binutils-gdb/gdb/testsuite/gdb.dwarf2/implref-global.exp
Joel Brobecker 61baf725ec update copyright year range in GDB files
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.

gdb/ChangeLog:

        Update copyright year range in all GDB files.
2017-01-01 10:52:34 +04:00

125 lines
4.1 KiB
Plaintext

# Copyright 2016-2017 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test a C++ reference marked with DW_OP_GNU_implicit_pointer.
# The referenced value is a global variable whose location is a DW_OP_addr.
if [skip_cplus_tests] {
continue
}
load_lib dwarf.exp
# This test can only be run on targets which support DWARF-2 and use gas.
if ![dwarf2_support] {
return 0
}
# We'll place the output of Dwarf::assemble in implref-global.S.
standard_testfile .c .S
# ${testfile} is now "implref-global". srcfile2 is "implref-global.S".
set executable ${testfile}
set asm_file [standard_output_file ${srcfile2}]
# We need to know the size of integer and address types in order
# to write some of the debugging info we'd like to generate.
#
# For that, we ask GDB by debugging our implref-global program.
# Any program would do, but since we already have implref-global
# specifically for this testcase, might as well use that.
if [prepare_for_testing "failed to prepare" ${testfile} ${srcfile}] {
return -1
}
# Create the DWARF. We need a regular variable and a reference to it that'll
# be marked with DW_OP_GNU_implicit_pointer. The variable must be global so
# that its name is an exported symbol that we can reference from the DWARF
# using gdb_target_symbol.
Dwarf::assemble ${asm_file} {
global srcdir subdir srcfile
cu {} {
DW_TAG_compile_unit {
{DW_AT_language @DW_LANG_C_plus_plus}
} {
declare_labels int_label variable_label ref_label
set int_size [get_sizeof "int" -1]
# gdb always assumes references are implemented as pointers.
set addr_size [get_sizeof "void *" -1]
int_label: DW_TAG_base_type {
{DW_AT_byte_size ${int_size} DW_FORM_udata}
{DW_AT_encoding @DW_ATE_signed}
{DW_AT_name "int"}
}
ref_label: DW_TAG_reference_type {
{DW_AT_byte_size ${addr_size} DW_FORM_udata}
{DW_AT_type :${int_label}}
}
variable_label: DW_TAG_variable {
{DW_AT_name "global_var"}
{DW_AT_type :${int_label}}
{DW_AT_external 1 DW_FORM_flag}
{DW_AT_location {DW_OP_addr [gdb_target_symbol "global_var"]} SPECIAL_expr}
}
DW_TAG_subprogram {
{MACRO_AT_func { "main" "${srcdir}/${subdir}/${srcfile}" }}
{DW_AT_type :${int_label}}
{DW_AT_external 1 DW_FORM_flag}
} {
DW_TAG_variable {
{DW_AT_name "ref"}
{DW_AT_type :${ref_label}}
{DW_AT_location {DW_OP_GNU_implicit_pointer ${variable_label} 0} SPECIAL_expr}
}
}
}
}
}
if [prepare_for_testing "failed to prepare" ${executable} [list ${asm_file} ${srcfile}] {}] {
return -1
}
# DW_OP_GNU_implicit_pointer implementation requires a valid frame.
if ![runto_main] {
return -1
}
# Address of the referenced value.
set address [get_hexadecimal_valueof "&global_var" ""]
# Doing 'print ref' should show us e.g. '(int &) @0xdeadbeef: 42'.
gdb_test "print ref" " = \\(int &\\) @${address}: \\\d+"
# Doing 'print &ref' should show us e.g. '(int *) 0xdeadbeef <global_var>'.
gdb_test "print &ref" " = \\(int \\*\\) ${address} <global_var>"
# gdb assumes C++ references are implemented as pointers, and print &(&ref)
# shows us the underlying pointer's address. Since in this case there's no
# physical pointer, gdb should tell us so.
gdb_test "print &(&ref)" "Attempt to take address of value not located in memory."
# Test assignment through the synthetic reference.
set new_value 10
gdb_test_no_output "set (ref = ${new_value})"
gdb_test "print ref" " = \\(int &\\) @${address}: ${new_value}" "print ref after assignment"
gdb_test "print global_var" " = ${new_value}" "print global_var after assignment"