15736 lines
461 KiB
C
15736 lines
461 KiB
C
/* DWARF 2 debugging format support for GDB.
|
||
|
||
Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
|
||
2004, 2005, 2006, 2007, 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
|
||
Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
|
||
Inc. with support from Florida State University (under contract
|
||
with the Ada Joint Program Office), and Silicon Graphics, Inc.
|
||
Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
|
||
based on Fred Fish's (Cygnus Support) implementation of DWARF 1
|
||
support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "objfiles.h"
|
||
#include "dwarf2.h"
|
||
#include "buildsym.h"
|
||
#include "demangle.h"
|
||
#include "expression.h"
|
||
#include "filenames.h" /* for DOSish file names */
|
||
#include "macrotab.h"
|
||
#include "language.h"
|
||
#include "complaints.h"
|
||
#include "bcache.h"
|
||
#include "dwarf2expr.h"
|
||
#include "dwarf2loc.h"
|
||
#include "cp-support.h"
|
||
#include "hashtab.h"
|
||
#include "command.h"
|
||
#include "gdbcmd.h"
|
||
#include "block.h"
|
||
#include "addrmap.h"
|
||
#include "typeprint.h"
|
||
#include "jv-lang.h"
|
||
#include "psympriv.h"
|
||
#include "exceptions.h"
|
||
#include "gdb_stat.h"
|
||
#include "completer.h"
|
||
#include "vec.h"
|
||
#include "c-lang.h"
|
||
#include "valprint.h"
|
||
|
||
#include <fcntl.h>
|
||
#include "gdb_string.h"
|
||
#include "gdb_assert.h"
|
||
#include <sys/types.h>
|
||
#ifdef HAVE_ZLIB_H
|
||
#include <zlib.h>
|
||
#endif
|
||
#ifdef HAVE_MMAP
|
||
#include <sys/mman.h>
|
||
#ifndef MAP_FAILED
|
||
#define MAP_FAILED ((void *) -1)
|
||
#endif
|
||
#endif
|
||
|
||
typedef struct symbol *symbolp;
|
||
DEF_VEC_P (symbolp);
|
||
|
||
#if 0
|
||
/* .debug_info header for a compilation unit
|
||
Because of alignment constraints, this structure has padding and cannot
|
||
be mapped directly onto the beginning of the .debug_info section. */
|
||
typedef struct comp_unit_header
|
||
{
|
||
unsigned int length; /* length of the .debug_info
|
||
contribution */
|
||
unsigned short version; /* version number -- 2 for DWARF
|
||
version 2 */
|
||
unsigned int abbrev_offset; /* offset into .debug_abbrev section */
|
||
unsigned char addr_size; /* byte size of an address -- 4 */
|
||
}
|
||
_COMP_UNIT_HEADER;
|
||
#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
|
||
#endif
|
||
|
||
/* .debug_line statement program prologue
|
||
Because of alignment constraints, this structure has padding and cannot
|
||
be mapped directly onto the beginning of the .debug_info section. */
|
||
typedef struct statement_prologue
|
||
{
|
||
unsigned int total_length; /* byte length of the statement
|
||
information */
|
||
unsigned short version; /* version number -- 2 for DWARF
|
||
version 2 */
|
||
unsigned int prologue_length; /* # bytes between prologue &
|
||
stmt program */
|
||
unsigned char minimum_instruction_length; /* byte size of
|
||
smallest instr */
|
||
unsigned char default_is_stmt; /* initial value of is_stmt
|
||
register */
|
||
char line_base;
|
||
unsigned char line_range;
|
||
unsigned char opcode_base; /* number assigned to first special
|
||
opcode */
|
||
unsigned char *standard_opcode_lengths;
|
||
}
|
||
_STATEMENT_PROLOGUE;
|
||
|
||
/* When non-zero, dump DIEs after they are read in. */
|
||
static int dwarf2_die_debug = 0;
|
||
|
||
static int pagesize;
|
||
|
||
/* When set, the file that we're processing is known to have debugging
|
||
info for C++ namespaces. GCC 3.3.x did not produce this information,
|
||
but later versions do. */
|
||
|
||
static int processing_has_namespace_info;
|
||
|
||
static const struct objfile_data *dwarf2_objfile_data_key;
|
||
|
||
struct dwarf2_section_info
|
||
{
|
||
asection *asection;
|
||
gdb_byte *buffer;
|
||
bfd_size_type size;
|
||
int was_mmapped;
|
||
/* True if we have tried to read this section. */
|
||
int readin;
|
||
};
|
||
|
||
/* All offsets in the index are of this type. It must be
|
||
architecture-independent. */
|
||
typedef uint32_t offset_type;
|
||
|
||
DEF_VEC_I (offset_type);
|
||
|
||
/* A description of the mapped index. The file format is described in
|
||
a comment by the code that writes the index. */
|
||
struct mapped_index
|
||
{
|
||
/* The total length of the buffer. */
|
||
off_t total_size;
|
||
/* A pointer to the address table data. */
|
||
const gdb_byte *address_table;
|
||
/* Size of the address table data in bytes. */
|
||
offset_type address_table_size;
|
||
/* The symbol table, implemented as a hash table. */
|
||
const offset_type *symbol_table;
|
||
/* Size in slots, each slot is 2 offset_types. */
|
||
offset_type symbol_table_slots;
|
||
/* A pointer to the constant pool. */
|
||
const char *constant_pool;
|
||
};
|
||
|
||
struct dwarf2_per_objfile
|
||
{
|
||
struct dwarf2_section_info info;
|
||
struct dwarf2_section_info abbrev;
|
||
struct dwarf2_section_info line;
|
||
struct dwarf2_section_info loc;
|
||
struct dwarf2_section_info macinfo;
|
||
struct dwarf2_section_info str;
|
||
struct dwarf2_section_info ranges;
|
||
struct dwarf2_section_info types;
|
||
struct dwarf2_section_info frame;
|
||
struct dwarf2_section_info eh_frame;
|
||
struct dwarf2_section_info gdb_index;
|
||
|
||
/* Back link. */
|
||
struct objfile *objfile;
|
||
|
||
/* A list of all the compilation units. This is used to locate
|
||
the target compilation unit of a particular reference. */
|
||
struct dwarf2_per_cu_data **all_comp_units;
|
||
|
||
/* The number of compilation units in ALL_COMP_UNITS. */
|
||
int n_comp_units;
|
||
|
||
/* The number of .debug_types-related CUs. */
|
||
int n_type_comp_units;
|
||
|
||
/* The .debug_types-related CUs. */
|
||
struct dwarf2_per_cu_data **type_comp_units;
|
||
|
||
/* A chain of compilation units that are currently read in, so that
|
||
they can be freed later. */
|
||
struct dwarf2_per_cu_data *read_in_chain;
|
||
|
||
/* A table mapping .debug_types signatures to its signatured_type entry.
|
||
This is NULL if the .debug_types section hasn't been read in yet. */
|
||
htab_t signatured_types;
|
||
|
||
/* A flag indicating wether this objfile has a section loaded at a
|
||
VMA of 0. */
|
||
int has_section_at_zero;
|
||
|
||
/* True if we are using the mapped index. */
|
||
unsigned char using_index;
|
||
|
||
/* The mapped index. */
|
||
struct mapped_index *index_table;
|
||
|
||
/* Set during partial symbol reading, to prevent queueing of full
|
||
symbols. */
|
||
int reading_partial_symbols;
|
||
|
||
/* Table mapping type .debug_info DIE offsets to types.
|
||
This is NULL if not allocated yet.
|
||
It (currently) makes sense to allocate debug_types_type_hash lazily.
|
||
To keep things simple we allocate both lazily. */
|
||
htab_t debug_info_type_hash;
|
||
|
||
/* Table mapping type .debug_types DIE offsets to types.
|
||
This is NULL if not allocated yet. */
|
||
htab_t debug_types_type_hash;
|
||
};
|
||
|
||
static struct dwarf2_per_objfile *dwarf2_per_objfile;
|
||
|
||
/* names of the debugging sections */
|
||
|
||
/* Note that if the debugging section has been compressed, it might
|
||
have a name like .zdebug_info. */
|
||
|
||
#define INFO_SECTION "debug_info"
|
||
#define ABBREV_SECTION "debug_abbrev"
|
||
#define LINE_SECTION "debug_line"
|
||
#define LOC_SECTION "debug_loc"
|
||
#define MACINFO_SECTION "debug_macinfo"
|
||
#define STR_SECTION "debug_str"
|
||
#define RANGES_SECTION "debug_ranges"
|
||
#define TYPES_SECTION "debug_types"
|
||
#define FRAME_SECTION "debug_frame"
|
||
#define EH_FRAME_SECTION "eh_frame"
|
||
#define GDB_INDEX_SECTION "gdb_index"
|
||
|
||
/* local data types */
|
||
|
||
/* We hold several abbreviation tables in memory at the same time. */
|
||
#ifndef ABBREV_HASH_SIZE
|
||
#define ABBREV_HASH_SIZE 121
|
||
#endif
|
||
|
||
/* The data in a compilation unit header, after target2host
|
||
translation, looks like this. */
|
||
struct comp_unit_head
|
||
{
|
||
unsigned int length;
|
||
short version;
|
||
unsigned char addr_size;
|
||
unsigned char signed_addr_p;
|
||
unsigned int abbrev_offset;
|
||
|
||
/* Size of file offsets; either 4 or 8. */
|
||
unsigned int offset_size;
|
||
|
||
/* Size of the length field; either 4 or 12. */
|
||
unsigned int initial_length_size;
|
||
|
||
/* Offset to the first byte of this compilation unit header in the
|
||
.debug_info section, for resolving relative reference dies. */
|
||
unsigned int offset;
|
||
|
||
/* Offset to first die in this cu from the start of the cu.
|
||
This will be the first byte following the compilation unit header. */
|
||
unsigned int first_die_offset;
|
||
};
|
||
|
||
/* Type used for delaying computation of method physnames.
|
||
See comments for compute_delayed_physnames. */
|
||
struct delayed_method_info
|
||
{
|
||
/* The type to which the method is attached, i.e., its parent class. */
|
||
struct type *type;
|
||
|
||
/* The index of the method in the type's function fieldlists. */
|
||
int fnfield_index;
|
||
|
||
/* The index of the method in the fieldlist. */
|
||
int index;
|
||
|
||
/* The name of the DIE. */
|
||
const char *name;
|
||
|
||
/* The DIE associated with this method. */
|
||
struct die_info *die;
|
||
};
|
||
|
||
typedef struct delayed_method_info delayed_method_info;
|
||
DEF_VEC_O (delayed_method_info);
|
||
|
||
/* Internal state when decoding a particular compilation unit. */
|
||
struct dwarf2_cu
|
||
{
|
||
/* The objfile containing this compilation unit. */
|
||
struct objfile *objfile;
|
||
|
||
/* The header of the compilation unit. */
|
||
struct comp_unit_head header;
|
||
|
||
/* Base address of this compilation unit. */
|
||
CORE_ADDR base_address;
|
||
|
||
/* Non-zero if base_address has been set. */
|
||
int base_known;
|
||
|
||
struct function_range *first_fn, *last_fn, *cached_fn;
|
||
|
||
/* The language we are debugging. */
|
||
enum language language;
|
||
const struct language_defn *language_defn;
|
||
|
||
const char *producer;
|
||
|
||
/* The generic symbol table building routines have separate lists for
|
||
file scope symbols and all all other scopes (local scopes). So
|
||
we need to select the right one to pass to add_symbol_to_list().
|
||
We do it by keeping a pointer to the correct list in list_in_scope.
|
||
|
||
FIXME: The original dwarf code just treated the file scope as the
|
||
first local scope, and all other local scopes as nested local
|
||
scopes, and worked fine. Check to see if we really need to
|
||
distinguish these in buildsym.c. */
|
||
struct pending **list_in_scope;
|
||
|
||
/* DWARF abbreviation table associated with this compilation unit. */
|
||
struct abbrev_info **dwarf2_abbrevs;
|
||
|
||
/* Storage for the abbrev table. */
|
||
struct obstack abbrev_obstack;
|
||
|
||
/* Hash table holding all the loaded partial DIEs. */
|
||
htab_t partial_dies;
|
||
|
||
/* Storage for things with the same lifetime as this read-in compilation
|
||
unit, including partial DIEs. */
|
||
struct obstack comp_unit_obstack;
|
||
|
||
/* When multiple dwarf2_cu structures are living in memory, this field
|
||
chains them all together, so that they can be released efficiently.
|
||
We will probably also want a generation counter so that most-recently-used
|
||
compilation units are cached... */
|
||
struct dwarf2_per_cu_data *read_in_chain;
|
||
|
||
/* Backchain to our per_cu entry if the tree has been built. */
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
/* How many compilation units ago was this CU last referenced? */
|
||
int last_used;
|
||
|
||
/* A hash table of die offsets for following references. */
|
||
htab_t die_hash;
|
||
|
||
/* Full DIEs if read in. */
|
||
struct die_info *dies;
|
||
|
||
/* A set of pointers to dwarf2_per_cu_data objects for compilation
|
||
units referenced by this one. Only set during full symbol processing;
|
||
partial symbol tables do not have dependencies. */
|
||
htab_t dependencies;
|
||
|
||
/* Header data from the line table, during full symbol processing. */
|
||
struct line_header *line_header;
|
||
|
||
/* A list of methods which need to have physnames computed
|
||
after all type information has been read. */
|
||
VEC (delayed_method_info) *method_list;
|
||
|
||
/* Mark used when releasing cached dies. */
|
||
unsigned int mark : 1;
|
||
|
||
/* This flag will be set if this compilation unit might include
|
||
inter-compilation-unit references. */
|
||
unsigned int has_form_ref_addr : 1;
|
||
|
||
/* This flag will be set if this compilation unit includes any
|
||
DW_TAG_namespace DIEs. If we know that there are explicit
|
||
DIEs for namespaces, we don't need to try to infer them
|
||
from mangled names. */
|
||
unsigned int has_namespace_info : 1;
|
||
};
|
||
|
||
/* When using the index (and thus not using psymtabs), each CU has an
|
||
object of this type. This is used to hold information needed by
|
||
the various "quick" methods. */
|
||
struct dwarf2_per_cu_quick_data
|
||
{
|
||
/* The line table. This can be NULL if there was no line table. */
|
||
struct line_header *lines;
|
||
|
||
/* The file names from the line table. */
|
||
const char **file_names;
|
||
/* The file names from the line table after being run through
|
||
gdb_realpath. */
|
||
const char **full_names;
|
||
|
||
/* The corresponding symbol table. This is NULL if symbols for this
|
||
CU have not yet been read. */
|
||
struct symtab *symtab;
|
||
|
||
/* A temporary mark bit used when iterating over all CUs in
|
||
expand_symtabs_matching. */
|
||
unsigned int mark : 1;
|
||
|
||
/* True if we've tried to read the line table. */
|
||
unsigned int read_lines : 1;
|
||
};
|
||
|
||
/* Persistent data held for a compilation unit, even when not
|
||
processing it. We put a pointer to this structure in the
|
||
read_symtab_private field of the psymtab. If we encounter
|
||
inter-compilation-unit references, we also maintain a sorted
|
||
list of all compilation units. */
|
||
|
||
struct dwarf2_per_cu_data
|
||
{
|
||
/* The start offset and length of this compilation unit. 2**29-1
|
||
bytes should suffice to store the length of any compilation unit
|
||
- if it doesn't, GDB will fall over anyway.
|
||
NOTE: Unlike comp_unit_head.length, this length includes
|
||
initial_length_size. */
|
||
unsigned int offset;
|
||
unsigned int length : 29;
|
||
|
||
/* Flag indicating this compilation unit will be read in before
|
||
any of the current compilation units are processed. */
|
||
unsigned int queued : 1;
|
||
|
||
/* This flag will be set if we need to load absolutely all DIEs
|
||
for this compilation unit, instead of just the ones we think
|
||
are interesting. It gets set if we look for a DIE in the
|
||
hash table and don't find it. */
|
||
unsigned int load_all_dies : 1;
|
||
|
||
/* Non-zero if this CU is from .debug_types.
|
||
Otherwise it's from .debug_info. */
|
||
unsigned int from_debug_types : 1;
|
||
|
||
/* Set to non-NULL iff this CU is currently loaded. When it gets freed out
|
||
of the CU cache it gets reset to NULL again. */
|
||
struct dwarf2_cu *cu;
|
||
|
||
/* The corresponding objfile. */
|
||
struct objfile *objfile;
|
||
|
||
/* When using partial symbol tables, the 'psymtab' field is active.
|
||
Otherwise the 'quick' field is active. */
|
||
union
|
||
{
|
||
/* The partial symbol table associated with this compilation unit,
|
||
or NULL for partial units (which do not have an associated
|
||
symtab). */
|
||
struct partial_symtab *psymtab;
|
||
|
||
/* Data needed by the "quick" functions. */
|
||
struct dwarf2_per_cu_quick_data *quick;
|
||
} v;
|
||
};
|
||
|
||
/* Entry in the signatured_types hash table. */
|
||
|
||
struct signatured_type
|
||
{
|
||
ULONGEST signature;
|
||
|
||
/* Offset in .debug_types of the TU (type_unit) for this type. */
|
||
unsigned int offset;
|
||
|
||
/* Offset in .debug_types of the type defined by this TU. */
|
||
unsigned int type_offset;
|
||
|
||
/* The CU(/TU) of this type. */
|
||
struct dwarf2_per_cu_data per_cu;
|
||
};
|
||
|
||
/* Struct used to pass misc. parameters to read_die_and_children, et. al.
|
||
which are used for both .debug_info and .debug_types dies.
|
||
All parameters here are unchanging for the life of the call.
|
||
This struct exists to abstract away the constant parameters of
|
||
die reading. */
|
||
|
||
struct die_reader_specs
|
||
{
|
||
/* The bfd of this objfile. */
|
||
bfd* abfd;
|
||
|
||
/* The CU of the DIE we are parsing. */
|
||
struct dwarf2_cu *cu;
|
||
|
||
/* Pointer to start of section buffer.
|
||
This is either the start of .debug_info or .debug_types. */
|
||
const gdb_byte *buffer;
|
||
};
|
||
|
||
/* The line number information for a compilation unit (found in the
|
||
.debug_line section) begins with a "statement program header",
|
||
which contains the following information. */
|
||
struct line_header
|
||
{
|
||
unsigned int total_length;
|
||
unsigned short version;
|
||
unsigned int header_length;
|
||
unsigned char minimum_instruction_length;
|
||
unsigned char maximum_ops_per_instruction;
|
||
unsigned char default_is_stmt;
|
||
int line_base;
|
||
unsigned char line_range;
|
||
unsigned char opcode_base;
|
||
|
||
/* standard_opcode_lengths[i] is the number of operands for the
|
||
standard opcode whose value is i. This means that
|
||
standard_opcode_lengths[0] is unused, and the last meaningful
|
||
element is standard_opcode_lengths[opcode_base - 1]. */
|
||
unsigned char *standard_opcode_lengths;
|
||
|
||
/* The include_directories table. NOTE! These strings are not
|
||
allocated with xmalloc; instead, they are pointers into
|
||
debug_line_buffer. If you try to free them, `free' will get
|
||
indigestion. */
|
||
unsigned int num_include_dirs, include_dirs_size;
|
||
char **include_dirs;
|
||
|
||
/* The file_names table. NOTE! These strings are not allocated
|
||
with xmalloc; instead, they are pointers into debug_line_buffer.
|
||
Don't try to free them directly. */
|
||
unsigned int num_file_names, file_names_size;
|
||
struct file_entry
|
||
{
|
||
char *name;
|
||
unsigned int dir_index;
|
||
unsigned int mod_time;
|
||
unsigned int length;
|
||
int included_p; /* Non-zero if referenced by the Line Number Program. */
|
||
struct symtab *symtab; /* The associated symbol table, if any. */
|
||
} *file_names;
|
||
|
||
/* The start and end of the statement program following this
|
||
header. These point into dwarf2_per_objfile->line_buffer. */
|
||
gdb_byte *statement_program_start, *statement_program_end;
|
||
};
|
||
|
||
/* When we construct a partial symbol table entry we only
|
||
need this much information. */
|
||
struct partial_die_info
|
||
{
|
||
/* Offset of this DIE. */
|
||
unsigned int offset;
|
||
|
||
/* DWARF-2 tag for this DIE. */
|
||
ENUM_BITFIELD(dwarf_tag) tag : 16;
|
||
|
||
/* Assorted flags describing the data found in this DIE. */
|
||
unsigned int has_children : 1;
|
||
unsigned int is_external : 1;
|
||
unsigned int is_declaration : 1;
|
||
unsigned int has_type : 1;
|
||
unsigned int has_specification : 1;
|
||
unsigned int has_pc_info : 1;
|
||
|
||
/* Flag set if the SCOPE field of this structure has been
|
||
computed. */
|
||
unsigned int scope_set : 1;
|
||
|
||
/* Flag set if the DIE has a byte_size attribute. */
|
||
unsigned int has_byte_size : 1;
|
||
|
||
/* Flag set if any of the DIE's children are template arguments. */
|
||
unsigned int has_template_arguments : 1;
|
||
|
||
/* Flag set if fixup_partial_die has been called on this die. */
|
||
unsigned int fixup_called : 1;
|
||
|
||
/* The name of this DIE. Normally the value of DW_AT_name, but
|
||
sometimes a default name for unnamed DIEs. */
|
||
char *name;
|
||
|
||
/* The linkage name, if present. */
|
||
const char *linkage_name;
|
||
|
||
/* The scope to prepend to our children. This is generally
|
||
allocated on the comp_unit_obstack, so will disappear
|
||
when this compilation unit leaves the cache. */
|
||
char *scope;
|
||
|
||
/* The location description associated with this DIE, if any. */
|
||
struct dwarf_block *locdesc;
|
||
|
||
/* If HAS_PC_INFO, the PC range associated with this DIE. */
|
||
CORE_ADDR lowpc;
|
||
CORE_ADDR highpc;
|
||
|
||
/* Pointer into the info_buffer (or types_buffer) pointing at the target of
|
||
DW_AT_sibling, if any. */
|
||
/* NOTE: This member isn't strictly necessary, read_partial_die could
|
||
return DW_AT_sibling values to its caller load_partial_dies. */
|
||
gdb_byte *sibling;
|
||
|
||
/* If HAS_SPECIFICATION, the offset of the DIE referred to by
|
||
DW_AT_specification (or DW_AT_abstract_origin or
|
||
DW_AT_extension). */
|
||
unsigned int spec_offset;
|
||
|
||
/* Pointers to this DIE's parent, first child, and next sibling,
|
||
if any. */
|
||
struct partial_die_info *die_parent, *die_child, *die_sibling;
|
||
};
|
||
|
||
/* This data structure holds the information of an abbrev. */
|
||
struct abbrev_info
|
||
{
|
||
unsigned int number; /* number identifying abbrev */
|
||
enum dwarf_tag tag; /* dwarf tag */
|
||
unsigned short has_children; /* boolean */
|
||
unsigned short num_attrs; /* number of attributes */
|
||
struct attr_abbrev *attrs; /* an array of attribute descriptions */
|
||
struct abbrev_info *next; /* next in chain */
|
||
};
|
||
|
||
struct attr_abbrev
|
||
{
|
||
ENUM_BITFIELD(dwarf_attribute) name : 16;
|
||
ENUM_BITFIELD(dwarf_form) form : 16;
|
||
};
|
||
|
||
/* Attributes have a name and a value */
|
||
struct attribute
|
||
{
|
||
ENUM_BITFIELD(dwarf_attribute) name : 16;
|
||
ENUM_BITFIELD(dwarf_form) form : 15;
|
||
|
||
/* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
|
||
field should be in u.str (existing only for DW_STRING) but it is kept
|
||
here for better struct attribute alignment. */
|
||
unsigned int string_is_canonical : 1;
|
||
|
||
union
|
||
{
|
||
char *str;
|
||
struct dwarf_block *blk;
|
||
ULONGEST unsnd;
|
||
LONGEST snd;
|
||
CORE_ADDR addr;
|
||
struct signatured_type *signatured_type;
|
||
}
|
||
u;
|
||
};
|
||
|
||
/* This data structure holds a complete die structure. */
|
||
struct die_info
|
||
{
|
||
/* DWARF-2 tag for this DIE. */
|
||
ENUM_BITFIELD(dwarf_tag) tag : 16;
|
||
|
||
/* Number of attributes */
|
||
unsigned char num_attrs;
|
||
|
||
/* True if we're presently building the full type name for the
|
||
type derived from this DIE. */
|
||
unsigned char building_fullname : 1;
|
||
|
||
/* Abbrev number */
|
||
unsigned int abbrev;
|
||
|
||
/* Offset in .debug_info or .debug_types section. */
|
||
unsigned int offset;
|
||
|
||
/* The dies in a compilation unit form an n-ary tree. PARENT
|
||
points to this die's parent; CHILD points to the first child of
|
||
this node; and all the children of a given node are chained
|
||
together via their SIBLING fields. */
|
||
struct die_info *child; /* Its first child, if any. */
|
||
struct die_info *sibling; /* Its next sibling, if any. */
|
||
struct die_info *parent; /* Its parent, if any. */
|
||
|
||
/* An array of attributes, with NUM_ATTRS elements. There may be
|
||
zero, but it's not common and zero-sized arrays are not
|
||
sufficiently portable C. */
|
||
struct attribute attrs[1];
|
||
};
|
||
|
||
struct function_range
|
||
{
|
||
const char *name;
|
||
CORE_ADDR lowpc, highpc;
|
||
int seen_line;
|
||
struct function_range *next;
|
||
};
|
||
|
||
/* Get at parts of an attribute structure */
|
||
|
||
#define DW_STRING(attr) ((attr)->u.str)
|
||
#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
|
||
#define DW_UNSND(attr) ((attr)->u.unsnd)
|
||
#define DW_BLOCK(attr) ((attr)->u.blk)
|
||
#define DW_SND(attr) ((attr)->u.snd)
|
||
#define DW_ADDR(attr) ((attr)->u.addr)
|
||
#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
|
||
|
||
/* Blocks are a bunch of untyped bytes. */
|
||
struct dwarf_block
|
||
{
|
||
unsigned int size;
|
||
gdb_byte *data;
|
||
};
|
||
|
||
#ifndef ATTR_ALLOC_CHUNK
|
||
#define ATTR_ALLOC_CHUNK 4
|
||
#endif
|
||
|
||
/* Allocate fields for structs, unions and enums in this size. */
|
||
#ifndef DW_FIELD_ALLOC_CHUNK
|
||
#define DW_FIELD_ALLOC_CHUNK 4
|
||
#endif
|
||
|
||
/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
|
||
but this would require a corresponding change in unpack_field_as_long
|
||
and friends. */
|
||
static int bits_per_byte = 8;
|
||
|
||
/* The routines that read and process dies for a C struct or C++ class
|
||
pass lists of data member fields and lists of member function fields
|
||
in an instance of a field_info structure, as defined below. */
|
||
struct field_info
|
||
{
|
||
/* List of data member and baseclasses fields. */
|
||
struct nextfield
|
||
{
|
||
struct nextfield *next;
|
||
int accessibility;
|
||
int virtuality;
|
||
struct field field;
|
||
}
|
||
*fields, *baseclasses;
|
||
|
||
/* Number of fields (including baseclasses). */
|
||
int nfields;
|
||
|
||
/* Number of baseclasses. */
|
||
int nbaseclasses;
|
||
|
||
/* Set if the accesibility of one of the fields is not public. */
|
||
int non_public_fields;
|
||
|
||
/* Member function fields array, entries are allocated in the order they
|
||
are encountered in the object file. */
|
||
struct nextfnfield
|
||
{
|
||
struct nextfnfield *next;
|
||
struct fn_field fnfield;
|
||
}
|
||
*fnfields;
|
||
|
||
/* Member function fieldlist array, contains name of possibly overloaded
|
||
member function, number of overloaded member functions and a pointer
|
||
to the head of the member function field chain. */
|
||
struct fnfieldlist
|
||
{
|
||
char *name;
|
||
int length;
|
||
struct nextfnfield *head;
|
||
}
|
||
*fnfieldlists;
|
||
|
||
/* Number of entries in the fnfieldlists array. */
|
||
int nfnfields;
|
||
|
||
/* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
|
||
a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
|
||
struct typedef_field_list
|
||
{
|
||
struct typedef_field field;
|
||
struct typedef_field_list *next;
|
||
}
|
||
*typedef_field_list;
|
||
unsigned typedef_field_list_count;
|
||
};
|
||
|
||
/* One item on the queue of compilation units to read in full symbols
|
||
for. */
|
||
struct dwarf2_queue_item
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
struct dwarf2_queue_item *next;
|
||
};
|
||
|
||
/* The current queue. */
|
||
static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
|
||
|
||
/* Loaded secondary compilation units are kept in memory until they
|
||
have not been referenced for the processing of this many
|
||
compilation units. Set this to zero to disable caching. Cache
|
||
sizes of up to at least twenty will improve startup time for
|
||
typical inter-CU-reference binaries, at an obvious memory cost. */
|
||
static int dwarf2_max_cache_age = 5;
|
||
static void
|
||
show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
/* Various complaints about symbol reading that don't abort the process */
|
||
|
||
static void
|
||
dwarf2_statement_list_fits_in_line_number_section_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("statement list doesn't fit in .debug_line section"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_debug_line_missing_file_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".debug_line section has line data without a file"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_debug_line_missing_end_sequence_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".debug_line section has line program sequence without an end"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_complex_location_expr_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints, _("location expression too complex"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
|
||
int arg3)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("const value length mismatch for '%s', got %d, expected %d"), arg1,
|
||
arg2, arg3);
|
||
}
|
||
|
||
static void
|
||
dwarf2_macros_too_long_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("macro info runs off end of `.debug_macinfo' section"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_macro_malformed_definition_complaint (const char *arg1)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("macro debug info contains a malformed macro definition:\n`%s'"),
|
||
arg1);
|
||
}
|
||
|
||
static void
|
||
dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
|
||
}
|
||
|
||
/* local function prototypes */
|
||
|
||
static void dwarf2_locate_sections (bfd *, asection *, void *);
|
||
|
||
static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
|
||
struct objfile *);
|
||
|
||
static void dwarf2_build_psymtabs_hard (struct objfile *);
|
||
|
||
static void scan_partial_symbols (struct partial_die_info *,
|
||
CORE_ADDR *, CORE_ADDR *,
|
||
int, struct dwarf2_cu *);
|
||
|
||
static void add_partial_symbol (struct partial_die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void add_partial_namespace (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int need_pc, struct dwarf2_cu *cu);
|
||
|
||
static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, int need_pc,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void add_partial_enumeration (struct partial_die_info *enum_pdi,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void add_partial_subprogram (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int need_pc, struct dwarf2_cu *cu);
|
||
|
||
static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
