8e65ff28b0
internal_verror().
861 lines
24 KiB
C
861 lines
24 KiB
C
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
|
||
Copyright 1996, 2000, 2001 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "obstack.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "bfd.h"
|
||
#include "gdb_string.h"
|
||
#include "gdbcore.h"
|
||
#include "symfile.h"
|
||
#include "arch-utils.h"
|
||
|
||
|
||
static char *v850_generic_reg_names[] = REGISTER_NAMES;
|
||
|
||
static char *v850e_reg_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
||
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
|
||
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
|
||
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
|
||
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
|
||
"pc", "fp"
|
||
};
|
||
|
||
char **v850_register_names = v850_generic_reg_names;
|
||
|
||
struct
|
||
{
|
||
char **regnames;
|
||
int mach;
|
||
}
|
||
v850_processor_type_table[] =
|
||
{
|
||
{
|
||
v850_generic_reg_names, bfd_mach_v850
|
||
}
|
||
,
|
||
{
|
||
v850e_reg_names, bfd_mach_v850e
|
||
}
|
||
,
|
||
{
|
||
v850e_reg_names, bfd_mach_v850ea
|
||
}
|
||
,
|
||
{
|
||
NULL, 0
|
||
}
|
||
};
|
||
|
||
/* Info gleaned from scanning a function's prologue. */
|
||
|
||
struct pifsr /* Info about one saved reg */
|
||
{
|
||
int framereg; /* Frame reg (SP or FP) */
|
||
int offset; /* Offset from framereg */
|
||
int cur_frameoffset; /* Current frameoffset */
|
||
int reg; /* Saved register number */
|
||
};
|
||
|
||
struct prologue_info
|
||
{
|
||
int framereg;
|
||
int frameoffset;
|
||
int start_function;
|
||
struct pifsr *pifsrs;
|
||
};
|
||
|
||
static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs);
|
||
|
||
|
||
/* Should call_function allocate stack space for a struct return? */
|
||
int
|
||
v850_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 4);
|
||
}
|
||
|
||
|
||
|
||
/* Structure for mapping bits in register lists to register numbers. */
|
||
struct reg_list
|
||
{
|
||
long mask;
|
||
int regno;
|
||
};
|
||
|
||
/* Helper function for v850_scan_prologue to handle prepare instruction. */
|
||
|
||
static void
|
||
handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
|
||
struct prologue_info *pi, struct pifsr **pifsr_ptr)
|
||
{
|
||
CORE_ADDR current_pc = *current_pc_ptr;
|
||
struct pifsr *pifsr = *pifsr_ptr;
|
||
long next = insn2 & 0xffff;
|
||
long list12 = ((insn & 1) << 16) + (next & 0xffe0);
|
||
long offset = (insn & 0x3e) << 1;
|
||
static struct reg_list reg_table[] =
|
||
{
|
||
{0x00800, 20}, /* r20 */
|
||
{0x00400, 21}, /* r21 */
|
||
{0x00200, 22}, /* r22 */
|
||
{0x00100, 23}, /* r23 */
|
||
{0x08000, 24}, /* r24 */
|
||
{0x04000, 25}, /* r25 */
|
||
{0x02000, 26}, /* r26 */
|
||
{0x01000, 27}, /* r27 */
|
||
{0x00080, 28}, /* r28 */
|
||
{0x00040, 29}, /* r29 */
|
||
{0x10000, 30}, /* ep */
|
||
{0x00020, 31}, /* lp */
|
||
{0, 0} /* end of table */
|
||
};
|
||
int i;
|
||
|
||
if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
|
||
current_pc += 2;
|
||
else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
|
||
current_pc += 2;
|
||
else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
|
||
current_pc += 4;
|
||
|
||
/* Calculate the total size of the saved registers, and add it
|
||
it to the immediate value used to adjust SP. */
|
||
for (i = 0; reg_table[i].mask != 0; i++)
|
||
if (list12 & reg_table[i].mask)
|
||
offset += REGISTER_RAW_SIZE (regtable[i].regno);
