2082 lines
59 KiB
C
2082 lines
59 KiB
C
/* Multi-threaded debugging support for the thread_db interface,
|
|
used on operating systems such as Solaris and Linux.
|
|
Copyright 1999 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* This module implements a thread_stratum target that sits on top of
|
|
a normal process_stratum target (such as procfs or ptrace). The
|
|
process_stratum target must install this thread_stratum target when
|
|
it detects the presence of the thread_db shared library.
|
|
|
|
This module will then use the thread_db API to add thread-awareness
|
|
to the functionality provided by the process_stratum target (or in
|
|
some cases, to add user-level thread awareness on top of the
|
|
kernel-level thread awareness that is already provided by the
|
|
process_stratum target).
|
|
|
|
Solaris threads (for instance) are a multi-level thread implementation;
|
|
the kernel provides a Light Weight Process (LWP) which the procfs
|
|
process_stratum module is aware of. This module must then mediate
|
|
the relationship between kernel LWP threads and user (eg. posix)
|
|
threads.
|
|
|
|
Linux threads are likely to be different -- but the thread_db
|
|
library API should make the difference largely transparent to GDB.
|
|
|
|
*/
|
|
|
|
/* The thread_db API provides a number of functions that give the caller
|
|
access to the inner workings of the child process's thread library.
|
|
We will be using the following (others may be added):
|
|
|
|
td_thr_validate Confirm valid "live" thread
|
|
td_thr_get_info Get info about a thread
|
|
td_thr_getgregs Get thread's general registers
|
|
td_thr_getfpregs Get thread's floating point registers
|
|
td_thr_setgregs Set thread's general registers
|
|
td_thr_setfpregs Set thread's floating point registers
|
|
td_ta_map_id2thr Get thread handle from thread id
|
|
td_ta_map_lwp2thr Get thread handle from LWP id
|
|
td_ta_thr_iter Iterate over all threads (with callback)
|
|
|
|
In return, the debugger has to provide certain services to the
|
|
thread_db library. Some of these aren't actually required to do
|
|
anything in practice. For instance, the thread_db expects to be
|
|
able to stop the child process and start it again: but in our
|
|
context, the child process will always be stopped already when we
|
|
invoke the thread_db library, so the functions that we provide for
|
|
the library to stop and start the child process are no-ops.
|
|
|
|
Here is the list of functions which we export to the thread_db
|
|
library, divided into no-op functions vs. functions that actually
|
|
have to do something:
|
|
|
|
No-op functions:
|
|
|
|
ps_pstop Stop the child process
|
|
ps_pcontinue Continue the child process
|
|
ps_lstop Stop a specific LWP (kernel thread)
|
|
ps_lcontinue Continue an LWP
|
|
ps_lgetxregsize Get size of LWP's xregs (sparc)
|
|
ps_lgetxregs Get LWP's xregs (sparc)
|
|
ps_lsetxregs Set LWP's xregs (sparc)
|
|
|
|
Functions that have to do useful work:
|
|
|
|
ps_pglobal_lookup Get the address of a global symbol
|
|
ps_pdread Read memory, data segment
|
|
ps_ptread Read memory, text segment
|
|
ps_pdwrite Write memory, data segment
|
|
ps_ptwrite Write memory, text segment
|
|
ps_lgetregs Get LWP's general registers
|
|
ps_lgetfpregs Get LWP's floating point registers
|
|
ps_lsetregs Set LWP's general registers
|
|
ps_lsetfpregs Set LWP's floating point registers
|
|
ps_lgetLDT Get LWP's Local Descriptor Table (x86)
|
|
|
|
Thus, if we ask the thread_db library to give us the general registers
|
|
for user thread X, thread_db may figure out that user thread X is
|
|
actually mapped onto kernel thread Y. Thread_db does not know how
|
|
to obtain the registers for kernel thread Y, but GDB does, so thread_db
|
|
turns the request right back to us via the ps_lgetregs callback. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbthread.h"
|
|
#include "target.h"
|
|
#include "inferior.h"
|
|
#include "gdbcmd.h"
|
|
|
|
#include "gdb_wait.h"
|
|
|
|
#include <time.h>
|
|
|
|
#if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
|
|
#include <sys/procfs.h>
|
|
#endif
|
|
|
|
#include "gdb_proc_service.h"
|
|
|
|
#if defined HAVE_STDINT_H /* Pre-5.2 systems don't have this header */
|
|
#if defined (HAVE_THREAD_DB_H)
|
|
#include <thread_db.h> /* defines outgoing API (td_thr_* calls) */
|
|
#else
|
|
#include "gdb_thread_db.h"
|
|
#endif
|
|
|
|
#include <dlfcn.h> /* dynamic library interface */
|
|
|
|
/* Prototypes for supply_gregset etc. */
|
|
#include "gregset.h"
|
|
|
|
#ifndef TIDGET
|
|
#define TIDGET(PID) (((PID) & 0x7fffffff) >> 16)
|
|
#define PIDGET(PID) (((PID) & 0xffff))
|
|
#define MERGEPID(PID, TID) (((PID) & 0xffff) | ((TID) << 16))
|
|
#endif
|
|
|
|
/* Macros for superimposing PID and TID into inferior_pid. */
|
|
#define THREAD_FLAG 0x80000000
|
|
#define is_thread(ARG) (((ARG) & THREAD_FLAG) != 0)
|
|
#define is_lwp(ARG) (((ARG) & THREAD_FLAG) == 0)
|
|
#define GET_LWP(PID) TIDGET (PID)
|
|
#define GET_THREAD(PID) TIDGET (PID)
|
|
#define BUILD_LWP(TID, PID) MERGEPID (PID, TID)
|
|
#define BUILD_THREAD(TID, PID) (MERGEPID (PID, TID) | THREAD_FLAG)
|
|
|
|
/*
|
|
* target_beneath is a pointer to the target_ops underlying this one.
|
|
*/
|
|
|
|
static struct target_ops *target_beneath;
|
|
|
|
|
|
/*
|
|
* target vector defined in this module:
|
|
*/
|
|
|
|
static struct target_ops thread_db_ops;
|
|
|
|
/*
|
|
* Typedefs required to resolve differences between the thread_db
|
|
* and proc_service API defined on different versions of Solaris:
|
|
*/
|
|
|
|
#if defined(PROC_SERVICE_IS_OLD)
|
|
typedef const struct ps_prochandle *gdb_ps_prochandle_t;
|
|
typedef char *gdb_ps_read_buf_t;
|
|
typedef char *gdb_ps_write_buf_t;
|
|
typedef int gdb_ps_size_t;
|
|
#else
|
|
typedef struct ps_prochandle *gdb_ps_prochandle_t;
|
|
typedef void *gdb_ps_read_buf_t;
|
|
typedef const void *gdb_ps_write_buf_t;
|
|
typedef size_t gdb_ps_size_t;
|
|
#endif
|
|
|
|
/*
|
|
* proc_service callback functions, called by thread_db.
|
|
*/
|
|
|
|
ps_err_e
|
|
ps_pstop (gdb_ps_prochandle_t ph) /* Process stop */
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_pcontinue (gdb_ps_prochandle_t ph) /* Process continue */
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lstop (gdb_ps_prochandle_t ph, /* LWP stop */
|
|
lwpid_t lwpid)
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lcontinue (gdb_ps_prochandle_t ph, /* LWP continue */
|
|
lwpid_t lwpid)
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lgetxregsize (gdb_ps_prochandle_t ph, /* Get XREG size */
|
|
lwpid_t lwpid,
|
|
int *xregsize)
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lgetxregs (gdb_ps_prochandle_t ph, /* Get XREGS */
|
|
lwpid_t lwpid,
|
|
caddr_t xregset)
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lsetxregs (gdb_ps_prochandle_t ph, /* Set XREGS */
|
|
lwpid_t lwpid,
|
|
caddr_t xregset)
|
|
{
|
|
return PS_OK;
|
|
}
|
|
|
|
void
|
|
ps_plog (const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start (args, fmt);
|
|
vfprintf_filtered (gdb_stderr, fmt, args);
|
|
}
|
|
|
|
/* Look up a symbol in GDB's global symbol table.
|
|
Return the symbol's address.
