open_1 PARAMS ((char *, int, struct target_ops *,
int extended_p));
static void remote_async_open_1 PARAMS ((char *, int, struct target_ops *,
int extended_p));
static void remote_close PARAMS ((int quitting));
static void remote_store_registers PARAMS ((int regno));
static void remote_mourn PARAMS ((void));
static void remote_async_mourn PARAMS ((void));
static void extended_remote_restart PARAMS ((void));
static void extended_remote_mourn PARAMS ((void));
static void extended_remote_create_inferior PARAMS ((char *, char *, char **));
static void extended_remote_async_create_inferior PARAMS ((char *, char *, char **));
static void remote_mourn_1 PARAMS ((struct target_ops *));
static void remote_send PARAMS ((char *buf));
static int readchar PARAMS ((int timeout));
static int remote_wait PARAMS ((int pid, struct target_waitstatus * status));
static int remote_async_wait PARAMS ((int pid, struct target_waitstatus * status));
static void remote_kill PARAMS ((void));
static void remote_async_kill PARAMS ((void));
static int tohex PARAMS ((int nib));
static void remote_detach PARAMS ((char *args, int from_tty));
static void remote_async_detach PARAMS ((char *args, int from_tty));
static void remote_interrupt PARAMS ((int signo));
static void remote_interrupt_twice PARAMS ((int signo));
static void interrupt_query PARAMS ((void));
static void set_thread PARAMS ((int, int));
static int remote_thread_alive PARAMS ((int));
static void get_offsets PARAMS ((void));
static int read_frame PARAMS ((char *));
static int remote_insert_breakpoint PARAMS ((CORE_ADDR, char *));
static int remote_remove_breakpoint PARAMS ((CORE_ADDR, char *));
static int hexnumlen PARAMS ((ULONGEST num));
static void init_remote_ops PARAMS ((void));
static void init_extended_remote_ops PARAMS ((void));
static void init_remote_cisco_ops PARAMS ((void));
static struct target_ops remote_cisco_ops;
static void remote_stop PARAMS ((void));
static int ishex PARAMS ((int ch, int *val));
static int stubhex PARAMS ((int ch));
static int remote_query PARAMS ((int /*char */ , char *, char *, int *));
static int hexnumstr PARAMS ((char *, ULONGEST));
static CORE_ADDR remote_address_masked PARAMS ((CORE_ADDR));
static void print_packet PARAMS ((char *));
static unsigned long crc32 PARAMS ((unsigned char *, int, unsigned int));
static void compare_sections_command PARAMS ((char *, int));
static void packet_command PARAMS ((char *, int));
static int stub_unpack_int PARAMS ((char *buff, int fieldlength));
static int remote_current_thread PARAMS ((int oldpid));
static void remote_find_new_threads PARAMS ((void));
static void record_currthread PARAMS ((int currthread));
/* exported functions */
extern int fromhex PARAMS ((int a));
extern void getpkt PARAMS ((char *buf, int forever));
extern int putpkt PARAMS ((char *buf));
static int putpkt_binary PARAMS ((char *buf, int cnt));
void remote_console_output PARAMS ((char *));
static void check_binary_download PARAMS ((CORE_ADDR addr));
struct packet_config;
static void show_packet_config_cmd PARAMS ((struct packet_config * config));
static void set_packet_config_cmd PARAMS ((struct packet_config * config,
struct cmd_list_element * c));
static void add_packet_config_cmd PARAMS ((struct packet_config * config,
char *name,
char *title,
void (*set_func) (char *args, int from_tty, struct cmd_list_element * c),
void (*show_func) (char *name, int from_tty),
struct cmd_list_element **setlist,
struct cmd_list_element **showlist));
static void init_packet_config PARAMS ((struct packet_config * config));
static void set_remote_protocol_P_packet_cmd PARAMS ((char *args,
int from_tty,
struct cmd_list_element * c));
static void show_remote_protocol_P_packet_cmd PARAMS ((char *args,
int from_tty));
static void set_remote_protocol_Z_packet_cmd PARAMS ((char *args,
int from_tty,
struct cmd_list_element * c));
static void show_remote_protocol_Z_packet_cmd PARAMS ((char *args,
int from_tty));
/* Define the target subroutine names */
void open_remote_target PARAMS ((char *, int, struct target_ops *, int));
void _initialize_remote PARAMS ((void));
/* */
static struct target_ops remote_ops;
static struct target_ops extended_remote_ops;
/* Temporary target ops. Just like the remote_ops and
extended_remote_ops, but with asynchronous support. */
static struct target_ops remote_async_ops;
static struct target_ops extended_async_remote_ops;
/* This was 5 seconds, which is a long time to sit and wait.
Unless this is going though some terminal server or multiplexer or
other form of hairy serial connection, I would think 2 seconds would
be plenty. */
/* Changed to allow option to set timeout value.
was static int remote_timeout = 2; */
extern int remote_timeout;
/* This variable chooses whether to send a ^C or a break when the user
requests program interruption. Although ^C is usually what remote
systems expect, and that is the default here, sometimes a break is
preferable instead. */
static int remote_break;
/* Descriptor for I/O to remote machine. Initialize it to NULL so that
remote_open knows that we don't have a file open when the program
starts. */
static serial_t remote_desc = NULL;
/* This is set by the target (thru the 'S' message)
to denote that the target is in kernel mode. */
static int cisco_kernel_mode = 0;
/* Maximum number of bytes to read/write at once. The value here
is chosen to fill up a packet (the headers account for the 32). */
#define MAXBUFBYTES(N) (((N)-32)/2)
/* Having this larger than 400 causes us to be incompatible with m68k-stub.c
and i386-stub.c. Normally, no one would notice because it only matters
for writing large chunks of memory (e.g. in downloads). Also, this needs
to be more than 400 if required to hold the registers (see below, where
we round it up based on REGISTER_BYTES). */
/* Round up PBUFSIZ to hold all the registers, at least. */
#define PBUFSIZ ((REGISTER_BYTES > MAXBUFBYTES (400)) \
? (REGISTER_BYTES * 2 + 32) \
: 400)
/* This variable sets the number of bytes to be written to the target
in a single packet. Normally PBUFSIZ is satisfactory, but some
targets need smaller values (perhaps because the receiving end
is slow). */
static int remote_write_size;
/* This variable sets the number of bits in an address that are to be
sent in a memory ("M" or "m") packet. Normally, after stripping
leading zeros, the entire address would be sent. This variable
restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
initial implementation of remote.c restricted the address sent in
memory packets to ``host::sizeof long'' bytes - (typically 32
bits). Consequently, for 64 bit targets, the upper 32 bits of an
address was never sent. Since fixing this bug may cause a break in
some remote targets this variable is principly provided to
facilitate backward compatibility. */
static int remote_address_size;
/* This is the size (in chars) of the first response to the `g' command. This
is used to limit the size of the memory read and write commands to prevent
stub buffers from overflowing. The size does not include headers and
trailers, it is only the payload size. */
static int remote_register_buf_size = 0;
/* Generic configuration support for packets the stub optionally
supports. Allows the user to specify the use of the packet as well
as allowing GDB to auto-detect support in the remote stub. */
enum packet_support
{
PACKET_SUPPORT_UNKNOWN = 0,
PACKET_ENABLE,
PACKET_DISABLE
};
enum packet_detect
{
PACKET_AUTO_DETECT = 0,
PACKET_MANUAL_DETECT
};
struct packet_config
{
char *state;
char *name;
char *title;
enum packet_detect detect;
enum packet_support support;
};
static char packet_support_auto[] = "auto";
static char packet_enable[] = "enable";
static char packet_disable[] = "disable";
static char *packet_support_enums[] =
{
packet_support_auto,
packet_enable,
packet_disable,
0,
};
static void
set_packet_config_cmd (config, c)
struct packet_config *config;
struct cmd_list_element *c;
{
if (config->state == packet_enable)
{
config->detect = PACKET_MANUAL_DETECT;
config->support = PACKET_ENABLE;
}
else if (config->state == packet_disable)
{
config->detect = PACKET_MANUAL_DETECT;
config->support = PACKET_DISABLE;
}
else if (config->state == packet_support_auto)
{
config->detect = PACKET_AUTO_DETECT;
config->support = PACKET_SUPPORT_UNKNOWN;
}
else
internal_error ("Bad enum value");
}
static void
show_packet_config_cmd (config)
struct packet_config *config;
{
char *support = "internal-error";
switch (config->support)
{
case PACKET_ENABLE:
support = "enabled";
break;
case PACKET_DISABLE:
support = "disabled";
break;
case PACKET_SUPPORT_UNKNOWN:
support = "unknown";
break;
}
switch (config->detect)
{
case PACKET_AUTO_DETECT:
printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
config->name, config->title, support);
break;
case PACKET_MANUAL_DETECT:
printf_filtered ("Support for remote protocol `%s' (%s) is currently %s.\n",
config->name, config->title, support);
}
}
static void
add_packet_config_cmd (config, name, title, set_func, show_func,
setlist, showlist)
struct packet_config *config;
char *name;
char *title;
void (*set_func) PARAMS ((char *args, int from_tty,
struct cmd_list_element * c));
void (*show_func) PARAMS ((char *name, int from_tty));
struct cmd_list_element **setlist;
struct cmd_list_element **showlist;
{
struct cmd_list_element *c;
char *set_doc;
char *show_doc;
char *full_name;
config->name = name;
config->title = title;
asprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
name, title);
asprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
name, title);
asprintf (&full_name, "%s-packet", name);
c = add_set_enum_cmd (full_name,
class_obscure, packet_support_enums,
(char *) &config->state,
set_doc, setlist);
c->function.sfunc = set_func;
add_cmd (full_name, class_obscure, show_func, show_doc, showlist);
}
static void
init_packet_config (config)
struct packet_config *config;
{
switch (config->detect)
{
case PACKET_AUTO_DETECT:
config->support = PACKET_SUPPORT_UNKNOWN;
break;
case PACKET_MANUAL_DETECT:
/* let the user beware */
break;
}
}
/* Should we try the 'P' (set register) request? */
static struct packet_config remote_protocol_P;
static void
set_remote_protocol_P_packet_cmd (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
set_packet_config_cmd (&remote_protocol_P, c);
}
static void
show_remote_protocol_P_packet_cmd (args, from_tty)
char *args;
int from_tty;
{
show_packet_config_cmd (&remote_protocol_P);
}
/* Should we try the 'Z' (set breakpoint) request? */
static struct packet_config remote_protocol_Z;
static void
set_remote_protocol_Z_packet_cmd (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
set_packet_config_cmd (&remote_protocol_Z, c);
}
static void
show_remote_protocol_Z_packet_cmd (args, from_tty)
char *args;
int from_tty;
{
show_packet_config_cmd (&remote_protocol_Z);
}
/* Should we try the 'X' (remote binary download) packet?
This variable (available to the user via "set remote X-packet")
dictates whether downloads are sent in binary (via the 'X' packet).
We assume that the stub can, and attempt to do it. This will be
cleared if the stub does not understand it. This switch is still
needed, though in cases when the packet is supported in the stub,
but the connection does not allow it (i.e., 7-bit serial connection
only). */
static struct packet_config remote_protocol_binary_download;
static void
set_remote_protocol_binary_download_cmd (char *args,
int from_tty,
struct cmd_list_element *c)
{
set_packet_config_cmd (&remote_protocol_binary_download, c);
}
static void
show_remote_protocol_binary_download_cmd (char *args,
int from_tty)
{
show_packet_config_cmd (&remote_protocol_binary_download);
}
/* Tokens for use by the asynchronous signal handlers for SIGINT */
PTR sigint_remote_twice_token;
PTR sigint_remote_token;
/* These are pointers to hook functions that may be set in order to
modify resume/wait behavior for a particular architecture. */
void (*target_resume_hook) PARAMS ((void));
void (*target_wait_loop_hook) PARAMS ((void));
/* These are the threads which we last sent to the remote system.
-1 for all or -2 for not sent yet. */
static int general_thread;
static int continue_thread;
/* Call this function as a result of
1) A halt indication (T packet) containing a thread id
2) A direct query of currthread
3) Successful execution of set thread
*/
static void
record_currthread (currthread)
int currthread;
{
general_thread = currthread;
/* If this is a new thread, add it to GDB's thread list.
If we leave it up to WFI to do this, bad things will happen. */
if (!in_thread_list (currthread))
{
add_thread (currthread);
printf_filtered ("[New %s]\n", target_pid_to_str (currthread));
}
}
#define MAGIC_NULL_PID 42000
static void
set_thread (th, gen)
int th;
int gen;
{
char *buf = alloca (PBUFSIZ);
int state = gen ? general_thread : continue_thread;
if (state == th)
return;
buf[0] = 'H';
buf[1] = gen ? 'g' : 'c';
if (th == MAGIC_NULL_PID)
{
buf[2] = '0';
buf[3] = '\0';
}
else if (th < 0)
sprintf (&buf[2], "-%x", -th);
else
sprintf (&buf[2], "%x", th);
putpkt (buf);
getpkt (buf, 0);
if (gen)
general_thread = th;
else
continue_thread = th;
}
/* Return nonzero if the thread TH is still alive on the remote system. */
static int
remote_thread_alive (tid)
int tid;
{
char buf[16];
if (tid < 0)
sprintf (buf, "T-%08x", -tid);
else
sprintf (buf, "T%08x", tid);
putpkt (buf);
getpkt (buf, 0);
return (buf[0] == 'O' && buf[1] == 'K');
}
/* About these extended threadlist and threadinfo packets. They are
variable length packets but, the fields within them are often fixed
length. They are redundent enough to send over UDP as is the
remote protocol in general. There is a matching unit test module
in libstub. */
#define OPAQUETHREADBYTES 8
/* a 64 bit opaque identifier */
typedef unsigned char threadref[OPAQUETHREADBYTES];
/* WARNING: This threadref data structure comes from the remote O.S., libstub
protocol encoding, and remote.c. it is not particularly changable */
/* Right now, the internal structure is int. We want it to be bigger.
Plan to fix this.
*/
typedef int gdb_threadref; /* internal GDB thread reference */
/* gdb_ext_thread_info is an internal GDB data structure which is
equivalint to the reply of the remote threadinfo packet */
struct gdb_ext_thread_info
{
threadref threadid; /* External form of thread reference */
int active; /* Has state interesting to GDB? , regs, stack */
char display[256]; /* Brief state display, name, blocked/syspended */
char shortname[32]; /* To be used to name threads */
char more_display[256]; /* Long info, statistics, queue depth, whatever */
};
/* The volume of remote transfers can be limited by submitting
a mask containing bits specifying the desired information.
Use a union of these values as the 'selection' parameter to
get_thread_info. FIXME: Make these TAG names more thread specific.