|
||
pi->frameoffset -= offset;
|
||
|
||
/* Calculate the offsets of the registers relative to the value
|
||
the SP will have after the registers have been pushed and the
|
||
imm5 value has been subtracted from it. */
|
||
if (pifsr)
|
||
{
|
||
for (i = 0; reg_table[i].mask != 0; i++)
|
||
{
|
||
if (list12 & reg_table[i].mask)
|
||
{
|
||
int reg = reg_table[i].regno;
|
||
offset -= REGISTER_RAW_SIZE (reg);
|
||
pifsr->reg = reg;
|
||
pifsr->offset = offset;
|
||
pifsr->cur_frameoffset = pi->frameoffset;
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||
#endif
|
||
pifsr++;
|
||
}
|
||
}
|
||
}
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tfound ctret after regsave func");
|
||
#endif
|
||
|
||
/* Set result parameters. */
|
||
*current_pc_ptr = current_pc;
|
||
*pifsr_ptr = pifsr;
|
||
}
|
||
|
||
|
||
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
|
||
FIXME: the SR bit of the register list is not supported; must check
|
||
that the compiler does not ever generate this bit. */
|
||
|
||
static void
|
||
handle_pushm (int insn, int insn2, struct prologue_info *pi,
|
||
struct pifsr **pifsr_ptr)
|
||
{
|
||
struct pifsr *pifsr = *pifsr_ptr;
|
||
long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
|
||
long offset = 0;
|
||
static struct reg_list pushml_reg_table[] =
|
||
{
|
||
{0x80000, PS_REGNUM}, /* PSW */
|
||
{0x40000, 1}, /* r1 */
|
||
{0x20000, 2}, /* r2 */
|
||
{0x10000, 3}, /* r3 */
|
||
{0x00800, 4}, /* r4 */
|
||
{0x00400, 5}, /* r5 */
|
||
{0x00200, 6}, /* r6 */
|
||
{0x00100, 7}, /* r7 */
|
||
{0x08000, 8}, /* r8 */
|
||
{0x04000, 9}, /* r9 */
|
||
{0x02000, 10}, /* r10 */
|
||
{0x01000, 11}, /* r11 */
|
||
{0x00080, 12}, /* r12 */
|
||
{0x00040, 13}, /* r13 */
|
||
{0x00020, 14}, /* r14 */
|
||
{0x00010, 15}, /* r15 */
|
||
{0, 0} /* end of table */
|
||
};
|
||
static struct reg_list pushmh_reg_table[] =
|
||
{
|
||
{0x80000, 16}, /* r16 */
|
||
{0x40000, 17}, /* r17 */
|
||
{0x20000, 18}, /* r18 */
|
||
{0x10000, 19}, /* r19 */
|
||
{0x00800, 20}, /* r20 */
|
||
{0x00400, 21}, /* r21 */
|
||
{0x00200, 22}, /* r22 */
|
||
{0x00100, 23}, /* r23 */
|
||
{0x08000, 24}, /* r24 */
|
||
{0x04000, 25}, /* r25 */
|
||
{0x02000, 26}, /* r26 */
|
||
{0x01000, 27}, /* r27 */
|
||
{0x00080, 28}, /* r28 */
|
||
{0x00040, 29}, /* r29 */
|
||
{0x00010, 30}, /* r30 */
|
||
{0x00020, 31}, /* r31 */
|
||
{0, 0} /* end of table */
|
||
};
|
||
struct reg_list *reg_table;
|
||
int i;
|
||
|
||
/* Is this a pushml or a pushmh? */
|
||
if ((insn2 & 7) == 1)
|
||
reg_table = pushml_reg_table;
|
||
else
|
||
reg_table = pushmh_reg_table;
|
||
|
||
/* Calculate the total size of the saved registers, and add it
|
||
it to the immediate value used to adjust SP. */
|
||
for (i = 0; reg_table[i].mask != 0; i++)
|
||
if (list12 & reg_table[i].mask)
|
||
offset += REGISTER_RAW_SIZE (regtable[i].regno);
|
||
pi->frameoffset -= offset;
|
||
|
||
/* Calculate the offsets of the registers relative to the value
|
||
the SP will have after the registers have been pushed and the
|
||
imm5 value is subtracted from it. */
|
||
if (pifsr)
|
||
{
|
||
for (i = 0; reg_table[i].mask != 0; i++)
|
||
{
|
||
if (list12 & reg_table[i].mask)
|
||
{
|
||
int reg = reg_table[i].regno;
|
||
offset -= REGISTER_RAW_SIZE (reg);
|
||
pifsr->reg = reg;
|
||
pifsr->offset = offset;
|
||
pifsr->cur_frameoffset = pi->frameoffset;
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||
#endif
|
||
pifsr++;
|