|
|
FIXME: it would be more correct to look up the symbol in the context
|
|
of the LD_OBJECT_NAME provided. However we're probably fairly safe
|
|
as long as there aren't name conflicts with other libraries. */
|
|
|
|
ps_err_e
|
|
ps_pglobal_lookup (gdb_ps_prochandle_t ph,
|
|
const char *ld_object_name, /* the library name */
|
|
const char *ld_symbol_name, /* the symbol name */
|
|
paddr_t *ld_symbol_addr) /* return the symbol addr */
|
|
{
|
|
struct minimal_symbol *ms;
|
|
|
|
ms = lookup_minimal_symbol (ld_symbol_name, NULL, NULL);
|
|
|
|
if (!ms)
|
|
return PS_NOSYM;
|
|
|
|
*ld_symbol_addr = SYMBOL_VALUE_ADDRESS (ms);
|
|
|
|
return PS_OK;
|
|
}
|
|
|
|
/* Worker function for all memory reads and writes: */
|
|
static ps_err_e rw_common (const struct ps_prochandle *ph,
|
|
paddr_t addr,
|
|
char *buf,
|
|
int size,
|
|
int write_p);
|
|
|
|
/* target_xfer_memory direction consts */
|
|
enum {PS_READ = 0, PS_WRITE = 1};
|
|
|
|
ps_err_e
|
|
ps_pdread (gdb_ps_prochandle_t ph, /* read from data segment */
|
|
paddr_t addr,
|
|
gdb_ps_read_buf_t buf,
|
|
gdb_ps_size_t size)
|
|
{
|
|
return rw_common (ph, addr, buf, size, PS_READ);
|
|
}
|
|
|
|
ps_err_e
|
|
ps_pdwrite (gdb_ps_prochandle_t ph, /* write to data segment */
|
|
paddr_t addr,
|
|
gdb_ps_write_buf_t buf,
|
|
gdb_ps_size_t size)
|
|
{
|
|
return rw_common (ph, addr, (char *) buf, size, PS_WRITE);
|
|
}
|
|
|
|
ps_err_e
|
|
ps_ptread (gdb_ps_prochandle_t ph, /* read from text segment */
|
|
paddr_t addr,
|
|
gdb_ps_read_buf_t buf,
|
|
gdb_ps_size_t size)
|
|
{
|
|
return rw_common (ph, addr, buf, size, PS_READ);
|
|
}
|
|
|
|
ps_err_e
|
|
ps_ptwrite (gdb_ps_prochandle_t ph, /* write to text segment */
|
|
paddr_t addr,
|
|
gdb_ps_write_buf_t buf,
|
|
gdb_ps_size_t size)
|
|
{
|
|
return rw_common (ph, addr, (char *) buf, size, PS_WRITE);
|
|
}
|
|
|
|
static struct cleanup *save_inferior_pid (void);
|
|
static void restore_inferior_pid (void *saved_pid);
|
|
static char *thr_err_string (td_err_e);
|
|
static char *thr_state_string (td_thr_state_e);
|
|
|
|
struct ps_prochandle main_prochandle;
|
|
td_thragent_t * main_threadagent;
|
|
|
|
/*
|
|
* Common proc_service routine for reading and writing memory.
|
|
*/
|
|
|
|
/* FIXME: once we've munged the inferior_pid, why can't we
|
|
simply call target_read/write_memory and return? */
|
|
|
|
|
|
static ps_err_e
|
|
rw_common (const struct ps_prochandle *ph,
|
|
paddr_t addr,
|
|
char *buf,
|
|
int size,
|
|
int write_p)
|
|
{
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
int to_do = size;
|
|
int done = 0;
|
|
|
|
inferior_pid = main_prochandle.pid;
|
|
|
|
while (to_do > 0)
|
|
{
|
|
done = current_target.to_xfer_memory (addr, buf, size, write_p,
|
|
¤t_target);
|
|
if (done <= 0)
|
|
{
|
|
if (write_p == PS_READ)
|
|
print_sys_errmsg ("rw_common (): read", errno);
|
|
else
|
|
print_sys_errmsg ("rw_common (): write", errno);
|
|
|
|
return PS_ERR;
|
|
}
|
|
to_do -= done;
|
|
buf += done;
|
|
}
|
|
do_cleanups (old_chain);
|
|
return PS_OK;
|
|
}
|
|
|
|
/* Cleanup functions used by the register callbacks
|
|
(which have to manipulate the global inferior_pid). */
|
|
|
|
ps_err_e
|
|
ps_lgetregs (gdb_ps_prochandle_t ph, /* Get LWP general regs */
|
|
lwpid_t lwpid,
|
|
prgregset_t gregset)
|
|
{
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
|
|
current_target.to_fetch_registers (-1);
|
|
|
|
fill_gregset (gregset, -1);
|
|
do_cleanups (old_chain);
|
|
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lsetregs (gdb_ps_prochandle_t ph, /* Set LWP general regs */
|
|
lwpid_t lwpid,
|
|
const prgregset_t gregset)
|
|
{
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
|
|
supply_gregset (gregset);
|
|
current_target.to_store_registers (-1);
|
|
do_cleanups (old_chain);
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lgetfpregs (gdb_ps_prochandle_t ph, /* Get LWP float regs */
|
|
lwpid_t lwpid,
|
|
gdb_prfpregset_t *fpregset)
|
|
{
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
|
|
current_target.to_fetch_registers (-1);
|
|
fill_fpregset (fpregset, -1);
|
|
do_cleanups (old_chain);
|
|
return PS_OK;
|
|
}
|
|
|
|
ps_err_e
|
|
ps_lsetfpregs (gdb_ps_prochandle_t ph, /* Set LWP float regs */
|
|
lwpid_t lwpid,
|
|
const gdb_prfpregset_t *fpregset)
|
|
{
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
inferior_pid = BUILD_LWP (lwpid, main_prochandle.pid);
|
|
supply_fpregset (fpregset);
|
|
current_target.to_store_registers (-1);
|
|
do_cleanups (old_chain);
|
|
return PS_OK;
|
|
}
|
|
|
|
/*
|
|
* ps_getpid
|
|
*
|
|
* return the main pid for the child process
|
|
* (special for Linux -- not used on Solaris)
|
|
*/
|
|
|
|
pid_t
|
|
ps_getpid (gdb_ps_prochandle_t ph)
|
|
{
|
|
return ph->pid;
|
|
}
|
|
|
|
#ifdef TM_I386SOL2_H
|
|
|
|
/* Reads the local descriptor table of a LWP. */
|
|
|
|
ps_err_e
|
|
ps_lgetLDT (gdb_ps_prochandle_t ph, lwpid_t lwpid,
|
|
struct ssd *pldt)
|
|
{
|
|
/* NOTE: only used on Solaris, therefore OK to refer to procfs.c */
|
|
extern struct ssd *procfs_find_LDT_entry (int);
|
|
struct ssd *ret;
|
|
|
|
ret = procfs_find_LDT_entry (BUILD_LWP (lwpid,
|
|
PIDGET (main_prochandle.pid)));
|
|
if (ret)
|
|
{
|
|
memcpy (pldt, ret, sizeof (struct ssd));
|
|
return PS_OK;
|
|
}
|
|
else /* LDT not found. */
|
|
return PS_ERR;
|
|
}
|
|
#endif /* TM_I386SOL2_H */
|
|
|
|
/*
|
|
* Pointers to thread_db functions:
|
|
*
|
|
* These are a dynamic library mechanism.
|
|
* The dlfcn.h interface will be used to initialize these
|
|
* so that they point to the appropriate functions in the
|
|
* thread_db dynamic library. This is done dynamically
|
|
* so that GDB can still run on systems that lack thread_db.
|
|
*/
|
|
|
|
static td_err_e (*p_td_init) (void);
|
|
|
|
static td_err_e (*p_td_ta_new) (const struct ps_prochandle *ph_p,
|
|
td_thragent_t **ta_pp);
|
|
|
|
static td_err_e (*p_td_ta_delete) (td_thragent_t *ta_p);
|
|
|
|
static td_err_e (*p_td_ta_get_nthreads) (const td_thragent_t *ta_p,
|
|
int *nthread_p);
|
|
|
|
|
|
static td_err_e (*p_td_ta_thr_iter) (const td_thragent_t *ta_p,
|
|
td_thr_iter_f *cb,
|
|
void *cbdata_p,
|
|
td_thr_state_e state,
|
|
int ti_pri,
|
|
sigset_t *ti_sigmask_p,
|
|
unsigned ti_user_flags);
|
|
|
|
static td_err_e (*p_td_ta_event_addr) (const td_thragent_t *ta_p,
|
|
u_long event,
|
|
td_notify_t *notify_p);
|
|
|
|
static td_err_e (*p_td_ta_event_getmsg) (const td_thragent_t *ta_p,
|
|
td_event_msg_t *msg);
|
|
|
|
static td_err_e (*p_td_ta_set_event) (const td_thragent_t *ta_p,
|
|
td_thr_events_t *events);
|
|
|
|
static td_err_e (*p_td_thr_validate) (const td_thrhandle_t *th_p);
|
|
|
|
static td_err_e (*p_td_thr_event_enable) (const td_thrhandle_t *th_p,
|
|
int on_off);
|
|
|
|
static td_err_e (*p_td_thr_get_info) (const td_thrhandle_t *th_p,
|
|
td_thrinfo_t *ti_p);
|
|
|
|
static td_err_e (*p_td_thr_getgregs) (const td_thrhandle_t *th_p,
|
|
prgregset_t regset);
|
|
|
|
static td_err_e (*p_td_thr_setgregs) (const td_thrhandle_t *th_p,
|
|
const prgregset_t regset);
|
|
|
|
static td_err_e (*p_td_thr_getfpregs) (const td_thrhandle_t *th_p,
|
|
gdb_prfpregset_t *fpregset);
|
|
|
|
static td_err_e (*p_td_thr_setfpregs) (const td_thrhandle_t *th_p,
|
|
const gdb_prfpregset_t *fpregset);
|
|
|
|
static td_err_e (*p_td_ta_map_id2thr) (const td_thragent_t *ta_p,
|
|
thread_t tid,
|
|
td_thrhandle_t *th_p);
|
|
|
|
static td_err_e (*p_td_ta_map_lwp2thr) (const td_thragent_t *ta_p,
|
|
lwpid_t lwpid,
|
|
td_thrhandle_t *th_p);
|
|
|
|
/*
|
|
* API and target vector initialization function: thread_db_initialize.
|
|
*
|
|
* NOTE: this function is deliberately NOT named with the GDB convention
|
|
* of module initializer function names that begin with "_initialize".
|
|
* This module is NOT intended to be auto-initialized at GDB startup.
|
|
* Rather, it will only be initialized when a multi-threaded child
|
|
* process is detected.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Initializer for thread_db library interface.