*/
#define TAG_THREADID 1
#define TAG_EXISTS 2
#define TAG_DISPLAY 4
#define TAG_THREADNAME 8
#define TAG_MOREDISPLAY 16
#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
char *unpack_varlen_hex PARAMS ((char *buff, int *result));
static char *unpack_nibble PARAMS ((char *buf, int *val));
static char *pack_nibble PARAMS ((char *buf, int nibble));
static char *pack_hex_byte PARAMS ((char *pkt, int /*unsigned char */ byte));
static char *unpack_byte PARAMS ((char *buf, int *value));
static char *pack_int PARAMS ((char *buf, int value));
static char *unpack_int PARAMS ((char *buf, int *value));
static char *unpack_string PARAMS ((char *src, char *dest, int length));
static char *pack_threadid PARAMS ((char *pkt, threadref * id));
static char *unpack_threadid PARAMS ((char *inbuf, threadref * id));
void int_to_threadref PARAMS ((threadref * id, int value));
static int threadref_to_int PARAMS ((threadref * ref));
static void copy_threadref PARAMS ((threadref * dest, threadref * src));
static int threadmatch PARAMS ((threadref * dest, threadref * src));
static char *pack_threadinfo_request PARAMS ((char *pkt, int mode,
threadref * id));
static int remote_unpack_thread_info_response PARAMS ((char *pkt,
threadref * expectedref,
struct gdb_ext_thread_info * info));
static int remote_get_threadinfo PARAMS ((threadref * threadid,
int fieldset, /*TAG mask */
struct gdb_ext_thread_info * info));
static int adapt_remote_get_threadinfo PARAMS ((gdb_threadref * ref,
int selection,
struct gdb_ext_thread_info * info));
static char *pack_threadlist_request PARAMS ((char *pkt, int startflag,
int threadcount,
threadref * nextthread));
static int parse_threadlist_response PARAMS ((char *pkt,
int result_limit,
threadref * original_echo,
threadref * resultlist,
int *doneflag));
static int remote_get_threadlist PARAMS ((int startflag,
threadref * nextthread,
int result_limit,
int *done,
int *result_count,
threadref * threadlist));
typedef int (*rmt_thread_action) (threadref * ref, void *context);
static int remote_threadlist_iterator PARAMS ((rmt_thread_action stepfunction,
void *context, int looplimit));
static int remote_newthread_step PARAMS ((threadref * ref, void *context));
/* encode 64 bits in 16 chars of hex */
static const char hexchars[] = "0123456789abcdef";
static int
ishex (ch, val)
int ch;
int *val;
{
if ((ch >= 'a') && (ch <= 'f'))
{
*val = ch - 'a' + 10;
return 1;
}
if ((ch >= 'A') && (ch <= 'F'))
{
*val = ch - 'A' + 10;
return 1;
}
if ((ch >= '0') && (ch <= '9'))
{
*val = ch - '0';
return 1;
}
return 0;
}
static int
stubhex (ch)
int ch;
{
if (ch >= 'a' && ch <= 'f')
return ch - 'a' + 10;
if (ch >= '0' && ch <= '9')
return ch - '0';
if (ch >= 'A' && ch <= 'F')
return ch - 'A' + 10;
return -1;
}
static int
stub_unpack_int (buff, fieldlength)
char *buff;
int fieldlength;
{
int nibble;
int retval = 0;
while (fieldlength)
{
nibble = stubhex (*buff++);
retval |= nibble;
fieldlength--;
if (fieldlength)
retval = retval << 4;
}
return retval;
}
char *
unpack_varlen_hex (buff, result)
char *buff; /* packet to parse */
int *result;
{
int nibble;
int retval = 0;
while (ishex (*buff, &nibble))
{
buff++;
retval = retval << 4;
retval |= nibble & 0x0f;
}
*result = retval;
return buff;
}
static char *
unpack_nibble (buf, val)
char *buf;
int *val;
{
ishex (*buf++, val);
return buf;
}
static char *
pack_nibble (buf, nibble)
char *buf;
int nibble;
{
*buf++ = hexchars[(nibble & 0x0f)];
return buf;
}
static char *
pack_hex_byte (pkt, byte)
char *pkt;
int byte;
{
*pkt++ = hexchars[(byte >> 4) & 0xf];
*pkt++ = hexchars[(byte & 0xf)];
return pkt;
}
static char *
unpack_byte (buf, value)
char *buf;
int *value;
{
*value = stub_unpack_int (buf, 2);
return buf + 2;
}
static char *
pack_int (buf, value)
char *buf;
int value;
{
buf = pack_hex_byte (buf, (value >> 24) & 0xff);
buf = pack_hex_byte (buf, (value >> 16) & 0xff);
buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
buf = pack_hex_byte (buf, (value & 0xff));
return buf;
}
static char *
unpack_int (buf, value)
char *buf;
int *value;
{
*value = stub_unpack_int (buf, 8);
return buf + 8;
}
#if 0 /* currently unused, uncomment when needed */
static char *pack_string PARAMS ((char *pkt, char *string));
static char *
pack_string (pkt, string)
char *pkt;
char *string;
{
char ch;
int len;
len = strlen (string);
if (len > 200)
len = 200; /* Bigger than most GDB packets, junk??? */
pkt = pack_hex_byte (pkt, len);
while (len-- > 0)
{
ch = *string++;
if ((ch == '\0') || (ch == '#'))
ch = '*'; /* Protect encapsulation */
*pkt++ = ch;
}
return pkt;
}
#endif /* 0 (unused) */
static char *
unpack_string (src, dest, length)
char *src;
char *dest;
int length;
{
while (length--)
*dest++ = *src++;
*dest = '\0';
return src;
}
static char *
pack_threadid (pkt, id)
char *pkt;
threadref *id;
{
char *limit;
unsigned char *altid;
altid = (unsigned char *) id;
limit = pkt + BUF_THREAD_ID_SIZE;
while (pkt < limit)
pkt = pack_hex_byte (pkt, *altid++);
return pkt;
}
static char *
unpack_threadid (inbuf, id)
char *inbuf;
threadref *id;
{
char *altref;
char *limit = inbuf + BUF_THREAD_ID_SIZE;
int x, y;
altref = (char *) id;
while (inbuf < limit)
{
x = stubhex (*inbuf++);
y = stubhex (*inbuf++);
*altref++ = (x << 4) | y;
}
return inbuf;
}
/* Externally, threadrefs are 64 bits but internally, they are still
ints. This is due to a mismatch of specifications. We would like
to use 64bit thread references internally. This is an adapter
function. */
void
int_to_threadref (id, value)
threadref *id;
int value;
{
unsigned char *scan;
scan = (unsigned char *) id;
{
int i = 4;
while (i--)
*scan++ = 0;
}
*scan++ = (value >> 24) & 0xff;
*scan++ = (value >> 16) & 0xff;
*scan++ = (value >> 8) & 0xff;
*scan++ = (value & 0xff);
}
static int
threadref_to_int (ref)
threadref *ref;
{
int i, value = 0;
unsigned char *scan;
scan = (char *) ref;
scan += 4;
i = 4;
while (i-- > 0)
value = (value << 8) | ((*scan++) & 0xff);
return value;
}
static void
copy_threadref (dest, src)
threadref *dest;
threadref *src;
{
int i;
unsigned char *csrc, *cdest;
csrc = (unsigned char *) src;
cdest = (unsigned char *) dest;
i = 8;
while (i--)
*cdest++ = *csrc++;
}
static int
threadmatch (dest, src)
threadref *dest;
threadref *src;
{
/* things are broken right now, so just assume we got a match */
#if 0
unsigned char *srcp, *destp;
int i, result;
srcp = (char *) src;
destp = (char *) dest;
result = 1;
while (i-- > 0)
result &= (*srcp++ == *destp++) ? 1 : 0;
return result;
#endif
return 1;
}
/*
threadid:1, # always request threadid
context_exists:2,
display:4,
unique_name:8,
more_display:16
*/
/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
static char *
pack_threadinfo_request (pkt, mode, id)
char *pkt;
int mode;
threadref *id;
{
*pkt++ = 'q'; /* Info Query */
*pkt++ = 'P'; /* process or thread info */
pkt = pack_int (pkt, mode); /* mode */
pkt = pack_threadid (pkt, id); /* threadid */
*pkt = '\0'; /* terminate */
return pkt;
}
/* These values tag the fields in a thread info response packet */
/* Tagging the fields allows us to request specific fields and to
add more fields as time goes by */
#define TAG_THREADID 1 /* Echo the thread identifier */
#define TAG_EXISTS 2 /* Is this process defined enough to
fetch registers and its stack */
#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
the process */
static int
remote_unpack_thread_info_response (pkt, expectedref, info)
char *pkt;
threadref *expectedref;
struct gdb_ext_thread_info *info;
{
int mask, length;
unsigned int tag;
threadref ref;
char *limit = pkt + PBUFSIZ; /* plausable parsing limit */
int retval = 1;
/* info->threadid = 0; FIXME: implement zero_threadref */
info->active = 0;
info->display[0] = '\0';
info->shortname[0] = '\0';
info->more_display[0] = '\0';
/* Assume the characters indicating the packet type have been stripped */
pkt = unpack_int (pkt, &mask); /* arg mask */
pkt = unpack_threadid (pkt, &ref);
if (mask == 0)
warning ("Incomplete response to threadinfo request\n");
if (!threadmatch (&ref, expectedref))
{ /* This is an answer to a different request */
warning ("ERROR RMT Thread info mismatch\n");
return 0;
}
copy_threadref (&info->threadid, &ref);
/* Loop on tagged fields , try to bail if somthing goes wrong */
while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
{
pkt = unpack_int (pkt, &tag); /* tag */
pkt = unpack_byte (pkt, &length); /* length */
if (!(tag & mask)) /* tags out of synch with mask */
{
warning ("ERROR RMT: threadinfo tag mismatch\n");
retval = 0;
break;
}
if (tag == TAG_THREADID)
{
if (length != 16)
{
warning ("ERROR RMT: length of threadid is not 16\n");
retval = 0;
break;
}
pkt = unpack_threadid (pkt, &ref);
mask = mask & ~TAG_THREADID;
continue;
}
if (tag == TAG_EXISTS)
{
info->active = stub_unpack_int (pkt, length);
pkt += length;
mask = mask & ~(TAG_EXISTS);
if (length > 8)
{
warning ("ERROR RMT: 'exists' length too long\n");
retval = 0;
break;
}
continue;
}
if (tag == TAG_THREADNAME)
{
pkt = unpack_string (pkt, &info->shortname[0], length);
mask = mask & ~TAG_THREADNAME;
continue;
}
if (tag == TAG_DISPLAY)
{
pkt = unpack_string (pkt, &info->display[0], length);
mask = mask & ~TAG_DISPLAY;
continue;
}
if (tag == TAG_MOREDISPLAY)
{
pkt = unpack_string (pkt, &info->more_display[0], length);
mask = mask & ~TAG_MOREDISPLAY;
continue;
}
warning ("ERROR RMT: unknown thread info tag\n");
break; /* Not a tag we know about */
}
return retval;
}
static int
remote_get_threadinfo (threadid, fieldset, info)
threadref *threadid;
int fieldset; /* TAG mask */
struct gdb_ext_thread_info *info;
{
int result;
char *threadinfo_pkt = alloca (PBUFSIZ);
pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
putpkt (threadinfo_pkt);
getpkt (threadinfo_pkt, 0);
result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
info);
return result;
}
/* Unfortunately, 61 bit thread-ids are bigger than the internal
representation of a threadid. */
static int
adapt_remote_get_threadinfo (ref, selection, info)
gdb_threadref *ref;
int selection;
struct gdb_ext_thread_info *info;
{
threadref lclref;
int_to_threadref (&lclref, *ref);
return remote_get_threadinfo (&lclref, selection, info);
}
/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
static char *
pack_threadlist_request (pkt, startflag, threadcount, nextthread)
char *pkt;
int startflag;
int threadcount;
threadref *nextthread;
{
*pkt++ = 'q'; /* info query packet */
*pkt++ = 'L'; /* Process LIST or threadLIST request */
pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
*pkt = '\0';
return pkt;
}
/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
static int
parse_threadlist_response (pkt, result_limit, original_echo, resultlist,
doneflag)
char *pkt;
int result_limit;
threadref *original_echo;
threadref *resultlist;
int *doneflag;
{
char *limit;
int count, resultcount, done;
resultcount = 0;
/* Assume the 'q' and 'M chars have been stripped. */
limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */
pkt = unpack_byte (pkt, &count); /* count field */
pkt = unpack_nibble (pkt, &done);
/* The first threadid is the argument threadid. */
pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
while ((count-- > 0) && (pkt < limit))
{
pkt = unpack_threadid (pkt, resultlist++);
if (resultcount++ >= result_limit)
break;
}
if (doneflag)
*doneflag = done;
return resultcount;
}
static int
remote_get_threadlist (startflag, nextthread, result_limit,
done, result_count, threadlist)
int startflag;
threadref *nextthread;
int result_limit;
int *done;
int *result_count;
threadref *threadlist;
{
static threadref echo_nextthread;
char *threadlist_packet = alloca (PBUFSIZ);
char *t_response = alloca (PBUFSIZ);
int result = 1;
/* Trancate result limit to be smaller than the packet size */
if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ)
result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2;
pack_threadlist_request (threadlist_packet,
startflag, result_limit, nextthread);
putpkt (threadlist_packet);
getpkt (t_response, 0);
*result_count =
parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
threadlist, done);
if (!threadmatch (&echo_nextthread, nextthread))
{
/* FIXME: This is a good reason to drop the packet */
/* Possably, there is a duplicate response */
/* Possabilities :
retransmit immediatly - race conditions
retransmit after timeout - yes
exit
wait for packet, then exit
*/
warning ("HMM: threadlist did not echo arg thread, dropping it\n");
return 0; /* I choose simply exiting */
}
if (*result_count <= 0)
{
if (*done != 1)
{
warning ("RMT ERROR : failed to get remote thread list\n");
result = 0;
}
return result; /* break; */
}
if (*result_count > result_limit)
{
*result_count = 0;
warning ("RMT ERROR: threadlist response longer than requested\n");
return 0;
}
return result;
}
/* This is the interface between remote and threads, remotes upper interface */
/* remote_find_new_threads retrieves the thread list and for each
thread in the list, looks up the thread in GDB's internal list,
ading the thread if it does not already exist. This involves
getting partial thread lists from the remote target so, polling the
quit_flag is required. */
/* About this many threadisds fit in a packet. */
#define MAXTHREADLISTRESULTS 32
static int
remote_threadlist_iterator (stepfunction, context, looplimit)
rmt_thread_action stepfunction;
void *context;
int looplimit;
{
int done, i, result_count;
int startflag = 1;
int result = 1;
int loopcount = 0;
static threadref nextthread;
static threadref resultthreadlist[MAXTHREADLISTRESULTS];
done = 0;
while (!done)
{
if (loopcount++ > looplimit)
{
result = 0;
warning ("Remote fetch threadlist -infinite loop-\n");
break;
}
if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
&done, &result_count, resultthreadlist))
{
result = 0;
break;
}
/* clear for later iterations */
startflag = 0;
/* Setup to resume next batch of thread references, set nextthread. */
if (result_count >= 1)
copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
i = 0;
while (result_count--)
if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
break;
}
return result;
}
static int
remote_newthread_step (ref, context)
threadref *ref;
void *context;
{
int pid;
pid = threadref_to_int (ref);
if (!in_thread_list (pid))
add_thread (pid);
return 1; /* continue iterator */
}
#define CRAZY_MAX_THREADS 1000
static int
remote_current_thread (oldpid)
int oldpid;
{
char *buf = alloca (PBUFSIZ);
putpkt ("qC");
getpkt (buf, 0);
if (buf[0] == 'Q' && buf[1] == 'C')
return strtol (&buf[2], NULL, 16);
else
return oldpid;
}
/* Find new threads for info threads command. */
static void
remote_find_new_threads ()
{
remote_threadlist_iterator (remote_newthread_step, 0,
CRAZY_MAX_THREADS);
if (inferior_pid == MAGIC_NULL_PID) /* ack ack ack */
inferior_pid = remote_current_thread (inferior_pid);
}
static void
remote_threads_info (void)
{
char *buf = alloca (PBUFSIZ);
char *bufp;
int tid;
if (remote_desc == 0) /* paranoia */
error ("Command can only be used when connected to the remote target.");
putpkt ("qfThreadInfo");
getpkt (bufp = buf, 0);
if (bufp[0] == '\0') /* q packet not recognized! */
{ /* try old jmetzler method */
remote_find_new_threads ();
return;
}
else /* try new 'q' method */
while (*bufp++ == 'm') /* reply contains one or more TID */
{
do
{
tid = strtol (bufp, &bufp, 16);
if (tid != 0 && !in_thread_list (tid))
add_thread (tid);
}
while (*bufp++ == ','); /* comma-separated list */
putpkt ("qsThreadInfo");
getpkt (bufp = buf, 0);
}
}
/* Restart the remote side; this is an extended protocol operation. */
static void
extended_remote_restart ()
{
char *buf = alloca (PBUFSIZ);
/* Send the restart command; for reasons I don't understand the
remote side really expects a number after the "R". */
buf[0] = 'R';
sprintf (&buf[1], "%x", 0);
putpkt (buf);
/* Now query for status so this looks just like we restarted
gdbserver from scratch. */
putpkt ("?");
getpkt (buf, 0);
}
/* Clean up connection to a remote debugger. */
/* ARGSUSED */
static void
remote_close (quitting)
int quitting;
{
if (remote_desc)
SERIAL_CLOSE (remote_desc);
remote_desc = NULL;
}
/* Query the remote side for the text, data and bss offsets. */
static void
get_offsets ()
{
char *buf = alloca (PBUFSIZ);
char *ptr;
int lose;
CORE_ADDR text_addr, data_addr, bss_addr;
struct section_offsets *offs;
putpkt ("qOffsets");
getpkt (buf, 0);
if (buf[0] == '\000')
return; /* Return silently. Stub doesn't support
this command. */
if (buf[0] == 'E')
{
warning ("Remote failure reply: %s", buf);
return;
}
/* Pick up each field in turn. This used to be done with scanf, but
scanf will make trouble if CORE_ADDR size doesn't match
conversion directives correctly. The following code will work
with any size of CORE_ADDR. */
text_addr = data_addr = bss_addr = 0;
ptr = buf;
lose = 0;
if (strncmp (ptr, "Text=", 5) == 0)
{
ptr += 5;
/* Don't use strtol, could lose on big values. */
while (*ptr && *ptr != ';')
text_addr = (text_addr << 4) + fromhex (*ptr++);
}
else
lose = 1;
if (!lose && strncmp (ptr, ";Data=", 6) == 0)
{
ptr += 6;
while (*ptr && *ptr != ';')
data_addr = (data_addr << 4) + fromhex (*ptr++);
}
else
lose = 1;
if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
{
ptr += 5;
while (*ptr && *ptr != ';')
bss_addr = (bss_addr << 4) + fromhex (*ptr++);
}
else
lose = 1;
if (lose)
error ("Malformed response to offset query, %s", buf);
if (symfile_objfile == NULL)
return;
offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
ANOFFSET (offs, SECT_OFF_TEXT) = text_addr;
/* This is a temporary kludge to force data and bss to use the same offsets
because that's what nlmconv does now. The real solution requires changes
to the stub and remote.c that I don't have time to do right now. */
ANOFFSET (offs, SECT_OFF_DATA) = data_addr;
ANOFFSET (offs, SECT_OFF_BSS) = data_addr;
objfile_relocate (symfile_objfile, offs);
}
/*
* Cisco version of section offsets:
*
* Instead of having GDB query the target for the section offsets,
* Cisco lets the target volunteer the information! It's also in
* a different format, so here are the functions that will decode
* a section offset packet from a Cisco target.