||
}
|
||
}
|
||
}
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tfound ctret after regsave func");
|
||
#endif
|
||
|
||
/* Set result parameters. */
|
||
*pifsr_ptr = pifsr;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Function: scan_prologue
|
||
Scan the prologue of the function that contains PC, and record what
|
||
we find in PI. PI->fsr must be zeroed by the called. Returns the
|
||
pc after the prologue. Note that the addresses saved in pi->fsr
|
||
are actually just frame relative (negative offsets from the frame
|
||
pointer). This is because we don't know the actual value of the
|
||
frame pointer yet. In some circumstances, the frame pointer can't
|
||
be determined till after we have scanned the prologue. */
|
||
|
||
static CORE_ADDR
|
||
v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
|
||
{
|
||
CORE_ADDR func_addr, prologue_end, current_pc;
|
||
struct pifsr *pifsr, *pifsr_tmp;
|
||
int fp_used;
|
||
int ep_used;
|
||
int reg;
|
||
CORE_ADDR save_pc, save_end;
|
||
int regsave_func_p;
|
||
int r12_tmp;
|
||
|
||
/* First, figure out the bounds of the prologue so that we can limit the
|
||
search to something reasonable. */
|
||
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
if (func_addr == entry_point_address ())
|
||
pi->start_function = 1;
|
||
else
|
||
pi->start_function = 0;
|
||
|
||
#if 0
|
||
if (sal.line == 0)
|
||
prologue_end = pc;
|
||
else
|
||
prologue_end = sal.end;
|
||
#else
|
||
prologue_end = pc;
|
||
#endif
|
||
}
|
||
else
|
||
{ /* We're in the boondocks */
|
||
func_addr = pc - 100;
|
||
prologue_end = pc;
|
||
}
|
||
|
||
prologue_end = min (prologue_end, pc);
|
||
|
||
/* Now, search the prologue looking for instructions that setup fp, save
|
||
rp, adjust sp and such. We also record the frame offset of any saved
|
||
registers. */
|
||
|
||
pi->frameoffset = 0;
|
||
pi->framereg = SP_REGNUM;
|
||
fp_used = 0;
|
||
ep_used = 0;
|
||
pifsr = pi->pifsrs;
|
||
regsave_func_p = 0;
|
||
save_pc = 0;
|
||
save_end = 0;
|
||
r12_tmp = 0;
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
|
||
(long) func_addr, (long) prologue_end);
|
||
#endif
|
||
|
||
for (current_pc = func_addr; current_pc < prologue_end;)
|
||
{
|
||
int insn, insn2;
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("0x%.8lx ", (long) current_pc);
|
||
(*tm_print_insn) (current_pc, &tm_print_insn_info);
|
||
#endif
|
||
|
||
insn = read_memory_unsigned_integer (current_pc, 2);
|
||
current_pc += 2;
|
||
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
|
||
{
|
||
insn2 = read_memory_unsigned_integer (current_pc, 2);
|
||
current_pc += 2;
|
||
}
|
||
|
||
if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
|
||
{ /* jarl <func>,10 */
|
||
long low_disp = insn2 & ~(long) 1;
|
||
long disp = (((((insn & 0x3f) << 16) + low_disp)
|
||
& ~(long) 1) ^ 0x00200000) - 0x00200000;
|
||
|
||
save_pc = current_pc;
|
||
save_end = prologue_end;
|
||
regsave_func_p = 1;
|
||
current_pc += disp - 4;
|
||
prologue_end = (current_pc
|
||
+ (2 * 3) /* moves to/from ep */
|
||
+ 4 /* addi <const>,sp,sp */
|
||
+ 2 /* jmp [r10] */
|
||
+ (2 * 12) /* sst.w to save r2, r20-r29, r31 */
|
||
+ 20); /* slop area */
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
|
||
disp, low_disp, (long) current_pc + 2);
|
||
#endif
|
||
continue;
|
||
}
|
||
else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
|
||
{ /* callt <imm6> */
|
||
long ctbp = read_register (CTBP_REGNUM);
|
||