|
|
* This function does the dynamic library stuff (dlopen, dlsym),
|
|
* and then calls the thread_db library's one-time initializer
|
|
* function (td_init). If everything succeeds, this function
|
|
* returns true; otherwise it returns false, and this module
|
|
* cannot be used.
|
|
*/
|
|
|
|
static int
|
|
init_thread_db_library (void)
|
|
{
|
|
void *dlhandle;
|
|
td_err_e ret;
|
|
|
|
/* Open a handle to the "thread_db" dynamic library. */
|
|
if ((dlhandle = dlopen ("libthread_db.so.1", RTLD_NOW)) == NULL)
|
|
return 0; /* fail */
|
|
|
|
/* Initialize pointers to the dynamic library functions we will use.
|
|
* Note that we are not calling the functions here -- we are only
|
|
* establishing pointers to them.
|
|
*/
|
|
|
|
/* td_init: initialize thread_db library. */
|
|
if ((p_td_init = dlsym (dlhandle, "td_init")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_ta_new: register a target process with thread_db. */
|
|
if ((p_td_ta_new = dlsym (dlhandle, "td_ta_new")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_ta_delete: un-register a target process with thread_db. */
|
|
if ((p_td_ta_delete = dlsym (dlhandle, "td_ta_delete")) == NULL)
|
|
return 0; /* fail */
|
|
|
|
/* td_ta_map_id2thr: get thread handle from thread id. */
|
|
if ((p_td_ta_map_id2thr = dlsym (dlhandle, "td_ta_map_id2thr")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_ta_map_lwp2thr: get thread handle from lwp id. */
|
|
if ((p_td_ta_map_lwp2thr = dlsym (dlhandle, "td_ta_map_lwp2thr")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_ta_get_nthreads: get number of threads in target process. */
|
|
if ((p_td_ta_get_nthreads = dlsym (dlhandle, "td_ta_get_nthreads")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_ta_thr_iter: iterate over all thread handles. */
|
|
if ((p_td_ta_thr_iter = dlsym (dlhandle, "td_ta_thr_iter")) == NULL)
|
|
return 0; /* fail */
|
|
|
|
/* td_thr_validate: make sure a thread handle is real and alive. */
|
|
if ((p_td_thr_validate = dlsym (dlhandle, "td_thr_validate")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_thr_get_info: get a bunch of info about a thread. */
|
|
if ((p_td_thr_get_info = dlsym (dlhandle, "td_thr_get_info")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_thr_getgregs: get general registers for thread. */
|
|
if ((p_td_thr_getgregs = dlsym (dlhandle, "td_thr_getgregs")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_thr_setgregs: set general registers for thread. */
|
|
if ((p_td_thr_setgregs = dlsym (dlhandle, "td_thr_setgregs")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_thr_getfpregs: get floating point registers for thread. */
|
|
if ((p_td_thr_getfpregs = dlsym (dlhandle, "td_thr_getfpregs")) == NULL)
|
|
return 0; /* fail */
|
|
/* td_thr_setfpregs: set floating point registers for thread. */
|
|
if ((p_td_thr_setfpregs = dlsym (dlhandle, "td_thr_setfpregs")) == NULL)
|
|
return 0; /* fail */
|
|
|
|
ret = p_td_init ();
|
|
if (ret != TD_OK)
|
|
{
|
|
warning ("init_thread_db: td_init: %s", thr_err_string (ret));
|
|
return 0;
|
|
}
|
|
|
|
/* Optional functions:
|
|
We can still debug even if the following functions are not found. */
|
|
|
|
/* td_ta_event_addr: get the breakpoint address for specified event. */
|
|
p_td_ta_event_addr = dlsym (dlhandle, "td_ta_event_addr");
|
|
|
|
/* td_ta_event_getmsg: get the next event message for the process. */
|
|
p_td_ta_event_getmsg = dlsym (dlhandle, "td_ta_event_getmsg");
|
|
|
|
/* td_ta_set_event: request notification of an event. */
|
|
p_td_ta_set_event = dlsym (dlhandle, "td_ta_set_event");
|
|
|
|
/* td_thr_event_enable: enable event reporting in a thread. */
|
|
p_td_thr_event_enable = dlsym (dlhandle, "td_thr_event_enable");
|
|
|
|
return 1; /* success */
|
|
}
|
|
|
|
/*
|
|
* Local utility functions:
|
|
*/
|
|
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
save_inferior_pid - Save inferior_pid on the cleanup list
|
|
restore_inferior_pid - Restore inferior_pid from the cleanup list
|
|
|
|
SYNOPSIS
|
|
|
|
struct cleanup *save_inferior_pid (void);
|
|
void restore_inferior_pid (void *saved_pid);
|
|
|
|
DESCRIPTION
|
|
|
|
These two functions act in unison to restore inferior_pid in
|
|
case of an error.
|
|
|
|
NOTES
|
|
|
|
inferior_pid is a global variable that needs to be changed by many
|
|
of these routines before calling functions in procfs.c. In order
|
|
to guarantee that inferior_pid gets restored (in case of errors),
|
|
you need to call save_inferior_pid before changing it. At the end
|
|
of the function, you should invoke do_cleanups to restore it.
|
|
|
|
*/
|
|
|
|
static struct cleanup *
|
|
save_inferior_pid (void)
|
|
{
|
|
int *saved_pid_ptr;
|
|
|
|
saved_pid_ptr = xmalloc (sizeof (int));
|
|
*saved_pid_ptr = inferior_pid;
|
|
return make_cleanup (restore_inferior_pid, saved_pid_ptr);
|
|
}
|
|
|
|
static void
|
|
restore_inferior_pid (void *arg)
|
|
{
|
|
int *saved_pid_ptr = arg;
|
|
inferior_pid = *saved_pid_ptr;
|
|
xfree (arg);
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
thr_err_string - Convert a thread_db error code to a string
|
|
|
|
SYNOPSIS
|
|
|
|
char * thr_err_string (errcode)
|
|
|
|
DESCRIPTION
|
|
|
|
Return a string description of the thread_db errcode. If errcode
|
|
is unknown, then return an <unknown> message.
|
|
|
|
*/
|
|
|
|
static char *
|
|
thr_err_string (td_err_e errcode)
|
|
{
|
|
static char buf[50];
|
|
|
|
switch (errcode) {
|
|
case TD_OK: return "generic 'call succeeded'";
|
|
case TD_ERR: return "generic error";
|
|
case TD_NOTHR: return "no thread to satisfy query";
|
|
case TD_NOSV: return "no sync handle to satisfy query";
|
|
case TD_NOLWP: return "no lwp to satisfy query";
|
|
case TD_BADPH: return "invalid process handle";
|
|
case TD_BADTH: return "invalid thread handle";
|
|
case TD_BADSH: return "invalid synchronization handle";
|
|
case TD_BADTA: return "invalid thread agent";
|
|
case TD_BADKEY: return "invalid key";
|
|
case TD_NOMSG: return "no event message for getmsg";
|
|
case TD_NOFPREGS: return "FPU register set not available";
|
|
case TD_NOLIBTHREAD: return "application not linked with libthread";
|
|
case TD_NOEVENT: return "requested event is not supported";
|
|
case TD_NOCAPAB: return "capability not available";
|
|
case TD_DBERR: return "debugger service failed";
|
|
case TD_NOAPLIC: return "operation not applicable to";
|
|
case TD_NOTSD: return "no thread-specific data for this thread";
|
|
case TD_MALLOC: return "malloc failed";
|
|
case TD_PARTIALREG: return "only part of register set was written/read";
|
|
case TD_NOXREGS: return "X register set not available for this thread";
|
|
default:
|
|
sprintf (buf, "unknown thread_db error '%d'", errcode);
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
thr_state_string - Convert a thread_db state code to a string
|
|
|
|
SYNOPSIS
|
|
|
|
char *thr_state_string (statecode)
|
|
|
|
DESCRIPTION
|
|
|
|
Return the thread_db state string associated with statecode.
|
|
If statecode is unknown, then return an <unknown> message.
|
|
|
|
*/
|
|
|
|
static char *
|
|
thr_state_string (td_thr_state_e statecode)
|
|
{
|
|
static char buf[50];
|
|
|
|
switch (statecode) {
|
|
case TD_THR_STOPPED: return "stopped by debugger";
|
|
case TD_THR_RUN: return "runnable";
|
|
case TD_THR_ACTIVE: return "active";
|
|
case TD_THR_ZOMBIE: return "zombie";
|
|
case TD_THR_SLEEP: return "sleeping";
|
|
case TD_THR_STOPPED_ASLEEP: return "stopped by debugger AND blocked";
|
|
default:
|
|
sprintf (buf, "unknown thread_db state %d", statecode);
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Local thread/event list.
|
|
* This data structure will be used to hold a list of threads and
|
|
* pending/deliverable events.