*/
/*
* Function: remote_cisco_section_offsets
*
* Returns: zero for success, non-zero for failure
*/
static int
remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
text_offs, data_offs, bss_offs)
bfd_vma text_addr;
bfd_vma data_addr;
bfd_vma bss_addr;
bfd_signed_vma *text_offs;
bfd_signed_vma *data_offs;
bfd_signed_vma *bss_offs;
{
bfd_vma text_base, data_base, bss_base;
struct minimal_symbol *start;
asection *sect;
bfd *abfd;
int len;
char *p;
if (symfile_objfile == NULL)
return -1; /* no can do nothin' */
start = lookup_minimal_symbol ("_start", NULL, NULL);
if (start == NULL)
return -1; /* Can't find "_start" symbol */
data_base = bss_base = 0;
text_base = SYMBOL_VALUE_ADDRESS (start);
abfd = symfile_objfile->obfd;
for (sect = abfd->sections;
sect != 0;
sect = sect->next)
{
p = (unsigned char *) bfd_get_section_name (abfd, sect);
len = strlen (p);
if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
if (data_base == 0 ||
data_base > bfd_get_section_vma (abfd, sect))
data_base = bfd_get_section_vma (abfd, sect);
if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
if (bss_base == 0 ||
bss_base > bfd_get_section_vma (abfd, sect))
bss_base = bfd_get_section_vma (abfd, sect);
}
*text_offs = text_addr - text_base;
*data_offs = data_addr - data_base;
*bss_offs = bss_addr - bss_base;
if (remote_debug)
{
char tmp[128];
sprintf (tmp, "VMA: text = 0x");
sprintf_vma (tmp + strlen (tmp), text_addr);
sprintf (tmp + strlen (tmp), " data = 0x");
sprintf_vma (tmp + strlen (tmp), data_addr);
sprintf (tmp + strlen (tmp), " bss = 0x");
sprintf_vma (tmp + strlen (tmp), bss_addr);
fprintf_filtered (gdb_stdlog, tmp);
fprintf_filtered (gdb_stdlog,
"Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
paddr_nz (*text_offs),
paddr_nz (*data_offs),
paddr_nz (*bss_offs));
}
return 0;
}
/*
* Function: remote_cisco_objfile_relocate
*
* Relocate the symbol file for a remote target.
*/
void
remote_cisco_objfile_relocate (text_off, data_off, bss_off)
bfd_signed_vma text_off;
bfd_signed_vma data_off;
bfd_signed_vma bss_off;
{
struct section_offsets *offs;
if (text_off != 0 || data_off != 0 || bss_off != 0)
{
/* FIXME: This code assumes gdb-stabs.h is being used; it's
broken for xcoff, dwarf, sdb-coff, etc. But there is no
simple canonical representation for this stuff. */
offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
ANOFFSET (offs, SECT_OFF_TEXT) = text_off;
ANOFFSET (offs, SECT_OFF_DATA) = data_off;
ANOFFSET (offs, SECT_OFF_BSS) = bss_off;
/* First call the standard objfile_relocate. */
objfile_relocate (symfile_objfile, offs);
/* Now we need to fix up the section entries already attached to
the exec target. These entries will control memory transfers
from the exec file. */
exec_set_section_offsets (text_off, data_off, bss_off);
}
}
/* Stub for catch_errors. */
static int
remote_start_remote_dummy (dummy)
char *dummy;
{
start_remote (); /* Initialize gdb process mechanisms */
return 1;
}
static int
remote_start_remote (dummy)
PTR dummy;
{
immediate_quit = 1; /* Allow user to interrupt it */
/* Ack any packet which the remote side has already sent. */
SERIAL_WRITE (remote_desc, "+", 1);
/* Let the stub know that we want it to return the thread. */
set_thread (-1, 0);
inferior_pid = remote_current_thread (inferior_pid);
get_offsets (); /* Get text, data & bss offsets */
putpkt ("?"); /* initiate a query from remote machine */
immediate_quit = 0;
return remote_start_remote_dummy (dummy);
}
/* Open a connection to a remote debugger.
NAME is the filename used for communication. */
static void
remote_open (name, from_tty)
char *name;
int from_tty;
{
remote_open_1 (name, from_tty, &remote_ops, 0);
}
/* Just like remote_open, but with asynchronous support. */
static void
remote_async_open (name, from_tty)
char *name;
int from_tty;
{
remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
}
/* Open a connection to a remote debugger using the extended
remote gdb protocol. NAME is the filename used for communication. */
static void
extended_remote_open (name, from_tty)
char *name;
int from_tty;
{
remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
}
/* Just like extended_remote_open, but with asynchronous support. */
static void
extended_remote_async_open (name, from_tty)
char *name;
int from_tty;
{
remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
}
/* Generic code for opening a connection to a remote target. */
static DCACHE *remote_dcache;
static void
remote_open_1 (name, from_tty, target, extended_p)
char *name;
int from_tty;
struct target_ops *target;
int extended_p;
{
if (name == 0)
error ("To open a remote debug connection, you need to specify what\n\
serial device is attached to the remote system (e.g. /dev/ttya).");
target_preopen (from_tty);
unpush_target (target);
remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes);
remote_desc = SERIAL_OPEN (name);
if (!remote_desc)
perror_with_name (name);
if (baud_rate != -1)
{
if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
{
SERIAL_CLOSE (remote_desc);
perror_with_name (name);
}
}
SERIAL_RAW (remote_desc);
/* If there is something sitting in the buffer we might take it as a
response to a command, which would be bad. */
SERIAL_FLUSH_INPUT (remote_desc);
if (from_tty)
{
puts_filtered ("Remote debugging using ");
puts_filtered (name);
puts_filtered ("\n");
}
push_target (target); /* Switch to using remote target now */
init_packet_config (&remote_protocol_P);
init_packet_config (&remote_protocol_Z);
general_thread = -2;
continue_thread = -2;
/* Force remote_write_bytes to check whether target supports
binary downloading. */
init_packet_config (&remote_protocol_binary_download);
/* Without this, some commands which require an active target (such
as kill) won't work. This variable serves (at least) double duty
as both the pid of the target process (if it has such), and as a
flag indicating that a target is active. These functions should
be split out into seperate variables, especially since GDB will
someday have a notion of debugging several processes. */
inferior_pid = MAGIC_NULL_PID;
/* Start the remote connection; if error (0), discard this target.
In particular, if the user quits, be sure to discard it
(we'd be in an inconsistent state otherwise). */
if (!catch_errors (remote_start_remote, NULL,
"Couldn't establish connection to remote target\n",
RETURN_MASK_ALL))
{
pop_target ();
return;
}
if (extended_p)
{
/* tell the remote that we're using the extended protocol. */
char *buf = alloca (PBUFSIZ);
putpkt ("!");
getpkt (buf, 0);
}
}
/* Just like remote_open but with asynchronous support. */
static void
remote_async_open_1 (name, from_tty, target, extended_p)
char *name;
int from_tty;
struct target_ops *target;
int extended_p;
{
if (name == 0)
error ("To open a remote debug connection, you need to specify what\n\
serial device is attached to the remote system (e.g. /dev/ttya).");
target_preopen (from_tty);
unpush_target (target);
remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes);
remote_desc = SERIAL_OPEN (name);
if (!remote_desc)
perror_with_name (name);
if (baud_rate != -1)
{
if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
{
SERIAL_CLOSE (remote_desc);
perror_with_name (name);
}
}
SERIAL_RAW (remote_desc);
/* If there is something sitting in the buffer we might take it as a
response to a command, which would be bad. */
SERIAL_FLUSH_INPUT (remote_desc);
if (from_tty)
{
puts_filtered ("Remote debugging using ");
puts_filtered (name);
puts_filtered ("\n");
}
/* If running in asynchronous mode, register the target with the
event loop. Set things up so that when there is an event on the
file descriptor, the event loop will call fetch_inferior_event,
which will do the proper analysis to determine what happened. */
if (async_p)
add_file_handler (remote_desc->fd, fetch_inferior_event, 0);
push_target (target); /* Switch to using remote target now */
init_packet_config (&remote_protocol_P);
init_packet_config (&remote_protocol_Z);
general_thread = -2;
continue_thread = -2;
/* Force remote_write_bytes to check whether target supports
binary downloading. */
init_packet_config (&remote_protocol_binary_download);
/* If running asynchronously, set things up for telling the target
to use the extended protocol. This will happen only after the
target has been connected to, in fetch_inferior_event. */
if (extended_p && async_p)
add_continuation (set_extended_protocol, NULL);
/* Without this, some commands which require an active target (such
as kill) won't work. This variable serves (at least) double duty
as both the pid of the target process (if it has such), and as a
flag indicating that a target is active. These functions should
be split out into seperate variables, especially since GDB will
someday have a notion of debugging several processes. */
inferior_pid = MAGIC_NULL_PID;
/* Start the remote connection; if error (0), discard this target.
