1299 lines
27 KiB
C
1299 lines
27 KiB
C
/* This is a software floating point library which can be used instead of
|
|
the floating point routines in libgcc1.c for targets without hardware
|
|
floating point. */
|
|
|
|
/* Copyright (C) 1994, 2007 Free Software Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* As a special exception, if you link this library with other files,
|
|
some of which are compiled with GCC, to produce an executable,
|
|
this library does not by itself cause the resulting executable
|
|
to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why
|
|
the executable file might be covered by the GNU General Public License. */
|
|
|
|
/* This implements IEEE 754 format arithmetic, but does not provide a
|
|
mechanism for setting the rounding mode, or for generating or handling
|
|
exceptions.
|
|
|
|
The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
|
|
Wilson, all of Cygnus Support. */
|
|
|
|
/* The intended way to use this file is to make two copies, add `#define FLOAT'
|
|
to one copy, then compile both copies and add them to libgcc.a. */
|
|
|
|
/* The following macros can be defined to change the behaviour of this file:
|
|
FLOAT: Implement a `float', aka SFmode, fp library. If this is not
|
|
defined, then this file implements a `double', aka DFmode, fp library.
|
|
FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
|
|
don't include float->double conversion which requires the double library.
|
|
This is useful only for machines which can't support doubles, e.g. some
|
|
8-bit processors.
|
|
CMPtype: Specify the type that floating point compares should return.
|
|
This defaults to SItype, aka int.
|
|
US_SOFTWARE_GOFAST: This makes all entry points use the same names as the
|
|
US Software goFast library. If this is not defined, the entry points use
|
|
the same names as libgcc1.c.
|
|
_DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
|
|
two integers to the FLO_union_type.
|
|
NO_NANS: Disable nan and infinity handling
|
|
SMALL_MACHINE: Useful when operations on QIs and HIs are faster
|
|
than on an SI */
|
|
|
|
#ifndef SFtype
|
|
typedef SFtype __attribute__ ((mode (SF)));
|
|
#endif
|
|
#ifndef DFtype
|
|
typedef DFtype __attribute__ ((mode (DF)));
|
|
#endif
|
|
|
|
#ifndef HItype
|
|
typedef int HItype __attribute__ ((mode (HI)));
|
|
#endif
|
|
#ifndef SItype
|
|
typedef int SItype __attribute__ ((mode (SI)));
|
|
#endif
|
|
#ifndef DItype
|
|
typedef int DItype __attribute__ ((mode (DI)));
|
|
#endif
|
|
|
|
/* The type of the result of a fp compare */
|
|
#ifndef CMPtype
|
|
#define CMPtype SItype
|
|
#endif
|
|
|
|
#ifndef UHItype
|
|
typedef unsigned int UHItype __attribute__ ((mode (HI)));
|
|
#endif
|
|
#ifndef USItype
|
|
typedef unsigned int USItype __attribute__ ((mode (SI)));
|
|
#endif
|
|
#ifndef UDItype
|
|
typedef unsigned int UDItype __attribute__ ((mode (DI)));
|
|
#endif
|
|
|
|
#define MAX_SI_INT ((SItype) ((unsigned) (~0)>>1))
|
|
#define MAX_USI_INT ((USItype) ~0)
|
|
|
|
|
|
#ifdef FLOAT_ONLY
|
|
#define NO_DI_MODE
|
|
#endif
|
|
|
|
#ifdef FLOAT
|
|
# define NGARDS 7L
|
|
# define GARDROUND 0x3f
|
|
# define GARDMASK 0x7f
|
|
# define GARDMSB 0x40
|
|
# define EXPBITS 8
|
|
# define EXPBIAS 127
|
|
# define FRACBITS 23
|
|
# define EXPMAX (0xff)
|
|
# define QUIET_NAN 0x100000L
|
|
# define FRAC_NBITS 32
|
|
# define FRACHIGH 0x80000000L
|
|
# define FRACHIGH2 0xc0000000L
|
|
typedef USItype fractype;