|
||
gdb_byte *buffer, gdb_byte *info_ptr,
|
||
bfd *abfd, struct dwarf2_cu *cu);
|
||
|
||
static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
|
||
|
||
static void psymtab_to_symtab_1 (struct partial_symtab *);
|
||
|
||
static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
|
||
|
||
static void dwarf2_free_abbrev_table (void *);
|
||
|
||
static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct partial_die_info *load_partial_dies (bfd *,
|
||
gdb_byte *, gdb_byte *,
|
||
int, struct dwarf2_cu *);
|
||
|
||
static gdb_byte *read_partial_die (struct partial_die_info *,
|
||
struct abbrev_info *abbrev,
|
||
unsigned int, bfd *,
|
||
gdb_byte *, gdb_byte *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct partial_die_info *find_partial_die (unsigned int,
|
||
struct dwarf2_cu *);
|
||
|
||
static void fixup_partial_die (struct partial_die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
|
||
bfd *, gdb_byte *, struct dwarf2_cu *);
|
||
|
||
static gdb_byte *read_attribute_value (struct attribute *, unsigned,
|
||
bfd *, gdb_byte *, struct dwarf2_cu *);
|
||
|
||
static unsigned int read_1_byte (bfd *, gdb_byte *);
|
||
|
||
static int read_1_signed_byte (bfd *, gdb_byte *);
|
||
|
||
static unsigned int read_2_bytes (bfd *, gdb_byte *);
|
||
|
||
static unsigned int read_4_bytes (bfd *, gdb_byte *);
|
||
|
||
static ULONGEST read_8_bytes (bfd *, gdb_byte *);
|
||
|
||
static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
|
||
unsigned int *);
|
||
|
||
static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
|
||
|
||
static LONGEST read_checked_initial_length_and_offset
|
||
(bfd *, gdb_byte *, const struct comp_unit_head *,
|
||
unsigned int *, unsigned int *);
|
||
|
||
static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
|
||
unsigned int *);
|
||
|
||
static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
|
||
|
||
static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
|
||
|
||
static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
|
||
|
||
static char *read_indirect_string (bfd *, gdb_byte *,
|
||
const struct comp_unit_head *,
|
||
unsigned int *);
|
||
|
||
static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
|
||
|
||
static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
|
||
|
||
static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
|
||
|
||
static void set_cu_language (unsigned int, struct dwarf2_cu *);
|
||
|
||
static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct attribute *dwarf2_attr_no_follow (struct die_info *,
|
||
unsigned int,
|
||
struct dwarf2_cu *);
|
||
|
||
static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
|
||
|
||
static struct die_info *die_specification (struct die_info *die,
|
||
struct dwarf2_cu **);
|
||
|
||
static void free_line_header (struct line_header *lh);
|
||
|
||
static void add_file_name (struct line_header *, char *, unsigned int,
|
||
unsigned int, unsigned int);
|
||
|
||
static struct line_header *(dwarf_decode_line_header
|
||
(unsigned int offset,
|
||
bfd *abfd, struct dwarf2_cu *cu));
|
||
|
||
static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
|
||
struct dwarf2_cu *, struct partial_symtab *);
|
||
|
||
static void dwarf2_start_subfile (char *, const char *, const char *);
|
||
|
||
static struct symbol *new_symbol (struct die_info *, struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct symbol *new_symbol_full (struct die_info *, struct type *,
|
||
struct dwarf2_cu *, struct symbol *);
|
||
|
||
static void dwarf2_const_value (struct attribute *, struct symbol *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_const_value_attr (struct attribute *attr,
|
||
struct type *type,
|
||
const char *name,
|
||
struct obstack *obstack,
|
||
struct dwarf2_cu *cu, long *value,
|
||
gdb_byte **bytes,
|
||
struct dwarf2_locexpr_baton **baton);
|
||
|
||
static struct type *die_type (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static int need_gnat_info (struct dwarf2_cu *);
|
||
|
||
static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void set_descriptive_type (struct type *, struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *die_containing_type (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *lookup_die_type (struct die_info *, struct attribute *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static char *typename_concat (struct obstack *obs, const char *prefix,
|
||
const char *suffix, int physname,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void read_file_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_func_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
|
||
struct dwarf2_cu *, struct partial_symtab *);
|
||
|
||
static int dwarf2_get_pc_bounds (struct die_info *,
|
||
CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
|
||
struct partial_symtab *);
|
||
|
||
static void get_scope_pc_bounds (struct die_info *,
|
||
CORE_ADDR *, CORE_ADDR *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_record_block_ranges (struct die_info *, struct block *,
|
||
CORE_ADDR, struct dwarf2_cu *);
|
||
|
||
static void dwarf2_add_field (struct field_info *, struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_attach_fields_to_type (struct field_info *,
|
||
struct type *, struct dwarf2_cu *);
|
||
|
||
static void dwarf2_add_member_fn (struct field_info *,
|
||
struct die_info *, struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_attach_fn_fields_to_type (struct field_info *,
|
||
struct type *, struct dwarf2_cu *);
|
||
|
||
static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_common_block (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_namespace (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static void read_module (struct die_info *die, struct dwarf2_cu *cu);
|
||
|
||
static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static struct type *read_module_type (struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static const char *namespace_name (struct die_info *die,
|
||
int *is_anonymous, struct dwarf2_cu *);
|
||
|
||
static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
|
||
|
||
static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
|
||
|
||
static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte **new_info_ptr,
|
||
struct die_info *parent);
|
||
|
||
static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte **new_info_ptr,
|
||
struct die_info *parent);
|
||
|
||
static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte **new_info_ptr,
|
||
struct die_info *parent);
|
||
|
||
static gdb_byte *read_full_die (const struct die_reader_specs *reader,
|
||
struct die_info **, gdb_byte *,
|
||
int *);
|
||
|
||
static void process_die (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
|
||
struct obstack *);
|
||
|
||
static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static const char *dwarf2_full_name (char *name,
|
||
struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static struct die_info *dwarf2_extension (struct die_info *die,
|
||
struct dwarf2_cu **);
|
||
|
||
static char *dwarf_tag_name (unsigned int);
|
||
|
||
static char *dwarf_attr_name (unsigned int);
|
||
|
||
static char *dwarf_form_name (unsigned int);
|
||
|
||
static char *dwarf_bool_name (unsigned int);
|
||
|
||
static char *dwarf_type_encoding_name (unsigned int);
|
||
|
||
#if 0
|
||
static char *dwarf_cfi_name (unsigned int);
|
||
#endif
|
||
|
||
static struct die_info *sibling_die (struct die_info *);
|
||
|
||
static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
|
||
|
||
static void dump_die_for_error (struct die_info *);
|
||
|
||
static void dump_die_1 (struct ui_file *, int level, int max_level,
|
||
struct die_info *);
|
||
|
||
/*static*/ void dump_die (struct die_info *, int max_level);
|
||
|
||
static void store_in_ref_table (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static int is_ref_attr (struct attribute *);
|
||
|
||
static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
|
||
|
||
static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
|
||
|
||
static struct die_info *follow_die_ref_or_sig (struct die_info *,
|
||
struct attribute *,
|
||
struct dwarf2_cu **);
|
||
|
||
static struct die_info *follow_die_ref (struct die_info *,
|
||
struct attribute *,
|
||
struct dwarf2_cu **);
|
||
|
||
static struct die_info *follow_die_sig (struct die_info *,
|
||
struct attribute *,
|
||
struct dwarf2_cu **);
|
||
|
||
static void read_signatured_type_at_offset (struct objfile *objfile,
|
||
unsigned int offset);
|
||
|
||
static void read_signatured_type (struct objfile *,
|
||
struct signatured_type *type_sig);
|
||
|
||
/* memory allocation interface */
|
||
|
||
static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
|
||
|
||
static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
|
||
|
||
static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
|
||
|
||
static void initialize_cu_func_list (struct dwarf2_cu *);
|
||
|
||
static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf_decode_macros (struct line_header *, unsigned int,
|
||
char *, bfd *, struct dwarf2_cu *);
|
||
|
||
static int attr_form_is_block (struct attribute *);
|
||
|
||
static int attr_form_is_section_offset (struct attribute *);
|
||
|
||
static int attr_form_is_constant (struct attribute *);
|
||
|
||
static void fill_in_loclist_baton (struct dwarf2_cu *cu,
|
||
struct dwarf2_loclist_baton *baton,
|
||
struct attribute *attr);
|
||
|
||
static void dwarf2_symbol_mark_computed (struct attribute *attr,
|
||
struct symbol *sym,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
|
||
struct abbrev_info *abbrev,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void free_stack_comp_unit (void *);
|
||
|
||
static hashval_t partial_die_hash (const void *item);
|
||
|
||
static int partial_die_eq (const void *item_lhs, const void *item_rhs);
|
||
|
||
static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
|
||
(unsigned int offset, struct objfile *objfile);
|
||
|
||
static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
|
||
(unsigned int offset, struct objfile *objfile);
|
||
|
||
static void init_one_comp_unit (struct dwarf2_cu *cu,
|
||
struct objfile *objfile);
|
||
|
||
static void prepare_one_comp_unit (struct dwarf2_cu *cu,
|
||
struct die_info *comp_unit_die);
|
||
|
||
static void free_one_comp_unit (void *);
|
||
|
||
static void free_cached_comp_units (void *);
|
||
|
||
static void age_cached_comp_units (void);
|
||
|
||
static void free_one_cached_comp_unit (void *);
|
||
|
||
static struct type *set_die_type (struct die_info *, struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void create_all_comp_units (struct objfile *);
|
||
|
||
static int create_debug_types_hash_table (struct objfile *objfile);
|
||
|
||
static void load_full_comp_unit (struct dwarf2_per_cu_data *,
|
||
struct objfile *);
|
||
|
||
static void process_full_comp_unit (struct dwarf2_per_cu_data *);
|
||
|
||
static void dwarf2_add_dependence (struct dwarf2_cu *,
|
||
struct dwarf2_per_cu_data *);
|
||
|
||
static void dwarf2_mark (struct dwarf2_cu *);
|
||
|
||
static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
|
||
|
||
static struct type *get_die_type_at_offset (unsigned int,
|
||
struct dwarf2_per_cu_data *per_cu);
|
||
|
||
static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
|
||
|
||
static void dwarf2_release_queue (void *dummy);
|
||
|
||
static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
|
||
struct objfile *objfile);
|
||
|
||
static void process_queue (struct objfile *objfile);
|
||
|
||
static void find_file_and_directory (struct die_info *die,
|
||
struct dwarf2_cu *cu,
|
||
char **name, char **comp_dir);
|
||
|
||
static char *file_full_name (int file, struct line_header *lh,
|
||
const char *comp_dir);
|
||
|
||
static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte *buffer,
|
||
unsigned int buffer_size,
|
||
bfd *abfd);
|
||
|
||
static void init_cu_die_reader (struct die_reader_specs *reader,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static htab_t allocate_signatured_type_table (struct objfile *objfile);
|
||
|
||
#if WORDS_BIGENDIAN
|
||
|
||
/* Convert VALUE between big- and little-endian. */
|
||
static offset_type
|
||
byte_swap (offset_type value)
|
||
{
|
||
offset_type result;
|
||
|
||
result = (value & 0xff) << 24;
|
||
result |= (value & 0xff00) << 8;
|
||
result |= (value & 0xff0000) >> 8;
|
||
result |= (value & 0xff000000) >> 24;
|
||
return result;
|
||
}
|
||
|
||
#define MAYBE_SWAP(V) byte_swap (V)
|
||
|
||
#else
|
||
#define MAYBE_SWAP(V) (V)
|
||
#endif /* WORDS_BIGENDIAN */
|
||
|
||
/* The suffix for an index file. */
|
||
#define INDEX_SUFFIX ".gdb-index"
|
||
|
||
static const char *dwarf2_physname (char *name, struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
/* Try to locate the sections we need for DWARF 2 debugging
|
||
information and return true if we have enough to do something. */
|
||
|
||
int
|
||
dwarf2_has_info (struct objfile *objfile)
|
||
{
|
||
dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
|
||
if (!dwarf2_per_objfile)
|
||
{
|
||
/* Initialize per-objfile state. */
|
||
struct dwarf2_per_objfile *data
|
||
= obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
|
||
|
||
memset (data, 0, sizeof (*data));
|
||
set_objfile_data (objfile, dwarf2_objfile_data_key, data);
|
||
dwarf2_per_objfile = data;
|
||
|
||
bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
|
||
dwarf2_per_objfile->objfile = objfile;
|
||
}
|
||
return (dwarf2_per_objfile->info.asection != NULL
|
||
&& dwarf2_per_objfile->abbrev.asection != NULL);
|
||
}
|
||
|
||
/* When loading sections, we can either look for ".<name>", or for
|
||
* ".z<name>", which indicates a compressed section. */
|
||
|
||
static int
|
||
section_is_p (const char *section_name, const char *name)
|
||
{
|
||
return (section_name[0] == '.'
|
||
&& (strcmp (section_name + 1, name) == 0
|
||
|| (section_name[1] == 'z'
|
||
&& strcmp (section_name + 2, name) == 0)));
|
||
}
|
||
|
||
/* This function is mapped across the sections and remembers the
|
||
offset and size of each of the debugging sections we are interested
|
||
in. */
|
||
|
||
static void
|
||
dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
|
||
{
|
||
if (section_is_p (sectp->name, INFO_SECTION))
|
||
{
|
||
dwarf2_per_objfile->info.asection = sectp;
|
||
dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, ABBREV_SECTION))
|
||
{
|
||
dwarf2_per_objfile->abbrev.asection = sectp;
|
||
dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, LINE_SECTION))
|
||
{
|
||
dwarf2_per_objfile->line.asection = sectp;
|
||
dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, LOC_SECTION))
|
||
{
|
||
dwarf2_per_objfile->loc.asection = sectp;
|
||
dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, MACINFO_SECTION))
|
||
{
|
||
dwarf2_per_objfile->macinfo.asection = sectp;
|
||
dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, STR_SECTION))
|
||
{
|
||
dwarf2_per_objfile->str.asection = sectp;
|
||
dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, FRAME_SECTION))
|
||
{
|
||
dwarf2_per_objfile->frame.asection = sectp;
|
||
dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, EH_FRAME_SECTION))
|
||
{
|
||
flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
|
||
|
||
if (aflag & SEC_HAS_CONTENTS)
|
||
{
|
||
dwarf2_per_objfile->eh_frame.asection = sectp;
|
||
dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
|
||
}
|
||
}
|
||
else if (section_is_p (sectp->name, RANGES_SECTION))
|
||
{
|
||
dwarf2_per_objfile->ranges.asection = sectp;
|
||
dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, TYPES_SECTION))
|
||
{
|
||
dwarf2_per_objfile->types.asection = sectp;
|
||
dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
|
||
{
|
||
dwarf2_per_objfile->gdb_index.asection = sectp;
|
||
dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
|
||
}
|
||
|
||
if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
|
||
&& bfd_section_vma (abfd, sectp) == 0)
|
||
dwarf2_per_objfile->has_section_at_zero = 1;
|
||
}
|
||
|
||
/* Decompress a section that was compressed using zlib. Store the
|
||
decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
|
||
|
||
static void
|
||
zlib_decompress_section (struct objfile *objfile, asection *sectp,
|
||
gdb_byte **outbuf, bfd_size_type *outsize)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
#ifndef HAVE_ZLIB_H
|
||
error (_("Support for zlib-compressed DWARF data (from '%s') "
|
||
"is disabled in this copy of GDB"),
|
||
bfd_get_filename (abfd));
|
||
#else
|
||
bfd_size_type compressed_size = bfd_get_section_size (sectp);
|
||
gdb_byte *compressed_buffer = xmalloc (compressed_size);
|
||
struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
|
||
bfd_size_type uncompressed_size;
|
||
gdb_byte *uncompressed_buffer;
|
||
z_stream strm;
|
||
int rc;
|
||
int header_size = 12;
|
||
|
||
if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
|
||
|| bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
|
||
error (_("Dwarf Error: Can't read DWARF data from '%s'"),
|
||
bfd_get_filename (abfd));
|
||
|
||
/* Read the zlib header. In this case, it should be "ZLIB" followed
|
||
by the uncompressed section size, 8 bytes in big-endian order. */
|
||
if (compressed_size < header_size
|
||
|| strncmp (compressed_buffer, "ZLIB", 4) != 0)
|
||
error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
|
||
bfd_get_filename (abfd));
|
||
uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
|
||
uncompressed_size += compressed_buffer[11];
|
||
|
||
/* It is possible the section consists of several compressed
|
||
buffers concatenated together, so we uncompress in a loop. */
|
||
strm.zalloc = NULL;
|
||
strm.zfree = NULL;
|
||
strm.opaque = NULL;
|
||
strm.avail_in = compressed_size - header_size;
|
||
strm.next_in = (Bytef*) compressed_buffer + header_size;
|
||
strm.avail_out = uncompressed_size;
|
||
uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
|
||
uncompressed_size);
|
||
rc = inflateInit (&strm);
|
||
while (strm.avail_in > 0)
|
||
{
|
||
if (rc != Z_OK)
|
||
error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
|
||
bfd_get_filename (abfd), rc);
|
||
strm.next_out = ((Bytef*) uncompressed_buffer
|
||
+ (uncompressed_size - strm.avail_out));
|
||
rc = inflate (&strm, Z_FINISH);
|
||
if (rc != Z_STREAM_END)
|
||
error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
|
||
bfd_get_filename (abfd), rc);
|
||
rc = inflateReset (&strm);
|
||
}
|
||
rc = inflateEnd (&strm);
|
||
if (rc != Z_OK
|
||
|| strm.avail_out != 0)
|
||
error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
|
||
bfd_get_filename (abfd), rc);
|
||
|
||
do_cleanups (cleanup);
|
||
*outbuf = uncompressed_buffer;
|
||
*outsize = uncompressed_size;
|
||
#endif
|
||
}
|
||
|
||
/* Read the contents of the section SECTP from object file specified by
|
||
OBJFILE, store info about the section into INFO.
|
||
If the section is compressed, uncompress it before returning. */
|
||
|
||
static void
|
||
dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
asection *sectp = info->asection;
|
||
gdb_byte *buf, *retbuf;
|
||
unsigned char header[4];
|
||
|
||
if (info->readin)
|
||
return;
|
||
info->buffer = NULL;
|
||
info->was_mmapped = 0;
|
||
info->readin = 1;
|
||
|
||
if (info->asection == NULL || info->size == 0)
|
||
return;
|
||
|
||
/* Check if the file has a 4-byte header indicating compression. */
|
||
if (info->size > sizeof (header)
|
||
&& bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
|
||
&& bfd_bread (header, sizeof (header), abfd) == sizeof (header))
|
||
{
|
||
/* Upon decompression, update the buffer and its size. */
|
||
if (strncmp (header, "ZLIB", sizeof (header)) == 0)
|
||
{
|
||
zlib_decompress_section (objfile, sectp, &info->buffer,
|
||
&info->size);
|
||
return;
|
||
}
|
||
}
|
||
|
||
#ifdef HAVE_MMAP
|
||
if (pagesize == 0)
|
||
pagesize = getpagesize ();
|
||
|
||
/* Only try to mmap sections which are large enough: we don't want to
|
||
waste space due to fragmentation. Also, only try mmap for sections
|
||
without relocations. */
|
||
|
||
if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
|
||
{
|
||
off_t pg_offset = sectp->filepos & ~(pagesize - 1);
|
||
size_t map_length = info->size + sectp->filepos - pg_offset;
|
||
caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
|
||
MAP_PRIVATE, pg_offset);
|
||
|
||
if (retbuf != MAP_FAILED)
|
||
{
|
||
info->was_mmapped = 1;
|
||
info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
|
||
#if HAVE_POSIX_MADVISE
|
||
posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
|
||
#endif
|
||
return;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If we get here, we are a normal, not-compressed section. */
|
||
info->buffer = buf
|
||
= obstack_alloc (&objfile->objfile_obstack, info->size);
|
||
|
||
/* When debugging .o files, we may need to apply relocations; see
|
||
http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
|
||
We never compress sections in .o files, so we only need to
|
||
try this when the section is not compressed. */
|
||
retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
|
||
if (retbuf != NULL)
|
||
{
|
||
info->buffer = retbuf;
|
||
return;
|
||
}
|
||
|
||
if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
|
||
|| bfd_bread (buf, info->size, abfd) != info->size)
|
||
error (_("Dwarf Error: Can't read DWARF data from '%s'"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
|
||
SECTION_NAME. */
|
||
|
||
void
|
||
dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
|
||
asection **sectp, gdb_byte **bufp,
|
||
bfd_size_type *sizep)
|
||
{
|
||
struct dwarf2_per_objfile *data
|
||
= objfile_data (objfile, dwarf2_objfile_data_key);
|
||
struct dwarf2_section_info *info;
|
||
|
||
/* We may see an objfile without any DWARF, in which case we just
|
||
return nothing. */
|
||
if (data == NULL)
|
||
{
|
||
*sectp = NULL;
|
||
*bufp = NULL;
|
||
*sizep = 0;
|
||
return;
|
||
}
|
||
if (section_is_p (section_name, EH_FRAME_SECTION))
|
||
info = &data->eh_frame;
|
||
else if (section_is_p (section_name, FRAME_SECTION))
|
||
info = &data->frame;
|
||
else
|
||
gdb_assert_not_reached ("unexpected section");
|
||
|
||
if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
|
||
/* We haven't read this section in yet. Do it now. */
|
||
dwarf2_read_section (objfile, info);
|
||
|
||
*sectp = info->asection;
|
||
*bufp = info->buffer;
|
||
*sizep = info->size;
|
||
}
|
||
|
||
|
||
|
||
/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
|
||
this CU came. */
|
||
|
||
static void
|
||
dw2_do_instantiate_symtab (struct objfile *objfile,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct cleanup *back_to;
|
||
|
||
back_to = make_cleanup (dwarf2_release_queue, NULL);
|
||
|
||
queue_comp_unit (per_cu, objfile);
|
||
|
||
if (per_cu->from_debug_types)
|
||
read_signatured_type_at_offset (objfile, per_cu->offset);
|
||
else
|
||
load_full_comp_unit (per_cu, objfile);
|
||
|
||
process_queue (objfile);
|
||
|
||
/* Age the cache, releasing compilation units that have not
|
||
been used recently. */
|
||
age_cached_comp_units ();
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
|
||
the objfile from which this CU came. Returns the resulting symbol
|
||
table. */
|
||
|
||
static struct symtab *
|
||
dw2_instantiate_symtab (struct objfile *objfile,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
if (!per_cu->v.quick->symtab)
|
||
{
|
||
struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
|
||
increment_reading_symtab ();
|
||
dw2_do_instantiate_symtab (objfile, per_cu);
|
||
do_cleanups (back_to);
|
||
}
|
||
return per_cu->v.quick->symtab;
|
||
}
|
||
|
||
/* Return the CU given its index. */
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dw2_get_cu (int index)
|
||
{
|
||
if (index >= dwarf2_per_objfile->n_comp_units)
|
||
{
|
||
index -= dwarf2_per_objfile->n_comp_units;
|
||
return dwarf2_per_objfile->type_comp_units[index];
|
||
}
|
||
return dwarf2_per_objfile->all_comp_units[index];
|
||
}
|
||
|
||
/* A helper function that knows how to read a 64-bit value in a way
|
||
that doesn't make gdb die. Returns 1 if the conversion went ok, 0
|
||
otherwise. */
|
||
|
||
static int
|
||
extract_cu_value (const char *bytes, ULONGEST *result)
|
||
{
|
||
if (sizeof (ULONGEST) < 8)
|
||
{
|
||
int i;
|
||
|
||
/* Ignore the upper 4 bytes if they are all zero. */
|
||
for (i = 0; i < 4; ++i)
|
||
if (bytes[i + 4] != 0)
|
||
return 0;
|
||
|
||
*result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
|
||
}
|
||
else
|
||
*result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
|
||
return 1;
|
||
}
|
||
|
||
/* Read the CU list from the mapped index, and use it to create all
|
||
the CU objects for this objfile. Return 0 if something went wrong,
|
||
1 if everything went ok. */
|
||
|
||
static int
|
||
create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
|
||
offset_type cu_list_elements)
|
||
{
|
||
offset_type i;
|
||
|
||
dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
|
||
dwarf2_per_objfile->all_comp_units
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
dwarf2_per_objfile->n_comp_units
|
||
* sizeof (struct dwarf2_per_cu_data *));
|
||
|
||
for (i = 0; i < cu_list_elements; i += 2)
|
||
{
|
||
struct dwarf2_per_cu_data *the_cu;
|
||
ULONGEST offset, length;
|
||
|
||
if (!extract_cu_value (cu_list, &offset)
|
||
|| !extract_cu_value (cu_list + 8, &length))
|
||
return 0;
|
||
cu_list += 2 * 8;
|
||
|
||
the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_data);
|
||
the_cu->offset = offset;
|
||
the_cu->length = length;
|
||
the_cu->objfile = objfile;
|
||
the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Create the signatured type hash table from the index. */
|
||
|
||
static int
|
||
create_signatured_type_table_from_index (struct objfile *objfile,
|
||
const gdb_byte *bytes,
|
||
offset_type elements)
|
||
{
|
||
offset_type i;
|
||
htab_t sig_types_hash;
|
||
|
||
dwarf2_per_objfile->n_type_comp_units = elements / 3;
|
||
dwarf2_per_objfile->type_comp_units
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
dwarf2_per_objfile->n_type_comp_units
|
||
* sizeof (struct dwarf2_per_cu_data *));
|
||
|
||
sig_types_hash = allocate_signatured_type_table (objfile);
|
||
|
||
for (i = 0; i < elements; i += 3)
|
||
{
|
||
struct signatured_type *type_sig;
|
||
ULONGEST offset, type_offset, signature;
|
||
void **slot;
|
||
|
||
if (!extract_cu_value (bytes, &offset)
|
||
|| !extract_cu_value (bytes + 8, &type_offset))
|
||
return 0;
|
||
signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
|
||
bytes += 3 * 8;
|
||
|
||
type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct signatured_type);
|
||
type_sig->signature = signature;
|
||
type_sig->offset = offset;
|
||
type_sig->type_offset = type_offset;
|
||
type_sig->per_cu.from_debug_types = 1;
|
||
type_sig->per_cu.offset = offset;
|
||
type_sig->per_cu.objfile = objfile;
|
||
type_sig->per_cu.v.quick
|
||
= OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
|
||
slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
|
||
*slot = type_sig;
|
||
|
||
dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
|
||
}
|
||
|
||
dwarf2_per_objfile->signatured_types = sig_types_hash;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Read the address map data from the mapped index, and use it to
|
||
populate the objfile's psymtabs_addrmap. */
|
||
|
||
static void
|
||
create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
|
||
{
|
||
const gdb_byte *iter, *end;
|
||
struct obstack temp_obstack;
|
||
struct addrmap *mutable_map;
|
||
struct cleanup *cleanup;
|
||
CORE_ADDR baseaddr;
|
||
|
||
obstack_init (&temp_obstack);
|
||
cleanup = make_cleanup_obstack_free (&temp_obstack);
|
||
mutable_map = addrmap_create_mutable (&temp_obstack);
|
||
|
||
iter = index->address_table;
|
||
end = iter + index->address_table_size;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
while (iter < end)
|
||
{
|
||
ULONGEST hi, lo, cu_index;
|
||
lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
|
||
iter += 8;
|
||
hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
|
||
iter += 8;
|
||
cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
|
||
iter += 4;
|
||
|
||
addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
|
||
dw2_get_cu (cu_index));
|
||
}
|
||
|
||
objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
|
||
&objfile->objfile_obstack);
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* The hash function for strings in the mapped index. This is the
|
||
same as the hashtab.c hash function, but we keep a separate copy to
|
||
maintain control over the implementation. This is necessary
|
||
because the hash function is tied to the format of the mapped index
|
||
file. */
|
||
|
||
static hashval_t
|
||
mapped_index_string_hash (const void *p)
|
||
{
|
||
const unsigned char *str = (const unsigned char *) p;
|
||
hashval_t r = 0;
|
||
unsigned char c;
|
||
|
||
while ((c = *str++) != 0)
|
||
r = r * 67 + c - 113;
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Find a slot in the mapped index INDEX for the object named NAME.