In particular, if the user quits, be sure to discard it
(we'd be in an inconsistent state otherwise). */
if (!catch_errors (remote_start_remote, NULL,
"Couldn't establish connection to remote target\n",
RETURN_MASK_ALL))
{
/* Unregister the file descriptor from the event loop. */
if (async_p)
delete_file_handler (remote_desc->fd);
pop_target ();
return;
}
if (!async_p)
{
if (extended_p)
{
/* tell the remote that we're using the extended protocol. */
char *buf = alloca (PBUFSIZ);
putpkt ("!");
getpkt (buf, 0);
}
}
}
/* This will be called by fetch_inferior_event, via the
cmd_continuation pointer, only after the target has stopped. */
static void
set_extended_protocol (arg)
struct continuation_arg *arg;
{
/* tell the remote that we're using the extended protocol. */
char *buf = alloca (PBUFSIZ);
putpkt ("!");
getpkt (buf, 0);
}
/* This takes a program previously attached to and detaches it. After
this is done, GDB can be used to debug some other program. We
better not have left any breakpoints in the target program or it'll
die when it hits one. */
static void
remote_detach (args, from_tty)
char *args;
int from_tty;
{
char *buf = alloca (PBUFSIZ);
if (args)
error ("Argument given to \"detach\" when remotely debugging.");
/* Tell the remote target to detach. */
strcpy (buf, "D");
remote_send (buf);
pop_target ();
if (from_tty)
puts_filtered ("Ending remote debugging.\n");
}
/* Same as remote_detach, but with async support. */
static void
remote_async_detach (args, from_tty)
char *args;
int from_tty;
{
char *buf = alloca (PBUFSIZ);
if (args)
error ("Argument given to \"detach\" when remotely debugging.");
/* Tell the remote target to detach. */
strcpy (buf, "D");
remote_send (buf);
/* Unregister the file descriptor from the event loop. */
if (async_p)
delete_file_handler (remote_desc->fd);
pop_target ();
if (from_tty)
puts_filtered ("Ending remote debugging.\n");
}
/* Convert hex digit A to a number. */
int
fromhex (a)
int a;
{
if (a >= '0' && a <= '9')
return a - '0';
else if (a >= 'a' && a <= 'f')
return a - 'a' + 10;
else if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
else
error ("Reply contains invalid hex digit %d", a);
}
/* Convert number NIB to a hex digit. */
static int
tohex (nib)
int nib;
{
if (nib < 10)
return '0' + nib;
else
return 'a' + nib - 10;
}
/* Tell the remote machine to resume. */
static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
static int last_sent_step;
static void
remote_resume (pid, step, siggnal)
int pid, step;
enum target_signal siggnal;
{
char *buf = alloca (PBUFSIZ);
if (pid == -1)
set_thread (0, 0); /* run any thread */
else
set_thread (pid, 0); /* run this thread */
dcache_flush (remote_dcache);
last_sent_signal = siggnal;
last_sent_step = step;
/* A hook for when we need to do something at the last moment before
resumption. */
if (target_resume_hook)
(*target_resume_hook) ();
if (siggnal != TARGET_SIGNAL_0)
{
buf[0] = step ? 'S' : 'C';
buf[1] = tohex (((int) siggnal >> 4) & 0xf);
buf[2] = tohex ((int) siggnal & 0xf);
buf[3] = '\0';
}
else
strcpy (buf, step ? "s" : "c");
putpkt (buf);
}
/* Same as remote_resume, but with async support. */
static void
remote_async_resume (pid, step, siggnal)
int pid, step;
enum target_signal siggnal;
{
char *buf = alloca (PBUFSIZ);
if (pid == -1)
set_thread (0, 0); /* run any thread */
else
set_thread (pid, 0); /* run this thread */
dcache_flush (remote_dcache);
last_sent_signal = siggnal;
last_sent_step = step;
/* A hook for when we need to do something at the last moment before
resumption. */
if (target_resume_hook)
(*target_resume_hook) ();
/* Set things up before execution starts for async commands. */
/* This function can be entered more than once for the same execution
command, because it is also called by handle_inferior_event. So
we make sure that we don't do the initialization for sync
execution more than once. */
if (async_p && !target_executing)
{
target_executing = 1;
/* If the command must look synchronous, fake it, by making gdb
display an empty prompt after the command has completed. Also
disable input. */
if (sync_execution)
{
push_prompt ("", "", "");
delete_file_handler (input_fd);
initialize_sigint_signal_handler ();
}
}
if (siggnal != TARGET_SIGNAL_0)
{
buf[0] = step ? 'S' : 'C';
buf[1] = tohex (((int) siggnal >> 4) & 0xf);
buf[2] = tohex ((int) siggnal & 0xf);
buf[3] = '\0';
}
else
strcpy (buf, step ? "s" : "c");
putpkt (buf);
}
/* Set up the signal handler for SIGINT, while the target is
executing, ovewriting the 'regular' SIGINT signal handler. */
static void
initialize_sigint_signal_handler ()
{
sigint_remote_token =
create_async_signal_handler (async_remote_interrupt, NULL);
signal (SIGINT, handle_remote_sigint);
}
/* Signal handler for SIGINT, while the target is executing. */
static void
handle_remote_sigint (sig)
int sig;
{
signal (sig, handle_remote_sigint_twice);
sigint_remote_twice_token =
create_async_signal_handler (async_remote_interrupt_twice, NULL);
mark_async_signal_handler_wrapper (sigint_remote_token);
}
/* Signal handler for SIGINT, installed after SIGINT has already been
sent once. It will take effect the second time that the user sends
a ^C. */
static void
handle_remote_sigint_twice (sig)
int sig;
{
signal (sig, handle_sigint);
sigint_remote_twice_token =
create_async_signal_handler (async_remote_interrupt, NULL);
mark_async_signal_handler_wrapper (sigint_remote_twice_token);
}
/* Perform the real interruption of hte target execution, in response
to a ^C. */
static void
async_remote_interrupt (arg)
gdb_client_data arg;
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
target_stop ();
}
/* Perform interrupt, if the first attempt did not succeed. Just give
up on the target alltogether. */
static void
async_remote_interrupt_twice (arg)
gdb_client_data arg;
{
interrupt_query ();
signal (SIGINT, handle_remote_sigint);
}
/* Reinstall the usual SIGINT handlers, after the target has
stopped. */
void
cleanup_sigint_signal_handler ()
{
signal (SIGINT, handle_sigint);
if (sigint_remote_twice_token)
delete_async_signal_handler ((async_signal_handler **) & sigint_remote_twice_token);
if (sigint_remote_token)
delete_async_signal_handler ((async_signal_handler **) & sigint_remote_token);
}
/* Send ^C to target to halt it. Target will respond, and send us a
packet. */
static void (*ofunc) PARAMS ((int));
/* The command line interface's stop routine. This function is installed
as a signal handler for SIGINT. The first time a user requests a
stop, we call remote_stop to send a break or ^C. If there is no
response from the target (it didn't stop when the user requested it),
we ask the user if he'd like to detach from the target. */
static void
remote_interrupt (signo)
int signo;
{
/* If this doesn't work, try more severe steps. */
signal (signo, remote_interrupt_twice);
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
target_stop ();
}
/* The user typed ^C twice. */
static void
remote_interrupt_twice (signo)
int signo;
{
signal (signo, ofunc);
interrupt_query ();
signal (signo, remote_interrupt);
}
/* This is the generic stop called via the target vector. When a target
interrupt is requested, either by the command line or the GUI, we
will eventually end up here. */
static void
remote_stop ()
{
/* Send a break or a ^C, depending on user preference. */
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
if (remote_break)
SERIAL_SEND_BREAK (remote_desc);
else
SERIAL_WRITE (remote_desc, "\003", 1);
}
/* Ask the user what to do when an interrupt is received. */
static void
interrupt_query ()
{
target_terminal_ours ();
if (query ("Interrupted while waiting for the program.\n\
Give up (and stop debugging it)? "))
{
target_mourn_inferior ();
return_to_top_level (RETURN_QUIT);
}
target_terminal_inferior ();
}
/* If nonzero, ignore the next kill. */
int kill_kludge;
void
remote_console_output (msg)
char *msg;
{
char *p;
for (p = msg; p[0] && p[1]; p += 2)
{
char tb[2];
char c = fromhex (p[0]) * 16 + fromhex (p[1]);
tb[0] = c;
tb[1] = 0;
fputs_unfiltered (tb, gdb_stdtarg);
}
}
/* Wait until the remote machine stops, then return,
storing status in STATUS just as `wait' would.
Returns "pid", which in the case of a multi-threaded
remote OS, is the thread-id. */
static int
remote_wait (pid, status)
int pid;
struct target_waitstatus *status;
{
unsigned char *buf = alloca (PBUFSIZ);
int thread_num = -1;
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = 0;
while (1)
{
unsigned char *p;
ofunc = signal (SIGINT, remote_interrupt);
getpkt ((char *) buf, 1);
signal (SIGINT, ofunc);
/* This is a hook for when we need to do something (perhaps the
collection of trace data) every time the target stops. */
if (target_wait_loop_hook)
(*target_wait_loop_hook) ();
switch (buf[0])
{
case 'E': /* Error of some sort */
warning ("Remote failure reply: %s", buf);
continue;
case 'T': /* Status with PC, SP, FP, ... */
{
int i;
long regno;
char regs[MAX_REGISTER_RAW_SIZE];
/* Expedited reply, containing Signal, {regno, reg} repeat */
/* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
ss = signal number
n... = register number
r... = register contents
*/
p = &buf[3]; /* after Txx */
while (*p)
{
unsigned char *p1;
char *p_temp;
/* Read the register number */
regno = strtol ((const char *) p, &p_temp, 16);
p1 = (unsigned char *) p_temp;
if (p1 == p) /* No register number present here */
{
p1 = (unsigned char *) strchr ((const char *) p, ':');
if (p1 == NULL)
warning ("Malformed packet(a) (missing colon): %s\n\
Packet: '%s'\n",
p, buf);
if (strncmp ((const char *) p, "thread", p1 - p) == 0)
{
p_temp = unpack_varlen_hex (++p1, &thread_num);
record_currthread (thread_num);
p = (unsigned char *) p_temp;
}
}
else
{
p = p1;
if (*p++ != ':')
warning ("Malformed packet(b) (missing colon): %s\n\
Packet: '%s'\n",
p, buf);
if (regno >= NUM_REGS)
warning ("Remote sent bad register number %ld: %s\n\
Packet: '%s'\n",
regno, p, buf);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
{
if (p[0] == 0 || p[1] == 0)
warning ("Remote reply is too short: %s", buf);
regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
p += 2;
}
supply_register (regno, regs);
}
if (*p++ != ';')
{
warning ("Remote register badly formatted: %s", buf);
warning (" here: %s", p);
}
}
}
/* fall through */
case 'S': /* Old style status, just signal only */
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
if (buf[3] == 'p')
{
/* Export Cisco kernel mode as a convenience variable
(so that it can be used in the GDB prompt if desired). */
if (cisco_kernel_mode == 1)
set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
value_from_string ("PDEBUG-"));
cisco_kernel_mode = 0;
thread_num = strtol ((const char *) &buf[4], NULL, 16);
record_currthread (thread_num);
}
else if (buf[3] == 'k')
{
/* Export Cisco kernel mode as a convenience variable
(so that it can be used in the GDB prompt if desired). */
if (cisco_kernel_mode == 1)
set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
value_from_string ("KDEBUG-"));
cisco_kernel_mode = 1;
}
goto got_status;
case 'N': /* Cisco special: status and offsets */
{
bfd_vma text_addr, data_addr, bss_addr;
bfd_signed_vma text_off, data_off, bss_off;
unsigned char *p1;
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
if (symfile_objfile == NULL)
{
warning ("Relocation packet received with no symbol file. \
Packet Dropped");
goto got_status;
}
/* Relocate object file. Buffer format is NAATT;DD;BB
* where AA is the signal number, TT is the new text
* address, DD * is the new data address, and BB is the
* new bss address. */
p = &buf[3];
text_addr = strtoul (p, (char **) &p1, 16);
if (p1 == p || *p1 != ';')
warning ("Malformed relocation packet: Packet '%s'", buf);
p = p1 + 1;
data_addr = strtoul (p, (char **) &p1, 16);
if (p1 == p || *p1 != ';')
warning ("Malformed relocation packet: Packet '%s'", buf);
p = p1 + 1;
bss_addr = strtoul (p, (char **) &p1, 16);
if (p1 == p)
warning ("Malformed relocation packet: Packet '%s'", buf);
if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
&text_off, &data_off, &bss_off)
== 0)
if (text_off != 0 || data_off != 0 || bss_off != 0)
remote_cisco_objfile_relocate (text_off, data_off, bss_off);
goto got_status;
}
case 'W': /* Target exited */
{
/* The remote process exited. */
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
goto got_status;
}
case 'X':
status->kind = TARGET_WAITKIND_SIGNALLED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
kill_kludge = 1;
goto got_status;
case 'O': /* Console output */
remote_console_output (buf + 1);
continue;
case '\0':
if (last_sent_signal != TARGET_SIGNAL_0)
{
/* Zero length reply means that we tried 'S' or 'C' and
the remote system doesn't support it. */
target_terminal_ours_for_output ();
printf_filtered
("Can't send signals to this remote system. %s not sent.\n",
target_signal_to_name (last_sent_signal));
last_sent_signal = TARGET_SIGNAL_0;
target_terminal_inferior ();
strcpy ((char *) buf, last_sent_step ? "s" : "c");
putpkt ((char *) buf);
continue;
}
/* else fallthrough */
default:
warning ("Invalid remote reply: %s", buf);
continue;
}
}
got_status:
if (thread_num != -1)
{
return thread_num;
}
return inferior_pid;
}
/* Async version of remote_wait. */
static int
remote_async_wait (pid, status)
int pid;
struct target_waitstatus *status;
{
unsigned char *buf = alloca (PBUFSIZ);
int thread_num = -1;
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = 0;
while (1)
{
unsigned char *p;
if (!async_p)
ofunc = signal (SIGINT, remote_interrupt);
getpkt ((char *) buf, 1);
if (!async_p)
signal (SIGINT, ofunc);
/* This is a hook for when we need to do something (perhaps the
collection of trace data) every time the target stops. */
if (target_wait_loop_hook)
(*target_wait_loop_hook) ();
switch (buf[0])
{
case 'E': /* Error of some sort */
warning ("Remote failure reply: %s", buf);
continue;
case 'T': /* Status with PC, SP, FP, ... */
{
int i;
long regno;
char regs[MAX_REGISTER_RAW_SIZE];
/* Expedited reply, containing Signal, {regno, reg} repeat */
/* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
ss = signal number
n... = register number
r... = register contents
*/
p = &buf[3]; /* after Txx */
while (*p)
{
unsigned char *p1;
char *p_temp;
/* Read the register number */
regno = strtol ((const char *) p, &p_temp, 16);
p1 = (unsigned char *) p_temp;
if (p1 == p) /* No register number present here */
{
p1 = (unsigned char *) strchr ((const char *) p, ':');
if (p1 == NULL)
warning ("Malformed packet(a) (missing colon): %s\n\
Packet: '%s'\n",
p, buf);
if (strncmp ((const char *) p, "thread", p1 - p) == 0)
{
p_temp = unpack_varlen_hex (++p1, &thread_num);
record_currthread (thread_num);
p = (unsigned char *) p_temp;
}
}
else
{
p = p1;
if (*p++ != ':')
warning ("Malformed packet(b) (missing colon): %s\n\
Packet: '%s'\n",
p, buf);
if (regno >= NUM_REGS)
warning ("Remote sent bad register number %ld: %s\n\
Packet: '%s'\n",
regno, p, buf);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
{
if (p[0] == 0 || p[1] == 0)
warning ("Remote reply is too short: %s", buf);
regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
p += 2;
}
supply_register (regno, regs);
}
if (*p++ != ';')
{
warning ("Remote register badly formatted: %s", buf);
warning (" here: %s", p);
}
}
}
/* fall through */
case 'S': /* Old style status, just signal only */
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
if (buf[3] == 'p')
{
/* Export Cisco kernel mode as a convenience variable
(so that it can be used in the GDB prompt if desired). */
if (cisco_kernel_mode == 1)
set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
value_from_string ("PDEBUG-"));
cisco_kernel_mode = 0;
thread_num = strtol ((const char *) &buf[4], NULL, 16);
record_currthread (thread_num);
}
else if (buf[3] == 'k')
{
/* Export Cisco kernel mode as a convenience variable
(so that it can be used in the GDB prompt if desired). */
if (cisco_kernel_mode == 1)
set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
value_from_string ("KDEBUG-"));
cisco_kernel_mode = 1;
}
goto got_status;
case 'N': /* Cisco special: status and offsets */
{
bfd_vma text_addr, data_addr, bss_addr;
bfd_signed_vma text_off, data_off, bss_off;
unsigned char *p1;
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
if (symfile_objfile == NULL)
{
warning ("Relocation packet recieved with no symbol file. \
Packet Dropped");
goto got_status;
}
/* Relocate object file. Buffer format is NAATT;DD;BB
* where AA is the signal number, TT is the new text
* address, DD * is the new data address, and BB is the
* new bss address. */