long adr = ctbp + ((insn & 0x3f) << 1);
|
||
|
||
save_pc = current_pc;
|
||
save_end = prologue_end;
|
||
regsave_func_p = 1;
|
||
current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
|
||
prologue_end = (current_pc
|
||
+ (2 * 3) /* prepare list2,imm5,sp/imm */
|
||
+ 4 /* ctret */
|
||
+ 20); /* slop area */
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tfound callt, ctbp = 0x%.8lx, adr = %.8lx, new pc = 0x%.8lx\n",
|
||
ctbp, adr, (long) current_pc);
|
||
#endif
|
||
continue;
|
||
}
|
||
else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
|
||
{
|
||
handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr);
|
||
continue;
|
||
}
|
||
else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
|
||
{ /* ctret after processing register save function */
|
||
current_pc = save_pc;
|
||
prologue_end = save_end;
|
||
regsave_func_p = 0;
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tfound ctret after regsave func");
|
||
#endif
|
||
continue;
|
||
}
|
||
else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
|
||
{ /* pushml, pushmh */
|
||
handle_pushm (insn, insn2, pi, &pifsr);
|
||
continue;
|
||
}
|
||
else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
|
||
{ /* jmp after processing register save function */
|
||
current_pc = save_pc;
|
||
prologue_end = save_end;
|
||
regsave_func_p = 0;
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tfound jmp after regsave func");
|
||
#endif
|
||
continue;
|
||
}
|
||
else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
|
||
|| (insn & 0xffe0) == 0x0060 /* jmp */
|
||
|| (insn & 0x0780) == 0x0580) /* branch */
|
||
{
|
||
#ifdef DEBUG
|
||
printf_filtered ("\n");
|
||
#endif
|
||
break; /* Ran into end of prologue */
|
||
}
|
||
|
||
else if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
|
||
pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
|
||
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
|
||
pi->frameoffset += insn2;
|
||
else if (insn == ((FP_RAW_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,fp */
|
||
{
|
||
fp_used = 1;
|
||
pi->framereg = FP_RAW_REGNUM;
|
||
}
|
||
|
||
else if (insn == ((R12_REGNUM << 11) | 0x0640 | R0_REGNUM)) /* movhi hi(const),r0,r12 */
|
||
r12_tmp = insn2 << 16;
|
||
else if (insn == ((R12_REGNUM << 11) | 0x0620 | R12_REGNUM)) /* movea lo(const),r12,r12 */
|
||
r12_tmp += insn2;
|
||
else if (insn == ((SP_REGNUM << 11) | 0x01c0 | R12_REGNUM) && r12_tmp) /* add r12,sp */
|
||
pi->frameoffset = r12_tmp;
|
||
else if (insn == ((EP_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,ep */
|
||
ep_used = 1;
|
||
else if (insn == ((EP_REGNUM << 11) | 0x0000 | R1_REGNUM)) /* mov r1,ep */
|
||
ep_used = 0;
|
||
else if (((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|
||
|| (fp_used
|
||
&& (insn & 0x07ff) == (0x0760 | FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
|
||
&& pifsr
|
||
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
|
||
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
|
||
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
|
||
{
|
||
pifsr->reg = reg;
|
||
pifsr->offset = insn2 & ~1;
|
||
pifsr->cur_frameoffset = pi->frameoffset;
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||
#endif
|
||
pifsr++;
|
||
}
|
||
|
||
else if (ep_used /* sst.w <reg>,<offset>[ep] */
|
||
&& ((insn & 0x0781) == 0x0501)
|
||
&& pifsr
|
||
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
|
||
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