|
||
If NAME is found, set *VEC_OUT to point to the CU vector in the
|
||
constant pool and return 1. If NAME cannot be found, return 0. */
|
||
|
||
static int
|
||
find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
|
||
offset_type **vec_out)
|
||
{
|
||
offset_type hash = mapped_index_string_hash (name);
|
||
offset_type slot, step;
|
||
|
||
slot = hash & (index->symbol_table_slots - 1);
|
||
step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
|
||
|
||
for (;;)
|
||
{
|
||
/* Convert a slot number to an offset into the table. */
|
||
offset_type i = 2 * slot;
|
||
const char *str;
|
||
if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
|
||
return 0;
|
||
|
||
str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
|
||
if (!strcmp (name, str))
|
||
{
|
||
*vec_out = (offset_type *) (index->constant_pool
|
||
+ MAYBE_SWAP (index->symbol_table[i + 1]));
|
||
return 1;
|
||
}
|
||
|
||
slot = (slot + step) & (index->symbol_table_slots - 1);
|
||
}
|
||
}
|
||
|
||
/* Read the index file. If everything went ok, initialize the "quick"
|
||
elements of all the CUs and return 1. Otherwise, return 0. */
|
||
|
||
static int
|
||
dwarf2_read_index (struct objfile *objfile)
|
||
{
|
||
char *addr;
|
||
struct mapped_index *map;
|
||
offset_type *metadata;
|
||
const gdb_byte *cu_list;
|
||
const gdb_byte *types_list = NULL;
|
||
offset_type version, cu_list_elements;
|
||
offset_type types_list_elements = 0;
|
||
int i;
|
||
|
||
if (dwarf2_per_objfile->gdb_index.asection == NULL
|
||
|| dwarf2_per_objfile->gdb_index.size == 0)
|
||
return 0;
|
||
|
||
/* Older elfutils strip versions could keep the section in the main
|
||
executable while splitting it for the separate debug info file. */
|
||
if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
|
||
& SEC_HAS_CONTENTS) == 0)
|
||
return 0;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
|
||
|
||
addr = dwarf2_per_objfile->gdb_index.buffer;
|
||
/* Version check. */
|
||
version = MAYBE_SWAP (*(offset_type *) addr);
|
||
/* Versions earlier than 3 emitted every copy of a psymbol. This
|
||
causes the index to behave very poorly for certain requests. So,
|
||
it seems better to just ignore such indices. */
|
||
if (version < 3)
|
||
return 0;
|
||
/* Indexes with higher version than the one supported by GDB may be no
|
||
longer backward compatible. */
|
||
if (version > 3)
|
||
return 0;
|
||
|
||
map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
|
||
map->total_size = dwarf2_per_objfile->gdb_index.size;
|
||
|
||
metadata = (offset_type *) (addr + sizeof (offset_type));
|
||
|
||
i = 0;
|
||
cu_list = addr + MAYBE_SWAP (metadata[i]);
|
||
cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
|
||
/ 8);
|
||
++i;
|
||
|
||
types_list = addr + MAYBE_SWAP (metadata[i]);
|
||
types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
|
||
- MAYBE_SWAP (metadata[i]))
|
||
/ 8);
|
||
++i;
|
||
|
||
map->address_table = addr + MAYBE_SWAP (metadata[i]);
|
||
map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
|
||
- MAYBE_SWAP (metadata[i]));
|
||
++i;
|
||
|
||
map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
|
||
map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
|
||
- MAYBE_SWAP (metadata[i]))
|
||
/ (2 * sizeof (offset_type)));
|
||
++i;
|
||
|
||
map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
|
||
|
||
if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
|
||
return 0;
|
||
|
||
if (types_list_elements
|
||
&& !create_signatured_type_table_from_index (objfile, types_list,
|
||
types_list_elements))
|
||
return 0;
|
||
|
||
create_addrmap_from_index (objfile, map);
|
||
|
||
dwarf2_per_objfile->index_table = map;
|
||
dwarf2_per_objfile->using_index = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A helper for the "quick" functions which sets the global
|
||
dwarf2_per_objfile according to OBJFILE. */
|
||
|
||
static void
|
||
dw2_setup (struct objfile *objfile)
|
||
{
|
||
dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
|
||
gdb_assert (dwarf2_per_objfile);
|
||
}
|
||
|
||
/* A helper for the "quick" functions which attempts to read the line
|
||
table for THIS_CU. */
|
||
|
||
static void
|
||
dw2_require_line_header (struct objfile *objfile,
|
||
struct dwarf2_per_cu_data *this_cu)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
struct line_header *lh = NULL;
|
||
struct attribute *attr;
|
||
struct cleanup *cleanups;
|
||
struct die_info *comp_unit_die;
|
||
struct dwarf2_section_info* sec;
|
||
gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
|
||
int has_children, i;
|
||
struct dwarf2_cu cu;
|
||
unsigned int bytes_read, buffer_size;
|
||
struct die_reader_specs reader_specs;
|
||
char *name, *comp_dir;
|
||
|
||
if (this_cu->v.quick->read_lines)
|
||
return;
|
||
this_cu->v.quick->read_lines = 1;
|
||
|
||
init_one_comp_unit (&cu, objfile);
|
||
cleanups = make_cleanup (free_stack_comp_unit, &cu);
|
||
|
||
if (this_cu->from_debug_types)
|
||
sec = &dwarf2_per_objfile->types;
|
||
else
|
||
sec = &dwarf2_per_objfile->info;
|
||
dwarf2_read_section (objfile, sec);
|
||
buffer_size = sec->size;
|
||
buffer = sec->buffer;
|
||
info_ptr = buffer + this_cu->offset;
|
||
beg_of_comp_unit = info_ptr;
|
||
|
||
info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
|
||
buffer, buffer_size,
|
||
abfd);
|
||
|
||
/* Complete the cu_header. */
|
||
cu.header.offset = beg_of_comp_unit - buffer;
|
||
cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
|
||
|
||
this_cu->cu = &cu;
|
||
cu.per_cu = this_cu;
|
||
|
||
dwarf2_read_abbrevs (abfd, &cu);
|
||
make_cleanup (dwarf2_free_abbrev_table, &cu);
|
||
|
||
if (this_cu->from_debug_types)
|
||
info_ptr += 8 /*signature*/ + cu.header.offset_size;
|
||
init_cu_die_reader (&reader_specs, &cu);
|
||
info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
|
||
&has_children);
|
||
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
|
||
if (attr)
|
||
{
|
||
unsigned int line_offset = DW_UNSND (attr);
|
||
lh = dwarf_decode_line_header (line_offset, abfd, &cu);
|
||
}
|
||
if (lh == NULL)
|
||
{
|
||
do_cleanups (cleanups);
|
||
return;
|
||
}
|
||
|
||
find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
|
||
|
||
this_cu->v.quick->lines = lh;
|
||
|
||
this_cu->v.quick->file_names
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
lh->num_file_names * sizeof (char *));
|
||
for (i = 0; i < lh->num_file_names; ++i)
|
||
this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* A helper for the "quick" functions which computes and caches the
|
||
real path for a given file name from the line table.
|
||
dw2_require_line_header must have been called before this is
|
||
invoked. */
|
||
|
||
static const char *
|
||
dw2_require_full_path (struct objfile *objfile,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
int index)
|
||
{
|
||
if (!per_cu->v.quick->full_names)
|
||
per_cu->v.quick->full_names
|
||
= OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
per_cu->v.quick->lines->num_file_names,
|
||
sizeof (char *));
|
||
|
||
if (!per_cu->v.quick->full_names[index])
|
||
per_cu->v.quick->full_names[index]
|
||
= gdb_realpath (per_cu->v.quick->file_names[index]);
|
||
|
||
return per_cu->v.quick->full_names[index];
|
||
}
|
||
|
||
static struct symtab *
|
||
dw2_find_last_source_symtab (struct objfile *objfile)
|
||
{
|
||
int index;
|
||
dw2_setup (objfile);
|
||
index = dwarf2_per_objfile->n_comp_units - 1;
|
||
return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
|
||
}
|
||
|
||
static void
|
||
dw2_forget_cached_source_info (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
dw2_setup (objfile);
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
if (per_cu->v.quick->full_names)
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
|
||
{
|
||
xfree ((void *) per_cu->v.quick->full_names[j]);
|
||
per_cu->v.quick->full_names[j] = NULL;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
dw2_lookup_symtab (struct objfile *objfile, const char *name,
|
||
const char *full_path, const char *real_path,
|
||
struct symtab **result)
|
||
{
|
||
int i;
|
||
int check_basename = lbasename (name) == name;
|
||
struct dwarf2_per_cu_data *base_cu = NULL;
|
||
|
||
dw2_setup (objfile);
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
if (per_cu->v.quick->symtab)
|
||
continue;
|
||
|
||
dw2_require_line_header (objfile, per_cu);
|
||
if (!per_cu->v.quick->lines)
|
||
continue;
|
||
|
||
for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
|
||
{
|
||
const char *this_name = per_cu->v.quick->file_names[j];
|
||
|
||
if (FILENAME_CMP (name, this_name) == 0)
|
||
{
|
||
*result = dw2_instantiate_symtab (objfile, per_cu);
|
||
return 1;
|
||
}
|
||
|
||
if (check_basename && ! base_cu
|
||
&& FILENAME_CMP (lbasename (this_name), name) == 0)
|
||
base_cu = per_cu;
|
||
|
||
if (full_path != NULL)
|
||
{
|
||
const char *this_full_name = dw2_require_full_path (objfile,
|
||
per_cu, j);
|
||
|
||
if (this_full_name
|
||
&& FILENAME_CMP (full_path, this_full_name) == 0)
|
||
{
|
||
*result = dw2_instantiate_symtab (objfile, per_cu);
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
if (real_path != NULL)
|
||
{
|
||
const char *this_full_name = dw2_require_full_path (objfile,
|
||
per_cu, j);
|
||
|
||
if (this_full_name != NULL
|
||
&& FILENAME_CMP (real_path, this_full_name) == 0)
|
||
{
|
||
*result = dw2_instantiate_symtab (objfile, per_cu);
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (base_cu)
|
||
{
|
||
*result = dw2_instantiate_symtab (objfile, base_cu);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static struct symtab *
|
||
dw2_lookup_symbol (struct objfile *objfile, int block_index,
|
||
const char *name, domain_enum domain)
|
||
{
|
||
/* We do all the work in the pre_expand_symtabs_matching hook
|
||
instead. */
|
||
return NULL;
|
||
}
|
||
|
||
/* A helper function that expands all symtabs that hold an object
|
||
named NAME. */
|
||
|
||
static void
|
||
dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
|
||
{
|
||
dw2_setup (objfile);
|
||
|
||
if (dwarf2_per_objfile->index_table)
|
||
{
|
||
offset_type *vec;
|
||
|
||
if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
|
||
name, &vec))
|
||
{
|
||
offset_type i, len = MAYBE_SWAP (*vec);
|
||
for (i = 0; i < len; ++i)
|
||
{
|
||
offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
|
||
|
||
dw2_instantiate_symtab (objfile, per_cu);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
dw2_pre_expand_symtabs_matching (struct objfile *objfile,
|
||
int kind, const char *name,
|
||
domain_enum domain)
|
||
{
|
||
dw2_do_expand_symtabs_matching (objfile, name);
|
||
}
|
||
|
||
static void
|
||
dw2_print_stats (struct objfile *objfile)
|
||
{
|
||
int i, count;
|
||
|
||
dw2_setup (objfile);
|
||
count = 0;
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
if (!per_cu->v.quick->symtab)
|
||
++count;
|
||
}
|
||
printf_filtered (_(" Number of unread CUs: %d\n"), count);
|
||
}
|
||
|
||
static void
|
||
dw2_dump (struct objfile *objfile)
|
||
{
|
||
/* Nothing worth printing. */
|
||
}
|
||
|
||
static void
|
||
dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
|
||
struct section_offsets *delta)
|
||
{
|
||
/* There's nothing to relocate here. */
|
||
}
|
||
|
||
static void
|
||
dw2_expand_symtabs_for_function (struct objfile *objfile,
|
||
const char *func_name)
|
||
{
|
||
dw2_do_expand_symtabs_matching (objfile, func_name);
|
||
}
|
||
|
||
static void
|
||
dw2_expand_all_symtabs (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
dw2_instantiate_symtab (objfile, per_cu);
|
||
}
|
||
}
|
||
|
||
static void
|
||
dw2_expand_symtabs_with_filename (struct objfile *objfile,
|
||
const char *filename)
|
||
{
|
||
int i;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
/* We don't need to consider type units here.
|
||
This is only called for examining code, e.g. expand_line_sal.
|
||
There can be an order of magnitude (or more) more type units
|
||
than comp units, and we avoid them if we can. */
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
if (per_cu->v.quick->symtab)
|
||
continue;
|
||
|
||
dw2_require_line_header (objfile, per_cu);
|
||
if (!per_cu->v.quick->lines)
|
||
continue;
|
||
|
||
for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
|
||
{
|
||
const char *this_name = per_cu->v.quick->file_names[j];
|
||
if (FILENAME_CMP (this_name, filename) == 0)
|
||
{
|
||
dw2_instantiate_symtab (objfile, per_cu);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static const char *
|
||
dw2_find_symbol_file (struct objfile *objfile, const char *name)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
offset_type *vec;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
if (!dwarf2_per_objfile->index_table)
|
||
return NULL;
|
||
|
||
if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
|
||
name, &vec))
|
||
return NULL;
|
||
|
||
/* Note that this just looks at the very first one named NAME -- but
|
||
actually we are looking for a function. find_main_filename
|
||
should be rewritten so that it doesn't require a custom hook. It
|
||
could just use the ordinary symbol tables. */
|
||
/* vec[0] is the length, which must always be >0. */
|
||
per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
|
||
|
||
dw2_require_line_header (objfile, per_cu);
|
||
if (!per_cu->v.quick->lines)
|
||
return NULL;
|
||
|
||
return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
|
||
}
|
||
|
||
static void
|
||
dw2_map_matching_symbols (const char * name, domain_enum namespace,
|
||
struct objfile *objfile, int global,
|
||
int (*callback) (struct block *,
|
||
struct symbol *, void *),
|
||
void *data, symbol_compare_ftype *match,
|
||
symbol_compare_ftype *ordered_compare)
|
||
{
|
||
/* Currently unimplemented; used for Ada. The function can be called if the
|
||
current language is Ada for a non-Ada objfile using GNU index. As Ada
|
||
does not look for non-Ada symbols this function should just return. */
|
||
}
|
||
|
||
static void
|
||
dw2_expand_symtabs_matching (struct objfile *objfile,
|
||
int (*file_matcher) (const char *, void *),
|
||
int (*name_matcher) (const char *, void *),
|
||
domain_enum kind,
|
||
void *data)
|
||
{
|
||
int i;
|
||
offset_type iter;
|
||
struct mapped_index *index;
|
||
|
||
dw2_setup (objfile);
|
||
if (!dwarf2_per_objfile->index_table)
|
||
return;
|
||
index = dwarf2_per_objfile->index_table;
|
||
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
per_cu->v.quick->mark = 0;
|
||
if (per_cu->v.quick->symtab)
|
||
continue;
|
||
|
||
dw2_require_line_header (objfile, per_cu);
|
||
if (!per_cu->v.quick->lines)
|
||
continue;
|
||
|
||
for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
|
||
{
|
||
if (file_matcher (per_cu->v.quick->file_names[j], data))
|
||
{
|
||
per_cu->v.quick->mark = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (iter = 0; iter < index->symbol_table_slots; ++iter)
|
||
{
|
||
offset_type idx = 2 * iter;
|
||
const char *name;
|
||
offset_type *vec, vec_len, vec_idx;
|
||
|
||
if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
|
||
continue;
|
||
|
||
name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
|
||
|
||
if (! (*name_matcher) (name, data))
|
||
continue;
|
||
|
||
/* The name was matched, now expand corresponding CUs that were
|
||
marked. */
|
||
vec = (offset_type *) (index->constant_pool
|
||
+ MAYBE_SWAP (index->symbol_table[idx + 1]));
|
||
vec_len = MAYBE_SWAP (vec[0]);
|
||
for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
|
||
if (per_cu->v.quick->mark)
|
||
dw2_instantiate_symtab (objfile, per_cu);
|
||
}
|
||
}
|
||
}
|
||
|
||
static struct symtab *
|
||
dw2_find_pc_sect_symtab (struct objfile *objfile,
|
||
struct minimal_symbol *msymbol,
|
||
CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
int warn_if_readin)
|
||
{
|
||
struct dwarf2_per_cu_data *data;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
if (!objfile->psymtabs_addrmap)
|
||
return NULL;
|
||
|
||
data = addrmap_find (objfile->psymtabs_addrmap, pc);
|
||
if (!data)
|
||
return NULL;
|
||
|
||
if (warn_if_readin && data->v.quick->symtab)
|
||
warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
|
||
paddress (get_objfile_arch (objfile), pc));
|
||
|
||
return dw2_instantiate_symtab (objfile, data);
|
||
}
|
||
|
||
static void
|
||
dw2_map_symbol_names (struct objfile *objfile,
|
||
void (*fun) (const char *, void *),
|
||
void *data)
|
||
{
|
||
offset_type iter;
|
||
struct mapped_index *index;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
if (!dwarf2_per_objfile->index_table)
|
||
return;
|
||
index = dwarf2_per_objfile->index_table;
|
||
|
||
for (iter = 0; iter < index->symbol_table_slots; ++iter)
|
||
{
|
||
offset_type idx = 2 * iter;
|
||
const char *name;
|
||
offset_type *vec, vec_len, vec_idx;
|
||
|
||
if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
|
||
continue;
|
||
|
||
name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
|
||
|
||
(*fun) (name, data);
|
||
}
|
||
}
|
||
|
||
static void
|
||
dw2_map_symbol_filenames (struct objfile *objfile,
|
||
void (*fun) (const char *, const char *, void *),
|
||
void *data)
|
||
{
|
||
int i;
|
||
|
||
dw2_setup (objfile);
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
if (per_cu->v.quick->symtab)
|
||
continue;
|
||
|
||
dw2_require_line_header (objfile, per_cu);
|
||
if (!per_cu->v.quick->lines)
|
||
continue;
|
||
|
||
for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
|
||
{
|
||
const char *this_full_name = dw2_require_full_path (objfile, per_cu,
|
||
j);
|
||
(*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
dw2_has_symbols (struct objfile *objfile)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
const struct quick_symbol_functions dwarf2_gdb_index_functions =
|
||
{
|
||
dw2_has_symbols,
|
||
dw2_find_last_source_symtab,
|
||
dw2_forget_cached_source_info,
|
||
dw2_lookup_symtab,
|
||
dw2_lookup_symbol,
|
||
dw2_pre_expand_symtabs_matching,
|
||
dw2_print_stats,
|
||
dw2_dump,
|
||
dw2_relocate,
|
||
dw2_expand_symtabs_for_function,
|
||
dw2_expand_all_symtabs,
|
||
dw2_expand_symtabs_with_filename,
|
||
dw2_find_symbol_file,
|
||
dw2_map_matching_symbols,
|
||
dw2_expand_symtabs_matching,
|
||
dw2_find_pc_sect_symtab,
|
||
dw2_map_symbol_names,
|
||
dw2_map_symbol_filenames
|
||
};
|
||
|
||
/* Initialize for reading DWARF for this objfile. Return 0 if this
|
||
file will use psymtabs, or 1 if using the GNU index. */
|
||
|
||
int
|
||
dwarf2_initialize_objfile (struct objfile *objfile)
|
||
{
|
||
/* If we're about to read full symbols, don't bother with the
|
||
indices. In this case we also don't care if some other debug
|
||
format is making psymtabs, because they are all about to be
|
||
expanded anyway. */
|
||
if ((objfile->flags & OBJF_READNOW))
|
||
{
|
||
int i;
|
||
|
||
dwarf2_per_objfile->using_index = 1;
|
||
create_all_comp_units (objfile);
|
||
create_debug_types_hash_table (objfile);
|
||
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_comp_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
|
||
per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
}
|
||
|
||
/* Return 1 so that gdb sees the "quick" functions. However,
|
||
these functions will be no-ops because we will have expanded
|
||
all symtabs. */
|
||
return 1;
|
||
}
|
||
|
||
if (dwarf2_read_index (objfile))
|
||
return 1;
|
||
|
||
dwarf2_build_psymtabs (objfile);
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* Build a partial symbol table. */
|
||
|
||
void
|
||
dwarf2_build_psymtabs (struct objfile *objfile)
|
||
{
|
||
if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
|
||
{
|
||
init_psymbol_list (objfile, 1024);
|
||
}
|
||
|
||
dwarf2_build_psymtabs_hard (objfile);
|
||
}
|
||
|
||
/* Return TRUE if OFFSET is within CU_HEADER. */
|
||
|
||
static inline int
|
||
offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
|
||
{
|
||
unsigned int bottom = cu_header->offset;
|
||
unsigned int top = (cu_header->offset
|
||
+ cu_header->length
|
||
+ cu_header->initial_length_size);
|
||
|
||
return (offset >= bottom && offset < top);
|
||
}
|
||
|
||
/* Read in the comp unit header information from the debug_info at info_ptr.
|
||
NOTE: This leaves members offset, first_die_offset to be filled in
|
||
by the caller. */
|
||
|
||
static gdb_byte *
|
||
read_comp_unit_head (struct comp_unit_head *cu_header,
|
||
gdb_byte *info_ptr, bfd *abfd)
|
||
{
|
||
int signed_addr;
|
||
unsigned int bytes_read;
|
||
|
||
cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
|
||
cu_header->initial_length_size = bytes_read;
|
||
cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
|
||
info_ptr += bytes_read;
|
||
cu_header->version = read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
|
||
&bytes_read);
|
||
info_ptr += bytes_read;
|
||
cu_header->addr_size = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
signed_addr = bfd_get_sign_extend_vma (abfd);
|
||
if (signed_addr < 0)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_comp_unit_head: dwarf from non elf file"));
|
||
cu_header->signed_addr_p = signed_addr;
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
static gdb_byte *
|
||
partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
|
||
gdb_byte *buffer, unsigned int buffer_size,
|
||
bfd *abfd)
|
||
{
|
||
gdb_byte *beg_of_comp_unit = info_ptr;
|
||
|
||
info_ptr = read_comp_unit_head (header, info_ptr, abfd);
|
||
|
||
if (header->version != 2 && header->version != 3 && header->version != 4)
|
||
error (_("Dwarf Error: wrong version in compilation unit header "
|
||
"(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
|
||
bfd_get_filename (abfd));
|
||
|
||
if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
|
||
error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
|
||
"(offset 0x%lx + 6) [in module %s]"),
|
||
(long) header->abbrev_offset,
|
||
(long) (beg_of_comp_unit - buffer),
|
||
bfd_get_filename (abfd));
|
||
|
||
if (beg_of_comp_unit + header->length + header->initial_length_size
|
||
> buffer + buffer_size)
|
||
error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
|
||
"(offset 0x%lx + 0) [in module %s]"),
|
||
(long) header->length,
|
||
(long) (beg_of_comp_unit - buffer),
|
||
bfd_get_filename (abfd));
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Read in the types comp unit header information from .debug_types entry at
|
||
types_ptr. The result is a pointer to one past the end of the header. */
|
||
|
||
static gdb_byte *
|
||
read_type_comp_unit_head (struct comp_unit_head *cu_header,
|
||
ULONGEST *signature,
|
||
gdb_byte *types_ptr, bfd *abfd)
|
||
{
|
||
gdb_byte *initial_types_ptr = types_ptr;
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile,
|
||
&dwarf2_per_objfile->types);
|
||
cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
|
||
|
||
types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
|
||
|
||
*signature = read_8_bytes (abfd, types_ptr);
|
||
types_ptr += 8;
|
||
types_ptr += cu_header->offset_size;
|
||
cu_header->first_die_offset = types_ptr - initial_types_ptr;
|
||
|
||
return types_ptr;
|
||
}
|
||
|
||
/* Allocate a new partial symtab for file named NAME and mark this new
|
||
partial symtab as being an include of PST. */
|
||
|
||
static void
|
||
dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
|
||
struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *subpst = allocate_psymtab (name, objfile);
|
||
|
||
subpst->section_offsets = pst->section_offsets;
|
||
subpst->textlow = 0;
|
||
subpst->texthigh = 0;
|
||
|
||
subpst->dependencies = (struct partial_symtab **)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct partial_symtab *));
|
||
subpst->dependencies[0] = pst;
|
||
subpst->number_of_dependencies = 1;
|
||
|
||
subpst->globals_offset = 0;
|
||
subpst->n_global_syms = 0;
|
||
subpst->statics_offset = 0;
|
||
subpst->n_static_syms = 0;
|
||
subpst->symtab = NULL;
|
||
subpst->read_symtab = pst->read_symtab;
|
||
subpst->readin = 0;
|
||
|
||
/* No private part is necessary for include psymtabs. This property
|
||
can be used to differentiate between such include psymtabs and
|
||
the regular ones. */
|
||
subpst->read_symtab_private = NULL;
|
||
}
|
||
|
||
/* Read the Line Number Program data and extract the list of files
|
||
included by the source file represented by PST. Build an include
|
||
partial symtab for each of these included files. */
|
||
|
||
static void
|
||
dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
|
||
struct die_info *die,
|
||
struct partial_symtab *pst)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
bfd *abfd = objfile->obfd;
|
||
struct line_header *lh = NULL;
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
|
||
if (attr)
|
||
{
|
||
unsigned int line_offset = DW_UNSND (attr);
|
||
|
||
lh = dwarf_decode_line_header (line_offset, abfd, cu);
|
||
}
|
||
if (lh == NULL)
|
||
return; /* No linetable, so no includes. */
|
||
|
||
/* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
|
||
dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
|
||
|
||
free_line_header (lh);
|
||
}
|
||
|
||
static hashval_t
|
||
hash_type_signature (const void *item)
|
||
{
|
||
const struct signatured_type *type_sig = item;
|
||
|
||
/* This drops the top 32 bits of the signature, but is ok for a hash. */
|
||
return type_sig->signature;
|
||
}
|
||
|
||
static int
|
||
eq_type_signature (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct signatured_type *lhs = item_lhs;
|
||
const struct signatured_type *rhs = item_rhs;
|
||
|
||
return lhs->signature == rhs->signature;
|
||
}
|
||
|
||
/* Allocate a hash table for signatured types. */
|
||
|
||
static htab_t
|
||
allocate_signatured_type_table (struct objfile *objfile)
|
||
{
|
||
return htab_create_alloc_ex (41,
|
||
hash_type_signature,
|
||
eq_type_signature,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* A helper function to add a signatured type CU to a list. */
|
||
|
||
static int
|
||
add_signatured_type_cu_to_list (void **slot, void *datum)
|
||
{
|
||
struct signatured_type *sigt = *slot;
|
||
struct dwarf2_per_cu_data ***datap = datum;
|
||
|
||
**datap = &sigt->per_cu;
|
||
++*datap;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Create the hash table of all entries in the .debug_types section.