p = &buf[3];
text_addr = strtoul (p, (char **) &p1, 16);
if (p1 == p || *p1 != ';')
warning ("Malformed relocation packet: Packet '%s'", buf);
p = p1 + 1;
data_addr = strtoul (p, (char **) &p1, 16);
if (p1 == p || *p1 != ';')
warning ("Malformed relocation packet: Packet '%s'", buf);
p = p1 + 1;
bss_addr = strtoul (p, (char **) &p1, 16);
if (p1 == p)
warning ("Malformed relocation packet: Packet '%s'", buf);
if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
&text_off, &data_off, &bss_off)
== 0)
if (text_off != 0 || data_off != 0 || bss_off != 0)
remote_cisco_objfile_relocate (text_off, data_off, bss_off);
goto got_status;
}
case 'W': /* Target exited */
{
/* The remote process exited. */
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
goto got_status;
}
case 'X':
status->kind = TARGET_WAITKIND_SIGNALLED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
kill_kludge = 1;
goto got_status;
case 'O': /* Console output */
remote_console_output (buf + 1);
continue;
case '\0':
if (last_sent_signal != TARGET_SIGNAL_0)
{
/* Zero length reply means that we tried 'S' or 'C' and
the remote system doesn't support it. */
target_terminal_ours_for_output ();
printf_filtered
("Can't send signals to this remote system. %s not sent.\n",
target_signal_to_name (last_sent_signal));
last_sent_signal = TARGET_SIGNAL_0;
target_terminal_inferior ();
strcpy ((char *) buf, last_sent_step ? "s" : "c");
putpkt ((char *) buf);
continue;
}
/* else fallthrough */
default:
warning ("Invalid remote reply: %s", buf);
continue;
}
}
got_status:
if (thread_num != -1)
{
return thread_num;
}
return inferior_pid;
}
/* Number of bytes of registers this stub implements. */
static int register_bytes_found;
/* Read the remote registers into the block REGS. */
/* Currently we just read all the registers, so we don't use regno. */
/* ARGSUSED */
static void
remote_fetch_registers (regno)
int regno;
{
char *buf = alloca (PBUFSIZ);
int i;
char *p;
char regs[REGISTER_BYTES];
set_thread (inferior_pid, 1);
sprintf (buf, "g");
remote_send (buf);
if (remote_register_buf_size == 0)
remote_register_buf_size = strlen (buf);
/* Unimplemented registers read as all bits zero. */
memset (regs, 0, REGISTER_BYTES);
/* We can get out of synch in various cases. If the first character
in the buffer is not a hex character, assume that has happened
and try to fetch another packet to read. */
while ((buf[0] < '0' || buf[0] > '9')
&& (buf[0] < 'a' || buf[0] > 'f')
&& buf[0] != 'x') /* New: unavailable register value */
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"Bad register packet; fetching a new packet\n");
getpkt (buf, 0);
}
/* Reply describes registers byte by byte, each byte encoded as two
hex characters. Suck them all up, then supply them to the
register cacheing/storage mechanism. */
p = buf;
for (i = 0; i < REGISTER_BYTES; i++)
{
if (p[0] == 0)
break;
if (p[1] == 0)
{
warning ("Remote reply is of odd length: %s", buf);
/* Don't change register_bytes_found in this case, and don't
print a second warning. */
goto supply_them;
}
if (p[0] == 'x' && p[1] == 'x')
regs[i] = 0; /* 'x' */
else
regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
p += 2;
}
if (i != register_bytes_found)
{
register_bytes_found = i;
#ifdef REGISTER_BYTES_OK
if (!REGISTER_BYTES_OK (i))
warning ("Remote reply is too short: %s", buf);
#endif
}
supply_them:
for (i = 0; i < NUM_REGS; i++)
{
supply_register (i, &regs[REGISTER_BYTE (i)]);
if (buf[REGISTER_BYTE (i) * 2] == 'x')
register_valid[i] = -1; /* register value not available */
}
}
/* Prepare to store registers. Since we may send them all (using a
'G' request), we have to read out the ones we don't want to change
first. */
static void
remote_prepare_to_store ()
{
/* Make sure the entire registers array is valid. */
switch (remote_protocol_P.support)
{
case PACKET_DISABLE:
case PACKET_SUPPORT_UNKNOWN:
read_register_bytes (0, (char *) NULL, REGISTER_BYTES);
break;
case PACKET_ENABLE:
break;
}
}
/* Helper: Attempt to store REGNO using the P packet. Return fail IFF
packet was not recognized. */
static int
store_register_using_P (regno)
int regno;
{
/* Try storing a single register. */
char *buf = alloca (PBUFSIZ);
char *regp;
char *p;
int i;
sprintf (buf, "P%x=", regno);
p = buf + strlen (buf);
regp = &registers[REGISTER_BYTE (regno)];
for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
{
*p++ = tohex ((regp[i] >> 4) & 0xf);
*p++ = tohex (regp[i] & 0xf);
}
*p = '\0';
remote_send (buf);
return buf[0] != '\0';
}
/* Store register REGNO, or all registers if REGNO == -1, from the contents
of REGISTERS. FIXME: ignores errors. */
static void
remote_store_registers (regno)
int regno;
{
char *buf = alloca (PBUFSIZ);
int i;
char *p;
set_thread (inferior_pid, 1);
if (regno >= 0)
{
switch (remote_protocol_P.support)
{
case PACKET_DISABLE:
break;
case PACKET_ENABLE:
if (store_register_using_P (regno))
return;
else
error ("Protocol error: P packet not recognized by stub");
case PACKET_SUPPORT_UNKNOWN:
if (store_register_using_P (regno))
{
/* The stub recognized the 'P' packet. Remember this. */
remote_protocol_P.support = PACKET_ENABLE;
return;
}
else
{
/* The stub does not support the 'P' packet. Use 'G'
instead, and don't try using 'P' in the future (it
will just waste our time). */
remote_protocol_P.support = PACKET_DISABLE;
break;
}
}
}
buf[0] = 'G';
/* Command describes registers byte by byte,
each byte encoded as two hex characters. */
p = buf + 1;
/* remote_prepare_to_store insures that register_bytes_found gets set. */
for (i = 0; i < register_bytes_found; i++)
{
*p++ = tohex ((registers[i] >> 4) & 0xf);
*p++ = tohex (registers[i] & 0xf);
}
*p = '\0';
remote_send (buf);
}
/* Use of the data cache *used* to be disabled because it loses for looking
at and changing hardware I/O ports and the like. Accepting `volatile'
would perhaps be one way to fix it. Another idea would be to use the
executable file for the text segment (for all SEC_CODE sections?
For all SEC_READONLY sections?). This has problems if you want to
actually see what the memory contains (e.g. self-modifying code,
clobbered memory, user downloaded the wrong thing).
Because it speeds so much up, it's now enabled, if you're playing
with registers you turn it of (set remotecache 0). */
/* Read a word from remote address ADDR and return it.
This goes through the data cache. */
#if 0 /* unused? */
static int
remote_fetch_word (addr)
CORE_ADDR addr;
{
return dcache_fetch (remote_dcache, addr);
}
/* Write a word WORD into remote address ADDR.
This goes through the data cache. */
static void
remote_store_word (addr, word)
CORE_ADDR addr;
int word;
{
dcache_poke (remote_dcache, addr, word);
}
#endif /* 0 (unused?) */
/* Return the number of hex digits in num. */
static int
hexnumlen (num)
ULONGEST num;
{
int i;
for (i = 0; num != 0; i++)
num >>= 4;
return max (i, 1);
}
/* Set BUF to the hex digits representing NUM. */
static int
hexnumstr (buf, num)
char *buf;
ULONGEST num;
{
int i;
int len = hexnumlen (num);
buf[len] = '\0';
for (i = len - 1; i >= 0; i--)
{
buf[i] = "0123456789abcdef"[(num & 0xf)];
num >>= 4;
}
return len;
}
/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
static CORE_ADDR
remote_address_masked (addr)
CORE_ADDR addr;
{
if (remote_address_size > 0
&& remote_address_size < (sizeof (ULONGEST) * 8))
{
/* Only create a mask when that mask can safely be constructed
in a ULONGEST variable. */
ULONGEST mask = 1;
mask = (mask << remote_address_size) - 1;
addr &= mask;
}
return addr;
}
/* Determine whether the remote target supports binary downloading.
This is accomplished by sending a no-op memory write of zero length
to the target at the specified address. It does not suffice to send
the whole packet, since many stubs strip the eighth bit and subsequently
compute a wrong checksum, which causes real havoc with remote_write_bytes.
NOTE: This can still lose if the serial line is not eight-bit
clean. In cases like this, the user should clear "remote
X-packet". */
static void
check_binary_download (addr)
CORE_ADDR addr;
{
switch (remote_protocol_binary_download.support)
{
case PACKET_DISABLE:
break;
case PACKET_ENABLE:
break;
case PACKET_SUPPORT_UNKNOWN:
{
char *buf = alloca (PBUFSIZ);
char *p;
p = buf;
*p++ = 'X';
p += hexnumstr (p, (ULONGEST) addr);
*p++ = ',';
p += hexnumstr (p, (ULONGEST) 0);
*p++ = ':';
*p = '\0';
putpkt_binary (buf, (int) (p - buf));
getpkt (buf, 0);
if (buf[0] == '\0')
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"binary downloading NOT suppported by target\n");
remote_protocol_binary_download.support = PACKET_DISABLE;
}
else
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"binary downloading suppported by target\n");
remote_protocol_binary_download.support = PACKET_ENABLE;
}
break;
}
}
}
/* Write memory data directly to the remote machine.
This does not inform the data cache; the data cache uses this.
MEMADDR is the address in the remote memory space.
MYADDR is the address of the buffer in our space.
LEN is the number of bytes.
Returns number of bytes transferred, or 0 for error. */
static int
remote_write_bytes (memaddr, myaddr, len)
CORE_ADDR memaddr;
char *myaddr;
int len;
{
unsigned char *buf = alloca (PBUFSIZ);
int max_buf_size; /* Max size of packet output buffer */
int origlen;
/* Verify that the target can support a binary download */
check_binary_download (memaddr);
/* Chop the transfer down if necessary */
max_buf_size = min (remote_write_size, PBUFSIZ);
if (remote_register_buf_size != 0)
max_buf_size = min (max_buf_size, remote_register_buf_size);
/* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
origlen = len;
while (len > 0)
{
unsigned char *p, *plen;
int todo;
int i;
/* construct "M"<memaddr>","<len>":" */
/* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
memaddr = remote_address_masked (memaddr);
p = buf;
switch (remote_protocol_binary_download.support)
{
case PACKET_ENABLE:
*p++ = 'X';
todo = min (len, max_buf_size);
break;
case PACKET_DISABLE:
*p++ = 'M';
todo = min (len, max_buf_size / 2); /* num bytes that will fit */
break;
case PACKET_SUPPORT_UNKNOWN:
internal_error ("remote_write_bytes: bad switch");
}
p += hexnumstr (p, (ULONGEST) memaddr);
*p++ = ',';
plen = p; /* remember where len field goes */
p += hexnumstr (p, (ULONGEST) todo);
*p++ = ':';
*p = '\0';
/* We send target system values byte by byte, in increasing byte
addresses, each byte encoded as two hex characters (or one
binary character). */
switch (remote_protocol_binary_download.support)
{
case PACKET_ENABLE:
{
int escaped = 0;
for (i = 0;
(i < todo) && (i + escaped) < (max_buf_size - 2);
i++)
{
switch (myaddr[i] & 0xff)
{
case '$':
case '#':
case 0x7d:
/* These must be escaped */
escaped++;
*p++ = 0x7d;
*p++ = (myaddr[i] & 0xff) ^ 0x20;
break;
default:
*p++ = myaddr[i] & 0xff;
break;
}
}
if (i < todo)
{
/* Escape chars have filled up the buffer prematurely,
and we have actually sent fewer bytes than planned.
Fix-up the length field of the packet. */
/* FIXME: will fail if new len is a shorter string than
old len. */
plen += hexnumstr (plen, (ULONGEST) i);
*plen++ = ':';
}
break;
}
case PACKET_DISABLE:
{
for (i = 0; i < todo; i++)
{
*p++ = tohex ((myaddr[i] >> 4) & 0xf);
*p++ = tohex (myaddr[i] & 0xf);
}
*p = '\0';
break;
}
case PACKET_SUPPORT_UNKNOWN:
internal_error ("remote_write_bytes: bad switch");
}
putpkt_binary (buf, (int) (p - buf));
getpkt (buf, 0);
if (buf[0] == 'E')
{
/* There is no correspondance between what the remote protocol uses
for errors and errno codes. We would like a cleaner way of
representing errors (big enough to include errno codes, bfd_error
codes, and others). But for now just return EIO. */
errno = EIO;
return 0;
}
/* Increment by i, not by todo, in case escape chars
caused us to send fewer bytes than we'd planned. */
myaddr += i;
memaddr += i;
len -= i;
}
return origlen;
}
/* Read memory data directly from the remote machine.
This does not use the data cache; the data cache uses this.
MEMADDR is the address in the remote memory space.
MYADDR is the address of the buffer in our space.
LEN is the number of bytes.
Returns number of bytes transferred, or 0 for error. */
static int
remote_read_bytes (memaddr, myaddr, len)
CORE_ADDR memaddr;
char *myaddr;
int len;
{
char *buf = alloca (PBUFSIZ);
int max_buf_size; /* Max size of packet output buffer */
int origlen;
/* Chop the transfer down if necessary */
max_buf_size = min (remote_write_size, PBUFSIZ);
if (remote_register_buf_size != 0)
max_buf_size = min (max_buf_size, remote_register_buf_size);
origlen = len;
while (len > 0)
{
char *p;
int todo;
int i;
todo = min (len, max_buf_size / 2); /* num bytes that will fit */
/* construct "m"<memaddr>","<len>" */
/* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
memaddr = remote_address_masked (memaddr);
p = buf;
*p++ = 'm';
p += hexnumstr (p, (ULONGEST) memaddr);
*p++ = ',';
p += hexnumstr (p, (ULONGEST) todo);
*p = '\0';
putpkt (buf);
getpkt (buf, 0);
if (buf[0] == 'E')
{
/* There is no correspondance between what the remote protocol uses
for errors and errno codes. We would like a cleaner way of
representing errors (big enough to include errno codes, bfd_error
codes, and others). But for now just return EIO. */
errno = EIO;
return 0;
}
/* Reply describes memory byte by byte,
each byte encoded as two hex characters. */
p = buf;
for (i = 0; i < todo; i++)
{
if (p[0] == 0 || p[1] == 0)
/* Reply is short. This means that we were able to read
only part of what we wanted to. */
return i + (origlen - len);
myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
p += 2;
}
myaddr += todo;
memaddr += todo;
len -= todo;
}
return origlen;
}
/* Read or write LEN bytes from inferior memory at MEMADDR,
transferring to or from debugger address BUFFER. Write to inferior if
SHOULD_WRITE is nonzero. Returns length of data written or read; 0
for error. */
#ifndef REMOTE_TRANSLATE_XFER_ADDRESS
#define REMOTE_TRANSLATE_XFER_ADDRESS(MEM_ADDR, MEM_LEN, TARG_ADDR, TARG_LEN) \
(*(TARG_ADDR) = (MEM_ADDR), *(TARG_LEN) = (MEM_LEN))
#endif
/* ARGSUSED */
static int
remote_xfer_memory (mem_addr, buffer, mem_len, should_write, target)
CORE_ADDR mem_addr;
char *buffer;
int mem_len;
int should_write;
struct target_ops *target; /* ignored */
{
CORE_ADDR targ_addr;
int targ_len;
REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
if (targ_len <= 0)
return 0;
return dcache_xfer_memory (remote_dcache, targ_addr, buffer,
targ_len, should_write);
}
#if 0
/* Enable after 4.12. */
void
remote_search (len, data, mask, startaddr, increment, lorange, hirange
addr_found, data_found)
int len;
char *data;
char *mask;
CORE_ADDR startaddr;
int increment;
CORE_ADDR lorange;
CORE_ADDR hirange;
CORE_ADDR *addr_found;
char *data_found;
{
if (increment == -4 && len == 4)
{
long mask_long, data_long;
long data_found_long;
CORE_ADDR addr_we_found;
char *buf = alloca (PBUFSIZ);
long returned_long[2];
char *p;
mask_long = extract_unsigned_integer (mask, len);
data_long = extract_unsigned_integer (data, len);
sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
putpkt (buf);
getpkt (buf, 0);
if (buf[0] == '\0')
{
/* The stub doesn't support the 't' request. We might want to
remember this fact, but on the other hand the stub could be
switched on us. Maybe we should remember it only until
the next "target remote". */
generic_search (len, data, mask, startaddr, increment, lorange,
hirange, addr_found, data_found);
return;
}
if (buf[0] == 'E')
/* There is no correspondance between what the remote protocol uses
for errors and errno codes. We would like a cleaner way of
representing errors (big enough to include errno codes, bfd_error
codes, and others). But for now just use EIO. */
memory_error (EIO, startaddr);
p = buf;
addr_we_found = 0;
while (*p != '\0' && *p != ',')
addr_we_found = (addr_we_found << 4) + fromhex (*p++);
if (*p == '\0')
error ("Protocol error: short return for search");
data_found_long = 0;
while (*p != '\0' && *p != ',')
data_found_long = (data_found_long << 4) + fromhex (*p++);
/* Ignore anything after this comma, for future extensions. */
if (addr_we_found < lorange || addr_we_found >= hirange)
{
*addr_found = 0;
return;
}
*addr_found = addr_we_found;
*data_found = store_unsigned_integer (data_we_found, len);
return;
}
generic_search (len, data, mask, startaddr, increment, lorange,
hirange, addr_found, data_found);
}
#endif /* 0 */
static void
remote_files_info (ignore)
struct target_ops *ignore;
{
puts_filtered ("Debugging a target over a serial line.\n");
}
/* Stuff for dealing with the packets which are part of this protocol.