|
||
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
|
||
{
|
||
pifsr->reg = reg;
|
||
pifsr->offset = (insn & 0x007e) << 1;
|
||
pifsr->cur_frameoffset = pi->frameoffset;
|
||
#ifdef DEBUG
|
||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||
#endif
|
||
pifsr++;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("\n");
|
||
#endif
|
||
}
|
||
|
||
if (pifsr)
|
||
pifsr->framereg = 0; /* Tie off last entry */
|
||
|
||
/* Fix up any offsets to the final offset. If a frame pointer was created, use it
|
||
instead of the stack pointer. */
|
||
for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
|
||
{
|
||
pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
|
||
pifsr_tmp->framereg = pi->framereg;
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
|
||
pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
|
||
#endif
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
|
||
#endif
|
||
|
||
return current_pc;
|
||
}
|
||
|
||
/* Function: init_extra_frame_info
|
||
Setup the frame's frame pointer, pc, and frame addresses for saved
|
||
registers. Most of the work is done in scan_prologue().
|
||
|
||
Note that when we are called for the last frame (currently active frame),
|
||
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
||
be valid only if this routine uses FP. For previous frames, fi-frame will
|
||
always be correct (since that is derived from v850_frame_chain ()).
|
||
|
||
We can be called with the PC in the call dummy under two circumstances.
|
||
First, during normal backtracing, second, while figuring out the frame
|
||
pointer just prior to calling the target function (see run_stack_dummy). */
|
||
|
||
void
|
||
v850_init_extra_frame_info (struct frame_info *fi)
|
||
{
|
||
struct prologue_info pi;
|
||
struct pifsr pifsrs[NUM_REGS + 1], *pifsr;
|
||
|
||
if (fi->next)
|
||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||
|
||
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
||
|
||
/* The call dummy doesn't save any registers on the stack, so we can return
|
||
now. */
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
return;
|
||
|
||
pi.pifsrs = pifsrs;
|
||
|
||
v850_scan_prologue (fi->pc, &pi);
|
||
|
||
if (!fi->next && pi.framereg == SP_REGNUM)
|
||
fi->frame = read_register (pi.framereg) - pi.frameoffset;
|
||
|
||
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
|
||
{
|
||
fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame;
|
||
|
||
if (pifsr->framereg == SP_REGNUM)
|
||
fi->fsr.regs[pifsr->reg] += pi.frameoffset;
|
||
}
|
||
}
|
||
|
||
/* Function: frame_chain
|
||
Figure out the frame prior to FI. Unfortunately, this involves
|
||
scanning the prologue of the caller, which will also be done
|
||
shortly by v850_init_extra_frame_info. For the dummy frame, we
|
||
just return the stack pointer that was in use at the time the
|
||
function call was made. */
|
||
|
||
CORE_ADDR
|
||
v850_frame_chain (struct frame_info *fi)
|
||
{
|
||
struct prologue_info pi;
|
||
CORE_ADDR callers_pc, fp;
|
||
|
||
/* First, find out who called us */
|
||
callers_pc = FRAME_SAVED_PC (fi);
|
||
/* If caller is a call-dummy, then our FP bears no relation to his FP! */
|
||
fp = v850_find_callers_reg (fi, FP_RAW_REGNUM);
|
||
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
|
||
return fp; /* caller is call-dummy: return oldest value of FP */
|
||
|
||
/* Caller is NOT a call-dummy, so everything else should just work.