|
|
typedef UHItype halffractype;
|
|
typedef SFtype FLO_type;
|
|
typedef SItype intfrac;
|
|
|
|
#else
|
|
# define PREFIXFPDP dp
|
|
# define PREFIXSFDF df
|
|
# define NGARDS 8L
|
|
# define GARDROUND 0x7f
|
|
# define GARDMASK 0xff
|
|
# define GARDMSB 0x80
|
|
# define EXPBITS 11
|
|
# define EXPBIAS 1023
|
|
# define FRACBITS 52
|
|
# define EXPMAX (0x7ff)
|
|
# define QUIET_NAN 0x8000000000000LL
|
|
# define FRAC_NBITS 64
|
|
# define FRACHIGH 0x8000000000000000LL
|
|
# define FRACHIGH2 0xc000000000000000LL
|
|
typedef UDItype fractype;
|
|
typedef USItype halffractype;
|
|
typedef DFtype FLO_type;
|
|
typedef DItype intfrac;
|
|
#endif
|
|
|
|
#ifdef US_SOFTWARE_GOFAST
|
|
# ifdef FLOAT
|
|
# define add fpadd
|
|
# define sub fpsub
|
|
# define multiply fpmul
|
|
# define divide fpdiv
|
|
# define compare fpcmp
|
|
# define si_to_float sitofp
|
|
# define float_to_si fptosi
|
|
# define float_to_usi fptoui
|
|
# define negate __negsf2
|
|
# define sf_to_df fptodp
|
|
# define dptofp dptofp
|
|
#else
|
|
# define add dpadd
|
|
# define sub dpsub
|
|
# define multiply dpmul
|
|
# define divide dpdiv
|
|
# define compare dpcmp
|
|
# define si_to_float litodp
|
|
# define float_to_si dptoli
|
|
# define float_to_usi dptoul
|
|
# define negate __negdf2
|
|
# define df_to_sf dptofp
|
|
#endif
|
|
#else
|
|
# ifdef FLOAT
|
|
# define add __addsf3
|
|
# define sub __subsf3
|
|
# define multiply __mulsf3
|
|
# define divide __divsf3
|
|
# define compare __cmpsf2
|
|
# define _eq_f2 __eqsf2
|
|
# define _ne_f2 __nesf2
|
|
# define _gt_f2 __gtsf2
|
|
# define _ge_f2 __gesf2
|
|
# define _lt_f2 __ltsf2
|
|
# define _le_f2 __lesf2
|
|
# define si_to_float __floatsisf
|
|
# define float_to_si __fixsfsi
|
|
# define float_to_usi __fixunssfsi
|
|
# define negate __negsf2
|
|
# define sf_to_df __extendsfdf2
|
|
#else
|
|
# define add __adddf3
|
|
# define sub __subdf3
|
|
# define multiply __muldf3
|
|
# define divide __divdf3
|
|
# define compare __cmpdf2
|
|
# define _eq_f2 __eqdf2
|
|
# define _ne_f2 __nedf2
|
|
# define _gt_f2 __gtdf2
|
|
# define _ge_f2 __gedf2
|
|
# define _lt_f2 __ltdf2
|
|
# define _le_f2 __ledf2
|
|
# define si_to_float __floatsidf
|
|
# define float_to_si __fixdfsi
|
|
# define float_to_usi __fixunsdfsi
|
|
# define negate __negdf2
|
|
# define df_to_sf __truncdfsf2
|
|
# endif
|
|
#endif
|
|
|
|
|
|
#ifndef INLINE
|
|
#define INLINE __inline__
|
|
#endif
|
|
|
|
/* Preserve the sticky-bit when shifting fractions to the right. */
|
|
#define LSHIFT(a) { a = (a & 1) | (a >> 1); }
|
|
|
|
/* numeric parameters */
|
|
/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa
|
|
of a float and of a double. Assumes there are only two float types.
|
|
(double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS))
|
|
*/
|
|
#define F_D_BITOFF (52+8-(23+7))
|
|
|
|
|
|
#define NORMAL_EXPMIN (-(EXPBIAS)+1)
|
|
#define IMPLICIT_1 (1LL<<(FRACBITS+NGARDS))
|
|
#define IMPLICIT_2 (1LL<<(FRACBITS+1+NGARDS))
|
|
|
|
/* common types */
|
|
|
|
typedef enum
|
|
{
|
|
CLASS_SNAN,
|
|
CLASS_QNAN,
|
|
CLASS_ZERO,
|
|
CLASS_NUMBER,
|
|
CLASS_INFINITY
|
|
} fp_class_type;
|
|
|
|
typedef struct
|
|
{
|
|
#ifdef SMALL_MACHINE
|
|
char class;
|
|
unsigned char sign;
|
|
short normal_exp;
|
|
#else
|
|
fp_class_type class;
|
|
unsigned int sign;
|
|
int normal_exp;
|
|
#endif
|
|
|
|
union
|
|
{
|
|
fractype ll;
|
|
halffractype l[2];
|
|
} fraction;
|
|
} fp_number_type;