See comment at top of file for details. */
/* Read a single character from the remote end, masking it down to 7 bits. */
static int
readchar (timeout)
int timeout;
{
int ch;
ch = SERIAL_READCHAR (remote_desc, timeout);
switch (ch)
{
case SERIAL_EOF:
error ("Remote connection closed");
case SERIAL_ERROR:
perror_with_name ("Remote communication error");
case SERIAL_TIMEOUT:
return ch;
default:
return ch & 0x7f;
}
}
/* Send the command in BUF to the remote machine, and read the reply
into BUF. Report an error if we get an error reply. */
static void
remote_send (buf)
char *buf;
{
putpkt (buf);
getpkt (buf, 0);
if (buf[0] == 'E')
error ("Remote failure reply: %s", buf);
}
/* Display a null-terminated packet on stdout, for debugging, using C
string notation. */
static void
print_packet (buf)
char *buf;
{
puts_filtered ("\"");
fputstr_filtered (buf, '"', gdb_stdout);
puts_filtered ("\"");
}
int
putpkt (buf)
char *buf;
{
return putpkt_binary (buf, strlen (buf));
}
/* Send a packet to the remote machine, with error checking. The data
of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5
to account for the $, # and checksum, and for a possible /0 if we are
debugging (remote_debug) and want to print the sent packet as a string */
static int
putpkt_binary (buf, cnt)
char *buf;
int cnt;
{
int i;
unsigned char csum = 0;
char *buf2 = alloca (PBUFSIZ);
char *junkbuf = alloca (PBUFSIZ);
int ch;
int tcount = 0;
char *p;
/* Copy the packet into buffer BUF2, encapsulating it
and giving it a checksum. */
if (cnt > BUFSIZ - 5) /* Prosanity check */
abort ();
p = buf2;
*p++ = '$';
for (i = 0; i < cnt; i++)
{
csum += buf[i];
*p++ = buf[i];
}
*p++ = '#';
*p++ = tohex ((csum >> 4) & 0xf);
*p++ = tohex (csum & 0xf);
/* Send it over and over until we get a positive ack. */
while (1)
{
int started_error_output = 0;
if (remote_debug)
{
*p = '\0';
fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
fprintf_unfiltered (gdb_stdlog, "...");
gdb_flush (gdb_stdlog);
}
if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
perror_with_name ("putpkt: write failed");
/* read until either a timeout occurs (-2) or '+' is read */
while (1)
{
ch = readchar (remote_timeout);
if (remote_debug)
{
switch (ch)
{
case '+':
case SERIAL_TIMEOUT:
case '$':
if (started_error_output)
{
putchar_unfiltered ('\n');
started_error_output = 0;
}
}
}
switch (ch)
{
case '+':
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "Ack\n");
return 1;
case SERIAL_TIMEOUT:
tcount++;
if (tcount > 3)
return 0;
break; /* Retransmit buffer */
case '$':
{
/* It's probably an old response, and we're out of sync.
Just gobble up the packet and ignore it. */
getpkt (junkbuf, 0);
continue; /* Now, go look for + */
}
default:
if (remote_debug)
{
if (!started_error_output)
{
started_error_output = 1;
fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
}
fputc_unfiltered (ch & 0177, gdb_stdlog);
}
continue;
}
break; /* Here to retransmit */
}
#if 0
/* This is wrong. If doing a long backtrace, the user should be
able to get out next time we call QUIT, without anything as
violent as interrupt_query. If we want to provide a way out of
here without getting to the next QUIT, it should be based on
hitting ^C twice as in remote_wait. */
if (quit_flag)
{
quit_flag = 0;
interrupt_query ();
}
#endif
}
}
static int remote_cisco_mode;
static void
remote_cisco_expand (src, dest)
char *src;
char *dest;
{
int i;
int repeat;
do
{
if (*src == '*')
{
repeat = (fromhex (src[1]) << 4) + fromhex (src[2]);
for (i = 0; i < repeat; i++)
{
*dest++ = *(src - 1);
}
src += 2;
}
else
{
*dest++ = *src;
}
}
while (*src++);
}
/* Come here after finding the start of the frame. Collect the rest
into BUF, verifying the checksum, length, and handling run-length
compression. Returns 0 on any error, 1 on success. */
static int
read_frame (buf)
char *buf;
{
unsigned char csum;
char *bp;
int c;
csum = 0;
bp = buf;
while (1)
{
c = readchar (remote_timeout);
switch (c)
{
case SERIAL_TIMEOUT:
if (remote_debug)
fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
return 0;
case '$':
if (remote_debug)
fputs_filtered ("Saw new packet start in middle of old one\n",
gdb_stdlog);
return 0; /* Start a new packet, count retries */
case '#':
{
unsigned char pktcsum;
*bp = '\000';
pktcsum = fromhex (readchar (remote_timeout)) << 4;
pktcsum |= fromhex (readchar (remote_timeout));
if (csum == pktcsum)
{
if (remote_cisco_mode) /* variant run-length-encoding */
{
char *tmp_buf = alloca (PBUFSIZ);
remote_cisco_expand (buf, tmp_buf);
strcpy (buf, tmp_buf);
}
return 1;
}
if (remote_debug)
{
fprintf_filtered (gdb_stdlog,
"Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
pktcsum, csum);
fputs_filtered (buf, gdb_stdlog);
fputs_filtered ("\n", gdb_stdlog);
}
return 0;
}
case '*': /* Run length encoding */
if (remote_cisco_mode == 0) /* variant run-length-encoding */
{
csum += c;
c = readchar (remote_timeout);
csum += c;
c = c - ' ' + 3; /* Compute repeat count */
if (c > 0 && c < 255 && bp + c - 1 < buf + PBUFSIZ - 1)
{
memset (bp, *(bp - 1), c);
bp += c;
continue;
}
*bp = '\0';
printf_filtered ("Repeat count %d too large for buffer: ", c);
puts_filtered (buf);
puts_filtered ("\n");
return 0;
}
/* else fall thru to treat like default */
default:
if (bp < buf + PBUFSIZ - 1)
{
*bp++ = c;
csum += c;
continue;
}
*bp = '\0';
puts_filtered ("Remote packet too long: ");
puts_filtered (buf);
puts_filtered ("\n");
return 0;
}
}
}
/* Read a packet from the remote machine, with error checking, and
store it in BUF. BUF is expected to be of size PBUFSIZ. If
FOREVER, wait forever rather than timing out; this is used while
the target is executing user code. */
void
getpkt (buf, forever)
char *buf;
int forever;
{
int c;
int tries;
int timeout;
int val;
strcpy (buf, "timeout");
if (forever)
{
timeout = watchdog > 0 ? watchdog : -1;
}
else
timeout = remote_timeout;
#define MAX_TRIES 3
for (tries = 1; tries <= MAX_TRIES; tries++)
{
/* This can loop forever if the remote side sends us characters
continuously, but if it pauses, we'll get a zero from readchar
because of timeout. Then we'll count that as a retry. */
/* Note that we will only wait forever prior to the start of a packet.
After that, we expect characters to arrive at a brisk pace. They
should show up within remote_timeout intervals. */
do
{
c = readchar (timeout);
if (c == SERIAL_TIMEOUT)
{
if (forever) /* Watchdog went off. Kill the target. */
{
target_mourn_inferior ();
error ("Watchdog has expired. Target detached.\n");
}
if (remote_debug)
fputs_filtered ("Timed out.\n", gdb_stdlog);
goto retry;
}
}
while (c != '$');
/* We've found the start of a packet, now collect the data. */
val = read_frame (buf);
if (val == 1)
{
if (remote_debug)
{
fprintf_unfiltered (gdb_stdlog, "Packet received: ");
fputstr_unfiltered (buf, 0, gdb_stdlog);
fprintf_unfiltered (gdb_stdlog, "\n");
}
SERIAL_WRITE (remote_desc, "+", 1);
return;
}
/* Try the whole thing again. */
retry:
SERIAL_WRITE (remote_desc, "-", 1);
}
/* We have tried hard enough, and just can't receive the packet. Give up. */
printf_unfiltered ("Ignoring packet error, continuing...\n");
SERIAL_WRITE (remote_desc, "+", 1);
}
static void
remote_kill ()
{
/* For some mysterious reason, wait_for_inferior calls kill instead of
mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
if (kill_kludge)
{
kill_kludge = 0;
target_mourn_inferior ();
return;
}
/* Use catch_errors so the user can quit from gdb even when we aren't on
speaking terms with the remote system. */
catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
/* Don't wait for it to die. I'm not really sure it matters whether
we do or not. For the existing stubs, kill is a noop. */
target_mourn_inferior ();
}
/* Async version of remote_kill. */
static void
remote_async_kill ()
{
/* Unregister the file descriptor from the event loop. */
if (async_p)
delete_file_handler (remote_desc->fd);
/* For some mysterious reason, wait_for_inferior calls kill instead of
mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
if (kill_kludge)
{
kill_kludge = 0;
target_mourn_inferior ();
return;
}
/* Use catch_errors so the user can quit from gdb even when we aren't on
speaking terms with the remote system. */
catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
/* Don't wait for it to die. I'm not really sure it matters whether
we do or not. For the existing stubs, kill is a noop. */
target_mourn_inferior ();
}
static void
remote_mourn ()
{
remote_mourn_1 (&remote_ops);
}
static void
remote_async_mourn ()
{
remote_mourn_1 (&remote_async_ops);
}
static void
extended_remote_mourn ()
{
/* We do _not_ want to mourn the target like this; this will
remove the extended remote target from the target stack,
and the next time the user says "run" it'll fail.
FIXME: What is the right thing to do here? */
#if 0
remote_mourn_1 (&extended_remote_ops);
#endif
}
/* Worker function for remote_mourn. */
static void
remote_mourn_1 (target)
struct target_ops *target;
{
unpush_target (target);
generic_mourn_inferior ();
}
/* In the extended protocol we want to be able to do things like
"run" and have them basically work as expected. So we need
a special create_inferior function.
FIXME: One day add support for changing the exec file
we're debugging, arguments and an environment. */
static void
extended_remote_create_inferior (exec_file, args, env)
char *exec_file;
char *args;
char **env;
{
/* Rip out the breakpoints; we'll reinsert them after restarting
the remote server. */
remove_breakpoints ();
/* Now restart the remote server. */
extended_remote_restart ();
/* Now put the breakpoints back in. This way we're safe if the
restart function works via a unix fork on the remote side. */
insert_breakpoints ();
/* Clean up from the last time we were running. */
clear_proceed_status ();
/* Let the remote process run. */
proceed (-1, TARGET_SIGNAL_0, 0);
}
/* Async version of extended_remote_create_inferior. */
static void
extended_remote_async_create_inferior (exec_file, args, env)
char *exec_file;
char *args;
char **env;
{
/* Rip out the breakpoints; we'll reinsert them after restarting
the remote server. */
remove_breakpoints ();
/* If running asynchronously, register the target file descriptor
with the event loop. */
if (async_p)
add_file_handler (remote_desc->fd, fetch_inferior_event, 0);
/* Now restart the remote server. */
extended_remote_restart ();
/* Now put the breakpoints back in. This way we're safe if the
restart function works via a unix fork on the remote side. */
insert_breakpoints ();
/* Clean up from the last time we were running. */
clear_proceed_status ();
/* Let the remote process run. */
proceed (-1, TARGET_SIGNAL_0, 0);
}
/* On some machines, e.g. 68k, we may use a different breakpoint instruction
than other targets; in those use REMOTE_BREAKPOINT instead of just
BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
the standard routines that are in mem-break.c. */
/* FIXME, these ought to be done in a more dynamic fashion. For instance,
the choice of breakpoint instruction affects target program design and
vice versa, and by making it user-tweakable, the special code here
goes away and we need fewer special GDB configurations. */
#if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
#define REMOTE_BREAKPOINT
#endif
#ifdef REMOTE_BREAKPOINT
/* If the target isn't bi-endian, just pretend it is. */
#if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
#define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
#define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
#endif
static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
#endif /* REMOTE_BREAKPOINT */
/* Insert a breakpoint on targets that don't have any better breakpoint
support. We read the contents of the target location and stash it,
then overwrite it with a breakpoint instruction. ADDR is the target
location in the target machine. CONTENTS_CACHE is a pointer to
memory allocated for saving the target contents. It is guaranteed
by the caller to be long enough to save sizeof BREAKPOINT bytes (this
is accomplished via BREAKPOINT_MAX). */
static int
remote_insert_breakpoint (addr, contents_cache)
CORE_ADDR addr;
char *contents_cache;
{
#ifdef REMOTE_BREAKPOINT
int val;
#endif
int bp_size;
/* Try the "Z" packet if it is not already disabled.
If it succeeds, then set the support to PACKET_ENABLE.