|
||
Even if THIS frame is a call-dummy! */
|
||
pi.pifsrs = NULL;
|
||
|
||
v850_scan_prologue (callers_pc, &pi);
|
||
|
||
if (pi.start_function)
|
||
return 0; /* Don't chain beyond the start function */
|
||
|
||
if (pi.framereg == FP_RAW_REGNUM)
|
||
return v850_find_callers_reg (fi, pi.framereg);
|
||
|
||
return fi->frame - pi.frameoffset;
|
||
}
|
||
|
||
/* Function: find_callers_reg
|
||
Find REGNUM on the stack. Otherwise, it's in an active register.
|
||
One thing we might want to do here is to check REGNUM against the
|
||
clobber mask, and somehow flag it as invalid if it isn't saved on
|
||
the stack somewhere. This would provide a graceful failure mode
|
||
when trying to get the value of caller-saves registers for an inner
|
||
frame. */
|
||
|
||
CORE_ADDR
|
||
v850_find_callers_reg (struct frame_info *fi, int regnum)
|
||
{
|
||
for (; fi; fi = fi->next)
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
||
else if (fi->fsr.regs[regnum] != 0)
|
||
return read_memory_unsigned_integer (fi->fsr.regs[regnum],
|
||
REGISTER_RAW_SIZE (regnum));
|
||
|
||
return read_register (regnum);
|
||
}
|
||
|
||
/* Function: skip_prologue
|
||
Return the address of the first code past the prologue of the function. */
|
||
|
||
CORE_ADDR
|
||
v850_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR func_addr, func_end;
|
||
|
||
/* See what the symbol table says */
|
||
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
if (sal.line != 0 && sal.end < func_end)
|
||
return sal.end;
|
||
else
|
||
/* Either there's no line info, or the line after the prologue is after
|
||
the end of the function. In this case, there probably isn't a
|
||
prologue. */
|
||
return pc;
|
||
}
|
||
|
||
/* We can't find the start of this function, so there's nothing we can do. */
|
||
return pc;
|
||
}
|
||
|
||
/* Function: pop_frame
|
||
This routine gets called when either the user uses the `return'
|
||
command, or the call dummy breakpoint gets hit. */
|
||
|
||
void
|
||
v850_pop_frame (struct frame_info *frame)
|
||
{
|
||
int regnum;
|
||
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
generic_pop_dummy_frame ();
|
||
else
|
||
{
|
||
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
||
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||
if (frame->fsr.regs[regnum] != 0)
|
||
write_register (regnum,
|
||
read_memory_unsigned_integer (frame->fsr.regs[regnum],
|
||
REGISTER_RAW_SIZE (regnum)));
|
||
|
||
write_register (SP_REGNUM, FRAME_FP (frame));
|
||
}
|
||
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Function: push_arguments
|
||
Setup arguments and RP for a call to the target. First four args
|
||
go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
|
||
are passed by reference. 64 bit quantities (doubles and long
|
||
longs) may be split between the regs and the stack. When calling a
|
||
function that returns a struct, a pointer to the struct is passed
|
||
in as a secret first argument (always in R6).
|
||
|
||
Stack space for the args has NOT been allocated: that job is up to us.
|
||
*/
|
||
|
||
CORE_ADDR
|
||
v850_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
|
||
unsigned char struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int argreg;
|
||
int argnum;
|
||
int len = 0;
|
||
int stack_offset;
|
||
|
||
/* First, just for safety, make sure stack is aligned */
|
||
sp &= ~3;
|
||
|
||
/* Now make space on the stack for the args. */
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
len += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
|
||
sp -= len; /* possibly over-allocating, but it works... */
|
||
/* (you might think we could allocate 16 bytes */
|
||
/* less, but the ABI seems to use it all! ) */
|
||
argreg = ARG0_REGNUM;
|
||
|
||
/* the struct_return pointer occupies the first parameter-passing reg */
|
||
if (struct_return)
|
||
write_register (argreg++, struct_addr);
|
||
|
||
stack_offset = 16;
|
||
/* The offset onto the stack at which we will start copying parameters
|
||
(after the registers are used up) begins at 16 rather than at zero.