|
|
|
|
typedef union
|
|
{
|
|
FLO_type value;
|
|
#ifdef _DEBUG_BITFLOAT
|
|
int l[2];
|
|
#endif
|
|
struct
|
|
{
|
|
#ifndef FLOAT_BIT_ORDER_MISMATCH
|
|
unsigned int sign:1 __attribute__ ((packed));
|
|
unsigned int exp:EXPBITS __attribute__ ((packed));
|
|
fractype fraction:FRACBITS __attribute__ ((packed));
|
|
#else
|
|
fractype fraction:FRACBITS __attribute__ ((packed));
|
|
unsigned int exp:EXPBITS __attribute__ ((packed));
|
|
unsigned int sign:1 __attribute__ ((packed));
|
|
#endif
|
|
}
|
|
bits;
|
|
}
|
|
FLO_union_type;
|
|
|
|
|
|
/* end of header */
|
|
|
|
/* IEEE "special" number predicates */
|
|
|
|
#ifdef NO_NANS
|
|
|
|
#define nan() 0
|
|
#define isnan(x) 0
|
|
#define isinf(x) 0
|
|
#else
|
|
|
|
INLINE
|
|
static fp_number_type *
|
|
nan ()
|
|
{
|
|
static fp_number_type thenan;
|
|
|
|
return &thenan;
|
|
}
|
|
|
|
INLINE
|
|
static int
|
|
isnan ( fp_number_type * x)
|
|
{
|
|
return x->class == CLASS_SNAN || x->class == CLASS_QNAN;
|
|
}
|
|
|
|
INLINE
|
|
static int
|
|
isinf ( fp_number_type * x)
|
|
{
|
|
return x->class == CLASS_INFINITY;
|
|
}
|
|
|
|
#endif
|
|
|
|
INLINE
|
|
static int
|
|
iszero ( fp_number_type * x)
|
|
{
|
|
return x->class == CLASS_ZERO;
|
|
}
|
|
|
|
INLINE
|
|
static void
|
|
flip_sign ( fp_number_type * x)
|
|
{
|
|
x->sign = !x->sign;
|
|
}
|
|
|
|
static FLO_type
|
|
pack_d ( fp_number_type * src)
|
|
{
|
|
FLO_union_type dst;
|
|
fractype fraction = src->fraction.ll; /* wasn't unsigned before? */
|
|
|
|
dst.bits.sign = src->sign;
|
|
|
|
if (isnan (src))
|
|
{
|
|
dst.bits.exp = EXPMAX;
|
|
dst.bits.fraction = src->fraction.ll;
|
|
if (src->class == CLASS_QNAN || 1)
|
|
{
|
|
dst.bits.fraction |= QUIET_NAN;
|
|
}
|
|
}
|
|
else if (isinf (src))
|
|
{
|
|
dst.bits.exp = EXPMAX;
|
|
dst.bits.fraction = 0;
|
|
}
|
|
else if (iszero (src))
|
|
{
|
|
dst.bits.exp = 0;
|
|
dst.bits.fraction = 0;
|
|
}
|
|
else if (fraction == 0)
|
|
{
|
|
dst.value = 0;
|
|
}
|
|
else
|
|
{
|
|
if (src->normal_exp < NORMAL_EXPMIN)
|
|
{
|
|
/* This number's exponent is too low to fit into the bits
|
|
available in the number, so we'll store 0 in the exponent and
|
|
shift the fraction to the right to make up for it. */
|
|
|
|
int shift = NORMAL_EXPMIN - src->normal_exp;
|
|
|
|
dst.bits.exp = 0;
|
|
|
|
if (shift > FRAC_NBITS - NGARDS)
|
|
{
|
|
/* No point shifting, since it's more that 64 out. */
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Shift by the value */
|
|
fraction >>= shift;
|
|
}
|
|
fraction >>= NGARDS;
|
|
dst.bits.fraction = fraction;
|
|
}
|
|
else if (src->normal_exp > EXPBIAS)
|
|
{
|
|
dst.bits.exp = EXPMAX;
|
|
dst.bits.fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
dst.bits.exp = src->normal_exp + EXPBIAS;
|
|
/* IF the gard bits are the all zero, but the first, then we're
|
|
half way between two numbers, choose the one which makes the
|
|
lsb of the answer 0. */
|
|
if ((fraction & GARDMASK) == GARDMSB)
|
|
{
|
|
if (fraction & (1 << NGARDS))
|
|
fraction += GARDROUND + 1;
|
|
}
|
|
else
|
|
{
|
|
/* Add a one to the guards to round up */
|
|
fraction += GARDROUND;
|
|
}
|
|
if (fraction >= IMPLICIT_2)
|
|
{
|
|
fraction >>= 1;
|
|
dst.bits.exp += 1;
|
|
}
|
|
fraction >>= NGARDS;
|
|
dst.bits.fraction = fraction;
|
|
}
|
|
}
|
|
return dst.value;
|
|
}
|
|
|
|
static void
|
|
unpack_d (FLO_union_type * src, fp_number_type * dst)
|
|
{
|
|
fractype fraction = src->bits.fraction;