If it fails, and the user has explicitly requested the Z support
then report an error, otherwise, mark it disabled and go on. */
if ((remote_protocol_Z.support == PACKET_ENABLE)
|| (remote_protocol_Z.support == PACKET_SUPPORT_UNKNOWN))
{
char buf[PBUFSIZ], *p = buf;
addr = remote_address_masked (addr);
*(p++) = 'Z';
*(p++) = '0';
*(p++) = ',';
p += hexnumstr (p, (ULONGEST) addr);
BREAKPOINT_FROM_PC (&addr, &bp_size);
sprintf (p, ",%d", bp_size);
putpkt (buf);
getpkt (buf, 0);
if (buf[0] != '\0')
{
remote_protocol_Z.support = PACKET_ENABLE;
return (buf[0] == 'E');
}
/* The stub does not support the 'Z' request. If the user has
explicitly requested the Z support, or if the stub previously
said it supported the packet, this is an error,
otherwise, mark it disabled. */
else if (remote_protocol_Z.support == PACKET_ENABLE)
{
error ("Protocol error: Z packet not recognized by stub");
}
else
{
remote_protocol_Z.support = PACKET_DISABLE;
}
}
#ifdef REMOTE_BREAKPOINT
val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
if (val == 0)
{
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
val = target_write_memory (addr, (char *) big_break_insn,
sizeof big_break_insn);
else
val = target_write_memory (addr, (char *) little_break_insn,
sizeof little_break_insn);
}
return val;
#else
return memory_insert_breakpoint (addr, contents_cache);
#endif /* REMOTE_BREAKPOINT */
}
static int
remote_remove_breakpoint (addr, contents_cache)
CORE_ADDR addr;
char *contents_cache;
{
int bp_size;
if ((remote_protocol_Z.support == PACKET_ENABLE)
|| (remote_protocol_Z.support == PACKET_SUPPORT_UNKNOWN))
{
char buf[PBUFSIZ], *p = buf;
*(p++) = 'z';
*(p++) = '0';
*(p++) = ',';
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
BREAKPOINT_FROM_PC (&addr, &bp_size);
sprintf (p, ",%d", bp_size);
putpkt (buf);
getpkt (buf, 0);
return (buf[0] == 'E');
}
#ifdef REMOTE_BREAKPOINT
return target_write_memory (addr, contents_cache, sizeof big_break_insn);
#else
return memory_remove_breakpoint (addr, contents_cache);
#endif /* REMOTE_BREAKPOINT */
}
#ifdef TARGET_HAS_HARDWARE_WATCHPOINTS
int
remote_insert_watchpoint (addr, len, type)
CORE_ADDR addr;
int len;
int type;
{
char buf[PBUFSIZ], *p;
if (remote_protocol_Z.support == PACKET_DISABLE)
error ("Can't set hardware watchpoints without the 'Z' packet\n");
sprintf (buf, "Z%x,", type + 2 );
p = strchr (buf, '\0');
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
sprintf (p, ",%x", len);
putpkt (buf);
getpkt (buf, 0);
if (buf[0] == '\0' || buf [0] == 'E')
return -1;
return 0;
}
int
remote_remove_watchpoint (addr, len, type)
CORE_ADDR addr;
int len;
int type;
{
char buf[PBUFSIZ], *p;
sprintf (buf, "z%x,", type + 2 );
p = strchr (buf, '\0');
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
sprintf (p, ",%x", len);
putpkt (buf);
getpkt (buf, 0);
if (buf[0] == '\0' || buf [0] == 'E')
return -1;
return 0;
}
int
remote_insert_hw_breakpoint (addr, len)
CORE_ADDR addr;
int len;
{
char buf[PBUFSIZ], *p = buf;
if (remote_protocol_Z.support == PACKET_DISABLE)
error ("Can't set hardware breakpoints without the 'Z' packet\n");
*(p++) = 'Z';
*(p++) = '1';
*(p++) = ',';
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
*p = '\0';
putpkt (buf);
getpkt (buf, 0);
if (buf[0] == '\0' || buf [0] == 'E')
return -1;
return 0;
}
int
remote_remove_hw_breakpoint (addr, len)
CORE_ADDR addr;
int len;
{
char buf[PBUFSIZ], *p = buf;
*(p++) = 'z';
*(p++) = '1';
*(p++) = ',';
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
*p = '\0';
putpkt(buf);
getpkt (buf, 0);
if (buf[0] == '\0' || buf [0] == 'E')
return -1;
return 0;
}
#endif
/* Some targets are only capable of doing downloads, and afterwards
they switch to the remote serial protocol. This function provides
a clean way to get from the download target to the remote target.
It's basically just a wrapper so that we don't have to expose any
of the internal workings of remote.c.
Prior to calling this routine, you should shutdown the current
target code, else you will get the "A program is being debugged
already..." message. Usually a call to pop_target() suffices. */
void
push_remote_target (name, from_tty)
char *name;
int from_tty;
{
printf_filtered ("Switching to remote protocol\n");
remote_open (name, from_tty);
}
/* Other targets want to use the entire remote serial module but with
certain remote_ops overridden. */
void
open_remote_target (name, from_tty, target, extended_p)
char *name;
int from_tty;
struct target_ops *target;
int extended_p;
{
printf_filtered ("Selecting the %sremote protocol\n",
(extended_p ? "extended-" : ""));
remote_open_1 (name, from_tty, target, extended_p);
}
/* Table used by the crc32 function to calcuate the checksum. */
static unsigned long crc32_table[256] =
{0, 0};
static unsigned long
crc32 (buf, len, crc)
unsigned char *buf;
int len;
unsigned int crc;
{
if (!crc32_table[1])
{
/* Initialize the CRC table and the decoding table. */
int i, j;
unsigned int c;
for (i = 0; i < 256; i++)
{
for (c = i << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
crc32_table[i] = c;
}
}
while (len--)
{
crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
buf++;
}
return crc;
}
/* compare-sections command
With no arguments, compares each loadable section in the exec bfd
with the same memory range on the target, and reports mismatches.
Useful for verifying the image on the target against the exec file.
Depends on the target understanding the new "qCRC:" request. */
static void
compare_sections_command (args, from_tty)
char *args;
int from_tty;
{
asection *s;
unsigned long host_crc, target_crc;
extern bfd *exec_bfd;
struct cleanup *old_chain;
char *tmp;
char *sectdata;
char *sectname;
char *buf = alloca (PBUFSIZ);
bfd_size_type size;
bfd_vma lma;
int matched = 0;
int mismatched = 0;
if (!exec_bfd)
error ("command cannot be used without an exec file");
if (!current_target.to_shortname ||
strcmp (current_target.to_shortname, "remote") != 0)
error ("command can only be used with remote target");
for (s = exec_bfd->sections; s; s = s->next)
{
if (!(s->flags & SEC_LOAD))
continue; /* skip non-loadable section */
size = bfd_get_section_size_before_reloc (s);
if (size == 0)
continue; /* skip zero-length section */
sectname = (char *) bfd_get_section_name (exec_bfd, s);
if (args && strcmp (args, sectname) != 0)
continue; /* not the section selected by user */
matched = 1; /* do this section */
lma = s->lma;
/* FIXME: assumes lma can fit into long */
sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
putpkt (buf);
/* be clever; compute the host_crc before waiting for target reply */
sectdata = xmalloc (size);
old_chain = make_cleanup (free, sectdata);
bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
getpkt (buf, 0);
if (buf[0] == 'E')
error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
sectname, lma, lma + size);
if (buf[0] != 'C')
error ("remote target does not support this operation");
for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
target_crc = target_crc * 16 + fromhex (*tmp);
printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
sectname, paddr (lma), paddr (lma + size));
if (host_crc == target_crc)
printf_filtered ("matched.\n");
else
{
printf_filtered ("MIS-MATCHED!\n");
mismatched++;
}
do_cleanups (old_chain);
}
if (mismatched > 0)
warning ("One or more sections of the remote executable does not match\n\
the loaded file\n");
if (args && !matched)
printf_filtered ("No loaded section named '%s'.\n", args);
}
static int
remote_query (query_type, buf, outbuf, bufsiz)
int query_type;
char *buf;
char *outbuf;
int *bufsiz;
{
int i;
char *buf2 = alloca (PBUFSIZ);
char *p2 = &buf2[0];
if (!bufsiz)
error ("null pointer to remote bufer size specified");
/* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let
the caller know and return what the minimum size is */
/* Note: a zero bufsiz can be used to query the minimum buffer size */
if (*bufsiz < PBUFSIZ)
{
*bufsiz = PBUFSIZ;
return -1;
}
/* except for querying the minimum buffer size, target must be open */
if (!remote_desc)
error ("remote query is only available after target open");
/* we only take uppercase letters as query types, at least for now */
if ((query_type < 'A') || (query_type > 'Z'))
error ("invalid remote query type");
if (!buf)
error ("null remote query specified");
if (!outbuf)
error ("remote query requires a buffer to receive data");
outbuf[0] = '\0';
*p2++ = 'q';
*p2++ = query_type;
/* we used one buffer char for the remote protocol q command and another
for the query type. As the remote protocol encapsulation uses 4 chars
plus one extra in case we are debugging (remote_debug),
we have PBUFZIZ - 7 left to pack the query string */
i = 0;
while (buf[i] && (i < (PBUFSIZ - 8)))
{
/* bad caller may have sent forbidden characters */
if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
error ("illegal characters in query string");
*p2++ = buf[i];
i++;
}
*p2 = buf[i];
if (buf[i])
error ("query larger than available buffer");
i = putpkt (buf2);
if (i < 0)
return i;
getpkt (outbuf, 0);
return 0;
}
static void
remote_rcmd (char *command,
struct gdb_file *outbuf)
{
int i;
char *buf = alloca (PBUFSIZ);
char *p = buf;
if (!remote_desc)
error ("remote rcmd is only available after target open");
/* Send a NULL command across as an empty command */
if (command == NULL)
command = "";
/* The query prefix */
strcpy (buf, "qRcmd,");
p = strchr (buf, '\0');
if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ)
error ("\"monitor\" command ``%s'' is too long\n", command);
/* Encode the actual command */
for (i = 0; command[i]; i++)
{
*p++ = tohex ((command[i] >> 4) & 0xf);
*p++ = tohex (command[i] & 0xf);
}
*p = '\0';
if (putpkt (buf) < 0)
error ("Communication problem with target\n");
/* get/display the response */
while (1)
{
/* XXX - see also tracepoint.c:remote_get_noisy_reply() */
buf[0] = '\0';
getpkt (buf, 0);
if (buf[0] == '\0')
error ("Target does not support this command\n");
if (buf[0] == 'O' && buf[1] != 'K')
{
remote_console_output (buf + 1); /* 'O' message from stub */
continue;
}
if (strcmp (buf, "OK") == 0)
break;
if (strlen (buf) == 3 && buf[0] == 'E'
&& isdigit (buf[1]) && isdigit (buf[2]))
{
error ("Protocol error with Rcmd");
}
for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
{
char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
fputc_unfiltered (c, outbuf);
}
break;
}
}
static void
packet_command (args, from_tty)
char *args;
int from_tty;
{
char *buf = alloca (PBUFSIZ);
if (!remote_desc)
error ("command can only be used with remote target");
if (!args)
error ("remote-packet command requires packet text as argument");
puts_filtered ("sending: ");
print_packet (args);
puts_filtered ("\n");
putpkt (args);
getpkt (buf, 0);
puts_filtered ("received: ");
print_packet (buf);
puts_filtered ("\n");
}
#if 0
/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
static void display_thread_info PARAMS ((struct gdb_ext_thread_info * info));
static void threadset_test_cmd PARAMS ((char *cmd, int tty));
static void threadalive_test PARAMS ((char *cmd, int tty));
static void threadlist_test_cmd PARAMS ((char *cmd, int tty));
int get_and_display_threadinfo PARAMS ((threadref * ref));
static void threadinfo_test_cmd PARAMS ((char *cmd, int tty));
static int thread_display_step PARAMS ((threadref * ref, void *context));
static void threadlist_update_test_cmd PARAMS ((char *cmd, int tty));
static void init_remote_threadtests PARAMS ((void));
#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
static void
threadset_test_cmd (cmd, tty)
char *cmd;
int tty;
{
int sample_thread = SAMPLE_THREAD;
printf_filtered ("Remote threadset test\n");
set_thread (sample_thread, 1);
}
static void
threadalive_test (cmd, tty)
char *cmd;
int tty;
{
int sample_thread = SAMPLE_THREAD;
if (remote_thread_alive (sample_thread))
printf_filtered ("PASS: Thread alive test\n");
else
printf_filtered ("FAIL: Thread alive test\n");
}
void output_threadid PARAMS ((char *title, threadref * ref));
void
output_threadid (title, ref)
char *title;
threadref *ref;
{
char hexid[20];
pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
hexid[16] = 0;
printf_filtered ("%s %s\n", title, (&hexid[0]));
}
static void
threadlist_test_cmd (cmd, tty)
char *cmd;
int tty;
{
int startflag = 1;
threadref nextthread;
int done, result_count;
threadref threadlist[3];
printf_filtered ("Remote Threadlist test\n");
if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
&result_count, &threadlist[0]))
printf_filtered ("FAIL: threadlist test\n");
else
{
threadref *scan = threadlist;
threadref *limit = scan + result_count;
while (scan < limit)
output_threadid (" thread ", scan++);
}
}
void
display_thread_info (info)
struct gdb_ext_thread_info *info;
{
output_threadid ("Threadid: ", &info->threadid);
printf_filtered ("Name: %s\n ", info->shortname);
printf_filtered ("State: %s\n", info->display);
printf_filtered ("other: %s\n\n", info->more_display);
}
int
get_and_display_threadinfo (ref)
threadref *ref;
{
int result;
int set;
struct gdb_ext_thread_info threadinfo;
set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
| TAG_MOREDISPLAY | TAG_DISPLAY;
if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
display_thread_info (&threadinfo);
return result;
}
static void
threadinfo_test_cmd (cmd, tty)
char *cmd;
int tty;
{
int athread = SAMPLE_THREAD;
threadref thread;
int set;
int_to_threadref (&thread, athread);
printf_filtered ("Remote Threadinfo test\n");
if (!get_and_display_threadinfo (&thread))
printf_filtered ("FAIL cannot get thread info\n");
}
static int
thread_display_step (ref, context)
threadref *ref;
void *context;
{
/* output_threadid(" threadstep ",ref); *//* simple test */
return get_and_display_threadinfo (ref);
}
static void
threadlist_update_test_cmd (cmd, tty)
char *cmd;
int tty;
{
printf_filtered ("Remote Threadlist update test\n");
remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
}
static void
init_remote_threadtests (void)
{
add_com ("tlist", class_obscure, threadlist_test_cmd,
"Fetch and print the remote list of thread identifiers, one pkt only");
add_com ("tinfo", class_obscure, threadinfo_test_cmd,
"Fetch and display info about one thread");
add_com ("tset", class_obscure, threadset_test_cmd,
"Test setting to a different thread");
add_com ("tupd", class_obscure, threadlist_update_test_cmd,
"Iterate through updating all remote thread info");
add_com ("talive", class_obscure, threadalive_test,
" Remote thread alive test ");
}
#endif /* 0 */
static void
init_remote_ops ()
{
remote_ops.to_shortname = "remote";
remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
remote_ops.to_doc =
"Use a remote computer via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).";
remote_ops.to_open = remote_open;
remote_ops.to_close = remote_close;
remote_ops.to_detach = remote_detach;
remote_ops.to_resume = remote_resume;
remote_ops.to_wait = remote_wait;
remote_ops.to_fetch_registers = remote_fetch_registers;
remote_ops.to_store_registers = remote_store_registers;
remote_ops.to_prepare_to_store = remote_prepare_to_store;
remote_ops.to_xfer_memory = remote_xfer_memory;
remote_ops.to_files_info = remote_files_info;
remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
remote_ops.to_kill = remote_kill;
remote_ops.to_load = generic_load;
remote_ops.to_mourn_inferior = remote_mourn;
remote_ops.to_thread_alive = remote_thread_alive;
remote_ops.to_find_new_threads = remote_threads_info;
remote_ops.to_stop = remote_stop;
remote_ops.to_query = remote_query;
remote_ops.to_rcmd = remote_rcmd;
remote_ops.to_stratum = process_stratum;
remote_ops.to_has_all_memory = 1;
remote_ops.to_has_memory = 1;
remote_ops.to_has_stack = 1;
remote_ops.to_has_registers = 1;
remote_ops.to_has_execution = 1;
remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
remote_ops.to_magic = OPS_MAGIC;
}
/* Set up the extended remote vector by making a copy of the standard
remote vector and adding to it. */
static void
init_extended_remote_ops ()
{
extended_remote_ops = remote_ops;
extended_remote_ops.to_shortname = "extended-remote";
extended_remote_ops.to_longname =
"Extended remote serial target in gdb-specific protocol";
extended_remote_ops.to_doc =
"Use a remote computer via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).",
extended_remote_ops.to_open = extended_remote_open;
extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
}
/*
* Command: info remote-process
*
* This implements Cisco's version of the "info proc" command.