|
||
The result is zero if there is an error (e.g. missing .debug_types section),
|
||
otherwise non-zero. */
|
||
|
||
static int
|
||
create_debug_types_hash_table (struct objfile *objfile)
|
||
{
|
||
gdb_byte *info_ptr;
|
||
htab_t types_htab;
|
||
struct dwarf2_per_cu_data **iter;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
|
||
info_ptr = dwarf2_per_objfile->types.buffer;
|
||
|
||
if (info_ptr == NULL)
|
||
{
|
||
dwarf2_per_objfile->signatured_types = NULL;
|
||
return 0;
|
||
}
|
||
|
||
types_htab = allocate_signatured_type_table (objfile);
|
||
|
||
if (dwarf2_die_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
|
||
|
||
while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
|
||
{
|
||
unsigned int offset;
|
||
unsigned int offset_size;
|
||
unsigned int type_offset;
|
||
unsigned int length, initial_length_size;
|
||
unsigned short version;
|
||
ULONGEST signature;
|
||
struct signatured_type *type_sig;
|
||
void **slot;
|
||
gdb_byte *ptr = info_ptr;
|
||
|
||
offset = ptr - dwarf2_per_objfile->types.buffer;
|
||
|
||
/* We need to read the type's signature in order to build the hash
|
||
table, but we don't need to read anything else just yet. */
|
||
|
||
/* Sanity check to ensure entire cu is present. */
|
||
length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
|
||
if (ptr + length + initial_length_size
|
||
> dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("debug type entry runs off end of `.debug_types' section, ignored"));
|
||
break;
|
||
}
|
||
|
||
offset_size = initial_length_size == 4 ? 4 : 8;
|
||
ptr += initial_length_size;
|
||
version = bfd_get_16 (objfile->obfd, ptr);
|
||
ptr += 2;
|
||
ptr += offset_size; /* abbrev offset */
|
||
ptr += 1; /* address size */
|
||
signature = bfd_get_64 (objfile->obfd, ptr);
|
||
ptr += 8;
|
||
type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
|
||
|
||
type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
|
||
memset (type_sig, 0, sizeof (*type_sig));
|
||
type_sig->signature = signature;
|
||
type_sig->offset = offset;
|
||
type_sig->type_offset = type_offset;
|
||
type_sig->per_cu.objfile = objfile;
|
||
type_sig->per_cu.from_debug_types = 1;
|
||
|
||
slot = htab_find_slot (types_htab, type_sig, INSERT);
|
||
gdb_assert (slot != NULL);
|
||
*slot = type_sig;
|
||
|
||
if (dwarf2_die_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
|
||
offset, phex (signature, sizeof (signature)));
|
||
|
||
info_ptr = info_ptr + initial_length_size + length;
|
||
}
|
||
|
||
dwarf2_per_objfile->signatured_types = types_htab;
|
||
|
||
dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
|
||
dwarf2_per_objfile->type_comp_units
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
dwarf2_per_objfile->n_type_comp_units
|
||
* sizeof (struct dwarf2_per_cu_data *));
|
||
iter = &dwarf2_per_objfile->type_comp_units[0];
|
||
htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
|
||
gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
|
||
== dwarf2_per_objfile->n_type_comp_units);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Lookup a signature based type.
|
||
Returns NULL if SIG is not present in the table. */
|
||
|
||
static struct signatured_type *
|
||
lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
|
||
{
|
||
struct signatured_type find_entry, *entry;
|
||
|
||
if (dwarf2_per_objfile->signatured_types == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("missing `.debug_types' section for DW_FORM_sig8 die"));
|
||
return 0;
|
||
}
|
||
|
||
find_entry.signature = sig;
|
||
entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
|
||
return entry;
|
||
}
|
||
|
||
/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
|
||
|
||
static void
|
||
init_cu_die_reader (struct die_reader_specs *reader,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
reader->abfd = cu->objfile->obfd;
|
||
reader->cu = cu;
|
||
if (cu->per_cu->from_debug_types)
|
||
{
|
||
gdb_assert (dwarf2_per_objfile->types.readin);
|
||
reader->buffer = dwarf2_per_objfile->types.buffer;
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (dwarf2_per_objfile->info.readin);
|
||
reader->buffer = dwarf2_per_objfile->info.buffer;
|
||
}
|
||
}
|
||
|
||
/* Find the base address of the compilation unit for range lists and
|
||
location lists. It will normally be specified by DW_AT_low_pc.
|
||
In DWARF-3 draft 4, the base address could be overridden by
|
||
DW_AT_entry_pc. It's been removed, but GCC still uses this for
|
||
compilation units with discontinuous ranges. */
|
||
|
||
static void
|
||
dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
cu->base_known = 0;
|
||
cu->base_address = 0;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
|
||
if (attr)
|
||
{
|
||
cu->base_address = DW_ADDR (attr);
|
||
cu->base_known = 1;
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
cu->base_address = DW_ADDR (attr);
|
||
cu->base_known = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
|
||
to combine the common parts.
|
||
Process a compilation unit for a psymtab.
|
||
BUFFER is a pointer to the beginning of the dwarf section buffer,
|
||
either .debug_info or debug_types.
|
||
INFO_PTR is a pointer to the start of the CU.
|
||
Returns a pointer to the next CU. */
|
||
|
||
static gdb_byte *
|
||
process_psymtab_comp_unit (struct objfile *objfile,
|
||
struct dwarf2_per_cu_data *this_cu,
|
||
gdb_byte *buffer, gdb_byte *info_ptr,
|
||
unsigned int buffer_size)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
gdb_byte *beg_of_comp_unit = info_ptr;
|
||
struct die_info *comp_unit_die;
|
||
struct partial_symtab *pst;
|
||
CORE_ADDR baseaddr;
|
||
struct cleanup *back_to_inner;
|
||
struct dwarf2_cu cu;
|
||
int has_children, has_pc_info;
|
||
struct attribute *attr;
|
||
CORE_ADDR best_lowpc = 0, best_highpc = 0;
|
||
struct die_reader_specs reader_specs;
|
||
|
||
init_one_comp_unit (&cu, objfile);
|
||
back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
|
||
|
||
info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
|
||
buffer, buffer_size,
|
||
abfd);
|
||
|
||
/* Complete the cu_header. */
|
||
cu.header.offset = beg_of_comp_unit - buffer;
|
||
cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
|
||
|
||
cu.list_in_scope = &file_symbols;
|
||
|
||
/* If this compilation unit was already read in, free the
|
||
cached copy in order to read it in again. This is
|
||
necessary because we skipped some symbols when we first
|
||
read in the compilation unit (see load_partial_dies).
|
||
This problem could be avoided, but the benefit is
|
||
unclear. */
|
||
if (this_cu->cu != NULL)
|
||
free_one_cached_comp_unit (this_cu->cu);
|
||
|
||
/* Note that this is a pointer to our stack frame, being
|
||
added to a global data structure. It will be cleaned up
|
||
in free_stack_comp_unit when we finish with this
|
||
compilation unit. */
|
||
this_cu->cu = &cu;
|
||
cu.per_cu = this_cu;
|
||
|
||
/* Read the abbrevs for this compilation unit into a table. */
|
||
dwarf2_read_abbrevs (abfd, &cu);
|
||
make_cleanup (dwarf2_free_abbrev_table, &cu);
|
||
|
||
/* Read the compilation unit die. */
|
||
if (this_cu->from_debug_types)
|
||
info_ptr += 8 /*signature*/ + cu.header.offset_size;
|
||
init_cu_die_reader (&reader_specs, &cu);
|
||
info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
|
||
&has_children);
|
||
|
||
if (this_cu->from_debug_types)
|
||
{
|
||
/* offset,length haven't been set yet for type units. */
|
||
this_cu->offset = cu.header.offset;
|
||
this_cu->length = cu.header.length + cu.header.initial_length_size;
|
||
}
|
||
else if (comp_unit_die->tag == DW_TAG_partial_unit)
|
||
{
|
||
info_ptr = (beg_of_comp_unit + cu.header.length
|
||
+ cu.header.initial_length_size);
|
||
do_cleanups (back_to_inner);
|
||
return info_ptr;
|
||
}
|
||
|
||
prepare_one_comp_unit (&cu, comp_unit_die);
|
||
|
||
/* Allocate a new partial symbol table structure. */
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
|
||
pst = start_psymtab_common (objfile, objfile->section_offsets,
|
||
(attr != NULL) ? DW_STRING (attr) : "",
|
||
/* TEXTLOW and TEXTHIGH are set below. */
|
||
0,
|
||
objfile->global_psymbols.next,
|
||
objfile->static_psymbols.next);
|
||
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
|
||
if (attr != NULL)
|
||
pst->dirname = DW_STRING (attr);
|
||
|
||
pst->read_symtab_private = this_cu;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
/* Store the function that reads in the rest of the symbol table */
|
||
pst->read_symtab = dwarf2_psymtab_to_symtab;
|
||
|
||
this_cu->v.psymtab = pst;
|
||
|
||
dwarf2_find_base_address (comp_unit_die, &cu);
|
||
|
||
/* Possibly set the default values of LOWPC and HIGHPC from
|
||
`DW_AT_ranges'. */
|
||
has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
|
||
&best_highpc, &cu, pst);
|
||
if (has_pc_info == 1 && best_lowpc < best_highpc)
|
||
/* Store the contiguous range if it is not empty; it can be empty for
|
||
CUs with no code. */
|
||
addrmap_set_empty (objfile->psymtabs_addrmap,
|
||
best_lowpc + baseaddr,
|
||
best_highpc + baseaddr - 1, pst);
|
||
|
||
/* Check if comp unit has_children.
|
||
If so, read the rest of the partial symbols from this comp unit.
|
||
If not, there's no more debug_info for this comp unit. */
|
||
if (has_children)
|
||
{
|
||
struct partial_die_info *first_die;
|
||
CORE_ADDR lowpc, highpc;
|
||
|
||
lowpc = ((CORE_ADDR) -1);
|
||
highpc = ((CORE_ADDR) 0);
|
||
|
||
first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
|
||
|
||
scan_partial_symbols (first_die, &lowpc, &highpc,
|
||
! has_pc_info, &cu);
|
||
|
||
/* If we didn't find a lowpc, set it to highpc to avoid
|
||
complaints from `maint check'. */
|
||
if (lowpc == ((CORE_ADDR) -1))
|
||
lowpc = highpc;
|
||
|
||
/* If the compilation unit didn't have an explicit address range,
|
||
then use the information extracted from its child dies. */
|
||
if (! has_pc_info)
|
||
{
|
||
best_lowpc = lowpc;
|
||
best_highpc = highpc;
|
||
}
|
||
}
|
||
pst->textlow = best_lowpc + baseaddr;
|
||
pst->texthigh = best_highpc + baseaddr;
|
||
|
||
pst->n_global_syms = objfile->global_psymbols.next -
|
||
(objfile->global_psymbols.list + pst->globals_offset);
|
||
pst->n_static_syms = objfile->static_psymbols.next -
|
||
(objfile->static_psymbols.list + pst->statics_offset);
|
||
sort_pst_symbols (pst);
|
||
|
||
info_ptr = (beg_of_comp_unit + cu.header.length
|
||
+ cu.header.initial_length_size);
|
||
|
||
if (this_cu->from_debug_types)
|
||
{
|
||
/* It's not clear we want to do anything with stmt lists here.
|
||
Waiting to see what gcc ultimately does. */
|
||
}
|
||
else
|
||
{
|
||
/* Get the list of files included in the current compilation unit,
|
||
and build a psymtab for each of them. */
|
||
dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
|
||
}
|
||
|
||
do_cleanups (back_to_inner);
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Traversal function for htab_traverse_noresize.
|
||
Process one .debug_types comp-unit. */
|
||
|
||
static int
|
||
process_type_comp_unit (void **slot, void *info)
|
||
{
|
||
struct signatured_type *entry = (struct signatured_type *) *slot;
|
||
struct objfile *objfile = (struct objfile *) info;
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
|
||
this_cu = &entry->per_cu;
|
||
|
||
gdb_assert (dwarf2_per_objfile->types.readin);
|
||
process_psymtab_comp_unit (objfile, this_cu,
|
||
dwarf2_per_objfile->types.buffer,
|
||
dwarf2_per_objfile->types.buffer + entry->offset,
|
||
dwarf2_per_objfile->types.size);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
|
||
Build partial symbol tables for the .debug_types comp-units. */
|
||
|
||
static void
|
||
build_type_psymtabs (struct objfile *objfile)
|
||
{
|
||
if (! create_debug_types_hash_table (objfile))
|
||
return;
|
||
|
||
htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
|
||
process_type_comp_unit, objfile);
|
||
}
|
||
|
||
/* A cleanup function that clears objfile's psymtabs_addrmap field. */
|
||
|
||
static void
|
||
psymtabs_addrmap_cleanup (void *o)
|
||
{
|
||
struct objfile *objfile = o;
|
||
|
||
objfile->psymtabs_addrmap = NULL;
|
||
}
|
||
|
||
/* Build the partial symbol table by doing a quick pass through the
|
||
.debug_info and .debug_abbrev sections. */
|
||
|
||
static void
|
||
dwarf2_build_psymtabs_hard (struct objfile *objfile)
|
||
{
|
||
gdb_byte *info_ptr;
|
||
struct cleanup *back_to, *addrmap_cleanup;
|
||
struct obstack temp_obstack;
|
||
|
||
dwarf2_per_objfile->reading_partial_symbols = 1;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
|
||
info_ptr = dwarf2_per_objfile->info.buffer;
|
||
|
||
/* Any cached compilation units will be linked by the per-objfile
|
||
read_in_chain. Make sure to free them when we're done. */
|
||
back_to = make_cleanup (free_cached_comp_units, NULL);
|
||
|
||
build_type_psymtabs (objfile);
|
||
|
||
create_all_comp_units (objfile);
|
||
|
||
/* Create a temporary address map on a temporary obstack. We later
|
||
copy this to the final obstack. */
|
||
obstack_init (&temp_obstack);
|
||
make_cleanup_obstack_free (&temp_obstack);
|
||
objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
|
||
addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
|
||
|
||
/* Since the objects we're extracting from .debug_info vary in
|
||
length, only the individual functions to extract them (like
|
||
read_comp_unit_head and load_partial_die) can really know whether
|
||
the buffer is large enough to hold another complete object.
|
||
|
||
At the moment, they don't actually check that. If .debug_info
|
||
holds just one extra byte after the last compilation unit's dies,
|
||
then read_comp_unit_head will happily read off the end of the
|
||
buffer. read_partial_die is similarly casual. Those functions
|
||
should be fixed.
|
||
|
||
For this loop condition, simply checking whether there's any data
|
||
left at all should be sufficient. */
|
||
|
||
while (info_ptr < (dwarf2_per_objfile->info.buffer
|
||
+ dwarf2_per_objfile->info.size))
|
||
{
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
|
||
this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
|
||
objfile);
|
||
|
||
info_ptr = process_psymtab_comp_unit (objfile, this_cu,
|
||
dwarf2_per_objfile->info.buffer,
|
||
info_ptr,
|
||
dwarf2_per_objfile->info.size);
|
||
}
|
||
|
||
objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
|
||
&objfile->objfile_obstack);
|
||
discard_cleanups (addrmap_cleanup);
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* Load the partial DIEs for a secondary CU into memory. */
|
||
|
||
static void
|
||
load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
|
||
struct objfile *objfile)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
gdb_byte *info_ptr, *beg_of_comp_unit;
|
||
struct die_info *comp_unit_die;
|
||
struct dwarf2_cu *cu;
|
||
struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
|
||
int has_children;
|
||
struct die_reader_specs reader_specs;
|
||
int read_cu = 0;
|
||
|
||
gdb_assert (! this_cu->from_debug_types);
|
||
|
||
gdb_assert (dwarf2_per_objfile->info.readin);
|
||
info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
|
||
beg_of_comp_unit = info_ptr;
|
||
|
||
if (this_cu->cu == NULL)
|
||
{
|
||
cu = xmalloc (sizeof (*cu));
|
||
init_one_comp_unit (cu, objfile);
|
||
|
||
read_cu = 1;
|
||
|
||
/* If an error occurs while loading, release our storage. */
|
||
free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
|
||
|
||
info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
|
||
dwarf2_per_objfile->info.buffer,
|
||
dwarf2_per_objfile->info.size,
|
||
abfd);
|
||
|
||
/* Complete the cu_header. */
|
||
cu->header.offset = this_cu->offset;
|
||
cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
|
||
|
||
/* Link this compilation unit into the compilation unit tree. */
|
||
this_cu->cu = cu;
|
||
cu->per_cu = this_cu;
|
||
|
||
/* Link this CU into read_in_chain. */
|
||
this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
|
||
dwarf2_per_objfile->read_in_chain = this_cu;
|
||
}
|
||
else
|
||
{
|
||
cu = this_cu->cu;
|
||
info_ptr += cu->header.first_die_offset;
|
||
}
|
||
|
||
/* Read the abbrevs for this compilation unit into a table. */
|
||
gdb_assert (cu->dwarf2_abbrevs == NULL);
|
||
dwarf2_read_abbrevs (abfd, cu);
|
||
free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
|
||
|
||
/* Read the compilation unit die. */
|
||
init_cu_die_reader (&reader_specs, cu);
|
||
info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
|
||
&has_children);
|
||
|
||
prepare_one_comp_unit (cu, comp_unit_die);
|
||
|
||
/* Check if comp unit has_children.
|
||
If so, read the rest of the partial symbols from this comp unit.
|
||
If not, there's no more debug_info for this comp unit. */
|
||
if (has_children)
|
||
load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
|
||
|
||
do_cleanups (free_abbrevs_cleanup);
|
||
|
||
if (read_cu)
|
||
{
|
||
/* We've successfully allocated this compilation unit. Let our
|
||
caller clean it up when finished with it. */
|
||
discard_cleanups (free_cu_cleanup);
|
||
}
|
||
}
|
||
|
||
/* Create a list of all compilation units in OBJFILE. We do this only
|
||
if an inter-comp-unit reference is found; presumably if there is one,
|
||
there will be many, and one will occur early in the .debug_info section.
|
||
So there's no point in building this list incrementally. */
|
||
|
||
static void
|
||
create_all_comp_units (struct objfile *objfile)
|
||
{
|
||
int n_allocated;
|
||
int n_comp_units;
|
||
struct dwarf2_per_cu_data **all_comp_units;
|
||
gdb_byte *info_ptr;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
|
||
info_ptr = dwarf2_per_objfile->info.buffer;
|
||
|
||
n_comp_units = 0;
|
||
n_allocated = 10;
|
||
all_comp_units = xmalloc (n_allocated
|
||
* sizeof (struct dwarf2_per_cu_data *));
|
||
|
||
while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
|
||
{
|
||
unsigned int length, initial_length_size;
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
unsigned int offset;
|
||
|
||
offset = info_ptr - dwarf2_per_objfile->info.buffer;
|
||
|
||
/* Read just enough information to find out where the next
|
||
compilation unit is. */
|
||
length = read_initial_length (objfile->obfd, info_ptr,
|
||
&initial_length_size);
|
||
|
||
/* Save the compilation unit for later lookup. */
|
||
this_cu = obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct dwarf2_per_cu_data));
|
||
memset (this_cu, 0, sizeof (*this_cu));
|
||
this_cu->offset = offset;
|
||
this_cu->length = length + initial_length_size;
|
||
this_cu->objfile = objfile;
|
||
|
||
if (n_comp_units == n_allocated)
|
||
{
|
||
n_allocated *= 2;
|
||
all_comp_units = xrealloc (all_comp_units,
|
||
n_allocated
|
||
* sizeof (struct dwarf2_per_cu_data *));
|
||
}
|
||
all_comp_units[n_comp_units++] = this_cu;
|
||
|
||
info_ptr = info_ptr + this_cu->length;
|
||
}
|
||
|
||
dwarf2_per_objfile->all_comp_units
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
n_comp_units * sizeof (struct dwarf2_per_cu_data *));
|
||
memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
|
||
n_comp_units * sizeof (struct dwarf2_per_cu_data *));
|
||
xfree (all_comp_units);
|
||
dwarf2_per_objfile->n_comp_units = n_comp_units;
|
||
}
|
||
|
||
/* Process all loaded DIEs for compilation unit CU, starting at
|
||
FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
|
||
unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
|
||
DW_AT_ranges). If NEED_PC is set, then this function will set
|
||
*LOWPC and *HIGHPC to the lowest and highest PC values found in CU
|
||
and record the covered ranges in the addrmap. */
|
||
|
||
static void
|
||
scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *pdi;
|
||
|
||
/* Now, march along the PDI's, descending into ones which have
|
||
interesting children but skipping the children of the other ones,
|
||
until we reach the end of the compilation unit. */
|
||
|
||
pdi = first_die;
|
||
|
||
while (pdi != NULL)
|
||
{
|
||
fixup_partial_die (pdi, cu);
|
||
|
||
/* Anonymous namespaces or modules have no name but have interesting
|
||
children, so we need to look at them. Ditto for anonymous
|
||
enums. */
|
||
|
||
if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
|
||
|| pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
|
||
{
|
||
switch (pdi->tag)
|
||
{
|
||
case DW_TAG_subprogram:
|
||
add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
|
||
break;
|
||
case DW_TAG_constant:
|
||
case DW_TAG_variable:
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_union_type:
|
||
if (!pdi->is_declaration)
|
||
{
|
||
add_partial_symbol (pdi, cu);
|
||
}
|
||
break;
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
if (!pdi->is_declaration)
|
||
{
|
||
add_partial_symbol (pdi, cu);
|
||
}
|
||
break;
|
||
case DW_TAG_enumeration_type:
|
||
if (!pdi->is_declaration)
|
||
add_partial_enumeration (pdi, cu);
|
||
break;
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
/* File scope base type definitions are added to the partial
|
||
symbol table. */
|
||
add_partial_symbol (pdi, cu);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
|
||
break;
|
||
case DW_TAG_module:
|
||
add_partial_module (pdi, lowpc, highpc, need_pc, cu);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If the die has a sibling, skip to the sibling. */
|
||
|
||
pdi = pdi->die_sibling;
|
||
}
|
||
}
|
||
|
||
/* Functions used to compute the fully scoped name of a partial DIE.
|
||
|
||
Normally, this is simple. For C++, the parent DIE's fully scoped
|
||
name is concatenated with "::" and the partial DIE's name. For
|
||
Java, the same thing occurs except that "." is used instead of "::".
|
||
Enumerators are an exception; they use the scope of their parent
|
||
enumeration type, i.e. the name of the enumeration type is not
|
||
prepended to the enumerator.
|
||
|
||
There are two complexities. One is DW_AT_specification; in this
|
||
case "parent" means the parent of the target of the specification,
|
||
instead of the direct parent of the DIE. The other is compilers
|
||
which do not emit DW_TAG_namespace; in this case we try to guess
|
||
the fully qualified name of structure types from their members'
|
||
linkage names. This must be done using the DIE's children rather
|
||
than the children of any DW_AT_specification target. We only need
|
||
to do this for structures at the top level, i.e. if the target of
|
||
any DW_AT_specification (if any; otherwise the DIE itself) does not
|
||
have a parent. */
|
||
|
||
/* Compute the scope prefix associated with PDI's parent, in
|
||
compilation unit CU. The result will be allocated on CU's
|
||
comp_unit_obstack, or a copy of the already allocated PDI->NAME
|
||
field. NULL is returned if no prefix is necessary. */
|
||
static char *
|
||
partial_die_parent_scope (struct partial_die_info *pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
char *grandparent_scope;
|
||
struct partial_die_info *parent, *real_pdi;
|
||
|
||
/* We need to look at our parent DIE; if we have a DW_AT_specification,
|
||
then this means the parent of the specification DIE. */
|
||
|
||
real_pdi = pdi;
|
||
while (real_pdi->has_specification)
|
||
real_pdi = find_partial_die (real_pdi->spec_offset, cu);
|
||
|
||
parent = real_pdi->die_parent;
|
||
if (parent == NULL)
|
||
return NULL;
|
||
|
||
if (parent->scope_set)
|
||
return parent->scope;
|
||
|
||
fixup_partial_die (parent, cu);
|
||
|
||
grandparent_scope = partial_die_parent_scope (parent, cu);
|
||
|
||
/* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
|
||
DW_TAG_namespace DIEs with a name of "::" for the global namespace.
|
||
Work around this problem here. */
|
||
if (cu->language == language_cplus
|
||
&& parent->tag == DW_TAG_namespace
|
||
&& strcmp (parent->name, "::") == 0
|
||
&& grandparent_scope == NULL)
|
||
{
|
||
parent->scope = NULL;
|
||
parent->scope_set = 1;
|
||
return NULL;
|
||
}
|
||
|
||
if (parent->tag == DW_TAG_namespace
|
||
|| parent->tag == DW_TAG_module
|
||
|| parent->tag == DW_TAG_structure_type
|
||
|| parent->tag == DW_TAG_class_type
|
||
|| parent->tag == DW_TAG_interface_type
|
||
|| parent->tag == DW_TAG_union_type
|
||
|| parent->tag == DW_TAG_enumeration_type)
|
||
{
|
||
if (grandparent_scope == NULL)
|
||
parent->scope = parent->name;
|
||
else
|
||
parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
|
||
parent->name, 0, cu);
|
||
}
|
||
else if (parent->tag == DW_TAG_enumerator)
|
||
/* Enumerators should not get the name of the enumeration as a prefix. */
|
||
parent->scope = grandparent_scope;
|
||
else
|
||
{
|
||
/* FIXME drow/2004-04-01: What should we be doing with
|
||
function-local names? For partial symbols, we should probably be
|
||
ignoring them. */
|
||
complaint (&symfile_complaints,
|
||
_("unhandled containing DIE tag %d for DIE at %d"),
|
||
parent->tag, pdi->offset);
|
||
parent->scope = grandparent_scope;
|
||
}
|
||
|
||
parent->scope_set = 1;
|
||
return parent->scope;
|
||
}
|
||
|
||
/* Return the fully scoped name associated with PDI, from compilation unit
|
||
CU. The result will be allocated with malloc. */
|
||
static char *
|
||
partial_die_full_name (struct partial_die_info *pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
char *parent_scope;
|
||
|
||
/* If this is a template instantiation, we can not work out the
|
||
template arguments from partial DIEs. So, unfortunately, we have
|
||
to go through the full DIEs. At least any work we do building
|
||
types here will be reused if full symbols are loaded later. */
|
||
if (pdi->has_template_arguments)
|
||
{
|
||
fixup_partial_die (pdi, cu);
|
||
|
||
if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
|
||
{
|
||
struct die_info *die;
|
||
struct attribute attr;
|
||
struct dwarf2_cu *ref_cu = cu;
|
||
|
||
attr.name = 0;
|
||
attr.form = DW_FORM_ref_addr;
|
||
attr.u.addr = pdi->offset;
|
||
die = follow_die_ref (NULL, &attr, &ref_cu);
|
||
|
||
return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
|
||
}
|
||
}
|
||
|
||
parent_scope = partial_die_parent_scope (pdi, cu);
|
||
if (parent_scope == NULL)
|
||
return NULL;
|
||
else
|
||
return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
|
||
}
|
||
|
||
static void
|
||
add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
CORE_ADDR addr = 0;
|
||
char *actual_name = NULL;
|
||
const struct partial_symbol *psym = NULL;
|
||
CORE_ADDR baseaddr;
|
||
int built_actual_name = 0;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
actual_name = partial_die_full_name (pdi, cu);
|
||
if (actual_name)
|
||
built_actual_name = 1;
|
||
|
||
if (actual_name == NULL)
|
||
actual_name = pdi->name;
|
||
|
||
switch (pdi->tag)
|
||
{
|
||
case DW_TAG_subprogram:
|
||
if (pdi->is_external || cu->language == language_ada)
|
||
{
|
||
/* brobecker/2007-12-26: Normally, only "external" DIEs are part
|
||
of the global scope. But in Ada, we want to be able to access
|
||
nested procedures globally. So all Ada subprograms are stored
|
||
in the global scope. */
|
||
/*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
|
||
mst_text, objfile); */
|
||
psym = add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_BLOCK,
|
||
&objfile->global_psymbols,
|
||
0, pdi->lowpc + baseaddr,
|
||
cu->language, objfile);
|
||
}
|
||
else
|
||
{
|
||
/*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
|
||
mst_file_text, objfile); */
|
||
psym = add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_BLOCK,
|
||
&objfile->static_psymbols,
|
||
0, pdi->lowpc + baseaddr,
|
||
cu->language, objfile);
|
||
}
|
||
break;
|
||
case DW_TAG_constant:
|
||
{
|
||
struct psymbol_allocation_list *list;
|
||
|
||
if (pdi->is_external)
|
||
list = &objfile->global_psymbols;
|
||
else
|
||
list = &objfile->static_psymbols;
|
||
psym = add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name, VAR_DOMAIN, LOC_STATIC,
|
||
list, 0, 0, cu->language, objfile);
|
||
|
||
}
|
||
break;
|
||
case DW_TAG_variable:
|
||
if (pdi->locdesc)
|
||
addr = decode_locdesc (pdi->locdesc, cu);
|
||
|
||
if (pdi->locdesc
|
||
&& addr == 0
|
||
&& !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
/* A global or static variable may also have been stripped
|
||
out by the linker if unused, in which case its address
|
||
will be nullified; do not add such variables into partial
|
||
symbol table then. */
|
||
}
|
||
else if (pdi->is_external)
|
||
{
|
||
/* Global Variable.
|
||
Don't enter into the minimal symbol tables as there is
|
||
a minimal symbol table entry from the ELF symbols already.
|
||
Enter into partial symbol table if it has a location
|
||
descriptor or a type.
|
||
If the location descriptor is missing, new_symbol will create
|
||
a LOC_UNRESOLVED symbol, the address of the variable will then
|
||
be determined from the minimal symbol table whenever the variable
|
||
is referenced.