|
|
|
|
dst->sign = src->bits.sign;
|
|
if (src->bits.exp == 0)
|
|
{
|
|
/* Hmm. Looks like 0 */
|
|
if (fraction == 0)
|
|
{
|
|
/* tastes like zero */
|
|
dst->class = CLASS_ZERO;
|
|
}
|
|
else
|
|
{
|
|
/* Zero exponent with non zero fraction - it's denormalized,
|
|
so there isn't a leading implicit one - we'll shift it so
|
|
it gets one. */
|
|
dst->normal_exp = src->bits.exp - EXPBIAS + 1;
|
|
fraction <<= NGARDS;
|
|
|
|
dst->class = CLASS_NUMBER;
|
|
#if 1
|
|
while (fraction < IMPLICIT_1)
|
|
{
|
|
fraction <<= 1;
|
|
dst->normal_exp--;
|
|
}
|
|
#endif
|
|
dst->fraction.ll = fraction;
|
|
}
|
|
}
|
|
else if (src->bits.exp == EXPMAX)
|
|
{
|
|
/* Huge exponent*/
|
|
if (fraction == 0)
|
|
{
|
|
/* Attached to a zero fraction - means infinity */
|
|
dst->class = CLASS_INFINITY;
|
|
}
|
|
else
|
|
{
|
|
/* Non zero fraction, means nan */
|
|
if (dst->sign)
|
|
{
|
|
dst->class = CLASS_SNAN;
|
|
}
|
|
else
|
|
{
|
|
dst->class = CLASS_QNAN;
|
|
}
|
|
/* Keep the fraction part as the nan number */
|
|
dst->fraction.ll = fraction;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Nothing strange about this number */
|
|
dst->normal_exp = src->bits.exp - EXPBIAS;
|
|
dst->class = CLASS_NUMBER;
|
|
dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
|
|
}
|
|
}
|
|
|
|
static fp_number_type *
|
|
_fpadd_parts (fp_number_type * a,
|
|
fp_number_type * b,
|
|
fp_number_type * tmp)
|
|
{
|
|
intfrac tfraction;
|
|
|
|
/* Put commonly used fields in local variables. */
|
|
int a_normal_exp;
|
|
int b_normal_exp;
|
|
fractype a_fraction;
|
|
fractype b_fraction;
|
|
|
|
if (isnan (a))
|
|
{
|
|
return a;
|
|
}
|
|
if (isnan (b))
|
|
{
|
|
return b;
|
|
}
|
|
if (isinf (a))
|
|
{
|
|
/* Adding infinities with opposite signs yields a NaN. */
|
|
if (isinf (b) && a->sign != b->sign)
|
|
return nan ();
|
|
return a;
|
|
}
|
|
if (isinf (b))
|
|
{
|
|
return b;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
return a;
|
|
}
|
|
if (iszero (a))
|
|
{
|
|
return b;
|
|
}
|
|
|
|
/* Got two numbers. shift the smaller and increment the exponent till
|
|
they're the same */
|
|
{
|
|
int diff;
|
|
|
|
a_normal_exp = a->normal_exp;
|
|
b_normal_exp = b->normal_exp;
|
|
a_fraction = a->fraction.ll;
|
|
b_fraction = b->fraction.ll;
|
|
|
|
diff = a_normal_exp - b_normal_exp;
|
|
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
if (diff < FRAC_NBITS)
|
|
{
|
|
/* ??? This does shifts one bit at a time. Optimize. */
|
|
while (a_normal_exp > b_normal_exp)
|
|
{
|
|
b_normal_exp++;
|
|
LSHIFT (b_fraction);
|
|
}
|
|
while (b_normal_exp > a_normal_exp)
|
|
{
|
|
a_normal_exp++;
|
|
LSHIFT (a_fraction);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Somethings's up.. choose the biggest */
|
|
if (a_normal_exp > b_normal_exp)
|
|
{
|
|
b_normal_exp = a_normal_exp;
|
|
b_fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
a_normal_exp = b_normal_exp;
|
|
a_fraction = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (a->sign != b->sign)
|
|
{
|
|
if (a->sign)
|
|
{
|
|
tfraction = -a_fraction + b_fraction;
|
|
}
|
|
else
|
|
{
|
|
tfraction = a_fraction - b_fraction;
|
|
}
|
|
if (tfraction > 0)
|
|
{
|
|
tmp->sign = 0;
|
|
tmp->normal_exp = a_normal_exp;
|
|
tmp->fraction.ll = tfraction;
|
|
}
|
|
else
|
|
{
|
|
tmp->sign = 1;
|
|
tmp->normal_exp = a_normal_exp;
|
|
tmp->fraction.ll = -tfraction;
|
|
}
|
|
/* and renormalize it */
|
|
|
|