|
|
*/
|
|
|
|
typedef struct THREADINFO {
|
|
thread_t tid; /* thread ID */
|
|
pid_t lid; /* process/lwp ID */
|
|
td_thr_state_e state; /* thread state (a la thread_db) */
|
|
td_thr_type_e type; /* thread type (a la thread_db) */
|
|
int pending; /* true if holding a pending event */
|
|
int status; /* wait status of any interesting event */
|
|
} threadinfo;
|
|
|
|
threadinfo * threadlist;
|
|
int threadlist_max = 0; /* current size of table */
|
|
int threadlist_top = 0; /* number of threads now in table */
|
|
#define THREADLIST_ALLOC 100 /* chunk size by which to expand table */
|
|
|
|
static threadinfo *
|
|
insert_thread (int tid, int lid, td_thr_state_e state, td_thr_type_e type)
|
|
{
|
|
if (threadlist_top >= threadlist_max)
|
|
{
|
|
threadlist_max += THREADLIST_ALLOC;
|
|
threadlist = realloc (threadlist,
|
|
threadlist_max * sizeof (threadinfo));
|
|
if (threadlist == NULL)
|
|
return NULL;
|
|
}
|
|
threadlist[threadlist_top].tid = tid;
|
|
threadlist[threadlist_top].lid = lid;
|
|
threadlist[threadlist_top].state = state;
|
|
threadlist[threadlist_top].type = type;
|
|
threadlist[threadlist_top].pending = 0;
|
|
threadlist[threadlist_top].status = 0;
|
|
|
|
return &threadlist[threadlist_top++];
|
|
}
|
|
|
|
static void
|
|
empty_threadlist (void)
|
|
{
|
|
threadlist_top = 0;
|
|
}
|
|
|
|
static threadinfo *
|
|
next_pending_event (void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < threadlist_top; i++)
|
|
if (threadlist[i].pending)
|
|
return &threadlist[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
threadlist_iter (int (*func) (), void *data, td_thr_state_e state,
|
|
td_thr_type_e type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < threadlist_top; i++)
|
|
if ((state == TD_THR_ANY_STATE || state == threadlist[i].state) &&
|
|
(type == TD_THR_ANY_TYPE || type == threadlist[i].type))
|
|
if ((*func) (&threadlist[i], data) != 0)
|
|
break;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Global state
|
|
*
|
|
* Here we keep state information all collected in one place.
|
|
*/
|
|
|
|
/* This flag is set when we activate, so that we don't do it twice.
|
|
Defined in linux-thread.c and used for inter-target syncronization. */
|
|
extern int using_thread_db;
|
|
|
|
/* The process id for which we've stopped.
|
|
* This is only set when we actually stop all threads.
|
|
* Otherwise it's zero.
|
|
*/
|
|
static int event_pid;
|
|
|
|
/*
|
|
* The process id for a new thread to which we've just attached.
|
|
* This process needs special handling at resume time.
|
|
*/
|
|
static int attach_pid;
|
|
|
|
|
|
/*
|
|
* thread_db event handling:
|
|
*
|
|
* The mechanism for event notification via the thread_db API.
|
|
* These events are implemented as breakpoints. The thread_db
|
|
* library gives us an address where we can set a breakpoint.
|
|
* When the breakpoint is hit, it represents an event of interest
|
|
* such as:
|
|
* Thread creation
|
|
* Thread death
|
|
* Thread reap
|
|
*/
|
|
|
|
/* Location of the thread creation event breakpoint. The code at this
|
|
location in the child process will be called by the pthread library
|
|
whenever a new thread is created. By setting a special breakpoint
|
|
at this location, GDB can detect when a new thread is created. We
|
|
obtain this location via the td_ta_event_addr call. */
|
|
|
|
static CORE_ADDR thread_creation_bkpt_address;
|
|
|
|
/* Location of the thread death event breakpoint. The code at this
|
|
location in the child process will be called by the pthread library
|
|
whenever a thread is destroyed. By setting a special breakpoint at
|
|
this location, GDB can detect when a new thread is created. We
|
|
obtain this location via the td_ta_event_addr call. */
|
|
|
|
static CORE_ADDR thread_death_bkpt_address;
|
|
|
|
/* This function handles the global parts of enabling thread events.
|
|
The thread-specific enabling is handled per-thread elsewhere. */
|
|
|
|
static void
|
|
enable_thread_event_reporting (td_thragent_t *ta)
|
|
{
|
|
td_thr_events_t events;
|
|
td_notify_t notify;
|
|
CORE_ADDR addr;
|
|
|
|
if (p_td_ta_set_event == NULL ||
|
|
p_td_ta_event_addr == NULL ||
|
|
p_td_ta_event_getmsg == NULL ||
|
|
p_td_thr_event_enable == NULL)
|
|
return; /* can't do thread event reporting without these funcs */
|
|
|
|
/* set process wide mask saying which events we are interested in */
|
|
td_event_emptyset (&events);
|
|
td_event_addset (&events, TD_CREATE);
|
|
td_event_addset (&events, TD_DEATH);
|
|
|
|
if (p_td_ta_set_event (ta, &events) != TD_OK)
|
|
{
|
|
warning ("unable to set global thread event mask");
|
|
return;
|
|
}
|
|
|
|
/* Delete previous thread event breakpoints, if any. */
|
|
remove_thread_event_breakpoints ();
|
|
|
|
/* create breakpoints -- thread creation and death */
|
|
/* thread creation */
|
|
/* get breakpoint location */
|
|
if (p_td_ta_event_addr (ta, TD_CREATE, ¬ify) != TD_OK)
|
|
{
|
|
warning ("unable to get location for thread creation breakpoint");
|
|
return;
|
|
}
|
|
|
|
/* Set up the breakpoint. */
|
|
create_thread_event_breakpoint (notify.u.bptaddr);
|
|
|
|
/* Save it's location. */
|
|
thread_creation_bkpt_address = notify.u.bptaddr;
|
|
|
|
/* thread death */
|
|
/* get breakpoint location */
|
|
if (p_td_ta_event_addr (ta, TD_DEATH, ¬ify) != TD_OK)
|
|
{
|
|
warning ("unable to get location for thread death breakpoint");
|
|
return;
|
|
}
|
|
/* Set up the breakpoint. */
|
|
create_thread_event_breakpoint (notify.u.bptaddr);
|
|
|
|
/* Save it's location. */
|
|
thread_death_bkpt_address = notify.u.bptaddr;
|
|
}
|
|
|
|
/* This function handles the global parts of disabling thread events.
|
|
The thread-specific enabling is handled per-thread elsewhere. */
|
|
|
|
static void
|
|
disable_thread_event_reporting (td_thragent_t *ta)
|
|
{
|
|
td_thr_events_t events;
|
|
|
|
/* set process wide mask saying we aren't interested in any events */
|
|
td_event_emptyset (&events);
|
|
p_td_ta_set_event (main_threadagent, &events);
|
|
|
|
/* Delete thread event breakpoints, if any. */
|
|
remove_thread_event_breakpoints ();
|
|
thread_creation_bkpt_address = 0;
|
|
thread_death_bkpt_address = 0;
|
|
}
|
|
|
|
/* check_for_thread_event
|
|
|
|
if it's a thread event we recognize (currently
|
|
we only recognize creation and destruction
|
|
events), return 1; else return 0. */
|
|
|
|
|
|
static int
|
|
check_for_thread_event (struct target_waitstatus *tws, int event_pid)
|
|
{
|
|
/* FIXME: to be more efficient, we should keep a static
|
|
list of threads, and update it only here (with td_ta_thr_iter). */
|
|
}
|
|
|
|
static void
|
|
thread_db_push_target (void)
|
|
{
|
|
/* Called ONLY from thread_db_new_objfile after td_ta_new call succeeds. */
|
|
|
|
/* Push this target vector */
|
|
push_target (&thread_db_ops);
|
|
/* Find the underlying process-layer target for calling later. */
|
|
target_beneath = find_target_beneath (&thread_db_ops);
|
|
using_thread_db = 1;
|
|
/* Turn on thread_db event-reporting API. */
|
|
enable_thread_event_reporting (main_threadagent);
|
|
}
|
|
|
|
static void
|
|
thread_db_unpush_target (void)
|
|
{
|
|
/* Must be called whenever we remove ourself from the target stack! */
|
|
|
|
using_thread_db = 0;
|
|
target_beneath = NULL;
|
|
|
|
/* delete local list of threads */
|
|
empty_threadlist ();
|
|
/* Turn off the thread_db API. */
|
|
p_td_ta_delete (main_threadagent);
|
|
/* Unpush this target vector */
|
|
unpush_target (&thread_db_ops);
|
|
/* Reset linuxthreads module. */
|
|
linuxthreads_discard_global_state ();
|
|
}
|
|
|
|
/*
|
|
* New objfile hook function:
|
|
* Called for each new objfile (image, shared lib) in the target process.
|
|
*
|
|
* The purpose of this function is to detect that the target process
|
|
* is linked with the (appropriate) thread library. So every time a
|
|
* new target shared library is detected, we will call td_ta_new.
|
|
* If it succeeds, we know we have a multi-threaded target process
|
|
* that we can debug using the thread_db API.
|
|
*/
|
|
|
|
/*
|
|
* new_objfile function:
|
|
*
|
|
* connected to target_new_objfile_hook, this function gets called
|
|
* every time a new binary image is loaded.
|
|
*
|
|
* At each call, we attempt to open the thread_db connection to the
|
|
* child process. If it succeeds, we know we have a libthread process
|
|
* and we can debug it with this target vector. Therefore we push
|
|
* ourself onto the target stack.