|
||
The address for the partial symbol table entry is not
|
||
used by GDB, but it comes in handy for debugging partial symbol
|
||
table building. */
|
||
|
||
if (pdi->locdesc || pdi->has_type)
|
||
psym = add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_STATIC,
|
||
&objfile->global_psymbols,
|
||
0, addr + baseaddr,
|
||
cu->language, objfile);
|
||
}
|
||
else
|
||
{
|
||
/* Static Variable. Skip symbols without location descriptors. */
|
||
if (pdi->locdesc == NULL)
|
||
{
|
||
if (built_actual_name)
|
||
xfree (actual_name);
|
||
return;
|
||
}
|
||
/*prim_record_minimal_symbol (actual_name, addr + baseaddr,
|
||
mst_file_data, objfile); */
|
||
psym = add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_STATIC,
|
||
&objfile->static_psymbols,
|
||
0, addr + baseaddr,
|
||
cu->language, objfile);
|
||
}
|
||
break;
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_TYPEDEF,
|
||
&objfile->static_psymbols,
|
||
0, (CORE_ADDR) 0, cu->language, objfile);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_TYPEDEF,
|
||
&objfile->global_psymbols,
|
||
0, (CORE_ADDR) 0, cu->language, objfile);
|
||
break;
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_enumeration_type:
|
||
/* Skip external references. The DWARF standard says in the section
|
||
about "Structure, Union, and Class Type Entries": "An incomplete
|
||
structure, union or class type is represented by a structure,
|
||
union or class entry that does not have a byte size attribute
|
||
and that has a DW_AT_declaration attribute." */
|
||
if (!pdi->has_byte_size && pdi->is_declaration)
|
||
{
|
||
if (built_actual_name)
|
||
xfree (actual_name);
|
||
return;
|
||
}
|
||
|
||
/* NOTE: carlton/2003-10-07: See comment in new_symbol about
|
||
static vs. global. */
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
STRUCT_DOMAIN, LOC_TYPEDEF,
|
||
(cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &objfile->global_psymbols
|
||
: &objfile->static_psymbols,
|
||
0, (CORE_ADDR) 0, cu->language, objfile);
|
||
|
||
break;
|
||
case DW_TAG_enumerator:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name,
|
||
VAR_DOMAIN, LOC_CONST,
|
||
(cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &objfile->global_psymbols
|
||
: &objfile->static_psymbols,
|
||
0, (CORE_ADDR) 0, cu->language, objfile);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (built_actual_name)
|
||
xfree (actual_name);
|
||
}
|
||
|
||
/* Read a partial die corresponding to a namespace; also, add a symbol
|
||
corresponding to that namespace to the symbol table. NAMESPACE is
|
||
the name of the enclosing namespace. */
|
||
|
||
static void
|
||
add_partial_namespace (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int need_pc, struct dwarf2_cu *cu)
|
||
{
|
||
/* Add a symbol for the namespace. */
|
||
|
||
add_partial_symbol (pdi, cu);
|
||
|
||
/* Now scan partial symbols in that namespace. */
|
||
|
||
if (pdi->has_children)
|
||
scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
|
||
}
|
||
|
||
/* Read a partial die corresponding to a Fortran module. */
|
||
|
||
static void
|
||
add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
|
||
{
|
||
/* Now scan partial symbols in that module. */
|
||
|
||
if (pdi->has_children)
|
||
scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
|
||
}
|
||
|
||
/* Read a partial die corresponding to a subprogram and create a partial
|
||
symbol for that subprogram. When the CU language allows it, this
|
||
routine also defines a partial symbol for each nested subprogram
|
||
that this subprogram contains.
|
||
|
||
DIE my also be a lexical block, in which case we simply search
|
||
recursively for suprograms defined inside that lexical block.
|
||
Again, this is only performed when the CU language allows this
|
||
type of definitions. */
|
||
|
||
static void
|
||
add_partial_subprogram (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int need_pc, struct dwarf2_cu *cu)
|
||
{
|
||
if (pdi->tag == DW_TAG_subprogram)
|
||
{
|
||
if (pdi->has_pc_info)
|
||
{
|
||
if (pdi->lowpc < *lowpc)
|
||
*lowpc = pdi->lowpc;
|
||
if (pdi->highpc > *highpc)
|
||
*highpc = pdi->highpc;
|
||
if (need_pc)
|
||
{
|
||
CORE_ADDR baseaddr;
|
||
struct objfile *objfile = cu->objfile;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets,
|
||
SECT_OFF_TEXT (objfile));
|
||
addrmap_set_empty (objfile->psymtabs_addrmap,
|
||
pdi->lowpc + baseaddr,
|
||
pdi->highpc - 1 + baseaddr,
|
||
cu->per_cu->v.psymtab);
|
||
}
|
||
if (!pdi->is_declaration)
|
||
/* Ignore subprogram DIEs that do not have a name, they are
|
||
illegal. Do not emit a complaint at this point, we will
|
||
do so when we convert this psymtab into a symtab. */
|
||
if (pdi->name)
|
||
add_partial_symbol (pdi, cu);
|
||
}
|
||
}
|
||
|
||
if (! pdi->has_children)
|
||
return;
|
||
|
||
if (cu->language == language_ada)
|
||
{
|
||
pdi = pdi->die_child;
|
||
while (pdi != NULL)
|
||
{
|
||
fixup_partial_die (pdi, cu);
|
||
if (pdi->tag == DW_TAG_subprogram
|
||
|| pdi->tag == DW_TAG_lexical_block)
|
||
add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
|
||
pdi = pdi->die_sibling;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read a partial die corresponding to an enumeration type. */
|
||
|
||
static void
|
||
add_partial_enumeration (struct partial_die_info *enum_pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *pdi;
|
||
|
||
if (enum_pdi->name != NULL)
|
||
add_partial_symbol (enum_pdi, cu);
|
||
|
||
pdi = enum_pdi->die_child;
|
||
while (pdi)
|
||
{
|
||
if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
|
||
complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
|
||
else
|
||
add_partial_symbol (pdi, cu);
|
||
pdi = pdi->die_sibling;
|
||
}
|
||
}
|
||
|
||
/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
|
||
Return the corresponding abbrev, or NULL if the number is zero (indicating
|
||
an empty DIE). In either case *BYTES_READ will be set to the length of
|
||
the initial number. */
|
||
|
||
static struct abbrev_info *
|
||
peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
bfd *abfd = cu->objfile->obfd;
|
||
unsigned int abbrev_number;
|
||
struct abbrev_info *abbrev;
|
||
|
||
abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
|
||
|
||
if (abbrev_number == 0)
|
||
return NULL;
|
||
|
||
abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
|
||
if (!abbrev)
|
||
{
|
||
error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
return abbrev;
|
||
}
|
||
|
||
/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
|
||
Returns a pointer to the end of a series of DIEs, terminated by an empty
|
||
DIE. Any children of the skipped DIEs will also be skipped. */
|
||
|
||
static gdb_byte *
|
||
skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
|
||
{
|
||
struct abbrev_info *abbrev;
|
||
unsigned int bytes_read;
|
||
|
||
while (1)
|
||
{
|
||
abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
|
||
if (abbrev == NULL)
|
||
return info_ptr + bytes_read;
|
||
else
|
||
info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
|
||
}
|
||
}
|
||
|
||
/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
|
||
INFO_PTR should point just after the initial uleb128 of a DIE, and the
|
||
abbrev corresponding to that skipped uleb128 should be passed in
|
||
ABBREV. Returns a pointer to this DIE's sibling, skipping any
|
||
children. */
|
||
|
||
static gdb_byte *
|
||
skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
|
||
struct abbrev_info *abbrev, struct dwarf2_cu *cu)
|
||
{
|
||
unsigned int bytes_read;
|
||
struct attribute attr;
|
||
bfd *abfd = cu->objfile->obfd;
|
||
unsigned int form, i;
|
||
|
||
for (i = 0; i < abbrev->num_attrs; i++)
|
||
{
|
||
/* The only abbrev we care about is DW_AT_sibling. */
|
||
if (abbrev->attrs[i].name == DW_AT_sibling)
|
||
{
|
||
read_attribute (&attr, &abbrev->attrs[i],
|
||
abfd, info_ptr, cu);
|
||
if (attr.form == DW_FORM_ref_addr)
|
||
complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
|
||
else
|
||
return buffer + dwarf2_get_ref_die_offset (&attr);
|
||
}
|
||
|
||
/* If it isn't DW_AT_sibling, skip this attribute. */
|
||
form = abbrev->attrs[i].form;
|
||
skip_attribute:
|
||
switch (form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
/* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
|
||
and later it is offset sized. */
|
||
if (cu->header.version == 2)
|
||
info_ptr += cu->header.addr_size;
|
||
else
|
||
info_ptr += cu->header.offset_size;
|
||
break;
|
||
case DW_FORM_addr:
|
||
info_ptr += cu->header.addr_size;
|
||
break;
|
||
case DW_FORM_data1:
|
||
case DW_FORM_ref1:
|
||
case DW_FORM_flag:
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_flag_present:
|
||
break;
|
||
case DW_FORM_data2:
|
||
case DW_FORM_ref2:
|
||
info_ptr += 2;
|
||
break;
|
||
case DW_FORM_data4:
|
||
case DW_FORM_ref4:
|
||
info_ptr += 4;
|
||
break;
|
||
case DW_FORM_data8:
|
||
case DW_FORM_ref8:
|
||
case DW_FORM_sig8:
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_string:
|
||
read_direct_string (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_sec_offset:
|
||
case DW_FORM_strp:
|
||
info_ptr += cu->header.offset_size;
|
||
break;
|
||
case DW_FORM_exprloc:
|
||
case DW_FORM_block:
|
||
info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_block1:
|
||
info_ptr += 1 + read_1_byte (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_block2:
|
||
info_ptr += 2 + read_2_bytes (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_block4:
|
||
info_ptr += 4 + read_4_bytes (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_sdata:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_ref_udata:
|
||
info_ptr = skip_leb128 (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_indirect:
|
||
form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
/* We need to continue parsing from here, so just go back to
|
||
the top. */
|
||
goto skip_attribute;
|
||
|
||
default:
|
||
error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
|
||
dwarf_form_name (form),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
|
||
if (abbrev->has_children)
|
||
return skip_children (buffer, info_ptr, cu);
|
||
else
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Locate ORIG_PDI's sibling.
|
||
INFO_PTR should point to the start of the next DIE after ORIG_PDI
|
||
in BUFFER. */
|
||
|
||
static gdb_byte *
|
||
locate_pdi_sibling (struct partial_die_info *orig_pdi,
|
||
gdb_byte *buffer, gdb_byte *info_ptr,
|
||
bfd *abfd, struct dwarf2_cu *cu)
|
||
{
|
||
/* Do we know the sibling already? */
|
||
|
||
if (orig_pdi->sibling)
|
||
return orig_pdi->sibling;
|
||
|
||
/* Are there any children to deal with? */
|
||
|
||
if (!orig_pdi->has_children)
|
||
return info_ptr;
|
||
|
||
/* Skip the children the long way. */
|
||
|
||
return skip_children (buffer, info_ptr, cu);
|
||
}
|
||
|
||
/* Expand this partial symbol table into a full symbol table. */
|
||
|
||
static void
|
||
dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
|
||
{
|
||
if (pst != NULL)
|
||
{
|
||
if (pst->readin)
|
||
{
|
||
warning (_("bug: psymtab for %s is already read in."), pst->filename);
|
||
}
|
||
else
|
||
{
|
||
if (info_verbose)
|
||
{
|
||
printf_filtered (_("Reading in symbols for %s..."), pst->filename);
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
/* Restore our global data. */
|
||
dwarf2_per_objfile = objfile_data (pst->objfile,
|
||
dwarf2_objfile_data_key);
|
||
|
||
/* If this psymtab is constructed from a debug-only objfile, the
|
||
has_section_at_zero flag will not necessarily be correct. We
|
||
can get the correct value for this flag by looking at the data
|
||
associated with the (presumably stripped) associated objfile. */
|
||
if (pst->objfile->separate_debug_objfile_backlink)
|
||
{
|
||
struct dwarf2_per_objfile *dpo_backlink
|
||
= objfile_data (pst->objfile->separate_debug_objfile_backlink,
|
||
dwarf2_objfile_data_key);
|
||
|
||
dwarf2_per_objfile->has_section_at_zero
|
||
= dpo_backlink->has_section_at_zero;
|
||
}
|
||
|
||
dwarf2_per_objfile->reading_partial_symbols = 0;
|
||
|
||
psymtab_to_symtab_1 (pst);
|
||
|
||
/* Finish up the debug error message. */
|
||
if (info_verbose)
|
||
printf_filtered (_("done.\n"));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add PER_CU to the queue. */
|
||
|
||
static void
|
||
queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
|
||
{
|
||
struct dwarf2_queue_item *item;
|
||
|
||
per_cu->queued = 1;
|
||
item = xmalloc (sizeof (*item));
|
||
item->per_cu = per_cu;
|
||
item->next = NULL;
|
||
|
||
if (dwarf2_queue == NULL)
|
||
dwarf2_queue = item;
|
||
else
|
||
dwarf2_queue_tail->next = item;
|
||
|
||
dwarf2_queue_tail = item;
|
||
}
|
||
|
||
/* Process the queue. */
|
||
|
||
static void
|
||
process_queue (struct objfile *objfile)
|
||
{
|
||
struct dwarf2_queue_item *item, *next_item;
|
||
|
||
/* The queue starts out with one item, but following a DIE reference
|
||
may load a new CU, adding it to the end of the queue. */
|
||
for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
|
||
{
|
||
if (dwarf2_per_objfile->using_index
|
||
? !item->per_cu->v.quick->symtab
|
||
: (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
|
||
process_full_comp_unit (item->per_cu);
|
||
|
||
item->per_cu->queued = 0;
|
||
next_item = item->next;
|
||
xfree (item);
|
||
}
|
||
|
||
dwarf2_queue_tail = NULL;
|
||
}
|
||
|
||
/* Free all allocated queue entries. This function only releases anything if
|
||
an error was thrown; if the queue was processed then it would have been
|
||
freed as we went along. */
|
||
|
||
static void
|
||
dwarf2_release_queue (void *dummy)
|
||
{
|
||
struct dwarf2_queue_item *item, *last;
|
||
|
||
item = dwarf2_queue;
|
||
while (item)
|
||
{
|
||
/* Anything still marked queued is likely to be in an
|
||
inconsistent state, so discard it. */
|
||
if (item->per_cu->queued)
|
||
{
|
||
if (item->per_cu->cu != NULL)
|
||
free_one_cached_comp_unit (item->per_cu->cu);
|
||
item->per_cu->queued = 0;
|
||
}
|
||
|
||
last = item;
|
||
item = item->next;
|
||
xfree (last);
|
||
}
|
||
|
||
dwarf2_queue = dwarf2_queue_tail = NULL;
|
||
}
|
||
|
||
/* Read in full symbols for PST, and anything it depends on. */
|
||
|
||
static void
|
||
psymtab_to_symtab_1 (struct partial_symtab *pst)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
struct cleanup *back_to;
|
||
int i;
|
||
|
||
for (i = 0; i < pst->number_of_dependencies; i++)
|
||
if (!pst->dependencies[i]->readin)
|
||
{
|
||
/* Inform about additional files that need to be read in. */
|
||
if (info_verbose)
|
||
{
|
||
/* FIXME: i18n: Need to make this a single string. */
|
||
fputs_filtered (" ", gdb_stdout);
|
||
wrap_here ("");
|
||
fputs_filtered ("and ", gdb_stdout);
|
||
wrap_here ("");
|
||
printf_filtered ("%s...", pst->dependencies[i]->filename);
|
||
wrap_here (""); /* Flush output */
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
psymtab_to_symtab_1 (pst->dependencies[i]);
|
||
}
|
||
|
||
per_cu = pst->read_symtab_private;
|
||
|
||
if (per_cu == NULL)
|
||
{
|
||
/* It's an include file, no symbols to read for it.
|
||
Everything is in the parent symtab. */
|
||
pst->readin = 1;
|
||
return;
|
||
}
|
||
|
||
dw2_do_instantiate_symtab (pst->objfile, per_cu);
|
||
}
|
||
|
||
/* Load the DIEs associated with PER_CU into memory. */
|
||
|
||
static void
|
||
load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
|
||
{
|
||
bfd *abfd = objfile->obfd;
|
||
struct dwarf2_cu *cu;
|
||
unsigned int offset;
|
||
gdb_byte *info_ptr, *beg_of_comp_unit;
|
||
struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
|
||
struct attribute *attr;
|
||
int read_cu = 0;
|
||
|
||
gdb_assert (! per_cu->from_debug_types);
|
||
|
||
/* Set local variables from the partial symbol table info. */
|
||
offset = per_cu->offset;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
|
||
info_ptr = dwarf2_per_objfile->info.buffer + offset;
|
||
beg_of_comp_unit = info_ptr;
|
||
|
||
if (per_cu->cu == NULL)
|
||
{
|
||
cu = xmalloc (sizeof (*cu));
|
||
init_one_comp_unit (cu, objfile);
|
||
|
||
read_cu = 1;
|
||
|
||
/* If an error occurs while loading, release our storage. */
|
||
free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
|
||
|
||
/* Read in the comp_unit header. */
|
||
info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
|
||
|
||
/* Complete the cu_header. */
|
||
cu->header.offset = offset;
|
||
cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
|
||
|
||
/* Read the abbrevs for this compilation unit. */
|
||
dwarf2_read_abbrevs (abfd, cu);
|
||
free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
|
||
|
||
/* Link this compilation unit into the compilation unit tree. */
|
||
per_cu->cu = cu;
|
||
cu->per_cu = per_cu;
|
||
|
||
/* Link this CU into read_in_chain. */
|
||
per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
|
||
dwarf2_per_objfile->read_in_chain = per_cu;
|
||
}
|
||
else
|
||
{
|
||
cu = per_cu->cu;
|
||
info_ptr += cu->header.first_die_offset;
|
||
}
|
||
|
||
cu->dies = read_comp_unit (info_ptr, cu);
|
||
|
||
/* We try not to read any attributes in this function, because not
|
||
all objfiles needed for references have been loaded yet, and symbol
|
||
table processing isn't initialized. But we have to set the CU language,
|
||
or we won't be able to build types correctly. */
|
||
prepare_one_comp_unit (cu, cu->dies);
|
||
|
||
/* Similarly, if we do not read the producer, we can not apply
|
||
producer-specific interpretation. */
|
||
attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
|
||
if (attr)
|
||
cu->producer = DW_STRING (attr);
|
||
|
||
if (read_cu)
|
||
{
|
||
do_cleanups (free_abbrevs_cleanup);
|
||
|
||
/* We've successfully allocated this compilation unit. Let our
|
||
caller clean it up when finished with it. */
|
||
discard_cleanups (free_cu_cleanup);
|
||
}
|
||
}
|
||
|
||
/* Add a DIE to the delayed physname list. */
|
||
|
||
static void
|
||
add_to_method_list (struct type *type, int fnfield_index, int index,
|
||
const char *name, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct delayed_method_info mi;
|
||
mi.type = type;
|
||
mi.fnfield_index = fnfield_index;
|
||
mi.index = index;
|
||
mi.name = name;
|
||
mi.die = die;
|
||
VEC_safe_push (delayed_method_info, cu->method_list, &mi);
|
||
}
|
||
|
||
/* A cleanup for freeing the delayed method list. */
|
||
|
||
static void
|
||
free_delayed_list (void *ptr)
|
||
{
|
||
struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
|
||
if (cu->method_list != NULL)
|
||
{
|
||
VEC_free (delayed_method_info, cu->method_list);
|
||
cu->method_list = NULL;
|
||
}
|
||
}
|
||
|
||
/* Compute the physnames of any methods on the CU's method list.
|
||
|
||
The computation of method physnames is delayed in order to avoid the
|
||
(bad) condition that one of the method's formal parameters is of an as yet
|
||
incomplete type. */
|
||
|
||
static void
|
||
compute_delayed_physnames (struct dwarf2_cu *cu)
|
||
{
|
||
int i;
|
||
struct delayed_method_info *mi;
|
||
for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
|
||
{
|
||
char *physname;
|
||
struct fn_fieldlist *fn_flp
|
||
= &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
|
||
physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
|
||
fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
|
||
}
|
||
}
|
||
|
||
/* Generate full symbol information for PST and CU, whose DIEs have
|
||
already been loaded into memory. */
|
||
|
||
static void
|
||
process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct dwarf2_cu *cu = per_cu->cu;
|
||
struct objfile *objfile = per_cu->objfile;
|
||
CORE_ADDR lowpc, highpc;
|
||
struct symtab *symtab;
|
||
struct cleanup *back_to, *delayed_list_cleanup;
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
buildsym_init ();
|
||
back_to = make_cleanup (really_free_pendings, NULL);
|
||
delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
|
||
|
||
cu->list_in_scope = &file_symbols;
|
||
|
||
dwarf2_find_base_address (cu->dies, cu);
|
||
|
||
/* Do line number decoding in read_file_scope () */
|
||
process_die (cu->dies, cu);
|
||
|
||
/* Now that we have processed all the DIEs in the CU, all the types
|
||
should be complete, and it should now be safe to compute all of the
|
||
physnames. */
|
||
compute_delayed_physnames (cu);
|
||
do_cleanups (delayed_list_cleanup);
|
||
|
||
/* Some compilers don't define a DW_AT_high_pc attribute for the
|
||
compilation unit. If the DW_AT_high_pc is missing, synthesize
|
||
it, by scanning the DIE's below the compilation unit. */
|
||
get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
|
||
|
||
symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
|
||
|
||
/* Set symtab language to language from DW_AT_language.
|
||
If the compilation is from a C file generated by language preprocessors,
|
||
do not set the language if it was already deduced by start_subfile. */
|
||
if (symtab != NULL
|
||
&& !(cu->language == language_c && symtab->language != language_c))
|
||
{
|
||
symtab->language = cu->language;
|
||
}
|
||
|
||
if (dwarf2_per_objfile->using_index)
|
||
per_cu->v.quick->symtab = symtab;
|
||
else
|
||
{
|
||
struct partial_symtab *pst = per_cu->v.psymtab;
|
||
pst->symtab = symtab;
|
||
pst->readin = 1;
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* Process a die and its children. */
|
||
|
||
static void
|
||
process_die (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_padding:
|
||
break;
|
||
case DW_TAG_compile_unit:
|
||
read_file_scope (die, cu);
|
||
break;
|
||
case DW_TAG_type_unit:
|
||
read_type_unit_scope (die, cu);
|
||
break;
|
||
case DW_TAG_subprogram:
|
||
case DW_TAG_inlined_subroutine:
|
||
read_func_scope (die, cu);
|
||
break;
|
||
case DW_TAG_lexical_block:
|
||
case DW_TAG_try_block:
|
||
case DW_TAG_catch_block:
|
||
read_lexical_block_scope (die, cu);
|
||
break;
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
process_structure_scope (die, cu);
|
||
break;
|
||
case DW_TAG_enumeration_type:
|
||
process_enumeration_scope (die, cu);
|
||
break;
|
||
|
||
/* These dies have a type, but processing them does not create
|
||
a symbol or recurse to process the children. Therefore we can
|
||
read them on-demand through read_type_die. */
|
||
case DW_TAG_subroutine_type:
|
||
case DW_TAG_set_type:
|
||
case DW_TAG_array_type:
|
||
case DW_TAG_pointer_type:
|
||
case DW_TAG_ptr_to_member_type:
|
||
case DW_TAG_reference_type:
|
||
case DW_TAG_string_type:
|
||
break;
|
||
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
case DW_TAG_typedef:
|
||
/* Add a typedef symbol for the type definition, if it has a
|
||
DW_AT_name. */
|
||
new_symbol (die, read_type_die (die, cu), cu);
|
||
break;
|
||
case DW_TAG_common_block:
|
||
read_common_block (die, cu);
|
||
break;
|
||
case DW_TAG_common_inclusion:
|
||
break;
|
||
case DW_TAG_namespace:
|
||
processing_has_namespace_info = 1;
|
||
read_namespace (die, cu);
|
||
break;
|
||
case DW_TAG_module:
|
||
processing_has_namespace_info = 1;
|
||
read_module (die, cu);
|
||
break;
|
||
case DW_TAG_imported_declaration:
|
||
case DW_TAG_imported_module:
|
||
processing_has_namespace_info = 1;
|
||
if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
|
||
|| cu->language != language_fortran))
|
||
complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
|
||
dwarf_tag_name (die->tag));
|
||
read_import_statement (die, cu);
|
||
break;
|
||
default:
|
||
new_symbol (die, NULL, cu);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* A helper function for dwarf2_compute_name which determines whether DIE
|
||
needs to have the name of the scope prepended to the name listed in the
|
||
die. */
|
||
|
||
static int
|
||
die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_namespace:
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_enumerator:
|
||
case DW_TAG_subprogram:
|
||
case DW_TAG_member:
|
||
return 1;
|
||
|
||
case DW_TAG_variable:
|
||
case DW_TAG_constant:
|
||
/* We only need to prefix "globally" visible variables. These include
|
||
any variable marked with DW_AT_external or any variable that
|
||
lives in a namespace. [Variables in anonymous namespaces
|
||
require prefixing, but they are not DW_AT_external.] */
|
||
|
||
if (dwarf2_attr (die, DW_AT_specification, cu))
|
||
{
|
||
struct dwarf2_cu *spec_cu = cu;
|
||
|
||
return die_needs_namespace (die_specification (die, &spec_cu),
|
||
spec_cu);
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (attr == NULL && die->parent->tag != DW_TAG_namespace
|
||
&& die->parent->tag != DW_TAG_module)
|
||
return 0;
|
||
/* A variable in a lexical block of some kind does not need a
|
||
namespace, even though in C++ such variables may be external
|
||
and have a mangled name. */
|
||
if (die->parent->tag == DW_TAG_lexical_block
|
||
|| die->parent->tag == DW_TAG_try_block
|
||
|| die->parent->tag == DW_TAG_catch_block
|
||
|| die->parent->tag == DW_TAG_subprogram)
|
||
return 0;
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Retrieve the last character from a mem_file. */
|
||
|
||
static void
|
||
do_ui_file_peek_last (void *object, const char *buffer, long length)
|
||
{
|
||
char *last_char_p = (char *) object;
|
||
|
||
if (length > 0)
|
||
*last_char_p = buffer[length - 1];
|
||
}
|
||
|
||
/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
|
||
compute the physname for the object, which include a method's
|
||
formal parameters (C++/Java) and return type (Java).
|
||
|
||
For Ada, return the DIE's linkage name rather than the fully qualified
|
||
name. PHYSNAME is ignored..
|
||
|
||
The result is allocated on the objfile_obstack and canonicalized. */
|
||
|
||
static const char *
|
||
dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
|
||
int physname)
|
||
{
|
||
if (name == NULL)
|
||
name = dwarf2_name (die, cu);
|
||
|
||
/* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
|
||
compute it by typename_concat inside GDB. */
|
||
if (cu->language == language_ada
|
||
|| (cu->language == language_fortran && physname))
|
||
{
|
||
/* For Ada unit, we prefer the linkage name over the name, as
|
||
the former contains the exported name, which the user expects
|
||
to be able to reference. Ideally, we want the user to be able
|
||
to reference this entity using either natural or linkage name,
|
||
but we haven't started looking at this enhancement yet. */
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
|
||
if (attr == NULL)
|
||
attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
|
||
if (attr && DW_STRING (attr))
|
||
return DW_STRING (attr);
|
||
}
|
||
|
||
/* These are the only languages we know how to qualify names in. */
|
||
if (name != NULL
|
||
&& (cu->language == language_cplus || cu->language == language_java
|
||
|| cu->language == language_fortran))
|
||
{
|
||
if (die_needs_namespace (die, cu))
|
||
{
|
||
long length;
|
||
char *prefix;
|
||
struct ui_file *buf;
|
||
|
||
prefix = determine_prefix (die, cu);
|
||
buf = mem_fileopen ();
|
||
if (*prefix != '\0')
|
||
{
|
||
char *prefixed_name = typename_concat (NULL, prefix, name,
|
||
physname, cu);
|
||
|
||
fputs_unfiltered (prefixed_name, buf);
|
||
xfree (prefixed_name);
|
||
}
|
||
else
|
||
fputs_unfiltered (name ? name : "", buf);
|
||
|
||
/* Template parameters may be specified in the DIE's DW_AT_name, or
|
||
as children with DW_TAG_template_type_param or
|
||
DW_TAG_value_type_param. If the latter, add them to the name
|
||
here. If the name already has template parameters, then
|
||
skip this step; some versions of GCC emit both, and
|
||
it is more efficient to use the pre-computed name.
|
||
|
||
Something to keep in mind about this process: it is very
|
||
unlikely, or in some cases downright impossible, to produce
|
||
something that will match the mangled name of a function.
|
||
If the definition of the function has the same debug info,
|
||
we should be able to match up with it anyway. But fallbacks
|
||
using the minimal symbol, for instance to find a method
|
||
implemented in a stripped copy of libstdc++, will not work.
|
||
If we do not have debug info for the definition, we will have to
|
||
match them up some other way.