while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
|
|
{
|
|
tmp->fraction.ll <<= 1;
|
|
tmp->normal_exp--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp->sign = a->sign;
|
|
tmp->normal_exp = a_normal_exp;
|
|
tmp->fraction.ll = a_fraction + b_fraction;
|
|
}
|
|
tmp->class = CLASS_NUMBER;
|
|
/* Now the fraction is added, we have to shift down to renormalize the
|
|
number */
|
|
|
|
if (tmp->fraction.ll >= IMPLICIT_2)
|
|
{
|
|
LSHIFT (tmp->fraction.ll);
|
|
tmp->normal_exp++;
|
|
}
|
|
return tmp;
|
|
|
|
}
|
|
|
|
FLO_type
|
|
add (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
fp_number_type *res;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
res = _fpadd_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
|
|
FLO_type
|
|
sub (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
fp_number_type *res;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
b.sign ^= 1;
|
|
|
|
res = _fpadd_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
|
|
static fp_number_type *
|
|
_fpmul_parts ( fp_number_type * a,
|
|
fp_number_type * b,
|
|
fp_number_type * tmp)
|
|
{
|
|
fractype low = 0;
|
|
fractype high = 0;
|
|
|
|
if (isnan (a))
|
|
{
|
|
a->sign = a->sign != b->sign;
|
|
return a;
|
|
}
|
|
if (isnan (b))
|
|
{
|
|
b->sign = a->sign != b->sign;
|
|
return b;
|
|
}
|
|
if (isinf (a))
|
|
{
|
|
if (iszero (b))
|
|
return nan ();
|
|
a->sign = a->sign != b->sign;
|
|
return a;
|
|
}
|
|
if (isinf (b))
|
|
{
|
|
if (iszero (a))
|
|
{
|
|
return nan ();
|
|
}
|
|
b->sign = a->sign != b->sign;
|
|
return b;
|
|
}
|
|
if (iszero (a))
|
|
{
|
|
a->sign = a->sign != b->sign;
|
|
return a;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
b->sign = a->sign != b->sign;
|
|
return b;
|
|
}
|
|
|
|
/* Calculate the mantissa by multiplying both 64bit numbers to get a
|
|
128 bit number */
|
|
{
|
|
fractype x = a->fraction.ll;
|
|
fractype ylow = b->fraction.ll;
|
|
fractype yhigh = 0;
|
|
int bit;
|
|
|
|
#if defined(NO_DI_MODE)
|
|
{
|
|
/* ??? This does multiplies one bit at a time. Optimize. */
|
|
for (bit = 0; bit < FRAC_NBITS; bit++)
|
|
{
|
|
int carry;
|
|
|
|
if (x & 1)
|
|
{
|
|
carry = (low += ylow) < ylow;
|
|
high += yhigh + carry;
|
|
}
|
|
yhigh <<= 1;
|
|
if (ylow & FRACHIGH)
|
|
{
|
|
yhigh |= 1;
|
|
}
|
|
ylow <<= 1;
|
|
x >>= 1;
|
|
}
|
|
}
|
|
#elif defined(FLOAT)
|
|
{
|
|
/* Multiplying two 32 bit numbers to get a 64 bit number on
|
|
a machine with DI, so we're safe */
|
|
|
|
DItype answer = (DItype)(a->fraction.ll) * (DItype)(b->fraction.ll);
|
|
|
|
high = answer >> 32;
|
|
low = answer;
|
|
}
|
|
#else
|
|
/* Doing a 64*64 to 128 */
|
|
{
|
|
UDItype nl = a->fraction.ll & 0xffffffff;
|
|
UDItype nh = a->fraction.ll >> 32;
|
|
UDItype ml = b->fraction.ll & 0xffffffff;
|
|
UDItype mh = b->fraction.ll >>32;
|
|
UDItype pp_ll = ml * nl;
|
|
UDItype pp_hl = mh * nl;
|
|
UDItype pp_lh = ml * nh;
|
|
UDItype pp_hh = mh * nh;
|
|
UDItype res2 = 0;
|
|
UDItype res0 = 0;
|
|
UDItype ps_hh__ = pp_hl + pp_lh;
|
|
if (ps_hh__ < pp_hl)
|
|
res2 += 0x100000000LL;
|
|
pp_hl = (ps_hh__ << 32) & 0xffffffff00000000LL;
|
|
res0 = pp_ll + pp_hl;
|
|
if (res0 < pp_ll)
|
|
res2++;
|
|
res2 += ((ps_hh__ >> 32) & 0xffffffffL) + pp_hh;
|
|
high = res2;
|
|
low = res0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
tmp->normal_exp = a->normal_exp + b->normal_exp;
|
|
tmp->sign = a->sign != b->sign;
|
|
#ifdef FLOAT
|
|
tmp->normal_exp += 2; /* ??????????????? */