*
* This query allows the target stub to return an arbitrary string
* (or strings) giving arbitrary information about the target process.
* This is optional; the target stub isn't required to implement it.
*
* Syntax: qfProcessInfo request first string
* qsProcessInfo request subsequent string
* reply: 'O'<hex-encoded-string>
* 'l' last reply (empty)
*/
static void
remote_info_process (args, from_tty)
char *args;
int from_tty;
{
char *buf = alloca (PBUFSIZ);
if (remote_desc == 0)
error ("Command can only be used when connected to the remote target.");
putpkt ("qfProcessInfo");
getpkt (buf, 0);
if (buf[0] == 0)
return; /* Silently: target does not support this feature. */
if (buf[0] == 'E')
error ("info proc: target error.");
while (buf[0] == 'O') /* Capitol-O packet */
{
remote_console_output (&buf[1]);
putpkt ("qsProcessInfo");
getpkt (buf, 0);
}
}
/*
* Target Cisco
*/
static void
remote_cisco_open (name, from_tty)
char *name;
int from_tty;
{
if (name == 0)
error (
"To open a remote debug connection, you need to specify what \n\
device is attached to the remote system (e.g. host:port).");
target_preopen (from_tty);
unpush_target (&remote_cisco_ops);
remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes);
remote_desc = SERIAL_OPEN (name);
if (!remote_desc)
perror_with_name (name);
/*
* If a baud rate was specified on the gdb command line it will
* be greater than the initial value of -1. If it is, use it otherwise
* default to 9600
*/
baud_rate = (baud_rate > 0) ? baud_rate : 9600;
if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
{
SERIAL_CLOSE (remote_desc);
perror_with_name (name);
}
SERIAL_RAW (remote_desc);
/* If there is something sitting in the buffer we might take it as a
response to a command, which would be bad. */
SERIAL_FLUSH_INPUT (remote_desc);
if (from_tty)
{
puts_filtered ("Remote debugging using ");
puts_filtered (name);
puts_filtered ("\n");
}
remote_cisco_mode = 1;
push_target (&remote_cisco_ops); /* Switch to using cisco target now */
init_packet_config (&remote_protocol_P);
init_packet_config (&remote_protocol_Z);
general_thread = -2;
continue_thread = -2;
/* Force remote_write_bytes to check whether target supports
binary downloading. */
init_packet_config (&remote_protocol_binary_download);
/* Without this, some commands which require an active target (such
as kill) won't work. This variable serves (at least) double duty
as both the pid of the target process (if it has such), and as a
flag indicating that a target is active. These functions should
be split out into seperate variables, especially since GDB will
someday have a notion of debugging several processes. */
inferior_pid = MAGIC_NULL_PID;
/* Start the remote connection; if error (0), discard this target. */
if (!catch_errors (remote_start_remote_dummy, (char *) 0,
"Couldn't establish connection to remote target\n",
RETURN_MASK_ALL))
{
pop_target ();
return;
}
}
static void
remote_cisco_close (quitting)
int quitting;
{
remote_cisco_mode = 0;
remote_close (quitting);
}
static void
remote_cisco_mourn
PARAMS ((void))
{
remote_mourn_1 (&remote_cisco_ops);
}
enum
{
READ_MORE,
FATAL_ERROR,
ENTER_DEBUG,
DISCONNECT_TELNET
}
minitelnet_return;
/* shared between readsocket() and readtty() */
static char *tty_input;
static int escape_count;
static int echo_check;
extern int quit_flag;
static int
readsocket ()
{
int data;
/* Loop until the socket doesn't have any more data */
while ((data = readchar (0)) >= 0)
{
/* Check for the escape sequence */
if (data == '|')
{
/* If this is the fourth escape, get out */
if (++escape_count == 4)
{
return ENTER_DEBUG;
}
else
{ /* This is a '|', but not the fourth in a row.
Continue without echoing it. If it isn't actually
one of four in a row, it'll be echoed later. */
continue;
}
}
else
/* Not a '|' */
{
/* Ensure any pending '|'s are flushed. */
for (; escape_count > 0; escape_count--)
putchar ('|');
}
if (data == '\r') /* If this is a return character, */
continue; /* - just supress it. */
if (echo_check != -1) /* Check for echo of user input. */
{
if (tty_input[echo_check] == data)
{
echo_check++; /* Character matched user input: */
continue; /* Continue without echoing it. */
}
else if ((data == '\n') && (tty_input[echo_check] == '\r'))
{ /* End of the line (and of echo checking). */
echo_check = -1; /* No more echo supression */
continue; /* Continue without echoing. */
}
else
{ /* Failed check for echo of user input.
We now have some suppressed output to flush! */
int j;
for (j = 0; j < echo_check; j++)
putchar (tty_input[j]);
echo_check = -1;
}
}
putchar (data); /* Default case: output the char. */
}
if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
return READ_MORE; /* Try to read some more */
else
return FATAL_ERROR; /* Trouble, bail out */
}
static int
readtty ()
{
int tty_bytecount;
/* First, read a buffer full from the terminal */
tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
if (tty_bytecount == -1)
{
perror ("readtty: read failed");
return FATAL_ERROR;
}
/* Remove a quoted newline. */
if (tty_input[tty_bytecount - 1] == '\n' &&
tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
{
tty_input[--tty_bytecount] = 0; /* remove newline */
tty_input[--tty_bytecount] = 0; /* remove backslash */
}
/* Turn trailing newlines into returns */
if (tty_input[tty_bytecount - 1] == '\n')
tty_input[tty_bytecount - 1] = '\r';
/* If the line consists of a ~, enter debugging mode. */
if ((tty_input[0] == '~') && (tty_bytecount == 2))
return ENTER_DEBUG;
/* Make this a zero terminated string and write it out */
tty_input[tty_bytecount] = 0;
if (SERIAL_WRITE (remote_desc, tty_input, tty_bytecount))
{
perror_with_name ("readtty: write failed");
return FATAL_ERROR;
}
return READ_MORE;
}
static int
minitelnet ()
{
fd_set input; /* file descriptors for select */
int tablesize; /* max number of FDs for select */
int status;
int quit_count = 0;
extern int escape_count; /* global shared by readsocket */
extern int echo_check; /* ditto */
escape_count = 0;
echo_check = -1;
tablesize = 8 * sizeof (input);
for (;;)
{
/* Check for anything from our socket - doesn't block. Note that
this must be done *before* the select as there may be
buffered I/O waiting to be processed. */
if ((status = readsocket ()) == FATAL_ERROR)
{
error ("Debugging terminated by communications error");
}
else if (status != READ_MORE)
{
return (status);
}
fflush (stdout); /* Flush output before blocking */
/* Now block on more socket input or TTY input */
FD_ZERO (&input);
FD_SET (fileno (stdin), &input);
FD_SET (remote_desc->fd, &input);
status = select (tablesize, &input, 0, 0, 0);
if ((status == -1) && (errno != EINTR))
{
error ("Communications error on select %d", errno);
}
/* Handle Control-C typed */
if (quit_flag)
{
if ((++quit_count) == 2)
{
if (query ("Interrupt GDB? "))
{
printf_filtered ("Interrupted by user.\n");
return_to_top_level (RETURN_QUIT);
}
quit_count = 0;
}
quit_flag = 0;
if (remote_break)
SERIAL_SEND_BREAK (remote_desc);
else
SERIAL_WRITE (remote_desc, "\003", 1);
continue;
}
/* Handle console input */
if (FD_ISSET (fileno (stdin), &input))
{
quit_count = 0;
echo_check = 0;
status = readtty ();
if (status == READ_MORE)
continue;
return status; /* telnet session ended */
}
}
}
static int
remote_cisco_wait (pid, status)
int pid;
struct target_waitstatus *status;
{
if (minitelnet () != ENTER_DEBUG)
{
error ("Debugging session terminated by protocol error");
}
putpkt ("?");
return remote_wait (pid, status);
}
static void
init_remote_cisco_ops ()
{
remote_cisco_ops.to_shortname = "cisco";
remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
remote_cisco_ops.to_doc =
"Use a remote machine via TCP, using a cisco-specific protocol.\n\
Specify the serial device it is connected to (e.g. host:2020).";
remote_cisco_ops.to_open = remote_cisco_open;
remote_cisco_ops.to_close = remote_cisco_close;
remote_cisco_ops.to_detach = remote_detach;
remote_cisco_ops.to_resume = remote_resume;
remote_cisco_ops.to_wait = remote_cisco_wait;
remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
remote_cisco_ops.to_store_registers = remote_store_registers;
remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
remote_cisco_ops.to_files_info = remote_files_info;
remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
remote_cisco_ops.to_kill = remote_kill;
remote_cisco_ops.to_load = generic_load;
remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
remote_cisco_ops.to_thread_alive = remote_thread_alive;
remote_cisco_ops.to_find_new_threads = remote_threads_info;
remote_cisco_ops.to_stratum = process_stratum;
remote_cisco_ops.to_has_all_memory = 1;
remote_cisco_ops.to_has_memory = 1;
remote_cisco_ops.to_has_stack = 1;
remote_cisco_ops.to_has_registers = 1;
remote_cisco_ops.to_has_execution = 1;
remote_cisco_ops.to_magic = OPS_MAGIC;
}
/* Target async and target extended-async.
This are temporary targets, until it is all tested. Eventually
async support will be incorporated int the usual 'remote'
target. */
static void
init_remote_async_ops ()
{
remote_async_ops.to_shortname = "async";
remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
remote_async_ops.to_doc =
"Use a remote computer via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).";
remote_async_ops.to_open = remote_async_open;
remote_async_ops.to_close = remote_close;
remote_async_ops.to_detach = remote_async_detach;
remote_async_ops.to_resume = remote_async_resume;
remote_async_ops.to_wait = remote_async_wait;
remote_async_ops.to_fetch_registers = remote_fetch_registers;
remote_async_ops.to_store_registers = remote_store_registers;
remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
remote_async_ops.to_xfer_memory = remote_xfer_memory;
remote_async_ops.to_files_info = remote_files_info;
remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
remote_async_ops.to_kill = remote_async_kill;
remote_async_ops.to_load = generic_load;
remote_async_ops.to_mourn_inferior = remote_async_mourn;
remote_async_ops.to_thread_alive = remote_thread_alive;
remote_async_ops.to_find_new_threads = remote_threads_info;
remote_async_ops.to_stop = remote_stop;
remote_async_ops.to_query = remote_query;
remote_async_ops.to_rcmd = remote_rcmd;
remote_async_ops.to_stratum = process_stratum;
remote_async_ops.to_has_all_memory = 1;
remote_async_ops.to_has_memory = 1;
remote_async_ops.to_has_stack = 1;
remote_async_ops.to_has_registers = 1;
remote_async_ops.to_has_execution = 1;
remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
remote_async_ops.to_has_async_exec = 1;
remote_async_ops.to_magic = OPS_MAGIC;
}
/* Set up the async extended remote vector by making a copy of the standard
remote vector and adding to it. */
static void
init_extended_async_remote_ops ()
{
extended_async_remote_ops = remote_async_ops;
extended_async_remote_ops.to_shortname = "extended-async";
extended_async_remote_ops.to_longname =
"Extended remote serial target in async gdb-specific protocol";
extended_async_remote_ops.to_doc =
"Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).",
extended_async_remote_ops.to_open = extended_remote_async_open;
extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
}
static void
set_remote_cmd (args, from_tty)
char *args;
int from_tty;
{
}
static void
build_remote_gdbarch_data ()
{
tty_input = xmalloc (PBUFSIZ);
}
void
_initialize_remote ()
{
static struct cmd_list_element *remote_set_cmdlist;
static struct cmd_list_element *remote_show_cmdlist;
/* architecture specific data */
build_remote_gdbarch_data ();
register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL);
register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
/* runtime constants - we retain the value of remote_write_size
across architecture swaps. */
remote_write_size = PBUFSIZ;
init_remote_ops ();
add_target (&remote_ops);
init_extended_remote_ops ();
add_target (&extended_remote_ops);
init_remote_async_ops ();
add_target (&remote_async_ops);
init_extended_async_remote_ops ();
add_target (&extended_async_remote_ops);
init_remote_cisco_ops ();
add_target (&remote_cisco_ops);
#if 0
init_remote_threadtests ();
#endif
add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
Remote protocol specific variables\n\
Configure various remote-protocol specific variables such as\n\
the packets being used",
&remote_set_cmdlist, "remote ",
0/*allow-unknown*/, &setlist);
add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
Remote protocol specific variables\n\
Configure various remote-protocol specific variables such as\n\
the packets being used",
&remote_show_cmdlist, "remote ",
0/*allow-unknown*/, &showlist);
add_cmd ("compare-sections", class_obscure, compare_sections_command,
"Compare section data on target to the exec file.\n\
Argument is a single section name (default: all loaded sections).",
&cmdlist);
add_cmd ("packet", class_maintenance, packet_command,
"Send an arbitrary packet to a remote target.\n\
maintenance packet TEXT\n\
If GDB is talking to an inferior via the GDB serial protocol, then\n\
this command sends the string TEXT to the inferior, and displays the\n\
response packet. GDB supplies the initial `$' character, and the\n\
terminating `#' character and checksum.",
&maintenancelist);
add_show_from_set
(add_set_cmd ("remotetimeout", no_class,
var_integer, (char *) &remote_timeout,
"Set timeout value for remote read.\n",
&setlist),
&showlist);
add_show_from_set
(add_set_cmd ("remotebreak", no_class,
var_boolean, (char *) &remote_break,
"Set whether to send break if interrupted.\n",
&setlist),
&showlist);
add_show_from_set
(add_set_cmd ("remotewritesize", no_class,
var_integer, (char *) &remote_write_size,
"Set the maximum number of bytes per memory write packet.\n",
&setlist),
&showlist);
remote_address_size = TARGET_PTR_BIT;
add_show_from_set
(add_set_cmd ("remoteaddresssize", class_obscure,
var_integer, (char *) &remote_address_size,
"Set the maximum size of the address (in bits) \
in a memory packet.\n",
&setlist),
&showlist);
add_packet_config_cmd (&remote_protocol_binary_download,
"X", "binary-download",
set_remote_protocol_binary_download_cmd,
show_remote_protocol_binary_download_cmd,
&remote_set_cmdlist, &remote_show_cmdlist);
#if 0
/* XXXX - should ``set remotebinarydownload'' be retained for
compatibility. */
add_show_from_set
(add_set_cmd ("remotebinarydownload", no_class,
var_boolean, (char *) &remote_binary_download,
"Set binary downloads.\n", &setlist),
&showlist);
#endif
add_info ("remote-process", remote_info_process,
"Query the remote system for process info.");
add_packet_config_cmd (&remote_protocol_P, "P", "set-register",
set_remote_protocol_P_packet_cmd,
show_remote_protocol_P_packet_cmd,
&remote_set_cmdlist, &remote_show_cmdlist);
add_packet_config_cmd (&remote_protocol_Z, "Z", "breakpoint",
set_remote_protocol_Z_packet_cmd,
show_remote_protocol_Z_packet_cmd,
&remote_set_cmdlist, &remote_show_cmdlist);
}