|
||
|
||
When we do name matching there is a related problem with function
|
||
templates; two instantiated function templates are allowed to
|
||
differ only by their return types, which we do not add here. */
|
||
|
||
if (cu->language == language_cplus && strchr (name, '<') == NULL)
|
||
{
|
||
struct attribute *attr;
|
||
struct die_info *child;
|
||
int first = 1;
|
||
|
||
die->building_fullname = 1;
|
||
|
||
for (child = die->child; child != NULL; child = child->sibling)
|
||
{
|
||
struct type *type;
|
||
long value;
|
||
gdb_byte *bytes;
|
||
struct dwarf2_locexpr_baton *baton;
|
||
struct value *v;
|
||
|
||
if (child->tag != DW_TAG_template_type_param
|
||
&& child->tag != DW_TAG_template_value_param)
|
||
continue;
|
||
|
||
if (first)
|
||
{
|
||
fputs_unfiltered ("<", buf);
|
||
first = 0;
|
||
}
|
||
else
|
||
fputs_unfiltered (", ", buf);
|
||
|
||
attr = dwarf2_attr (child, DW_AT_type, cu);
|
||
if (attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("template parameter missing DW_AT_type"));
|
||
fputs_unfiltered ("UNKNOWN_TYPE", buf);
|
||
continue;
|
||
}
|
||
type = die_type (child, cu);
|
||
|
||
if (child->tag == DW_TAG_template_type_param)
|
||
{
|
||
c_print_type (type, "", buf, -1, 0);
|
||
continue;
|
||
}
|
||
|
||
attr = dwarf2_attr (child, DW_AT_const_value, cu);
|
||
if (attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("template parameter missing DW_AT_const_value"));
|
||
fputs_unfiltered ("UNKNOWN_VALUE", buf);
|
||
continue;
|
||
}
|
||
|
||
dwarf2_const_value_attr (attr, type, name,
|
||
&cu->comp_unit_obstack, cu,
|
||
&value, &bytes, &baton);
|
||
|
||
if (TYPE_NOSIGN (type))
|
||
/* GDB prints characters as NUMBER 'CHAR'. If that's
|
||
changed, this can use value_print instead. */
|
||
c_printchar (value, type, buf);
|
||
else
|
||
{
|
||
struct value_print_options opts;
|
||
|
||
if (baton != NULL)
|
||
v = dwarf2_evaluate_loc_desc (type, NULL,
|
||
baton->data,
|
||
baton->size,
|
||
baton->per_cu);
|
||
else if (bytes != NULL)
|
||
{
|
||
v = allocate_value (type);
|
||
memcpy (value_contents_writeable (v), bytes,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
else
|
||
v = value_from_longest (type, value);
|
||
|
||
/* Specify decimal so that we do not depend on the radix. */
|
||
get_formatted_print_options (&opts, 'd');
|
||
opts.raw = 1;
|
||
value_print (v, buf, &opts);
|
||
release_value (v);
|
||
value_free (v);
|
||
}
|
||
}
|
||
|
||
die->building_fullname = 0;
|
||
|
||
if (!first)
|
||
{
|
||
/* Close the argument list, with a space if necessary
|
||
(nested templates). */
|
||
char last_char = '\0';
|
||
ui_file_put (buf, do_ui_file_peek_last, &last_char);
|
||
if (last_char == '>')
|
||
fputs_unfiltered (" >", buf);
|
||
else
|
||
fputs_unfiltered (">", buf);
|
||
}
|
||
}
|
||
|
||
/* For Java and C++ methods, append formal parameter type
|
||
information, if PHYSNAME. */
|
||
|
||
if (physname && die->tag == DW_TAG_subprogram
|
||
&& (cu->language == language_cplus
|
||
|| cu->language == language_java))
|
||
{
|
||
struct type *type = read_type_die (die, cu);
|
||
|
||
c_type_print_args (type, buf, 0, cu->language);
|
||
|
||
if (cu->language == language_java)
|
||
{
|
||
/* For java, we must append the return type to method
|
||
names. */
|
||
if (die->tag == DW_TAG_subprogram)
|
||
java_print_type (TYPE_TARGET_TYPE (type), "", buf,
|
||
0, 0);
|
||
}
|
||
else if (cu->language == language_cplus)
|
||
{
|
||
/* Assume that an artificial first parameter is
|
||
"this", but do not crash if it is not. RealView
|
||
marks unnamed (and thus unused) parameters as
|
||
artificial; there is no way to differentiate
|
||
the two cases. */
|
||
if (TYPE_NFIELDS (type) > 0
|
||
&& TYPE_FIELD_ARTIFICIAL (type, 0)
|
||
&& TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
|
||
&& TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
|
||
fputs_unfiltered (" const", buf);
|
||
}
|
||
}
|
||
|
||
name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
|
||
&length);
|
||
ui_file_delete (buf);
|
||
|
||
if (cu->language == language_cplus)
|
||
{
|
||
char *cname
|
||
= dwarf2_canonicalize_name (name, cu,
|
||
&cu->objfile->objfile_obstack);
|
||
|
||
if (cname != NULL)
|
||
name = cname;
|
||
}
|
||
}
|
||
}
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Return the fully qualified name of DIE, based on its DW_AT_name.
|
||
If scope qualifiers are appropriate they will be added. The result
|
||
will be allocated on the objfile_obstack, or NULL if the DIE does
|
||
not have a name. NAME may either be from a previous call to
|
||
dwarf2_name or NULL.
|
||
|
||
The output string will be canonicalized (if C++/Java). */
|
||
|
||
static const char *
|
||
dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
return dwarf2_compute_name (name, die, cu, 0);
|
||
}
|
||
|
||
/* Construct a physname for the given DIE in CU. NAME may either be
|
||
from a previous call to dwarf2_name or NULL. The result will be
|
||
allocated on the objfile_objstack or NULL if the DIE does not have a
|
||
name.
|
||
|
||
The output string will be canonicalized (if C++/Java). */
|
||
|
||
static const char *
|
||
dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
return dwarf2_compute_name (name, die, cu, 1);
|
||
}
|
||
|
||
/* Read the import statement specified by the given die and record it. */
|
||
|
||
static void
|
||
read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *import_attr;
|
||
struct die_info *imported_die;
|
||
struct dwarf2_cu *imported_cu;
|
||
const char *imported_name;
|
||
const char *imported_name_prefix;
|
||
const char *canonical_name;
|
||
const char *import_alias;
|
||
const char *imported_declaration = NULL;
|
||
const char *import_prefix;
|
||
|
||
char *temp;
|
||
|
||
import_attr = dwarf2_attr (die, DW_AT_import, cu);
|
||
if (import_attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
|
||
dwarf_tag_name (die->tag));
|
||
return;
|
||
}
|
||
|
||
imported_cu = cu;
|
||
imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
|
||
imported_name = dwarf2_name (imported_die, imported_cu);
|
||
if (imported_name == NULL)
|
||
{
|
||
/* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
|
||
|
||
The import in the following code:
|
||
namespace A
|
||
{
|
||
typedef int B;
|
||
}
|
||
|
||
int main ()
|
||
{
|
||
using A::B;
|
||
B b;
|
||
return b;
|
||
}
|
||
|
||
...
|
||
<2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
|
||
<52> DW_AT_decl_file : 1
|
||
<53> DW_AT_decl_line : 6
|
||
<54> DW_AT_import : <0x75>
|
||
<2><58>: Abbrev Number: 4 (DW_TAG_typedef)
|
||
<59> DW_AT_name : B
|
||
<5b> DW_AT_decl_file : 1
|
||
<5c> DW_AT_decl_line : 2
|
||
<5d> DW_AT_type : <0x6e>
|
||
...
|
||
<1><75>: Abbrev Number: 7 (DW_TAG_base_type)
|
||
<76> DW_AT_byte_size : 4
|
||
<77> DW_AT_encoding : 5 (signed)
|
||
|
||
imports the wrong die ( 0x75 instead of 0x58 ).
|
||
This case will be ignored until the gcc bug is fixed. */
|
||
return;
|
||
}
|
||
|
||
/* Figure out the local name after import. */
|
||
import_alias = dwarf2_name (die, cu);
|
||
|
||
/* Figure out where the statement is being imported to. */
|
||
import_prefix = determine_prefix (die, cu);
|
||
|
||
/* Figure out what the scope of the imported die is and prepend it
|
||
to the name of the imported die. */
|
||
imported_name_prefix = determine_prefix (imported_die, imported_cu);
|
||
|
||
if (imported_die->tag != DW_TAG_namespace
|
||
&& imported_die->tag != DW_TAG_module)
|
||
{
|
||
imported_declaration = imported_name;
|
||
canonical_name = imported_name_prefix;
|
||
}
|
||
else if (strlen (imported_name_prefix) > 0)
|
||
{
|
||
temp = alloca (strlen (imported_name_prefix)
|
||
+ 2 + strlen (imported_name) + 1);
|
||
strcpy (temp, imported_name_prefix);
|
||
strcat (temp, "::");
|
||
strcat (temp, imported_name);
|
||
canonical_name = temp;
|
||
}
|
||
else
|
||
canonical_name = imported_name;
|
||
|
||
cp_add_using_directive (import_prefix,
|
||
canonical_name,
|
||
import_alias,
|
||
imported_declaration,
|
||
&cu->objfile->objfile_obstack);
|
||
}
|
||
|
||
static void
|
||
initialize_cu_func_list (struct dwarf2_cu *cu)
|
||
{
|
||
cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
|
||
}
|
||
|
||
static void
|
||
free_cu_line_header (void *arg)
|
||
{
|
||
struct dwarf2_cu *cu = arg;
|
||
|
||
free_line_header (cu->line_header);
|
||
cu->line_header = NULL;
|
||
}
|
||
|
||
static void
|
||
find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
|
||
char **name, char **comp_dir)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
*name = NULL;
|
||
*comp_dir = NULL;
|
||
|
||
/* Find the filename. Do not use dwarf2_name here, since the filename
|
||
is not a source language identifier. */
|
||
attr = dwarf2_attr (die, DW_AT_name, cu);
|
||
if (attr)
|
||
{
|
||
*name = DW_STRING (attr);
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
|
||
if (attr)
|
||
*comp_dir = DW_STRING (attr);
|
||
else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
|
||
{
|
||
*comp_dir = ldirname (*name);
|
||
if (*comp_dir != NULL)
|
||
make_cleanup (xfree, *comp_dir);
|
||
}
|
||
if (*comp_dir != NULL)
|
||
{
|
||
/* Irix 6.2 native cc prepends <machine>.: to the compilation
|
||
directory, get rid of it. */
|
||
char *cp = strchr (*comp_dir, ':');
|
||
|
||
if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
|
||
*comp_dir = cp + 1;
|
||
}
|
||
|
||
if (*name == NULL)
|
||
*name = "<unknown>";
|
||
}
|
||
|
||
static void
|
||
read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
CORE_ADDR lowpc = ((CORE_ADDR) -1);
|
||
CORE_ADDR highpc = ((CORE_ADDR) 0);
|
||
struct attribute *attr;
|
||
char *name = NULL;
|
||
char *comp_dir = NULL;
|
||
struct die_info *child_die;
|
||
bfd *abfd = objfile->obfd;
|
||
struct line_header *line_header = 0;
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
get_scope_pc_bounds (die, &lowpc, &highpc, cu);
|
||
|
||
/* If we didn't find a lowpc, set it to highpc to avoid complaints
|
||
from finish_block. */
|
||
if (lowpc == ((CORE_ADDR) -1))
|
||
lowpc = highpc;
|
||
lowpc += baseaddr;
|
||
highpc += baseaddr;
|
||
|
||
find_file_and_directory (die, cu, &name, &comp_dir);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_language, cu);
|
||
if (attr)
|
||
{
|
||
set_cu_language (DW_UNSND (attr), cu);
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_producer, cu);
|
||
if (attr)
|
||
cu->producer = DW_STRING (attr);
|
||
|
||
/* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
|
||
standardised yet. As a workaround for the language detection we fall
|
||
back to the DW_AT_producer string. */
|
||
if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
|
||
cu->language = language_opencl;
|
||
|
||
/* We assume that we're processing GCC output. */
|
||
processing_gcc_compilation = 2;
|
||
|
||
processing_has_namespace_info = 0;
|
||
|
||
start_symtab (name, comp_dir, lowpc);
|
||
record_debugformat ("DWARF 2");
|
||
record_producer (cu->producer);
|
||
|
||
initialize_cu_func_list (cu);
|
||
|
||
/* Decode line number information if present. We do this before
|
||
processing child DIEs, so that the line header table is available
|
||
for DW_AT_decl_file. */
|
||
attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
|
||
if (attr)
|
||
{
|
||
unsigned int line_offset = DW_UNSND (attr);
|
||
line_header = dwarf_decode_line_header (line_offset, abfd, cu);
|
||
if (line_header)
|
||
{
|
||
cu->line_header = line_header;
|
||
make_cleanup (free_cu_line_header, cu);
|
||
dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
|
||
}
|
||
}
|
||
|
||
/* Process all dies in compilation unit. */
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
/* Decode macro information, if present. Dwarf 2 macro information
|
||
refers to information in the line number info statement program
|
||
header, so we can only read it if we've read the header
|
||
successfully. */
|
||
attr = dwarf2_attr (die, DW_AT_macro_info, cu);
|
||
if (attr && line_header)
|
||
{
|
||
unsigned int macro_offset = DW_UNSND (attr);
|
||
|
||
dwarf_decode_macros (line_header, macro_offset,
|
||
comp_dir, abfd, cu);
|
||
}
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* For TUs we want to skip the first top level sibling if it's not the
|
||
actual type being defined by this TU. In this case the first top
|
||
level sibling is there to provide context only. */
|
||
|
||
static void
|
||
read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
CORE_ADDR lowpc;
|
||
struct attribute *attr;
|
||
char *name = NULL;
|
||
char *comp_dir = NULL;
|
||
struct die_info *child_die;
|
||
bfd *abfd = objfile->obfd;
|
||
|
||
/* start_symtab needs a low pc, but we don't really have one.
|
||
Do what read_file_scope would do in the absence of such info. */
|
||
lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
/* Find the filename. Do not use dwarf2_name here, since the filename
|
||
is not a source language identifier. */
|
||
attr = dwarf2_attr (die, DW_AT_name, cu);
|
||
if (attr)
|
||
name = DW_STRING (attr);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
|
||
if (attr)
|
||
comp_dir = DW_STRING (attr);
|
||
else if (name != NULL && IS_ABSOLUTE_PATH (name))
|
||
{
|
||
comp_dir = ldirname (name);
|
||
if (comp_dir != NULL)
|
||
make_cleanup (xfree, comp_dir);
|
||
}
|
||
|
||
if (name == NULL)
|
||
name = "<unknown>";
|
||
|
||
attr = dwarf2_attr (die, DW_AT_language, cu);
|
||
if (attr)
|
||
set_cu_language (DW_UNSND (attr), cu);
|
||
|
||
/* This isn't technically needed today. It is done for symmetry
|
||
with read_file_scope. */
|
||
attr = dwarf2_attr (die, DW_AT_producer, cu);
|
||
if (attr)
|
||
cu->producer = DW_STRING (attr);
|
||
|
||
/* We assume that we're processing GCC output. */
|
||
processing_gcc_compilation = 2;
|
||
|
||
processing_has_namespace_info = 0;
|
||
|
||
start_symtab (name, comp_dir, lowpc);
|
||
record_debugformat ("DWARF 2");
|
||
record_producer (cu->producer);
|
||
|
||
/* Process the dies in the type unit. */
|
||
if (die->child == NULL)
|
||
{
|
||
dump_die_for_error (die);
|
||
error (_("Dwarf Error: Missing children for type unit [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
child_die = die->child;
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
static void
|
||
add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct function_range *thisfn;
|
||
|
||
thisfn = (struct function_range *)
|
||
obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
|
||
thisfn->name = name;
|
||
thisfn->lowpc = lowpc;
|
||
thisfn->highpc = highpc;
|
||
thisfn->seen_line = 0;
|
||
thisfn->next = NULL;
|
||
|
||
if (cu->last_fn == NULL)
|
||
cu->first_fn = thisfn;
|
||
else
|
||
cu->last_fn->next = thisfn;
|
||
|
||
cu->last_fn = thisfn;
|
||
}
|
||
|
||
/* qsort helper for inherit_abstract_dies. */
|
||
|
||
static int
|
||
unsigned_int_compar (const void *ap, const void *bp)
|
||
{
|
||
unsigned int a = *(unsigned int *) ap;
|
||
unsigned int b = *(unsigned int *) bp;
|
||
|
||
return (a > b) - (b > a);
|
||
}
|
||
|
||
/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
|
||
Inherit only the children of the DW_AT_abstract_origin DIE not being already
|
||
referenced by DW_AT_abstract_origin from the children of the current DIE. */
|
||
|
||
static void
|
||
inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *child_die;
|
||
unsigned die_children_count;
|
||
/* CU offsets which were referenced by children of the current DIE. */
|
||
unsigned *offsets;
|
||
unsigned *offsets_end, *offsetp;
|
||
/* Parent of DIE - referenced by DW_AT_abstract_origin. */
|
||
struct die_info *origin_die;
|
||
/* Iterator of the ORIGIN_DIE children. */
|
||
struct die_info *origin_child_die;
|
||
struct cleanup *cleanups;
|
||
struct attribute *attr;
|
||
struct dwarf2_cu *origin_cu;
|
||
struct pending **origin_previous_list_in_scope;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
|
||
if (!attr)
|
||
return;
|
||
|
||
/* Note that following die references may follow to a die in a
|
||
different cu. */
|
||
|
||
origin_cu = cu;
|
||
origin_die = follow_die_ref (die, attr, &origin_cu);
|
||
|
||
/* We're inheriting ORIGIN's children into the scope we'd put DIE's
|
||
symbols in. */
|
||
origin_previous_list_in_scope = origin_cu->list_in_scope;
|
||
origin_cu->list_in_scope = cu->list_in_scope;
|
||
|
||
if (die->tag != origin_die->tag
|
||
&& !(die->tag == DW_TAG_inlined_subroutine
|
||
&& origin_die->tag == DW_TAG_subprogram))
|
||
complaint (&symfile_complaints,
|
||
_("DIE 0x%x and its abstract origin 0x%x have different tags"),
|
||
die->offset, origin_die->offset);
|
||
|
||
child_die = die->child;
|
||
die_children_count = 0;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
child_die = sibling_die (child_die);
|
||
die_children_count++;
|
||
}
|
||
offsets = xmalloc (sizeof (*offsets) * die_children_count);
|
||
cleanups = make_cleanup (xfree, offsets);
|
||
|
||
offsets_end = offsets;
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
/* For each CHILD_DIE, find the corresponding child of
|
||
ORIGIN_DIE. If there is more than one layer of
|
||
DW_AT_abstract_origin, follow them all; there shouldn't be,
|
||
but GCC versions at least through 4.4 generate this (GCC PR
|
||
40573). */
|
||
struct die_info *child_origin_die = child_die;
|
||
struct dwarf2_cu *child_origin_cu = cu;
|
||
|
||
while (1)
|
||
{
|
||
attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
|
||
child_origin_cu);
|
||
if (attr == NULL)
|
||
break;
|
||
child_origin_die = follow_die_ref (child_origin_die, attr,
|
||
&child_origin_cu);
|
||
}
|
||
|
||
/* According to DWARF3 3.3.8.2 #3 new entries without their abstract
|
||
counterpart may exist. */
|
||
if (child_origin_die != child_die)
|
||
{
|
||
if (child_die->tag != child_origin_die->tag
|
||
&& !(child_die->tag == DW_TAG_inlined_subroutine
|
||
&& child_origin_die->tag == DW_TAG_subprogram))
|
||
complaint (&symfile_complaints,
|
||
_("Child DIE 0x%x and its abstract origin 0x%x have "
|
||
"different tags"), child_die->offset,
|
||
child_origin_die->offset);
|
||
if (child_origin_die->parent != origin_die)
|
||
complaint (&symfile_complaints,
|
||
_("Child DIE 0x%x and its abstract origin 0x%x have "
|
||
"different parents"), child_die->offset,
|
||
child_origin_die->offset);
|
||
else
|
||
*offsets_end++ = child_origin_die->offset;
|
||
}
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
qsort (offsets, offsets_end - offsets, sizeof (*offsets),
|
||
unsigned_int_compar);
|
||
for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
|
||
if (offsetp[-1] == *offsetp)
|
||
complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
|
||
"to DIE 0x%x as their abstract origin"),
|
||
die->offset, *offsetp);
|
||
|
||
offsetp = offsets;
|
||
origin_child_die = origin_die->child;
|
||
while (origin_child_die && origin_child_die->tag)
|
||
{
|
||
/* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
|
||
while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
|
||
offsetp++;
|
||
if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
|
||
{
|
||
/* Found that ORIGIN_CHILD_DIE is really not referenced. */
|
||
process_die (origin_child_die, origin_cu);
|
||
}
|
||
origin_child_die = sibling_die (origin_child_die);
|
||
}
|
||
origin_cu->list_in_scope = origin_previous_list_in_scope;
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
static void
|
||
read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct context_stack *new;
|
||
CORE_ADDR lowpc;
|
||
CORE_ADDR highpc;
|
||
struct die_info *child_die;
|
||
struct attribute *attr, *call_line, *call_file;
|
||
char *name;
|
||
CORE_ADDR baseaddr;
|
||
struct block *block;
|
||
int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
|
||
VEC (symbolp) *template_args = NULL;
|
||
struct template_symbol *templ_func = NULL;
|
||
|
||
if (inlined_func)
|
||
{
|
||
/* If we do not have call site information, we can't show the
|
||
caller of this inlined function. That's too confusing, so
|
||
only use the scope for local variables. */
|
||
call_line = dwarf2_attr (die, DW_AT_call_line, cu);
|
||
call_file = dwarf2_attr (die, DW_AT_call_file, cu);
|
||
if (call_line == NULL || call_file == NULL)
|
||
{
|
||
read_lexical_block_scope (die, cu);
|
||
return;
|
||
}
|
||
}
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
name = dwarf2_name (die, cu);
|
||
|
||
/* Ignore functions with missing or empty names. These are actually
|
||
illegal according to the DWARF standard. */
|
||
if (name == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("missing name for subprogram DIE at %d"), die->offset);
|
||
return;
|
||
}
|
||
|
||
/* Ignore functions with missing or invalid low and high pc attributes. */
|
||
if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (!attr || !DW_UNSND (attr))
|
||
complaint (&symfile_complaints,
|
||
_("cannot get low and high bounds for subprogram DIE at %d"),
|
||
die->offset);
|
||
return;
|
||
}
|
||
|
||
lowpc += baseaddr;
|
||
highpc += baseaddr;
|
||
|
||
/* Record the function range for dwarf_decode_lines. */
|
||
add_to_cu_func_list (name, lowpc, highpc, cu);
|
||
|
||
/* If we have any template arguments, then we must allocate a
|
||
different sort of symbol. */
|
||
for (child_die = die->child; child_die; child_die = sibling_die (child_die))
|
||
{
|
||
if (child_die->tag == DW_TAG_template_type_param
|
||
|| child_die->tag == DW_TAG_template_value_param)
|
||
{
|
||
templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct template_symbol);
|
||
templ_func->base.is_cplus_template_function = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
new = push_context (0, lowpc);
|
||
new->name = new_symbol_full (die, read_type_die (die, cu), cu,
|
||
(struct symbol *) templ_func);
|
||
|
||
/* If there is a location expression for DW_AT_frame_base, record
|
||
it. */
|
||
attr = dwarf2_attr (die, DW_AT_frame_base, cu);
|
||
if (attr)
|
||
/* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
|
||
expression is being recorded directly in the function's symbol
|
||
and not in a separate frame-base object. I guess this hack is
|
||
to avoid adding some sort of frame-base adjunct/annex to the
|
||
function's symbol :-(. The problem with doing this is that it
|
||
results in a function symbol with a location expression that
|
||
has nothing to do with the location of the function, ouch! The
|
||
relationship should be: a function's symbol has-a frame base; a
|
||
frame-base has-a location expression. */
|
||
dwarf2_symbol_mark_computed (attr, new->name, cu);
|
||
|
||
cu->list_in_scope = &local_symbols;
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_template_type_param
|
||
|| child_die->tag == DW_TAG_template_value_param)
|
||
{
|
||
struct symbol *arg = new_symbol (child_die, NULL, cu);
|
||
|
||
if (arg != NULL)
|
||
VEC_safe_push (symbolp, template_args, arg);
|
||
}
|
||
else
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
inherit_abstract_dies (die, cu);
|
||
|
||
/* If we have a DW_AT_specification, we might need to import using
|
||
directives from the context of the specification DIE. See the
|
||
comment in determine_prefix. */
|
||
if (cu->language == language_cplus
|
||
&& dwarf2_attr (die, DW_AT_specification, cu))
|
||
{
|
||
struct dwarf2_cu *spec_cu = cu;
|
||
struct die_info *spec_die = die_specification (die, &spec_cu);
|
||
|
||
while (spec_die)
|
||
{
|
||
child_die = spec_die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_imported_module)
|
||
process_die (child_die, spec_cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* In some cases, GCC generates specification DIEs that
|
||
themselves contain DW_AT_specification attributes. */
|
||
spec_die = die_specification (spec_die, &spec_cu);
|
||
}
|
||
}
|
||
|
||
new = pop_context ();
|
||
/* Make a block for the local symbols within. */
|
||
block = finish_block (new->name, &local_symbols, new->old_blocks,
|
||
lowpc, highpc, objfile);
|
||
|
||
/* For C++, set the block's scope. */
|
||
if (cu->language == language_cplus || cu->language == language_fortran)
|
||
cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
|
||
determine_prefix (die, cu),
|
||
processing_has_namespace_info);
|
||
|
||
/* If we have address ranges, record them. */
|
||
dwarf2_record_block_ranges (die, block, baseaddr, cu);
|
||
|
||
/* Attach template arguments to function. */
|
||
if (! VEC_empty (symbolp, template_args))
|
||
{
|
||
gdb_assert (templ_func != NULL);
|
||
|
||
templ_func->n_template_arguments = VEC_length (symbolp, template_args);
|
||
templ_func->template_arguments
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
(templ_func->n_template_arguments
|
||
* sizeof (struct symbol *)));
|
||
memcpy (templ_func->template_arguments,
|
||
VEC_address (symbolp, template_args),
|
||
(templ_func->n_template_arguments * sizeof (struct symbol *)));
|
||
VEC_free (symbolp, template_args);
|
||
}
|
||
|
||
/* In C++, we can have functions nested inside functions (e.g., when
|
||
a function declares a class that has methods). This means that
|
||
when we finish processing a function scope, we may need to go
|
||
back to building a containing block's symbol lists. */
|
||
local_symbols = new->locals;
|
||
param_symbols = new->params;
|
||
using_directives = new->using_directives;
|
||
|
||
/* If we've finished processing a top-level function, subsequent
|
||
symbols go in the file symbol list. */
|
||
if (outermost_context_p ())
|
||
cu->list_in_scope = &file_symbols;
|
||
}
|
||
|
||
/* Process all the DIES contained within a lexical block scope. Start
|
||
a new scope, process the dies, and then close the scope. */
|
||
|
||
static void
|
||
read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct context_stack *new;
|
||
CORE_ADDR lowpc, highpc;
|
||
struct die_info *child_die;
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
/* Ignore blocks with missing or invalid low and high pc attributes. */
|
||
/* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
|
||
as multiple lexical blocks? Handling children in a sane way would
|
||
be nasty. Might be easier to properly extend generic blocks to
|
||
describe ranges. */
|
||
if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
|
||
return;
|
||
lowpc += baseaddr;
|
||
highpc += baseaddr;
|
||
|
||
push_context (0, lowpc);
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
new = pop_context ();
|
||
|
||
if (local_symbols != NULL || using_directives != NULL)
|
||
{
|
||
struct block *block
|
||
= finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
|
||
highpc, objfile);
|
||
|
||
/* Note that recording ranges after traversing children, as we
|
||
do here, means that recording a parent's ranges entails
|
||
walking across all its children's ranges as they appear in
|
||
the address map, which is quadratic behavior.
|
||
|
||
It would be nicer to record the parent's ranges before
|
||
traversing its children, simply overriding whatever you find
|
||
there. But since we don't even decide whether to create a
|
||
block until after we've traversed its children, that's hard
|
||
to do. */
|
||
dwarf2_record_block_ranges (die, block, baseaddr, cu);
|
||
}
|
||
local_symbols = new->locals;
|
||
using_directives = new->using_directives;
|
||
}
|
||
|
||
/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
|
||
Return 1 if the attributes are present and valid, otherwise, return 0.