|
|
#else
|
|
tmp->normal_exp += 4; /* ??????????????? */
|
|
#endif
|
|
while (high >= IMPLICIT_2)
|
|
{
|
|
tmp->normal_exp++;
|
|
if (high & 1)
|
|
{
|
|
low >>= 1;
|
|
low |= FRACHIGH;
|
|
}
|
|
high >>= 1;
|
|
}
|
|
while (high < IMPLICIT_1)
|
|
{
|
|
tmp->normal_exp--;
|
|
|
|
high <<= 1;
|
|
if (low & FRACHIGH)
|
|
high |= 1;
|
|
low <<= 1;
|
|
}
|
|
/* rounding is tricky. if we only round if it won't make us round later. */
|
|
#if 0
|
|
if (low & FRACHIGH2)
|
|
{
|
|
if (((high & GARDMASK) != GARDMSB)
|
|
&& (((high + 1) & GARDMASK) == GARDMSB))
|
|
{
|
|
/* don't round, it gets done again later. */
|
|
}
|
|
else
|
|
{
|
|
high++;
|
|
}
|
|
}
|
|
#endif
|
|
if ((high & GARDMASK) == GARDMSB)
|
|
{
|
|
if (high & (1 << NGARDS))
|
|
{
|
|
/* half way, so round to even */
|
|
high += GARDROUND + 1;
|
|
}
|
|
else if (low)
|
|
{
|
|
/* but we really weren't half way */
|
|
high += GARDROUND + 1;
|
|
}
|
|
}
|
|
tmp->fraction.ll = high;
|
|
tmp->class = CLASS_NUMBER;
|
|
return tmp;
|
|
}
|
|
|
|
FLO_type
|
|
multiply (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
fp_number_type *res;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
res = _fpmul_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
|
|
static fp_number_type *
|
|
_fpdiv_parts (fp_number_type * a,
|
|
fp_number_type * b,
|
|
fp_number_type * tmp)
|
|
{
|
|
fractype low = 0;
|
|
fractype high = 0;
|
|
fractype r0, r1, y0, y1, bit;
|
|
fractype q;
|
|
fractype numerator;
|
|
fractype denominator;
|
|
fractype quotient;
|
|
fractype remainder;
|
|
|
|
if (isnan (a))
|
|
{
|
|
return a;
|
|
}
|
|
if (isnan (b))
|
|
{
|
|
return b;
|
|
}
|
|
if (isinf (a) || iszero (a))
|
|
{
|
|
if (a->class == b->class)
|
|
return nan ();
|
|
return a;
|
|
}
|
|
a->sign = a->sign ^ b->sign;
|
|
|
|
if (isinf (b))
|
|
{
|
|
a->fraction.ll = 0;
|
|
a->normal_exp = 0;
|
|
return a;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
a->class = CLASS_INFINITY;
|
|
return b;
|
|
}
|
|
|
|
/* Calculate the mantissa by multiplying both 64bit numbers to get a
|
|
128 bit number */
|
|
{
|
|
int carry;
|
|
intfrac d0, d1; /* weren't unsigned before ??? */
|
|
|
|
/* quotient =
|
|
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
|
|
*/
|
|
|
|
a->normal_exp = a->normal_exp - b->normal_exp;
|
|
numerator = a->fraction.ll;
|
|
denominator = b->fraction.ll;
|
|
|
|
if (numerator < denominator)
|
|
{
|
|
/* Fraction will be less than 1.0 */
|
|
numerator *= 2;
|
|
a->normal_exp--;
|
|
}
|
|
bit = IMPLICIT_1;
|
|
quotient = 0;
|
|
/* ??? Does divide one bit at a time. Optimize. */
|
|
while (bit)
|
|
{
|
|
if (numerator >= denominator)
|
|
{
|
|
quotient |= bit;
|
|
numerator -= denominator;
|
|
}
|
|
bit >>= 1;
|
|
numerator *= 2;
|
|
}
|
|
|
|
if ((quotient & GARDMASK) == GARDMSB)
|
|
{
|
|
if (quotient & (1 << NGARDS))
|
|
{
|
|
/* half way, so round to even */
|
|
quotient += GARDROUND + 1;
|
|
}
|
|
else if (numerator)
|
|
{
|
|
/* but we really weren't half way, more bits exist */
|
|
quotient += GARDROUND + 1;
|
|
}
|
|
}
|
|
|
|
a->fraction.ll = quotient;
|
|
return (a);
|
|
}
|
|
}
|
|
|
|
FLO_type
|
|
divide (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
fp_number_type *res;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
res = _fpdiv_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
|
|
/* according to the demo, fpcmp returns a comparison with 0... thus
|
|
a<b -> -1
|
|
a==b -> 0
|
|