|
|
*/
|
|
|
|
static void (*target_new_objfile_chain) (struct objfile *objfile);
|
|
static int stop_or_attach_thread_callback (const td_thrhandle_t *th,
|
|
void *data);
|
|
static int wait_thread_callback (const td_thrhandle_t *th,
|
|
void *data);
|
|
|
|
static void
|
|
thread_db_new_objfile (struct objfile *objfile)
|
|
{
|
|
td_err_e ret;
|
|
|
|
if (using_thread_db) /* libthread already detected, and */
|
|
goto quit; /* thread target vector activated. */
|
|
|
|
if (objfile == NULL)
|
|
goto quit; /* un-interesting object file */
|
|
|
|
/* Initialize our "main prochandle" with the main inferior pid. */
|
|
main_prochandle.pid = PIDGET (inferior_pid);
|
|
|
|
/* Now attempt to open a thread_db connection to the
|
|
thread library running in the child process. */
|
|
ret = p_td_ta_new (&main_prochandle, &main_threadagent);
|
|
switch (ret) {
|
|
default:
|
|
warning ("Unexpected error initializing thread_db: %s",
|
|
thr_err_string (ret));
|
|
break;
|
|
case TD_NOLIBTHREAD: /* expected: no libthread in child process (yet) */
|
|
break;
|
|
case TD_OK: /* libthread detected in child: we go live now! */
|
|
thread_db_push_target ();
|
|
event_pid = inferior_pid; /* for resume */
|
|
|
|
/* Now stop everyone else, and attach any new threads you find. */
|
|
p_td_ta_thr_iter (main_threadagent,
|
|
stop_or_attach_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_LOWEST_PRIORITY,
|
|
TD_SIGNO_MASK,
|
|
TD_THR_ANY_USER_FLAGS);
|
|
|
|
/* Now go call wait on all the threads you've stopped:
|
|
This allows us to absorb the SIGKILL event, and to make sure
|
|
that the thread knows that it is stopped (Linux peculiarity). */
|
|
p_td_ta_thr_iter (main_threadagent,
|
|
wait_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_LOWEST_PRIORITY,
|
|
TD_SIGNO_MASK,
|
|
TD_THR_ANY_USER_FLAGS);
|
|
|
|
break;
|
|
}
|
|
quit:
|
|
if (target_new_objfile_chain)
|
|
target_new_objfile_chain (objfile);
|
|
}
|
|
|
|
|
|
/*
|
|
|
|
LOCAL FUNCTION
|
|
|
|
thread_db_alive - test thread for "aliveness"
|
|
|
|
SYNOPSIS
|
|
|
|
static bool thread_db_alive (int pid);
|
|
|
|
DESCRIPTION
|
|
|
|
returns true if thread still active in inferior.
|
|
|
|
*/
|
|
|
|
static int
|
|
thread_db_alive (int pid)
|
|
{
|
|
if (is_thread (pid)) /* user-space (non-kernel) thread */
|
|
{
|
|
td_thrhandle_t th;
|
|
td_err_e ret;
|
|
|
|
pid = GET_THREAD (pid);
|
|
if ((ret = p_td_ta_map_id2thr (main_threadagent, pid, &th)) != TD_OK)
|
|
return 0; /* thread not found */
|
|
if ((ret = p_td_thr_validate (&th)) != TD_OK)
|
|
return 0; /* thread not valid */
|
|
return 1; /* known thread: return true */
|
|
}
|
|
else if (target_beneath->to_thread_alive)
|
|
return target_beneath->to_thread_alive (pid);
|
|
else
|
|
return 0; /* default to "not alive" (shouldn't happen anyway) */
|
|
}
|
|
|
|
/*
|
|
* get_lwp_from_thread_handle
|
|
*/
|
|
|
|
static int /* lwpid_t or pid_t */
|
|
get_lwp_from_thread_handle (td_thrhandle_t *th)
|
|
{
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
error ("get_lwp_from_thread_handle: thr_get_info failed: %s",
|
|
thr_err_string (ret));
|
|
|
|
return ti.ti_lid;
|
|
}
|
|
|
|
/*
|
|
* get_lwp_from_thread_id
|
|
*/
|
|
|
|
static int /* lwpid_t or pid_t */
|
|
get_lwp_from_thread_id (int tid /* thread_t? */)
|
|
{
|
|
td_thrhandle_t th;
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_ta_map_id2thr (main_threadagent, tid, &th)) != TD_OK)
|
|
error ("get_lwp_from_thread_id: map_id2thr failed: %s",
|
|
thr_err_string (ret));
|
|
|
|
return get_lwp_from_thread_handle (&th);
|
|
}
|
|
|
|
/*
|
|
* pid_to_str has to handle user-space threads.
|
|
* If not a user-space thread, then pass the request on to the
|
|
* underlying stratum if it can handle it: else call normal_pid_to_str.
|
|
*/
|
|
|
|
static char *
|
|
thread_db_pid_to_str (int pid)
|
|
{
|
|
static char buf[100];
|
|
td_thrhandle_t th;
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
if (is_thread (pid))
|
|
{
|
|
if ((ret = p_td_ta_map_id2thr (main_threadagent,
|
|
GET_THREAD (pid),
|
|
&th)) != TD_OK)
|
|
error ("thread_db: map_id2thr failed: %s", thr_err_string (ret));
|
|
|
|
if ((ret = p_td_thr_get_info (&th, &ti)) != TD_OK)
|
|
error ("thread_db: thr_get_info failed: %s", thr_err_string (ret));
|
|
|
|
if (ti.ti_state == TD_THR_ACTIVE &&
|
|
ti.ti_lid != 0)
|
|
sprintf (buf, "Thread %d (LWP %d)", ti.ti_tid, ti.ti_lid);
|
|
else
|
|
sprintf (buf, "Thread %d (%s)", ti.ti_tid,
|
|
thr_state_string (ti.ti_state));
|
|
}
|
|
else if (GET_LWP (pid))
|
|
sprintf (buf, "LWP %d", GET_LWP (pid));
|
|
else return normal_pid_to_str (pid);
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* thread_db target vector functions:
|
|
*/
|
|
|
|
static void
|
|
thread_db_files_info (struct target_ops *tgt_vector)
|
|
{
|
|
/* This function will be unnecessary in real life. */
|
|
printf_filtered ("thread_db stratum:\n");
|
|
target_beneath->to_files_info (tgt_vector);
|
|
}
|
|
|
|
/*
|
|
* xfer_memory has to munge the inferior_pid before passing the call
|
|
* down to the target layer.
|
|
*/
|
|
|
|
static int
|
|
thread_db_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int dowrite,
|
|
struct target_ops *target)
|
|
{
|
|
struct cleanup *old_chain;
|
|
int ret;
|
|
|
|
old_chain = save_inferior_pid ();
|
|
|
|
if (is_thread (inferior_pid) ||
|
|
!target_thread_alive (inferior_pid))
|
|
{
|
|
/* FIXME: use the LID/LWP, so that underlying process layer
|
|
can read memory from specific threads? */
|
|
inferior_pid = main_prochandle.pid;
|
|
}
|
|
|
|
ret = target_beneath->to_xfer_memory (memaddr, myaddr, len,
|
|
dowrite, target);
|
|
do_cleanups (old_chain);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* fetch_registers has to determine if inferior_pid is a user-space thread.
|
|
* If so, we use the thread_db API to get the registers.
|
|
* And if not, we call the underlying process stratum.
|
|
*/
|
|
|
|
static void
|
|
thread_db_fetch_registers (int regno)
|
|
{
|
|
td_thrhandle_t thandle;
|
|
gdb_prfpregset_t fpregset;
|
|
prgregset_t gregset;
|
|
thread_t thread;
|
|
td_err_e ret;
|
|
|
|
if (!is_thread (inferior_pid)) /* kernel thread */
|
|
{ /* pass the request on to the target underneath. */
|
|
target_beneath->to_fetch_registers (regno);
|
|
return;
|
|
}
|
|
|
|
/* convert inferior_pid into a td_thrhandle_t */
|
|
|
|
if ((thread = GET_THREAD (inferior_pid)) == 0)
|
|
error ("fetch_registers: thread == 0");
|
|
|
|
if ((ret = p_td_ta_map_id2thr (main_threadagent, thread, &thandle)) != TD_OK)
|
|
error ("fetch_registers: td_ta_map_id2thr: %s", thr_err_string (ret));
|
|
|
|
/* Get the integer regs:
|
|
For the sparc, TD_PARTIALREG means that only i0->i7, l0->l7,
|
|
pc and sp are saved (by a thread context switch). */
|
|
if ((ret = p_td_thr_getgregs (&thandle, gregset)) != TD_OK &&
|
|
ret != TD_PARTIALREG)
|
|
error ("fetch_registers: td_thr_getgregs %s", thr_err_string (ret));
|
|
|
|
/* And, now the fp regs */
|
|
if ((ret = p_td_thr_getfpregs (&thandle, &fpregset)) != TD_OK &&
|
|
ret != TD_NOFPREGS)
|
|
error ("fetch_registers: td_thr_getfpregs %s", thr_err_string (ret));
|
|
|
|
/* Note that we must call supply_{g fp}regset *after* calling the td routines
|
|
because the td routines call ps_lget* which affect the values stored in the
|
|
registers array. */
|
|
|
|
supply_gregset (gregset);
|
|
supply_fpregset (&fpregset);
|
|
|
|
}
|
|
|
|
/*
|
|
* store_registers has to determine if inferior_pid is a user-space thread.
|
|
* If so, we use the thread_db API to get the registers.
|
|
* And if not, we call the underlying process stratum.