|
||
I don't really know why, that's just the way it seems to work. */
|
||
|
||
/* Now load as many as possible of the first arguments into
|
||
registers, and push the rest onto the stack. There are 16 bytes
|
||
in four registers available. Loop thru args from first to last. */
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
int len;
|
||
char *val;
|
||
char valbuf[REGISTER_RAW_SIZE (ARG0_REGNUM)];
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
||
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
||
{
|
||
store_address (valbuf, 4, VALUE_ADDRESS (*args));
|
||
len = 4;
|
||
val = valbuf;
|
||
}
|
||
else
|
||
{
|
||
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
||
val = (char *) VALUE_CONTENTS (*args);
|
||
}
|
||
|
||
while (len > 0)
|
||
if (argreg <= ARGLAST_REGNUM)
|
||
{
|
||
CORE_ADDR regval;
|
||
|
||
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
||
write_register (argreg, regval);
|
||
|
||
len -= REGISTER_RAW_SIZE (argreg);
|
||
val += REGISTER_RAW_SIZE (argreg);
|
||
argreg++;
|
||
}
|
||
else
|
||
{
|
||
write_memory (sp + stack_offset, val, 4);
|
||
|
||
len -= 4;
|
||
val += 4;
|
||
stack_offset += 4;
|
||
}
|
||
args++;
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
/* Function: push_return_address (pc)
|
||
Set up the return address for the inferior function call.
|
||
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
||
|
||
CORE_ADDR
|
||
v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
/* Function: frame_saved_pc
|
||
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
||
is saved in the stack anywhere, otherwise we get it from the
|
||
registers. If the inner frame is a dummy frame, return its PC
|
||
instead of RP, because that's where "caller" of the dummy-frame
|
||
will be found. */
|
||
|
||
CORE_ADDR
|
||
v850_frame_saved_pc (struct frame_info *fi)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
||
else
|
||
return v850_find_callers_reg (fi, RP_REGNUM);
|
||
}
|
||
|
||
|
||
/* Function: fix_call_dummy
|
||
Pokes the callee function's address into the CALL_DUMMY assembly stub.
|
||
Assumes that the CALL_DUMMY looks like this:
|
||
jarl <offset24>, r31
|
||
trap
|
||
*/
|
||
|
||
int
|
||
v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
|
||
value_ptr *args, struct type *type, int gcc_p)
|
||
{
|
||
long offset24;
|
||
|
||
offset24 = (long) fun - (long) entry_point_address ();
|
||
offset24 &= 0x3fffff;
|
||
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
|
||
|
||
store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
|
||
store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
|
||
return 0;
|
||
}
|
||
|
||
/* Change the register names based on the current machine type. */
|
||
|
||
static int
|
||
v850_target_architecture_hook (const bfd_arch_info_type *ap)
|
||
{
|
||
int i, j;
|
||
|
||
if (ap->arch != bfd_arch_v850)
|
||
return 0;
|
||
|
||
for (i = 0; v850_processor_type_table[i].regnames != NULL; i++)
|
||
{
|
||
if (v850_processor_type_table[i].mach == ap->mach)
|
||
{
|
||
v850_register_names = v850_processor_type_table[i].regnames;
|
||
tm_print_insn_info.mach = ap->mach;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
"Architecture `%s' unrecognized", ap->printable_name);
|
||
}
|
||
|
||
void
|
||
_initialize_v850_tdep (void)
|
||
{
|
||
tm_print_insn = print_insn_v850;
|
||
target_architecture_hook = v850_target_architecture_hook;
|
||
}
|