a>b -> +1
|
|
*/
|
|
|
|
static int
|
|
_fpcmp_parts (fp_number_type * a, fp_number_type * b)
|
|
{
|
|
#if 0
|
|
/* either nan -> unordered. Must be checked outside of this routine. */
|
|
if (isnan (a) && isnan (b))
|
|
{
|
|
return 1; /* still unordered! */
|
|
}
|
|
#endif
|
|
|
|
if (isnan (a) || isnan (b))
|
|
{
|
|
return 1; /* how to indicate unordered compare? */
|
|
}
|
|
if (isinf (a) && isinf (b))
|
|
{
|
|
/* +inf > -inf, but +inf != +inf */
|
|
/* b \a| +inf(0)| -inf(1)
|
|
______\+--------+--------
|
|
+inf(0)| a==b(0)| a<b(-1)
|
|
-------+--------+--------
|
|
-inf(1)| a>b(1) | a==b(0)
|
|
-------+--------+--------
|
|
So since unordered must be non zero, just line up the columns...
|
|
*/
|
|
return b->sign - a->sign;
|
|
}
|
|
/* but not both... */
|
|
if (isinf (a))
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
if (isinf (b))
|
|
{
|
|
return b->sign ? 1 : -1;
|
|
}
|
|
if (iszero (a) && iszero (b))
|
|
{
|
|
return 0;
|
|
}
|
|
if (iszero (a))
|
|
{
|
|
return b->sign ? 1 : -1;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
/* now both are "normal". */
|
|
if (a->sign != b->sign)
|
|
{
|
|
/* opposite signs */
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
/* same sign; exponents? */
|
|
if (a->normal_exp > b->normal_exp)
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
if (a->normal_exp < b->normal_exp)
|
|
{
|
|
return a->sign ? 1 : -1;
|
|
}
|
|
/* same exponents; check size. */
|
|
if (a->fraction.ll > b->fraction.ll)
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
if (a->fraction.ll < b->fraction.ll)
|
|
{
|
|
return a->sign ? 1 : -1;
|
|
}
|
|
/* after all that, they're equal. */
|
|
return 0;
|
|
}
|
|
|
|
CMPtype
|
|
compare (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
return _fpcmp_parts (&a, &b);
|
|
}
|
|
|
|
#ifndef US_SOFTWARE_GOFAST
|
|
|
|
/* These should be optimized for their specific tasks someday. */
|
|
|
|
CMPtype
|
|
_eq_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* false, truth == 0 */
|
|
|
|
return _fpcmp_parts (&a, &b) ;
|
|
}
|
|
|
|
CMPtype
|
|
_ne_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* true, truth != 0 */
|
|
|
|
return _fpcmp_parts (&a, &b) ;
|
|
}
|
|
|
|
CMPtype
|
|
_gt_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return -1; /* false, truth > 0 */
|
|
|
|
return _fpcmp_parts (&a, &b);
|
|
}
|
|
|
|
CMPtype
|
|
_ge_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return -1; /* false, truth >= 0 */
|
|
return _fpcmp_parts (&a, &b) ;
|
|
}
|
|
|
|
CMPtype
|
|
_lt_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* false, truth < 0 */
|
|
|
|
return _fpcmp_parts (&a, &b);
|
|
}
|
|
|
|
CMPtype
|
|
_le_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
unpack_d ((FLO_union_type *) & arg_b, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* false, truth <= 0 */
|
|
|
|
return _fpcmp_parts (&a, &b) ;
|
|
}
|
|
|
|
#endif /* ! US_SOFTWARE_GOFAST */
|
|
|
|
FLO_type
|
|
si_to_float (SItype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = CLASS_NUMBER;
|
|
in.sign = arg_a < 0;
|
|
if (!arg_a)
|
|
{
|
|
in.class = CLASS_ZERO;
|
|
}
|
|
else
|
|
{
|
|
in.normal_exp = FRACBITS + NGARDS;
|
|
if (in.sign)
|
|
{
|
|
/* Special case for minint, since there is no +ve integer
|
|
representation for it */
|
|
if (arg_a == 0x80000000)
|
|
{
|
|
return -2147483648.0;
|
|
}
|
|
in.fraction.ll = (-arg_a);
|
|
}
|
|
else
|
|
in.fraction.ll = arg_a;
|
|
|