|
|
*/
|
|
|
|
static void
|
|
thread_db_store_registers (int regno)
|
|
{
|
|
td_thrhandle_t thandle;
|
|
gdb_prfpregset_t fpregset;
|
|
prgregset_t gregset;
|
|
thread_t thread;
|
|
td_err_e ret;
|
|
|
|
if (!is_thread (inferior_pid)) /* Kernel thread: */
|
|
{ /* pass the request on to the underlying target vector. */
|
|
target_beneath->to_store_registers (regno);
|
|
return;
|
|
}
|
|
|
|
/* convert inferior_pid into a td_thrhandle_t */
|
|
|
|
if ((thread = GET_THREAD (inferior_pid)) == 0)
|
|
error ("store_registers: thread == 0");
|
|
|
|
if ((ret = p_td_ta_map_id2thr (main_threadagent, thread, &thandle)) != TD_OK)
|
|
error ("store_registers: td_ta_map_id2thr %s", thr_err_string (ret));
|
|
|
|
if (regno != -1)
|
|
{ /* Not writing all the regs */
|
|
/* save new register value */
|
|
/* MVS: I don't understand this... */
|
|
char old_value[REGISTER_SIZE];
|
|
|
|
memcpy (old_value, ®isters[REGISTER_BYTE (regno)], REGISTER_SIZE);
|
|
|
|
if ((ret = p_td_thr_getgregs (&thandle, gregset)) != TD_OK)
|
|
error ("store_registers: td_thr_getgregs %s", thr_err_string (ret));
|
|
if ((ret = p_td_thr_getfpregs (&thandle, &fpregset)) != TD_OK)
|
|
error ("store_registers: td_thr_getfpregs %s", thr_err_string (ret));
|
|
|
|
/* restore new register value */
|
|
memcpy (®isters[REGISTER_BYTE (regno)], old_value, REGISTER_SIZE);
|
|
|
|
}
|
|
|
|
fill_gregset (gregset, regno);
|
|
fill_fpregset (&fpregset, regno);
|
|
|
|
if ((ret = p_td_thr_setgregs (&thandle, gregset)) != TD_OK)
|
|
error ("store_registers: td_thr_setgregs %s", thr_err_string (ret));
|
|
if ((ret = p_td_thr_setfpregs (&thandle, &fpregset)) != TD_OK &&
|
|
ret != TD_NOFPREGS)
|
|
error ("store_registers: td_thr_setfpregs %s", thr_err_string (ret));
|
|
}
|
|
|
|
static void
|
|
handle_new_thread (int tid, /* user thread id */
|
|
int lid, /* kernel thread id */
|
|
int verbose)
|
|
{
|
|
int gdb_pid = BUILD_THREAD (tid, main_prochandle.pid);
|
|
int wait_pid, wait_status;
|
|
|
|
if (verbose)
|
|
printf_filtered ("[New %s]\n", target_pid_to_str (gdb_pid));
|
|
add_thread (gdb_pid);
|
|
|
|
if (lid != main_prochandle.pid)
|
|
{
|
|
attach_thread (lid);
|
|
/* According to the Eric Paire model, we now have to send
|
|
the restart signal to the new thread -- however, empirically,
|
|
I do not find that to be necessary. */
|
|
attach_pid = lid;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_for_new_thread (int tid, int lid, int verbose)
|
|
{
|
|
if (!in_thread_list (BUILD_THREAD (tid, main_prochandle.pid)))
|
|
handle_new_thread (tid, lid, verbose);
|
|
}
|
|
|
|
/*
|
|
* Callback function that gets called once per USER thread
|
|
* (i.e., not kernel) thread by td_ta_thr_iter.
|
|
*/
|
|
|
|
static int
|
|
find_new_threads_callback (const td_thrhandle_t *th, void *ignored)
|
|
{
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
{
|
|
warning ("find_new_threads_callback: %s", thr_err_string (ret));
|
|
return -1; /* bail out, get_info failed. */
|
|
}
|
|
|
|
/* FIXME:
|
|
As things now stand, this should never detect a new thread.
|
|
But if it does, we could be in trouble because we aren't calling
|
|
wait_thread_callback for it. */
|
|
test_for_new_thread (ti.ti_tid, ti.ti_lid, 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* find_new_threads uses the thread_db iterator function to discover
|
|
* user-space threads. Then if the underlying process stratum has a
|
|
* find_new_threads method, we call that too.
|
|
*/
|
|
|
|
static void
|
|
thread_db_find_new_threads (void)
|
|
{
|
|
if (inferior_pid == -1) /* FIXME: still necessary? */
|
|
{
|
|
printf_filtered ("No process.\n");
|
|
return;
|
|
}
|
|
p_td_ta_thr_iter (main_threadagent,
|
|
find_new_threads_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_LOWEST_PRIORITY,
|
|
TD_SIGNO_MASK,
|
|
TD_THR_ANY_USER_FLAGS);
|
|
if (target_beneath->to_find_new_threads)
|
|
target_beneath->to_find_new_threads ();
|
|
}
|
|
|
|
/*
|
|
* Resume all threads, or resume a single thread.
|
|
* If step is true, then single-step the appropriate thread
|
|
* (or single-step inferior_pid, but continue everyone else).
|
|
* If signo is true, then send that signal to at least one thread.
|
|
*/
|
|
|
|
/*
|
|
* This function is called once for each thread before resuming.
|
|
* It sends continue (no step, and no signal) to each thread except
|
|
* the main thread, and
|
|
* the event thread (the one that stopped at a breakpoint etc.)
|
|
*
|
|
* The event thread is handled separately so that it can be sent
|
|
* the stepping and signal args with which target_resume was called.
|
|
*
|
|
* The main thread is resumed last, so that the thread_db proc_service
|
|
* callbacks will still work during the iterator function.
|
|
*/
|
|
|
|
static int
|
|
resume_thread_callback (const td_thrhandle_t *th, void *data)
|
|
{
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
{
|
|
warning ("resume_thread_callback: %s", thr_err_string (ret));
|
|
return -1; /* bail out, get_info failed. */
|
|
}
|
|
/* FIXME:
|
|
As things now stand, this should never detect a new thread.
|
|
But if it does, we could be in trouble because we aren't calling
|
|
wait_thread_callback for it. */
|
|
test_for_new_thread (ti.ti_tid, ti.ti_lid, 1);
|
|
|
|
if (ti.ti_lid != main_prochandle.pid &&
|
|
ti.ti_lid != event_pid)
|
|
{
|
|
/* Unconditionally continue the thread with no signal.
|
|
Only the event thread will get a signal of any kind. */
|
|
|
|
target_beneath->to_resume (ti.ti_lid, 0, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
new_resume_thread_callback (threadinfo *thread, void *data)
|
|
{
|
|
if (thread->lid != event_pid &&
|
|
thread->lid != main_prochandle.pid)
|
|
{
|
|
/* Unconditionally continue the thread with no signal (for now). */
|
|
|
|
target_beneath->to_resume (thread->lid, 0, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int last_resume_pid;
|
|
static int last_resume_step;
|
|
static int last_resume_signo;
|
|
|
|
static void
|
|
thread_db_resume (int pid, int step, enum target_signal signo)
|
|
{
|
|
last_resume_pid = pid;
|
|
last_resume_step = step;
|
|
last_resume_signo = signo;
|
|
|
|
/* resuming a specific pid? */
|
|
if (pid != -1)
|
|
{
|
|
if (is_thread (pid))
|
|
pid = get_lwp_from_thread_id (GET_THREAD (pid));
|
|
else if (GET_LWP (pid))
|
|
pid = GET_LWP (pid);
|
|
}
|
|
|
|
/* Apparently the interpretation of 'pid' is dependent on 'step':
|
|
If step is true, then a specific pid means 'step only this pid'.
|
|
But if step is not true, then pid means 'continue ALL pids, but
|
|
give the signal only to this one'. */
|
|
if (pid != -1 && step)
|
|
{
|
|
/* FIXME: is this gonna work in all circumstances? */
|
|
target_beneath->to_resume (pid, step, signo);
|
|
}
|
|
else
|
|
{
|
|
/* 1) Continue all threads except the event thread and the main thread.
|
|
2) resume the event thread with step and signo.
|
|
3) If event thread != main thread, continue the main thread.
|
|
|
|
Note: order of 2 and 3 may need to be reversed. */
|
|
|
|
threadlist_iter (new_resume_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_ANY_TYPE);
|
|
/* now resume event thread, and if necessary also main thread. */
|
|
if (event_pid)
|
|
{
|
|
target_beneath->to_resume (event_pid, step, signo);
|
|
}
|
|
if (event_pid != main_prochandle.pid)
|
|
{
|
|
target_beneath->to_resume (main_prochandle.pid, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* All new threads will be attached.
|
|
All previously known threads will be stopped using kill (SIGKILL). */
|
|
|
|
static int
|
|
stop_or_attach_thread_callback (const td_thrhandle_t *th, void *data)
|
|
{
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
int gdb_pid;
|
|
int on_off = 1;
|
|
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
{
|
|
warning ("stop_or_attach_thread_callback: %s", thr_err_string (ret));
|
|
return -1; /* bail out, get_info failed. */
|
|
}
|
|
|
|
/* First add it to our internal list.
|
|
We build this list anew at every wait event. */
|
|
insert_thread (ti.ti_tid, ti.ti_lid, ti.ti_state, ti.ti_type);
|
|
/* Now: if we've already seen it, stop it, else add it and attach it. */
|
|
gdb_pid = BUILD_THREAD (ti.ti_tid, main_prochandle.pid);
|
|
if (!in_thread_list (gdb_pid)) /* new thread */
|
|
{
|
|
handle_new_thread (ti.ti_tid, ti.ti_lid, 1);
|
|
/* Enable thread events */
|
|
if (p_td_thr_event_enable)
|
|
if ((ret = p_td_thr_event_enable (th, on_off)) != TD_OK)
|
|
warning ("stop_or_attach_thread: %s", thr_err_string (ret));
|
|
}
|
|
else if (ti.ti_lid != event_pid &&
|
|
ti.ti_lid != main_prochandle.pid)
|
|
{
|
|
ret = (td_err_e) kill (ti.ti_lid, SIGSTOP);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for signal N from pid PID.