|
||
If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
|
||
|
||
static int
|
||
dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
|
||
CORE_ADDR *high_return, struct dwarf2_cu *cu,
|
||
struct partial_symtab *ranges_pst)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
bfd *obfd = objfile->obfd;
|
||
unsigned int addr_size = cu_header->addr_size;
|
||
CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
|
||
/* Base address selection entry. */
|
||
CORE_ADDR base;
|
||
int found_base;
|
||
unsigned int dummy;
|
||
gdb_byte *buffer;
|
||
CORE_ADDR marker;
|
||
int low_set;
|
||
CORE_ADDR low = 0;
|
||
CORE_ADDR high = 0;
|
||
CORE_ADDR baseaddr;
|
||
|
||
found_base = cu->base_known;
|
||
base = cu->base_address;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
|
||
if (offset >= dwarf2_per_objfile->ranges.size)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Offset %d out of bounds for DW_AT_ranges attribute"),
|
||
offset);
|
||
return 0;
|
||
}
|
||
buffer = dwarf2_per_objfile->ranges.buffer + offset;
|
||
|
||
/* Read in the largest possible address. */
|
||
marker = read_address (obfd, buffer, cu, &dummy);
|
||
if ((marker & mask) == mask)
|
||
{
|
||
/* If we found the largest possible address, then
|
||
read the base address. */
|
||
base = read_address (obfd, buffer + addr_size, cu, &dummy);
|
||
buffer += 2 * addr_size;
|
||
offset += 2 * addr_size;
|
||
found_base = 1;
|
||
}
|
||
|
||
low_set = 0;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
while (1)
|
||
{
|
||
CORE_ADDR range_beginning, range_end;
|
||
|
||
range_beginning = read_address (obfd, buffer, cu, &dummy);
|
||
buffer += addr_size;
|
||
range_end = read_address (obfd, buffer, cu, &dummy);
|
||
buffer += addr_size;
|
||
offset += 2 * addr_size;
|
||
|
||
/* An end of list marker is a pair of zero addresses. */
|
||
if (range_beginning == 0 && range_end == 0)
|
||
/* Found the end of list entry. */
|
||
break;
|
||
|
||
/* Each base address selection entry is a pair of 2 values.
|
||
The first is the largest possible address, the second is
|
||
the base address. Check for a base address here. */
|
||
if ((range_beginning & mask) == mask)
|
||
{
|
||
/* If we found the largest possible address, then
|
||
read the base address. */
|
||
base = read_address (obfd, buffer + addr_size, cu, &dummy);
|
||
found_base = 1;
|
||
continue;
|
||
}
|
||
|
||
if (!found_base)
|
||
{
|
||
/* We have no valid base address for the ranges
|
||
data. */
|
||
complaint (&symfile_complaints,
|
||
_("Invalid .debug_ranges data (no base address)"));
|
||
return 0;
|
||
}
|
||
|
||
range_beginning += base;
|
||
range_end += base;
|
||
|
||
if (ranges_pst != NULL && range_beginning < range_end)
|
||
addrmap_set_empty (objfile->psymtabs_addrmap,
|
||
range_beginning + baseaddr, range_end - 1 + baseaddr,
|
||
ranges_pst);
|
||
|
||
/* FIXME: This is recording everything as a low-high
|
||
segment of consecutive addresses. We should have a
|
||
data structure for discontiguous block ranges
|
||
instead. */
|
||
if (! low_set)
|
||
{
|
||
low = range_beginning;
|
||
high = range_end;
|
||
low_set = 1;
|
||
}
|
||
else
|
||
{
|
||
if (range_beginning < low)
|
||
low = range_beginning;
|
||
if (range_end > high)
|
||
high = range_end;
|
||
}
|
||
}
|
||
|
||
if (! low_set)
|
||
/* If the first entry is an end-of-list marker, the range
|
||
describes an empty scope, i.e. no instructions. */
|
||
return 0;
|
||
|
||
if (low_return)
|
||
*low_return = low;
|
||
if (high_return)
|
||
*high_return = high;
|
||
return 1;
|
||
}
|
||
|
||
/* Get low and high pc attributes from a die. Return 1 if the attributes
|
||
are present and valid, otherwise, return 0. Return -1 if the range is
|
||
discontinuous, i.e. derived from DW_AT_ranges information. */
|
||
static int
|
||
dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, struct dwarf2_cu *cu,
|
||
struct partial_symtab *pst)
|
||
{
|
||
struct attribute *attr;
|
||
CORE_ADDR low = 0;
|
||
CORE_ADDR high = 0;
|
||
int ret = 0;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_high_pc, cu);
|
||
if (attr)
|
||
{
|
||
high = DW_ADDR (attr);
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
low = DW_ADDR (attr);
|
||
else
|
||
/* Found high w/o low attribute. */
|
||
return 0;
|
||
|
||
/* Found consecutive range of addresses. */
|
||
ret = 1;
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_ranges, cu);
|
||
if (attr != NULL)
|
||
{
|
||
/* Value of the DW_AT_ranges attribute is the offset in the
|
||
.debug_ranges section. */
|
||
if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
|
||
return 0;
|
||
/* Found discontinuous range of addresses. */
|
||
ret = -1;
|
||
}
|
||
}
|
||
|
||
if (high < low)
|
||
return 0;
|
||
|
||
/* When using the GNU linker, .gnu.linkonce. sections are used to
|
||
eliminate duplicate copies of functions and vtables and such.
|
||
The linker will arbitrarily choose one and discard the others.
|
||
The AT_*_pc values for such functions refer to local labels in
|
||
these sections. If the section from that file was discarded, the
|
||
labels are not in the output, so the relocs get a value of 0.
|
||
If this is a discarded function, mark the pc bounds as invalid,
|
||
so that GDB will ignore it. */
|
||
if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
|
||
return 0;
|
||
|
||
*lowpc = low;
|
||
*highpc = high;
|
||
return ret;
|
||
}
|
||
|
||
/* Assuming that DIE represents a subprogram DIE or a lexical block, get
|
||
its low and high PC addresses. Do nothing if these addresses could not
|
||
be determined. Otherwise, set LOWPC to the low address if it is smaller,
|
||
and HIGHPC to the high address if greater than HIGHPC. */
|
||
|
||
static void
|
||
dwarf2_get_subprogram_pc_bounds (struct die_info *die,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
CORE_ADDR low, high;
|
||
struct die_info *child = die->child;
|
||
|
||
if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
|
||
{
|
||
*lowpc = min (*lowpc, low);
|
||
*highpc = max (*highpc, high);
|
||
}
|
||
|
||
/* If the language does not allow nested subprograms (either inside
|
||
subprograms or lexical blocks), we're done. */
|
||
if (cu->language != language_ada)
|
||
return;
|
||
|
||
/* Check all the children of the given DIE. If it contains nested
|
||
subprograms, then check their pc bounds. Likewise, we need to
|
||
check lexical blocks as well, as they may also contain subprogram
|
||
definitions. */
|
||
while (child && child->tag)
|
||
{
|
||
if (child->tag == DW_TAG_subprogram
|
||
|| child->tag == DW_TAG_lexical_block)
|
||
dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
|
||
child = sibling_die (child);
|
||
}
|
||
}
|
||
|
||
/* Get the low and high pc's represented by the scope DIE, and store
|
||
them in *LOWPC and *HIGHPC. If the correct values can't be
|
||
determined, set *LOWPC to -1 and *HIGHPC to 0. */
|
||
|
||
static void
|
||
get_scope_pc_bounds (struct die_info *die,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
CORE_ADDR best_low = (CORE_ADDR) -1;
|
||
CORE_ADDR best_high = (CORE_ADDR) 0;
|
||
CORE_ADDR current_low, current_high;
|
||
|
||
if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
|
||
{
|
||
best_low = current_low;
|
||
best_high = current_high;
|
||
}
|
||
else
|
||
{
|
||
struct die_info *child = die->child;
|
||
|
||
while (child && child->tag)
|
||
{
|
||
switch (child->tag) {
|
||
case DW_TAG_subprogram:
|
||
dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
case DW_TAG_module:
|
||
/* FIXME: carlton/2004-01-16: Should we do this for
|
||
DW_TAG_class_type/DW_TAG_structure_type, too? I think
|
||
that current GCC's always emit the DIEs corresponding
|
||
to definitions of methods of classes as children of a
|
||
DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
|
||
the DIEs giving the declarations, which could be
|
||
anywhere). But I don't see any reason why the
|
||
standards says that they have to be there. */
|
||
get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
|
||
|
||
if (current_low != ((CORE_ADDR) -1))
|
||
{
|
||
best_low = min (best_low, current_low);
|
||
best_high = max (best_high, current_high);
|
||
}
|
||
break;
|
||
default:
|
||
/* Ignore. */
|
||
break;
|
||
}
|
||
|
||
child = sibling_die (child);
|
||
}
|
||
}
|
||
|
||
*lowpc = best_low;
|
||
*highpc = best_high;
|
||
}
|
||
|
||
/* Record the address ranges for BLOCK, offset by BASEADDR, as given
|
||
in DIE. */
|
||
static void
|
||
dwarf2_record_block_ranges (struct die_info *die, struct block *block,
|
||
CORE_ADDR baseaddr, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_high_pc, cu);
|
||
if (attr)
|
||
{
|
||
CORE_ADDR high = DW_ADDR (attr);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
CORE_ADDR low = DW_ADDR (attr);
|
||
|
||
record_block_range (block, baseaddr + low, baseaddr + high - 1);
|
||
}
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_ranges, cu);
|
||
if (attr)
|
||
{
|
||
bfd *obfd = cu->objfile->obfd;
|
||
|
||
/* The value of the DW_AT_ranges attribute is the offset of the
|
||
address range list in the .debug_ranges section. */
|
||
unsigned long offset = DW_UNSND (attr);
|
||
gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
|
||
|
||
/* For some target architectures, but not others, the
|
||
read_address function sign-extends the addresses it returns.
|
||
To recognize base address selection entries, we need a
|
||
mask. */
|
||
unsigned int addr_size = cu->header.addr_size;
|
||
CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
|
||
|
||
/* The base address, to which the next pair is relative. Note
|
||
that this 'base' is a DWARF concept: most entries in a range
|
||
list are relative, to reduce the number of relocs against the
|
||
debugging information. This is separate from this function's
|
||
'baseaddr' argument, which GDB uses to relocate debugging
|
||
information from a shared library based on the address at
|
||
which the library was loaded. */
|
||
CORE_ADDR base = cu->base_address;
|
||
int base_known = cu->base_known;
|
||
|
||
gdb_assert (dwarf2_per_objfile->ranges.readin);
|
||
if (offset >= dwarf2_per_objfile->ranges.size)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Offset %lu out of bounds for DW_AT_ranges attribute"),
|
||
offset);
|
||
return;
|
||
}
|
||
|
||
for (;;)
|
||
{
|
||
unsigned int bytes_read;
|
||
CORE_ADDR start, end;
|
||
|
||
start = read_address (obfd, buffer, cu, &bytes_read);
|
||
buffer += bytes_read;
|
||
end = read_address (obfd, buffer, cu, &bytes_read);
|
||
buffer += bytes_read;
|
||
|
||
/* Did we find the end of the range list? */
|
||
if (start == 0 && end == 0)
|
||
break;
|
||
|
||
/* Did we find a base address selection entry? */
|
||
else if ((start & base_select_mask) == base_select_mask)
|
||
{
|
||
base = end;
|
||
base_known = 1;
|
||
}
|
||
|
||
/* We found an ordinary address range. */
|
||
else
|
||
{
|
||
if (!base_known)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Invalid .debug_ranges data (no base address)"));
|
||
return;
|
||
}
|
||
|
||
record_block_range (block,
|
||
baseaddr + base + start,
|
||
baseaddr + base + end - 1);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add an aggregate field to the field list. */
|
||
|
||
static void
|
||
dwarf2_add_field (struct field_info *fip, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct nextfield *new_field;
|
||
struct attribute *attr;
|
||
struct field *fp;
|
||
char *fieldname = "";
|
||
|
||
/* Allocate a new field list entry and link it in. */
|
||
new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
|
||
make_cleanup (xfree, new_field);
|
||
memset (new_field, 0, sizeof (struct nextfield));
|
||
|
||
if (die->tag == DW_TAG_inheritance)
|
||
{
|
||
new_field->next = fip->baseclasses;
|
||
fip->baseclasses = new_field;
|
||
}
|
||
else
|
||
{
|
||
new_field->next = fip->fields;
|
||
fip->fields = new_field;
|
||
}
|
||
fip->nfields++;
|
||
|
||
/* Handle accessibility and virtuality of field.
|
||
The default accessibility for members is public, the default
|
||
accessibility for inheritance is private. */
|
||
if (die->tag != DW_TAG_inheritance)
|
||
new_field->accessibility = DW_ACCESS_public;
|
||
else
|
||
new_field->accessibility = DW_ACCESS_private;
|
||
new_field->virtuality = DW_VIRTUALITY_none;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_accessibility, cu);
|
||
if (attr)
|
||
new_field->accessibility = DW_UNSND (attr);
|
||
if (new_field->accessibility != DW_ACCESS_public)
|
||
fip->non_public_fields = 1;
|
||
attr = dwarf2_attr (die, DW_AT_virtuality, cu);
|
||
if (attr)
|
||
new_field->virtuality = DW_UNSND (attr);
|
||
|
||
fp = &new_field->field;
|
||
|
||
if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
|
||
{
|
||
/* Data member other than a C++ static data member. */
|
||
|
||
/* Get type of field. */
|
||
fp->type = die_type (die, cu);
|
||
|
||
SET_FIELD_BITPOS (*fp, 0);
|
||
|
||
/* Get bit size of field (zero if none). */
|
||
attr = dwarf2_attr (die, DW_AT_bit_size, cu);
|
||
if (attr)
|
||
{
|
||
FIELD_BITSIZE (*fp) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
FIELD_BITSIZE (*fp) = 0;
|
||
}
|
||
|
||
/* Get bit offset of field. */
|
||
attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
|
||
if (attr)
|
||
{
|
||
int byte_offset = 0;
|
||
|
||
if (attr_form_is_section_offset (attr))
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else if (attr_form_is_constant (attr))
|
||
byte_offset = dwarf2_get_attr_constant_value (attr, 0);
|
||
else if (attr_form_is_block (attr))
|
||
byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
|
||
SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
|
||
if (attr)
|
||
{
|
||
if (gdbarch_bits_big_endian (gdbarch))
|
||
{
|
||
/* For big endian bits, the DW_AT_bit_offset gives the
|
||
additional bit offset from the MSB of the containing
|
||
anonymous object to the MSB of the field. We don't
|
||
have to do anything special since we don't need to
|
||
know the size of the anonymous object. */
|
||
FIELD_BITPOS (*fp) += DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
/* For little endian bits, compute the bit offset to the
|
||
MSB of the anonymous object, subtract off the number of
|
||
bits from the MSB of the field to the MSB of the
|
||
object, and then subtract off the number of bits of
|
||
the field itself. The result is the bit offset of
|
||
the LSB of the field. */
|
||
int anonymous_size;
|
||
int bit_offset = DW_UNSND (attr);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
/* The size of the anonymous object containing
|
||
the bit field is explicit, so use the
|
||
indicated size (in bytes). */
|
||
anonymous_size = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
/* The size of the anonymous object containing
|
||
the bit field must be inferred from the type
|
||
attribute of the data member containing the
|
||
bit field. */
|
||
anonymous_size = TYPE_LENGTH (fp->type);
|
||
}
|
||
FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
|
||
- bit_offset - FIELD_BITSIZE (*fp);
|
||
}
|
||
}
|
||
|
||
/* Get name of field. */
|
||
fieldname = dwarf2_name (die, cu);
|
||
if (fieldname == NULL)
|
||
fieldname = "";
|
||
|
||
/* The name is already allocated along with this objfile, so we don't
|
||
need to duplicate it for the type. */
|
||
fp->name = fieldname;
|
||
|
||
/* Change accessibility for artificial fields (e.g. virtual table
|
||
pointer or virtual base class pointer) to private. */
|
||
if (dwarf2_attr (die, DW_AT_artificial, cu))
|
||
{
|
||
FIELD_ARTIFICIAL (*fp) = 1;
|
||
new_field->accessibility = DW_ACCESS_private;
|
||
fip->non_public_fields = 1;
|
||
}
|
||
}
|
||
else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
|
||
{
|
||
/* C++ static member. */
|
||
|
||
/* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
|
||
is a declaration, but all versions of G++ as of this writing
|
||
(so through at least 3.2.1) incorrectly generate
|
||
DW_TAG_variable tags. */
|
||
|
||
char *physname;
|
||
|
||
/* Get name of field. */
|
||
fieldname = dwarf2_name (die, cu);
|
||
if (fieldname == NULL)
|
||
return;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr
|
||
/* Only create a symbol if this is an external value.
|
||
new_symbol checks this and puts the value in the global symbol
|
||
table, which we want. If it is not external, new_symbol
|
||
will try to put the value in cu->list_in_scope which is wrong. */
|
||
&& dwarf2_flag_true_p (die, DW_AT_external, cu))
|
||
{
|
||
/* A static const member, not much different than an enum as far as
|
||
we're concerned, except that we can support more types. */
|
||
new_symbol (die, NULL, cu);
|
||
}
|
||
|
||
/* Get physical name. */
|
||
physname = (char *) dwarf2_physname (fieldname, die, cu);
|
||
|
||
/* The name is already allocated along with this objfile, so we don't
|
||
need to duplicate it for the type. */
|
||
SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
|
||
FIELD_TYPE (*fp) = die_type (die, cu);
|
||
FIELD_NAME (*fp) = fieldname;
|
||
}
|
||
else if (die->tag == DW_TAG_inheritance)
|
||
{
|
||
/* C++ base class field. */
|
||
attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
|
||
if (attr)
|
||
{
|
||
int byte_offset = 0;
|
||
|
||
if (attr_form_is_section_offset (attr))
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else if (attr_form_is_constant (attr))
|
||
byte_offset = dwarf2_get_attr_constant_value (attr, 0);
|
||
else if (attr_form_is_block (attr))
|
||
byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
|
||
SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
|
||
}
|
||
FIELD_BITSIZE (*fp) = 0;
|
||
FIELD_TYPE (*fp) = die_type (die, cu);
|
||
FIELD_NAME (*fp) = type_name_no_tag (fp->type);
|
||
fip->nbaseclasses++;
|
||
}
|
||
}
|
||
|
||
/* Add a typedef defined in the scope of the FIP's class. */
|
||
|
||
static void
|
||
dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct typedef_field_list *new_field;
|
||
struct attribute *attr;
|
||
struct typedef_field *fp;
|
||
char *fieldname = "";
|
||
|
||
/* Allocate a new field list entry and link it in. */
|
||
new_field = xzalloc (sizeof (*new_field));
|
||
make_cleanup (xfree, new_field);
|
||
|
||
gdb_assert (die->tag == DW_TAG_typedef);
|
||
|
||
fp = &new_field->field;
|
||
|
||
/* Get name of field. */
|
||
fp->name = dwarf2_name (die, cu);
|
||
if (fp->name == NULL)
|
||
return;
|
||
|
||
fp->type = read_type_die (die, cu);
|
||
|
||
new_field->next = fip->typedef_field_list;
|
||
fip->typedef_field_list = new_field;
|
||
fip->typedef_field_list_count++;
|
||
}
|
||
|
||
/* Create the vector of fields, and attach it to the type. */
|
||
|
||
static void
|
||
dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
int nfields = fip->nfields;
|
||
|
||
/* Record the field count, allocate space for the array of fields,
|
||
and create blank accessibility bitfields if necessary. */
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
TYPE_ALLOC (type, sizeof (struct field) * nfields);
|
||
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
|
||
|
||
if (fip->non_public_fields && cu->language != language_ada)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
|
||
TYPE_FIELD_PRIVATE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_PROTECTED_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_IGNORE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
|
||
}
|
||
|
||
/* If the type has baseclasses, allocate and clear a bit vector for
|
||
TYPE_FIELD_VIRTUAL_BITS. */
|
||
if (fip->nbaseclasses && cu->language != language_ada)
|
||
{
|
||
int num_bytes = B_BYTES (fip->nbaseclasses);
|
||
unsigned char *pointer;
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
pointer = TYPE_ALLOC (type, num_bytes);
|
||
TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
|
||
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
|
||
TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
|
||
}
|
||
|
||
/* Copy the saved-up fields into the field vector. Start from the head
|
||
of the list, adding to the tail of the field array, so that they end
|
||
up in the same order in the array in which they were added to the list. */
|
||
while (nfields-- > 0)
|
||
{
|
||
struct nextfield *fieldp;
|
||
|
||
if (fip->fields)
|
||
{
|
||
fieldp = fip->fields;
|
||
fip->fields = fieldp->next;
|
||
}
|
||
else
|
||
{
|
||
fieldp = fip->baseclasses;
|
||
fip->baseclasses = fieldp->next;
|
||
}
|
||
|
||
TYPE_FIELD (type, nfields) = fieldp->field;
|
||
switch (fieldp->accessibility)
|
||
{
|
||
case DW_ACCESS_private:
|
||
if (cu->language != language_ada)
|
||
SET_TYPE_FIELD_PRIVATE (type, nfields);
|
||
break;
|
||
|
||
case DW_ACCESS_protected:
|
||
if (cu->language != language_ada)
|
||
SET_TYPE_FIELD_PROTECTED (type, nfields);
|
||
break;
|
||
|
||
case DW_ACCESS_public:
|
||
break;
|
||
|
||
default:
|
||
/* Unknown accessibility. Complain and treat it as public. */
|
||
{
|
||
complaint (&symfile_complaints, _("unsupported accessibility %d"),
|
||
fieldp->accessibility);
|
||
}
|
||
break;
|
||
}
|
||
if (nfields < fip->nbaseclasses)
|
||
{
|
||
switch (fieldp->virtuality)
|
||
{
|
||
case DW_VIRTUALITY_virtual:
|
||
case DW_VIRTUALITY_pure_virtual:
|
||
if (cu->language == language_ada)
|
||
error ("unexpected virtuality in component of Ada type");
|
||
SET_TYPE_FIELD_VIRTUAL (type, nfields);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add a member function to the proper fieldlist. */
|
||
|
||
static void
|
||
dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
|
||
struct type *type, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct attribute *attr;
|
||
struct fnfieldlist *flp;
|
||
int i;
|
||
struct fn_field *fnp;
|
||
char *fieldname;
|
||
struct nextfnfield *new_fnfield;
|
||
struct type *this_type;
|
||
|
||
if (cu->language == language_ada)
|
||
error ("unexpected member function in Ada type");
|
||
|
||
/* Get name of member function. */
|
||
fieldname = dwarf2_name (die, cu);
|
||
if (fieldname == NULL)
|
||
return;
|
||
|
||
/* Look up member function name in fieldlist. */
|
||
for (i = 0; i < fip->nfnfields; i++)
|
||
{
|
||
if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
|
||
break;
|
||
}
|
||
|
||
/* Create new list element if necessary. */
|
||
if (i < fip->nfnfields)
|
||
flp = &fip->fnfieldlists[i];
|
||
else
|
||
{
|
||
if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
|
||
{
|
||
fip->fnfieldlists = (struct fnfieldlist *)
|
||
xrealloc (fip->fnfieldlists,
|
||
(fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
|
||
* sizeof (struct fnfieldlist));
|
||
if (fip->nfnfields == 0)
|
||
make_cleanup (free_current_contents, &fip->fnfieldlists);
|
||
}
|
||
flp = &fip->fnfieldlists[fip->nfnfields];
|
||
flp->name = fieldname;
|
||
flp->length = 0;
|
||
flp->head = NULL;
|
||
i = fip->nfnfields++;
|
||
}
|
||
|
||
/* Create a new member function field and chain it to the field list
|
||
entry. */
|
||
new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
|
||
make_cleanup (xfree, new_fnfield);
|
||
memset (new_fnfield, 0, sizeof (struct nextfnfield));
|
||
new_fnfield->next = flp->head;
|
||
flp->head = new_fnfield;
|
||
flp->length++;
|
||
|
||
/* Fill in the member function field info. */
|
||
fnp = &new_fnfield->fnfield;
|
||
|
||
/* Delay processing of the physname until later. */
|
||
if (cu->language == language_cplus || cu->language == language_java)
|
||
{
|
||
add_to_method_list (type, i, flp->length - 1, fieldname,
|
||
die, cu);
|
||
}
|
||
else
|
||
{
|
||
char *physname = (char *) dwarf2_physname (fieldname, die, cu);
|
||
fnp->physname = physname ? physname : "";
|
||
}
|
||
|
||
fnp->type = alloc_type (objfile);
|
||
this_type = read_type_die (die, cu);
|
||
if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
|
||
{
|
||
int nparams = TYPE_NFIELDS (this_type);
|
||
|
||
/* TYPE is the domain of this method, and THIS_TYPE is the type
|
||
of the method itself (TYPE_CODE_METHOD). */
|
||
smash_to_method_type (fnp->type, type,
|
||
TYPE_TARGET_TYPE (this_type),
|
||
TYPE_FIELDS (this_type),
|
||
TYPE_NFIELDS (this_type),
|
||
TYPE_VARARGS (this_type));
|
||
|
||
/* Handle static member functions.
|
||
Dwarf2 has no clean way to discern C++ static and non-static
|
||
member functions. G++ helps GDB by marking the first
|
||
parameter for non-static member functions (which is the
|
||
this pointer) as artificial. We obtain this information
|
||
from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
|
||
if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
|
||
fnp->voffset = VOFFSET_STATIC;
|
||
}
|
||
else
|
||
complaint (&symfile_complaints, _("member function type missing for '%s'"),
|
||
dwarf2_full_name (fieldname, die, cu));
|
||
|
||
/* Get fcontext from DW_AT_containing_type if present. */
|
||
if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
|
||
fnp->fcontext = die_containing_type (die, cu);
|
||
|
||
/* dwarf2 doesn't have stubbed physical names, so the setting of is_const
|
||
and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
|
||
|
||
/* Get accessibility. */
|
||
attr = dwarf2_attr (die, DW_AT_accessibility, cu);
|
||
if (attr)
|
||
{
|
||
switch (DW_UNSND (attr))
|
||
{
|
||
case DW_ACCESS_private:
|
||
fnp->is_private = 1;
|
||
break;
|
||
case DW_ACCESS_protected:
|
||
fnp->is_protected = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Check for artificial methods. */
|
||
attr = dwarf2_attr (die, DW_AT_artificial, cu);
|
||
if (attr && DW_UNSND (attr) != 0)
|
||
fnp->is_artificial = 1;
|
||
|
||
/* Get index in virtual function table if it is a virtual member
|
||
function. For older versions of GCC, this is an offset in the
|
||
appropriate virtual table, as specified by DW_AT_containing_type.
|
||
For everyone else, it is an expression to be evaluated relative
|
||
to the object address. */
|
||
|
||
attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
|
||
if (attr)
|
||
{
|
||
if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
|
||
{
|
||
if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
|
||
{
|
||
/* Old-style GCC. */
|
||
fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
|
||
}
|
||
else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
|
||
|| (DW_BLOCK (attr)->size > 1
|
||
&& DW_BLOCK (attr)->data[0] == DW_OP_deref_size
|
||
&& DW_BLOCK (attr)->data[1] == cu->header.addr_size))
|
||
{
|
||
struct dwarf_block blk;
|
||
int offset;
|
||
|
||
offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
|
||
? 1 : 2);
|
||
blk.size = DW_BLOCK (attr)->size - offset;
|
||
blk.data = DW_BLOCK (attr)->data + offset;
|
||
fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
|
||
if ((fnp->voffset % cu->header.addr_size) != 0)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else
|
||
fnp->voffset /= cu->header.addr_size;
|
||
fnp->voffset += 2;
|
||
}
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
|
||
if (!fnp->fcontext)
|
||
fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
|
||
}
|
||
else if (attr_form_is_section_offset (attr))
|
||
{
|
||
dwarf2_complex_location_expr_complaint ();
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
|
||
fieldname);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_virtuality, cu);
|
||
if (attr && DW_UNSND (attr))
|
||
{
|
||
/* GCC does this, as of 2008-08-25; PR debug/37237. */
|
||
complaint (&symfile_complaints,
|
||
_("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
|
||
fieldname, die->offset);
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_CPLUS_DYNAMIC (type) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create the vector of member function fields, and attach it to the type. */
|
||
|
||
static void
|
||
dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct fnfieldlist *flp;
|
||
int total_length = 0;
|
||
int i;
|
||
|
||
if (cu->language == language_ada)
|
||
error ("unexpected member functions in Ada type");
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
|
||
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
|
||
|
||
for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
|
||
{
|
||
struct nextfnfield *nfp = flp->head;
|
||
struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
|
||
int k;
|
||
|
||
TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
|
||
TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
|
||
fn_flp->fn_fields = (struct fn_field *)
|
||
TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
|
||
for (k = flp->length; (k--, nfp); nfp = nfp->next)
|
||
fn_flp->fn_fields[k] = nfp->fnfield;
|
||
|
||
total_length += flp->length;
|
||
}
|
||
|
||
TYPE_NFN_FIELDS (type) = fip->nfnfields;
|
||
TYPE_NFN_FIELDS_TOTAL (type) = total_length;
|
||
}
|
||
|
||
/* Returns non-zero if NAME is the name of a vtable member in CU's
|
||
language, zero otherwise. */
|
||
static int
|
||
is_vtable_name (const char *name, struct dwarf2_cu *cu)
|
||
{
|
||
static const char vptr[] = "_vptr";
|
||
static const char vtable[] = "vtable";
|
||
|
||
/* Look for the C++ and Java forms of the vtable. */
|
||
if ((cu->language == language_java
|
||
&& strncmp (name, vtable, sizeof (vtable) - 1) == 0)
|
||
|| (strncmp (name, vptr, sizeof (vptr) - 1) == 0
|
||
&& is_cplus_marker (name[sizeof (vptr) - 1])))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* GCC outputs unnamed structures that are really pointers to member
|
||
functions, with the ABI-specified layout. If TYPE describes
|
||
such a structure, smash it into a member function type.