|
while (in.fraction.ll < (1LL << (FRACBITS + NGARDS)))
|
|
{
|
|
in.fraction.ll <<= 1;
|
|
in.normal_exp -= 1;
|
|
}
|
|
}
|
|
return pack_d (&in);
|
|
}
|
|
|
|
SItype
|
|
float_to_si (FLO_type arg_a)
|
|
{
|
|
fp_number_type a;
|
|
SItype tmp;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
if (iszero (&a))
|
|
return 0;
|
|
if (isnan (&a))
|
|
return 0;
|
|
/* get reasonable MAX_SI_INT... */
|
|
if (isinf (&a))
|
|
return a.sign ? MAX_SI_INT : (-MAX_SI_INT)-1;
|
|
/* it is a number, but a small one */
|
|
if (a.normal_exp < 0)
|
|
return 0;
|
|
if (a.normal_exp > 30)
|
|
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
|
|
tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
|
|
return a.sign ? (-tmp) : (tmp);
|
|
}
|
|
|
|
#ifdef US_SOFTWARE_GOFAST
|
|
/* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines,
|
|
we also define them for GOFAST because the ones in libgcc2.c have the
|
|
wrong names and I'd rather define these here and keep GOFAST CYG-LOC's
|
|
out of libgcc2.c. We can't define these here if not GOFAST because then
|
|
there'd be duplicate copies. */
|
|
|
|
USItype
|
|
float_to_usi (FLO_type arg_a)
|
|
{
|
|
fp_number_type a;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
if (iszero (&a))
|
|
return 0;
|
|
if (isnan (&a))
|
|
return 0;
|
|
/* get reasonable MAX_USI_INT... */
|
|
if (isinf (&a))
|
|
return a.sign ? MAX_USI_INT : 0;
|
|
/* it is a negative number */
|
|
if (a.sign)
|
|
return 0;
|
|
/* it is a number, but a small one */
|
|
if (a.normal_exp < 0)
|
|
return 0;
|
|
if (a.normal_exp > 31)
|
|
return MAX_USI_INT;
|
|
else if (a.normal_exp > (FRACBITS + NGARDS))
|
|
return a.fraction.ll << ((FRACBITS + NGARDS) - a.normal_exp);
|
|
else
|
|
return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
|
|
}
|
|
#endif
|
|
|
|
FLO_type
|
|
negate (FLO_type arg_a)
|
|
{
|
|
fp_number_type a;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &a);
|
|
flip_sign (&a);
|
|
return pack_d (&a);
|
|
}
|
|
|
|
#ifdef FLOAT
|
|
|
|
SFtype
|
|
__make_fp(fp_class_type class,
|
|
unsigned int sign,
|
|
int exp,
|
|
USItype frac)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = class;
|
|
in.sign = sign;
|
|
in.normal_exp = exp;
|
|
in.fraction.ll = frac;
|
|
return pack_d (&in);
|
|
}
|
|
|
|
#ifndef FLOAT_ONLY
|
|
|
|
/* This enables one to build an fp library that supports float but not double.
|
|
Otherwise, we would get an undefined reference to __make_dp.
|
|
This is needed for some 8-bit ports that can't handle well values that
|
|
are 8-bytes in size, so we just don't support double for them at all. */
|
|
|
|
extern DFtype __make_dp (fp_class_type, unsigned int, int, UDItype frac);
|
|
|
|
DFtype
|
|
sf_to_df (SFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &in);
|
|
return __make_dp (in.class, in.sign, in.normal_exp,
|
|
((UDItype) in.fraction.ll) << F_D_BITOFF);
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef FLOAT
|
|
|
|
extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);
|
|
|
|
DFtype
|
|
__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = class;
|
|
in.sign = sign;
|
|
in.normal_exp = exp;
|
|
in.fraction.ll = frac;
|
|
return pack_d (&in);
|
|
}
|
|
|
|
SFtype
|
|
df_to_sf (DFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
|
|
unpack_d ((FLO_union_type *) & arg_a, &in);
|
|
return __make_fp (in.class, in.sign, in.normal_exp,
|
|
in.fraction.ll >> F_D_BITOFF);
|
|
}
|
|
|
|
#endif
|