|
|
* If wait returns any other signals, put them back before returning.
|
|
*/
|
|
|
|
static void
|
|
wait_for_stop (int pid)
|
|
{
|
|
int i;
|
|
int retpid;
|
|
int status;
|
|
|
|
/* Array of wait/signal status */
|
|
/* FIXME: wrong data structure, we need a queue.
|
|
Realtime signals may be delivered more than once.
|
|
And at that, we really can't handle them (see below). */
|
|
#if defined (NSIG)
|
|
static int wstatus [NSIG];
|
|
#elif defined (_NSIG)
|
|
static int wstatus [_NSIG];
|
|
#else
|
|
#error No definition for number of signals!
|
|
#endif
|
|
|
|
/* clear wait/status list */
|
|
memset (&wstatus, 0, sizeof (wstatus));
|
|
|
|
/* Now look for SIGSTOP event on all threads except event thread. */
|
|
do {
|
|
errno = 0;
|
|
if (pid == main_prochandle.pid)
|
|
retpid = waitpid (pid, &status, 0);
|
|
else
|
|
retpid = waitpid (pid, &status, __WCLONE);
|
|
|
|
if (retpid > 0)
|
|
if (WSTOPSIG (status) == SIGSTOP)
|
|
{
|
|
/* Got the SIGSTOP event we're looking for.
|
|
Throw it away, and throw any other events back! */
|
|
for (i = 0; i < sizeof(wstatus) / sizeof (wstatus[0]); i++)
|
|
if (wstatus[i])
|
|
if (i != SIGSTOP)
|
|
{
|
|
kill (retpid, i);
|
|
}
|
|
break; /* all done */
|
|
}
|
|
else
|
|
{
|
|
int signo;
|
|
/* Oops, got an event other than SIGSTOP.
|
|
Save it, and throw it back after we find the SIGSTOP event. */
|
|
|
|
/* FIXME (how?) This method is going to fail for realtime
|
|
signals, which cannot be put back simply by using kill. */
|
|
|
|
if (WIFEXITED (status))
|
|
error ("Ack! Thread Exited event. What do I do now???");
|
|
else if (WIFSTOPPED (status))
|
|
signo = WSTOPSIG (status);
|
|
else
|
|
signo = WTERMSIG (status);
|
|
|
|
/* If a thread other than the event thread has hit a GDB
|
|
breakpoint (as opposed to some random trap signal), then
|
|
just arrange for it to hit it again later. Back up the
|
|
PC if necessary. Don't forward the SIGTRAP signal to
|
|
the thread. We will handle the current event, eventually
|
|
we will resume all the threads, and this one will get
|
|
it's breakpoint trap again.
|
|
|
|
If we do not do this, then we run the risk that the user
|
|
will delete or disable the breakpoint, but the thread will
|
|
have already tripped on it. */
|
|
|
|
if (retpid != event_pid &&
|
|
signo == SIGTRAP &&
|
|
breakpoint_inserted_here_p (read_pc_pid (retpid) -
|
|
DECR_PC_AFTER_BREAK))
|
|
{
|
|
/* Set the pc to before the trap and DO NOT re-send the signal */
|
|
if (DECR_PC_AFTER_BREAK)
|
|
write_pc_pid (read_pc_pid (retpid) - DECR_PC_AFTER_BREAK,
|
|
retpid);
|
|
}
|
|
|
|
/* Since SIGINT gets forwarded to the entire process group
|
|
(in the case where ^C is typed at the tty / console),
|
|
just ignore all SIGINTs from other than the event thread. */
|
|
else if (retpid != event_pid && signo == SIGINT)
|
|
{ /* do nothing. Signal will disappear into oblivion! */
|
|
;
|
|
}
|
|
|
|
else /* This is some random signal other than a breakpoint. */
|
|
{
|
|
wstatus [signo] = 1;
|
|
}
|
|
child_resume (retpid, 0, TARGET_SIGNAL_0);
|
|
continue;
|
|
}
|
|
|
|
} while (errno == 0 || errno == EINTR);
|
|
}
|
|
|
|
/*
|
|
* wait_thread_callback
|
|
*
|
|
* Calls waitpid for each thread, repeatedly if necessary, until
|
|
* SIGSTOP is returned. Afterward, if any other signals were returned
|
|
* by waitpid, return them to the thread's pending queue by calling kill.
|
|
*/
|
|
|
|
static int
|
|
wait_thread_callback (const td_thrhandle_t *th, void *data)
|
|
{
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
{
|
|
warning ("wait_thread_callback: %s", thr_err_string (ret));
|
|
return -1; /* bail out, get_info failed. */
|
|
}
|
|
|
|
/* This callback to act on all threads except the event thread: */
|
|
if (ti.ti_lid == event_pid || /* no need to wait (no sigstop) */
|
|
ti.ti_lid == main_prochandle.pid) /* no need to wait (already waited) */
|
|
return 0; /* don't wait on the event thread. */
|
|
|
|
wait_for_stop (ti.ti_lid);
|
|
return 0; /* finished: next thread. */
|
|
}
|
|
|
|
static int
|
|
new_wait_thread_callback (threadinfo *thread, void *data)
|
|
{
|
|
/* don't wait on the event thread -- it's already stopped and waited.
|
|
Ditto the main thread. */
|
|
if (thread->lid != event_pid &&
|
|
thread->lid != main_prochandle.pid)
|
|
{
|
|
wait_for_stop (thread->lid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for any thread to stop, by calling the underlying wait method.
|
|
* The PID returned by the underlying target may be a kernel thread,
|
|
* in which case we will want to convert it to the corresponding
|
|
* user-space thread.
|
|
*/
|
|
|
|
static int
|
|
thread_db_wait (int pid, struct target_waitstatus *ourstatus)
|
|
{
|
|
td_thrhandle_t thandle;
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
lwpid_t lwp;
|
|
int retpid;
|
|
int status;
|
|
int save_errno;
|
|
|
|
/* OK, we're about to wait for an event from the running inferior.
|
|
Make sure we're ignoring the right signals. */
|
|
|
|
check_all_signal_numbers (); /* see if magic signals changed. */
|
|
|
|
event_pid = 0;
|
|
attach_pid = 0;
|
|
|
|
/* FIXME: should I do the wait right here inline? */
|
|
#if 0
|
|
if (pid == -1)
|
|
lwp = -1;
|
|
else
|
|
lwp = get_lwp_from_thread_id (GET_THREAD (pid));
|
|
#endif
|
|
|
|
|
|
save_errno = linux_child_wait (-1, &retpid, &status);
|
|
store_waitstatus (ourstatus, status);
|
|
|
|
/* Thread ID is irrelevant if the target process exited.
|
|
FIXME: do I have any killing to do?
|
|
Can I get this event mistakenly from a thread? */
|
|
if (ourstatus->kind == TARGET_WAITKIND_EXITED)
|
|
return retpid;
|
|
|
|
/* OK, we got an event of interest.
|
|
Go stop all threads and look for new ones.
|
|
FIXME: maybe don't do this for the restart signal? Optimization... */
|
|
event_pid = retpid;
|
|
|
|
/* If the last call to resume was for a specific thread, then we don't
|
|
need to stop everyone else: they should already be stopped. */
|
|
if (last_resume_step == 0 || last_resume_pid == -1)
|
|
{
|
|
/* Main thread must be stopped before calling the iterator. */
|
|
if (retpid != main_prochandle.pid)
|
|
{
|
|
kill (main_prochandle.pid, SIGSTOP);
|
|
wait_for_stop (main_prochandle.pid);
|
|
}
|
|
|
|
empty_threadlist ();
|
|
/* Now stop everyone else, and attach any new threads you find. */
|
|
p_td_ta_thr_iter (main_threadagent,
|
|
stop_or_attach_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_LOWEST_PRIORITY,
|
|
TD_SIGNO_MASK,
|
|
TD_THR_ANY_USER_FLAGS);
|
|
|
|
/* Now go call wait on all the threads we've stopped:
|
|
This allows us to absorb the SIGKILL event, and to make sure
|
|
that the thread knows that it is stopped (Linux peculiarity). */
|
|
|
|
threadlist_iter (new_wait_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_ANY_TYPE);
|
|
}
|
|
|
|
/* Convert the kernel thread id to the corresponding thread id. */
|
|
|
|
/* If the process layer does not furnish an lwp,
|
|
then perhaps the returned pid IS the lwp... */
|
|
if ((lwp = GET_LWP (retpid)) == 0)
|
|
lwp = retpid;
|
|
|
|
if ((ret = p_td_ta_map_lwp2thr (main_threadagent, lwp, &thandle)) != TD_OK)
|
|
return retpid; /* LWP is not mapped onto a user-space thread. */
|
|
|
|
if ((ret = p_td_thr_validate (&thandle)) != TD_OK)
|
|
return retpid; /* LWP is not mapped onto a valid thread. */
|
|
|
|
if ((ret = p_td_thr_get_info (&thandle, &ti)) != TD_OK)
|
|
{
|
|
warning ("thread_db: thr_get_info failed ('%s')", thr_err_string (ret));
|
|
return retpid;
|
|
}
|
|
|
|
retpid = BUILD_THREAD (ti.ti_tid, main_prochandle.pid);
|
|
/* If this is a new user thread, notify GDB about it. */
|
|
if (!in_thread_list (retpid))
|
|
{
|
|
printf_filtered ("[New %s]\n", target_pid_to_str (retpid));
|
|
add_thread (retpid);
|
|
}
|
|
|
|
#if 0
|
|
/* Now detect if this is a thread creation/deletion event: */
|
|
check_for_thread_event (ourstatus, retpid);
|
|
#endif
|
|
return retpid;
|
|
}
|
|
|
|
/*
|
|
* kill has to call the underlying kill.
|
|
* FIXME: I'm not sure if it's necessary to check inferior_pid any more,
|
|
* but we might need to fix inferior_pid up if it's a user thread.
|
|
*/
|
|
|
|
static int
|
|
kill_thread_callback (td_thrhandle_t *th, void *data)
|
|
{
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
/* Fixme:
|
|
For Linux, threads may need to be waited. */
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
{
|
|
warning ("kill_thread_callback: %s", thr_err_string (ret));
|
|
return -1; /* bail out, get_info failed. */
|
|
}
|
|
|
|
if (ti.ti_lid != main_prochandle.pid)
|
|
{
|
|
kill (ti.ti_lid, SIGKILL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void thread_db_kill (void)
|
|
{
|
|
int rpid;
|
|
int status;
|
|
|
|
/* Fixme:
|
|
For Linux, threads may need to be waited. */
|
|
if (inferior_pid != 0)
|
|
{
|
|
/* Go kill the children first. Save the main thread for last. */
|
|
p_td_ta_thr_iter (main_threadagent,
|
|
kill_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_LOWEST_PRIORITY,
|
|
TD_SIGNO_MASK,
|
|
TD_THR_ANY_USER_FLAGS);
|
|
|
|
/* Turn off thread_db event-reporting API *before* killing the
|
|
main thread, since this operation requires child memory access.
|
|
Can't move this into thread_db_unpush target because then
|
|
detach would not work. */
|
|
disable_thread_event_reporting (main_threadagent);
|
|
|
|
inferior_pid = main_prochandle.pid;
|
|
|
|
/*
|
|
* Since both procfs_kill and ptrace_kill call target_mourn,
|
|
* it should be sufficient for me to call one of them.
|
|
* That will result in my mourn being called, which will both
|
|
* unpush me and call the underlying mourn.
|
|
*/
|
|
target_beneath->to_kill ();
|
|
}
|
|
|
|
/* Wait for all threads. */
|
|
/* FIXME: need a universal wait_for_signal func? */
|
|
do
|
|
{
|
|
rpid = waitpid (-1, &status, __WCLONE | WNOHANG);
|
|
}
|
|
while (rpid > 0 || errno == EINTR);
|
|
|
|
do
|
|
{
|
|
rpid = waitpid (-1, &status, WNOHANG);
|
|
}
|
|
while (rpid > 0 || errno == EINTR);
|
|
}
|
|
|
|
/*
|
|
* Mourn has to remove us from the target stack,
|
|
* and then call the underlying mourn.
|
|
*/
|
|
|
|
static void thread_db_mourn_inferior (void)
|
|
{
|
|
thread_db_unpush_target ();
|
|
target_mourn_inferior (); /* call the underlying mourn */
|
|
}
|
|
|
|
/*
|
|
* Detach has to remove us from the target stack,
|
|
* and then call the underlying detach.
|
|
*
|
|
* But first, it has to detach all the cloned threads!
|
|
*/
|
|
|
|
static int
|
|
detach_thread_callback (td_thrhandle_t *th, void *data)
|
|
{
|
|
/* Called once per thread. */
|
|
td_thrinfo_t ti;
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_thr_get_info (th, &ti)) != TD_OK)
|
|
{
|
|
warning ("detach_thread_callback: %s", thr_err_string (ret));
|
|
return -1; /* bail out, get_info failed. */
|
|
}
|
|
|
|
if (!in_thread_list (BUILD_THREAD (ti.ti_tid, main_prochandle.pid)))
|
|
return 0; /* apparently we don't know this one. */
|
|
|
|
/* Save main thread for last, or the iterator will fail! */
|
|
if (ti.ti_lid != main_prochandle.pid)
|
|
{
|
|
struct cleanup *old_chain;
|
|
int off = 0;
|
|
|
|
/* Time to detach this thread.
|
|
First disable thread_db event reporting for the thread. */
|
|
if (p_td_thr_event_enable &&
|
|
(ret = p_td_thr_event_enable (th, off)) != TD_OK)
|
|
{
|
|
warning ("detach_thread_callback: %s\n", thr_err_string (ret));
|
|
return 0;
|
|
}
|
|
|
|
/* Now cancel any pending SIGTRAPS. FIXME! */
|
|
|
|
/* Call underlying detach method. FIXME just detach it. */
|
|
old_chain = save_inferior_pid ();
|
|
inferior_pid = ti.ti_lid;
|
|
detach (TARGET_SIGNAL_0);
|
|
do_cleanups (old_chain);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
thread_db_detach (char *args, int from_tty)
|
|
{
|
|
td_err_e ret;
|
|
|
|
if ((ret = p_td_ta_thr_iter (main_threadagent,
|
|
detach_thread_callback,
|
|
(void *) 0,
|
|
TD_THR_ANY_STATE,
|
|
TD_THR_LOWEST_PRIORITY,
|
|
TD_SIGNO_MASK,
|
|
TD_THR_ANY_USER_FLAGS))
|
|
!= TD_OK)
|
|
warning ("detach (thr_iter): %s", thr_err_string (ret));
|
|
|
|
/* Turn off thread_db event-reporting API
|
|
(before detaching the main thread) */
|
|
disable_thread_event_reporting (main_threadagent);
|
|
|
|
thread_db_unpush_target ();
|
|
|
|
/* above call nullifies target_beneath, so don't use that! */
|
|
inferior_pid = PIDGET (inferior_pid);
|
|
target_detach (args, from_tty);
|
|
}
|
|
|
|
|
|
/*
|
|
* We never want to actually create the inferior!
|
|
*
|
|
* If this is ever called, it means we were on the target stack
|
|
* when the user said "run". But we don't want to be on the new
|
|
* inferior's target stack until the thread_db / libthread
|
|
* connection is ready to be made.
|
|
*
|
|
* So, what shall we do?
|
|
* Unpush ourselves from the stack, and then invoke
|
|
* find_default_create_inferior, which will invoke the
|
|
* appropriate process_stratum target to do the create.
|
|
*/
|
|
|
|
static void
|
|
thread_db_create_inferior (char *exec_file, char *allargs, char **env)
|
|
{
|
|
thread_db_unpush_target ();
|
|
find_default_create_inferior (exec_file, allargs, env);
|
|
}
|
|
|
|
/*
|
|
* Thread_db target vector initializer.
|
|
*/
|
|
|
|
void
|
|
init_thread_db_ops (void)
|
|
{
|
|
thread_db_ops.to_shortname = "multi-thread";
|
|
thread_db_ops.to_longname = "multi-threaded child process.";
|
|
thread_db_ops.to_doc = "Threads and pthreads support.";
|
|
thread_db_ops.to_files_info = thread_db_files_info;
|
|
thread_db_ops.to_create_inferior = thread_db_create_inferior;
|
|
thread_db_ops.to_detach = thread_db_detach;
|
|
thread_db_ops.to_wait = thread_db_wait;
|
|
thread_db_ops.to_resume = thread_db_resume;
|
|
thread_db_ops.to_mourn_inferior = thread_db_mourn_inferior;
|
|
thread_db_ops.to_kill = thread_db_kill;
|
|
thread_db_ops.to_xfer_memory = thread_db_xfer_memory;
|
|
thread_db_ops.to_fetch_registers = thread_db_fetch_registers;
|
|
thread_db_ops.to_store_registers = thread_db_store_registers;
|
|
thread_db_ops.to_thread_alive = thread_db_alive;
|
|
thread_db_ops.to_find_new_threads = thread_db_find_new_threads;
|
|
thread_db_ops.to_pid_to_str = thread_db_pid_to_str;
|
|
thread_db_ops.to_stratum = thread_stratum;
|
|
thread_db_ops.to_has_thread_control = tc_schedlock;
|
|
thread_db_ops.to_magic = OPS_MAGIC;
|
|
}
|
|
#endif /* HAVE_STDINT_H */
|
|
|
|
/*
|
|
* Module constructor / initializer function.
|
|
* If connection to thread_db dynamic library is successful,
|
|
* then initialize this module's target vectors and the
|
|
* new_objfile hook.
|
|
*/
|
|
|
|
|
|
void
|
|
_initialize_thread_db (void)
|
|
{
|
|
#ifdef HAVE_STDINT_H /* stub out entire module, leave initializer empty */
|
|
if (init_thread_db_library ())
|
|
{
|
|
init_thread_db_ops ();
|
|
add_target (&thread_db_ops);
|
|
/*
|
|
* Hook up to the new_objfile event.
|
|
* If someone is already there, arrange for him to be called
|
|
* after we are.
|
|
*/
|
|
target_new_objfile_chain = target_new_objfile_hook;
|
|
target_new_objfile_hook = thread_db_new_objfile;
|
|
}
|
|
#endif /* HAVE_STDINT_H */
|
|
}
|
|
|