|
||
|
||
GCC shouldn't do this; it should just output pointer to member DIEs.
|
||
This is GCC PR debug/28767. */
|
||
|
||
static void
|
||
quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
|
||
{
|
||
struct type *pfn_type, *domain_type, *new_type;
|
||
|
||
/* Check for a structure with no name and two children. */
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
|
||
return;
|
||
|
||
/* Check for __pfn and __delta members. */
|
||
if (TYPE_FIELD_NAME (type, 0) == NULL
|
||
|| strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
|
||
|| TYPE_FIELD_NAME (type, 1) == NULL
|
||
|| strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
|
||
return;
|
||
|
||
/* Find the type of the method. */
|
||
pfn_type = TYPE_FIELD_TYPE (type, 0);
|
||
if (pfn_type == NULL
|
||
|| TYPE_CODE (pfn_type) != TYPE_CODE_PTR
|
||
|| TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
|
||
return;
|
||
|
||
/* Look for the "this" argument. */
|
||
pfn_type = TYPE_TARGET_TYPE (pfn_type);
|
||
if (TYPE_NFIELDS (pfn_type) == 0
|
||
/* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
|
||
|| TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
|
||
return;
|
||
|
||
domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
|
||
new_type = alloc_type (objfile);
|
||
smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
|
||
TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
|
||
TYPE_VARARGS (pfn_type));
|
||
smash_to_methodptr_type (type, new_type);
|
||
}
|
||
|
||
/* Called when we find the DIE that starts a structure or union scope
|
||
(definition) to create a type for the structure or union. Fill in
|
||
the type's name and general properties; the members will not be
|
||
processed until process_structure_type.
|
||
|
||
NOTE: we need to call these functions regardless of whether or not the
|
||
DIE has a DW_AT_name attribute, since it might be an anonymous
|
||
structure or union. This gets the type entered into our set of
|
||
user defined types.
|
||
|
||
However, if the structure is incomplete (an opaque struct/union)
|
||
then suppress creating a symbol table entry for it since gdb only
|
||
wants to find the one with the complete definition. Note that if
|
||
it is complete, we just call new_symbol, which does it's own
|
||
checking about whether the struct/union is anonymous or not (and
|
||
suppresses creating a symbol table entry itself). */
|
||
|
||
static struct type *
|
||
read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type;
|
||
struct attribute *attr;
|
||
char *name;
|
||
|
||
/* If the definition of this type lives in .debug_types, read that type.
|
||
Don't follow DW_AT_specification though, that will take us back up
|
||
the chain and we want to go down. */
|
||
attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
|
||
if (attr)
|
||
{
|
||
struct dwarf2_cu *type_cu = cu;
|
||
struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
|
||
|
||
/* We could just recurse on read_structure_type, but we need to call
|
||
get_die_type to ensure only one type for this DIE is created.
|
||
This is important, for example, because for c++ classes we need
|
||
TYPE_NAME set which is only done by new_symbol. Blech. */
|
||
type = read_type_die (type_die, type_cu);
|
||
|
||
/* TYPE_CU may not be the same as CU.
|
||
Ensure TYPE is recorded in CU's type_hash table. */
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
type = alloc_type (objfile);
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name != NULL)
|
||
{
|
||
if (cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
{
|
||
char *full_name = (char *) dwarf2_full_name (name, die, cu);
|
||
|
||
/* dwarf2_full_name might have already finished building the DIE's
|
||
type. If so, there is no need to continue. */
|
||
if (get_die_type (die, cu) != NULL)
|
||
return get_die_type (die, cu);
|
||
|
||
TYPE_TAG_NAME (type) = full_name;
|
||
if (die->tag == DW_TAG_structure_type
|
||
|| die->tag == DW_TAG_class_type)
|
||
TYPE_NAME (type) = TYPE_TAG_NAME (type);
|
||
}
|
||
else
|
||
{
|
||
/* The name is already allocated along with this objfile, so
|
||
we don't need to duplicate it for the type. */
|
||
TYPE_TAG_NAME (type) = (char *) name;
|
||
if (die->tag == DW_TAG_class_type)
|
||
TYPE_NAME (type) = TYPE_TAG_NAME (type);
|
||
}
|
||
}
|
||
|
||
if (die->tag == DW_TAG_structure_type)
|
||
{
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
}
|
||
else if (die->tag == DW_TAG_union_type)
|
||
{
|
||
TYPE_CODE (type) = TYPE_CODE_UNION;
|
||
}
|
||
else
|
||
{
|
||
TYPE_CODE (type) = TYPE_CODE_CLASS;
|
||
}
|
||
|
||
if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
|
||
TYPE_DECLARED_CLASS (type) = 1;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (type) = 0;
|
||
}
|
||
|
||
TYPE_STUB_SUPPORTED (type) = 1;
|
||
if (die_is_declaration (die, cu))
|
||
TYPE_STUB (type) = 1;
|
||
else if (attr == NULL && die->child == NULL
|
||
&& producer_is_realview (cu->producer))
|
||
/* RealView does not output the required DW_AT_declaration
|
||
on incomplete types. */
|
||
TYPE_STUB (type) = 1;
|
||
|
||
/* We need to add the type field to the die immediately so we don't
|
||
infinitely recurse when dealing with pointers to the structure
|
||
type within the structure itself. */
|
||
set_die_type (die, type, cu);
|
||
|
||
/* set_die_type should be already done. */
|
||
set_descriptive_type (type, die, cu);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Finish creating a structure or union type, including filling in
|
||
its members and creating a symbol for it. */
|
||
|
||
static void
|
||
process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct die_info *child_die = die->child;
|
||
struct type *type;
|
||
|
||
type = get_die_type (die, cu);
|
||
if (type == NULL)
|
||
type = read_structure_type (die, cu);
|
||
|
||
if (die->child != NULL && ! die_is_declaration (die, cu))
|
||
{
|
||
struct field_info fi;
|
||
struct die_info *child_die;
|
||
VEC (symbolp) *template_args = NULL;
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
|
||
memset (&fi, 0, sizeof (struct field_info));
|
||
|
||
child_die = die->child;
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_member
|
||
|| child_die->tag == DW_TAG_variable)
|
||
{
|
||
/* NOTE: carlton/2002-11-05: A C++ static data member
|
||
should be a DW_TAG_member that is a declaration, but
|
||
all versions of G++ as of this writing (so through at
|
||
least 3.2.1) incorrectly generate DW_TAG_variable
|
||
tags for them instead. */
|
||
dwarf2_add_field (&fi, child_die, cu);
|
||
}
|
||
else if (child_die->tag == DW_TAG_subprogram)
|
||
{
|
||
/* C++ member function. */
|
||
dwarf2_add_member_fn (&fi, child_die, type, cu);
|
||
}
|
||
else if (child_die->tag == DW_TAG_inheritance)
|
||
{
|
||
/* C++ base class field. */
|
||
dwarf2_add_field (&fi, child_die, cu);
|
||
}
|
||
else if (child_die->tag == DW_TAG_typedef)
|
||
dwarf2_add_typedef (&fi, child_die, cu);
|
||
else if (child_die->tag == DW_TAG_template_type_param
|
||
|| child_die->tag == DW_TAG_template_value_param)
|
||
{
|
||
struct symbol *arg = new_symbol (child_die, NULL, cu);
|
||
|
||
if (arg != NULL)
|
||
VEC_safe_push (symbolp, template_args, arg);
|
||
}
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Attach template arguments to type. */
|
||
if (! VEC_empty (symbolp, template_args))
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_N_TEMPLATE_ARGUMENTS (type)
|
||
= VEC_length (symbolp, template_args);
|
||
TYPE_TEMPLATE_ARGUMENTS (type)
|
||
= obstack_alloc (&objfile->objfile_obstack,
|
||
(TYPE_N_TEMPLATE_ARGUMENTS (type)
|
||
* sizeof (struct symbol *)));
|
||
memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
|
||
VEC_address (symbolp, template_args),
|
||
(TYPE_N_TEMPLATE_ARGUMENTS (type)
|
||
* sizeof (struct symbol *)));
|
||
VEC_free (symbolp, template_args);
|
||
}
|
||
|
||
/* Attach fields and member functions to the type. */
|
||
if (fi.nfields)
|
||
dwarf2_attach_fields_to_type (&fi, type, cu);
|
||
if (fi.nfnfields)
|
||
{
|
||
dwarf2_attach_fn_fields_to_type (&fi, type, cu);
|
||
|
||
/* Get the type which refers to the base class (possibly this
|
||
class itself) which contains the vtable pointer for the current
|
||
class from the DW_AT_containing_type attribute. This use of
|
||
DW_AT_containing_type is a GNU extension. */
|
||
|
||
if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
|
||
{
|
||
struct type *t = die_containing_type (die, cu);
|
||
|
||
TYPE_VPTR_BASETYPE (type) = t;
|
||
if (type == t)
|
||
{
|
||
int i;
|
||
|
||
/* Our own class provides vtbl ptr. */
|
||
for (i = TYPE_NFIELDS (t) - 1;
|
||
i >= TYPE_N_BASECLASSES (t);
|
||
--i)
|
||
{
|
||
char *fieldname = TYPE_FIELD_NAME (t, i);
|
||
|
||
if (is_vtable_name (fieldname, cu))
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Complain if virtual function table field not found. */
|
||
if (i < TYPE_N_BASECLASSES (t))
|
||
complaint (&symfile_complaints,
|
||
_("virtual function table pointer not found when defining class '%s'"),
|
||
TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
|
||
"");
|
||
}
|
||
else
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
|
||
}
|
||
}
|
||
else if (cu->producer
|
||
&& strncmp (cu->producer,
|
||
"IBM(R) XL C/C++ Advanced Edition", 32) == 0)
|
||
{
|
||
/* The IBM XLC compiler does not provide direct indication
|
||
of the containing type, but the vtable pointer is
|
||
always named __vfp. */
|
||
|
||
int i;
|
||
|
||
for (i = TYPE_NFIELDS (type) - 1;
|
||
i >= TYPE_N_BASECLASSES (type);
|
||
--i)
|
||
{
|
||
if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = i;
|
||
TYPE_VPTR_BASETYPE (type) = type;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy fi.typedef_field_list linked list elements content into the
|
||
allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
|
||
if (fi.typedef_field_list)
|
||
{
|
||
int i = fi.typedef_field_list_count;
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_TYPEDEF_FIELD_ARRAY (type)
|
||
= TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
|
||
TYPE_TYPEDEF_FIELD_COUNT (type) = i;
|
||
|
||
/* Reverse the list order to keep the debug info elements order. */
|
||
while (--i >= 0)
|
||
{
|
||
struct typedef_field *dest, *src;
|
||
|
||
dest = &TYPE_TYPEDEF_FIELD (type, i);
|
||
src = &fi.typedef_field_list->field;
|
||
fi.typedef_field_list = fi.typedef_field_list->next;
|
||
*dest = *src;
|
||
}
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
quirk_gcc_member_function_pointer (type, cu->objfile);
|
||
|
||
/* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
|
||
snapshots) has been known to create a die giving a declaration
|
||
for a class that has, as a child, a die giving a definition for a
|
||
nested class. So we have to process our children even if the
|
||
current die is a declaration. Normally, of course, a declaration
|
||
won't have any children at all. */
|
||
|
||
while (child_die != NULL && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_member
|
||
|| child_die->tag == DW_TAG_variable
|
||
|| child_die->tag == DW_TAG_inheritance
|
||
|| child_die->tag == DW_TAG_template_value_param
|
||
|| child_die->tag == DW_TAG_template_type_param)
|
||
{
|
||
/* Do nothing. */
|
||
}
|
||
else
|
||
process_die (child_die, cu);
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Do not consider external references. According to the DWARF standard,
|
||
these DIEs are identified by the fact that they have no byte_size
|
||
attribute, and a declaration attribute. */
|
||
if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
|
||
|| !die_is_declaration (die, cu))
|
||
new_symbol (die, type, cu);
|
||
}
|
||
|
||
/* Given a DW_AT_enumeration_type die, set its type. We do not
|
||
complete the type's fields yet, or create any symbols. */
|
||
|
||
static struct type *
|
||
read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type;
|
||
struct attribute *attr;
|
||
const char *name;
|
||
|
||
/* If the definition of this type lives in .debug_types, read that type.
|
||
Don't follow DW_AT_specification though, that will take us back up
|
||
the chain and we want to go down. */
|
||
attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
|
||
if (attr)
|
||
{
|
||
struct dwarf2_cu *type_cu = cu;
|
||
struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
|
||
|
||
type = read_type_die (type_die, type_cu);
|
||
|
||
/* TYPE_CU may not be the same as CU.
|
||
Ensure TYPE is recorded in CU's type_hash table. */
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
type = alloc_type (objfile);
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
||
name = dwarf2_full_name (NULL, die, cu);
|
||
if (name != NULL)
|
||
TYPE_TAG_NAME (type) = (char *) name;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (type) = 0;
|
||
}
|
||
|
||
/* The enumeration DIE can be incomplete. In Ada, any type can be
|
||
declared as private in the package spec, and then defined only
|
||
inside the package body. Such types are known as Taft Amendment
|
||
Types. When another package uses such a type, an incomplete DIE
|
||
may be generated by the compiler. */
|
||
if (die_is_declaration (die, cu))
|
||
TYPE_STUB (type) = 1;
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Given a pointer to a die which begins an enumeration, process all
|
||
the dies that define the members of the enumeration, and create the
|
||
symbol for the enumeration type.
|
||
|
||
NOTE: We reverse the order of the element list. */
|
||
|
||
static void
|
||
process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type;
|
||
|
||
this_type = get_die_type (die, cu);
|
||
if (this_type == NULL)
|
||
this_type = read_enumeration_type (die, cu);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct die_info *child_die;
|
||
struct symbol *sym;
|
||
struct field *fields = NULL;
|
||
int num_fields = 0;
|
||
int unsigned_enum = 1;
|
||
char *name;
|
||
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag != DW_TAG_enumerator)
|
||
{
|
||
process_die (child_die, cu);
|
||
}
|
||
else
|
||
{
|
||
name = dwarf2_name (child_die, cu);
|
||
if (name)
|
||
{
|
||
sym = new_symbol (child_die, this_type, cu);
|
||
if (SYMBOL_VALUE (sym) < 0)
|
||
unsigned_enum = 0;
|
||
|
||
if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
|
||
{
|
||
fields = (struct field *)
|
||
xrealloc (fields,
|
||
(num_fields + DW_FIELD_ALLOC_CHUNK)
|
||
* sizeof (struct field));
|
||
}
|
||
|
||
FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
|
||
FIELD_TYPE (fields[num_fields]) = NULL;
|
||
SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
|
||
FIELD_BITSIZE (fields[num_fields]) = 0;
|
||
|
||
num_fields++;
|
||
}
|
||
}
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
if (num_fields)
|
||
{
|
||
TYPE_NFIELDS (this_type) = num_fields;
|
||
TYPE_FIELDS (this_type) = (struct field *)
|
||
TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
|
||
memcpy (TYPE_FIELDS (this_type), fields,
|
||
sizeof (struct field) * num_fields);
|
||
xfree (fields);
|
||
}
|
||
if (unsigned_enum)
|
||
TYPE_UNSIGNED (this_type) = 1;
|
||
}
|
||
|
||
new_symbol (die, this_type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_array_type DIE and put it in
|
||
the DIE's type field. For now, this only handles one dimensional
|
||
arrays. */
|
||
|
||
static struct type *
|
||
read_array_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct die_info *child_die;
|
||
struct type *type;
|
||
struct type *element_type, *range_type, *index_type;
|
||
struct type **range_types = NULL;
|
||
struct attribute *attr;
|
||
int ndim = 0;
|
||
struct cleanup *back_to;
|
||
char *name;
|
||
|
||
element_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
/* Irix 6.2 native cc creates array types without children for
|
||
arrays with unspecified length. */
|
||
if (die->child == NULL)
|
||
{
|
||
index_type = objfile_type (objfile)->builtin_int;
|
||
range_type = create_range_type (NULL, index_type, 0, -1);
|
||
type = create_array_type (NULL, element_type, range_type);
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
back_to = make_cleanup (null_cleanup, NULL);
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_subrange_type)
|
||
{
|
||
struct type *child_type = read_type_die (child_die, cu);
|
||
|
||
if (child_type != NULL)
|
||
{
|
||
/* The range type was succesfully read. Save it for
|
||
the array type creation. */
|
||
if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
|
||
{
|
||
range_types = (struct type **)
|
||
xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
|
||
* sizeof (struct type *));
|
||
if (ndim == 0)
|
||
make_cleanup (free_current_contents, &range_types);
|
||
}
|
||
range_types[ndim++] = child_type;
|
||
}
|
||
}
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Dwarf2 dimensions are output from left to right, create the
|
||
necessary array types in backwards order. */
|
||
|
||
type = element_type;
|
||
|
||
if (read_array_order (die, cu) == DW_ORD_col_major)
|
||
{
|
||
int i = 0;
|
||
|
||
while (i < ndim)
|
||
type = create_array_type (NULL, type, range_types[i++]);
|
||
}
|
||
else
|
||
{
|
||
while (ndim-- > 0)
|
||
type = create_array_type (NULL, type, range_types[ndim]);
|
||
}
|
||
|
||
/* Understand Dwarf2 support for vector types (like they occur on
|
||
the PowerPC w/ AltiVec). Gcc just adds another attribute to the
|
||
array type. This is not part of the Dwarf2/3 standard yet, but a
|
||
custom vendor extension. The main difference between a regular
|
||
array and the vector variant is that vectors are passed by value
|
||
to functions. */
|
||
attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
|
||
if (attr)
|
||
make_vector_type (type);
|
||
|
||
/* The DIE may have DW_AT_byte_size set. For example an OpenCL
|
||
implementation may choose to implement triple vectors using this
|
||
attribute. */
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
if (DW_UNSND (attr) >= TYPE_LENGTH (type))
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
else
|
||
complaint (&symfile_complaints, _("\
|
||
DW_AT_byte_size for array type smaller than the total size of elements"));
|
||
}
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name)
|
||
TYPE_NAME (type) = name;
|
||
|
||
/* Install the type in the die. */
|
||
set_die_type (die, type, cu);
|
||
|
||
/* set_die_type should be already done. */
|
||
set_descriptive_type (type, die, cu);
|
||
|
||
do_cleanups (back_to);
|
||
|
||
return type;
|
||
}
|
||
|
||
static enum dwarf_array_dim_ordering
|
||
read_array_order (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_ordering, cu);
|
||
|
||
if (attr) return DW_SND (attr);
|
||
|
||
/*
|
||
GNU F77 is a special case, as at 08/2004 array type info is the
|
||
opposite order to the dwarf2 specification, but data is still
|
||
laid out as per normal fortran.
|
||
|
||
FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
|
||
version checking.
|
||
*/
|
||
|
||
if (cu->language == language_fortran
|
||
&& cu->producer && strstr (cu->producer, "GNU F77"))
|
||
{
|
||
return DW_ORD_row_major;
|
||
}
|
||
|
||
switch (cu->language_defn->la_array_ordering)
|
||
{
|
||
case array_column_major:
|
||
return DW_ORD_col_major;
|
||
case array_row_major:
|
||
default:
|
||
return DW_ORD_row_major;
|
||
};
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_set_type DIE and put it in
|
||
the DIE's type field. */
|
||
|
||
static struct type *
|
||
read_set_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *domain_type, *set_type;
|
||
struct attribute *attr;
|
||
|
||
domain_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
set_type = get_die_type (die, cu);
|
||
if (set_type)
|
||
return set_type;
|
||
|
||
set_type = create_set_type (NULL, domain_type);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
TYPE_LENGTH (set_type) = DW_UNSND (attr);
|
||
|
||
return set_die_type (die, set_type, cu);
|
||
}
|
||
|
||
/* First cut: install each common block member as a global variable. */
|
||
|
||
static void
|
||
read_common_block (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *child_die;
|
||
struct attribute *attr;
|
||
struct symbol *sym;
|
||
CORE_ADDR base = (CORE_ADDR) 0;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (attr)
|
||
{
|
||
/* Support the .debug_loc offsets */
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
base = decode_locdesc (DW_BLOCK (attr), cu);
|
||
}
|
||
else if (attr_form_is_section_offset (attr))
|
||
{
|
||
dwarf2_complex_location_expr_complaint ();
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
|
||
"common block member");
|
||
}
|
||
}
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
sym = new_symbol (child_die, NULL, cu);
|
||
attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
|
||
if (sym != NULL && attr != NULL)
|
||
{
|
||
CORE_ADDR byte_offset = 0;
|
||
|
||
if (attr_form_is_section_offset (attr))
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else if (attr_form_is_constant (attr))
|
||
byte_offset = dwarf2_get_attr_constant_value (attr, 0);
|
||
else if (attr_form_is_block (attr))
|
||
byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
|
||
SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
}
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create a type for a C++ namespace. */
|
||
|
||
static struct type *
|
||
read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *previous_prefix, *name;
|
||
int is_anonymous;
|
||
struct type *type;
|
||
|
||
/* For extensions, reuse the type of the original namespace. */
|
||
if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
|
||
{
|
||
struct die_info *ext_die;
|
||
struct dwarf2_cu *ext_cu = cu;
|
||
|
||
ext_die = dwarf2_extension (die, &ext_cu);
|
||
type = read_type_die (ext_die, ext_cu);
|
||
|
||
/* EXT_CU may not be the same as CU.
|
||
Ensure TYPE is recorded in CU's type_hash table. */
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
name = namespace_name (die, &is_anonymous, cu);
|
||
|
||
/* Now build the name of the current namespace. */
|
||
|
||
previous_prefix = determine_prefix (die, cu);
|
||
if (previous_prefix[0] != '\0')
|
||
name = typename_concat (&objfile->objfile_obstack,
|
||
previous_prefix, name, 0, cu);
|
||
|
||
/* Create the type. */
|
||
type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
|
||
objfile);
|
||
TYPE_NAME (type) = (char *) name;
|
||
TYPE_TAG_NAME (type) = TYPE_NAME (type);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Read a C++ namespace. */
|
||
|
||
static void
|
||
read_namespace (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *name;
|
||
int is_anonymous;
|
||
|
||
/* Add a symbol associated to this if we haven't seen the namespace
|
||
before. Also, add a using directive if it's an anonymous
|
||
namespace. */
|
||
|
||
if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
|
||
{
|
||
struct type *type;
|
||
|
||
type = read_type_die (die, cu);
|
||
new_symbol (die, type, cu);
|
||
|
||
name = namespace_name (die, &is_anonymous, cu);
|
||
if (is_anonymous)
|
||
{
|
||
const char *previous_prefix = determine_prefix (die, cu);
|
||
|
||
cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
|
||
NULL, &objfile->objfile_obstack);
|
||
}
|
||
}
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct die_info *child_die = die->child;
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read a Fortran module as type. This DIE can be only a declaration used for
|
||
imported module. Still we need that type as local Fortran "use ... only"
|
||
declaration imports depend on the created type in determine_prefix. */
|
||
|
||
static struct type *
|
||
read_module_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
char *module_name;
|
||
struct type *type;
|
||
|
||
module_name = dwarf2_name (die, cu);
|
||
if (!module_name)
|
||
complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
|
||
die->offset);
|
||
type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
|
||
|
||
/* determine_prefix uses TYPE_TAG_NAME. */
|
||
TYPE_TAG_NAME (type) = TYPE_NAME (type);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Read a Fortran module. */
|
||
|
||
static void
|
||
read_module (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *child_die = die->child;
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
/* Return the name of the namespace represented by DIE. Set
|
||
*IS_ANONYMOUS to tell whether or not the namespace is an anonymous
|
||
namespace. */
|
||
|
||
static const char *
|
||
namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *current_die;
|
||
const char *name = NULL;
|
||
|
||
/* Loop through the extensions until we find a name. */
|
||
|
||
for (current_die = die;
|
||
current_die != NULL;
|
||
current_die = dwarf2_extension (die, &cu))
|
||
{
|
||
name = dwarf2_name (current_die, cu);
|
||
if (name != NULL)
|
||
break;
|
||
}
|
||
|
||
/* Is it an anonymous namespace? */
|
||
|
||
*is_anonymous = (name == NULL);
|
||
if (*is_anonymous)
|
||
name = "(anonymous namespace)";
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_pointer_type DIE and add to
|
||
the user defined type vector. */
|
||
|
||
static struct type *
|
||
read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
struct type *type;
|
||
struct attribute *attr_byte_size;
|
||
struct attribute *attr_address_class;
|
||
int byte_size, addr_class;
|
||
struct type *target_type;
|
||
|
||
target_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
type = lookup_pointer_type (target_type);
|
||
|
||
attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr_byte_size)
|
||
byte_size = DW_UNSND (attr_byte_size);
|
||
else
|
||
byte_size = cu_header->addr_size;
|
||
|
||
attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
|
||
if (attr_address_class)
|
||
addr_class = DW_UNSND (attr_address_class);
|
||
else
|
||
addr_class = DW_ADDR_none;
|
||
|
||
/* If the pointer size or address class is different than the
|
||
default, create a type variant marked as such and set the
|
||
length accordingly. */
|
||
if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
|
||
{
|
||
if (gdbarch_address_class_type_flags_p (gdbarch))
|
||
{
|
||
int type_flags;
|
||
|
||
type_flags = gdbarch_address_class_type_flags
|
||
(gdbarch, byte_size, addr_class);
|
||
gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
|
||
== 0);
|
||
type = make_type_with_address_space (type, type_flags);
|
||
}
|
||
else if (TYPE_LENGTH (type) != byte_size)
|
||
{
|
||
complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
|
||
}
|
||
else
|
||
{
|
||
/* Should we also complain about unhandled address classes? */
|
||
}
|
||
}
|
||
|
||
TYPE_LENGTH (type) = byte_size;
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
|
||
the user defined type vector. */
|
||
|
||
static struct type *
|
||
read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *type;
|
||
struct type *to_type;
|
||
struct type *domain;
|
||
|
||
to_type = die_type (die, cu);
|
||
domain = die_containing_type (die, cu);
|
||
|
||
/* The calls above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
|
||
type = lookup_methodptr_type (to_type);
|
||
else
|
||
type = lookup_memberptr_type (to_type, domain);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_reference_type DIE and add to
|
||
the user defined type vector. */
|
||
|
||
static struct type *
|
||
read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
struct type *type, *target_type;
|
||
struct attribute *attr;
|
||
|
||
target_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
type = lookup_reference_type (target_type);
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (type) = cu_header->addr_size;
|
||
}
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
static struct type *
|
||
read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *cv_type;
|
||
|
||
base_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
cv_type = get_die_type (die, cu);
|
||
if (cv_type)
|
||
return cv_type;
|
||
|
||
/* In case the const qualifier is applied to an array type, the element type
|
||
is so qualified, not the array type (section 6.7.3 of C99). */
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *el_type, *inner_array;
|
||
|
||
base_type = copy_type (base_type);
|
||
inner_array = base_type;
|
||
|
||
while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
|
||
{
|
||
TYPE_TARGET_TYPE (inner_array) =
|
||
copy_type (TYPE_TARGET_TYPE (inner_array));
|
||
inner_array = TYPE_TARGET_TYPE (inner_array);
|
||
}
|
||
|
||
el_type = TYPE_TARGET_TYPE (inner_array);
|
||
TYPE_TARGET_TYPE (inner_array) =
|
||
make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
|
||
|
||
return set_die_type (die, base_type, cu);
|
||
}
|
||
|
||
cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
|
||
return set_die_type (die, cv_type, cu);
|
||
}
|
||
|
||
static struct type *
|
||
read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *cv_type;
|
||
|
||
base_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
cv_type = get_die_type (die, cu);
|
||
if (cv_type)
|
||
return cv_type;
|
||
|
||
cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
|
||
return set_die_type (die, cv_type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_string_type DIE and add to
|
||
the user defined type vector. It isn't really a user defined type,
|
||
but it behaves like one, with other DIE's using an AT_user_def_type
|
||
attribute to reference it. */
|
||
|
||
static struct type *
|
||
read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct type *type, *range_type, *index_type, *char_type;
|
||
struct attribute *attr;
|
||
unsigned int length;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_string_length, cu);
|
||
if (attr)
|
||
{
|
||
length = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
/* check for the DW_AT_byte_size attribute */
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
length = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
length = 1;
|
||
}
|
||
}
|
||
|
||
index_type = objfile_type (objfile)->builtin_int;
|
||
range_type = create_range_type (NULL, index_type, 1, length);
|
||
char_type = language_string_char_type (cu->language_defn, gdbarch);
|
||
type = create_string_type (NULL, char_type, range_type);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Handle DIES due to C code like:
|
||
|
||
struct foo
|
||
{
|
||
int (*funcp)(int a, long l);
|
||
int b;
|
||
};
|
||
|
||
('funcp' generates a DW_TAG_subroutine_type DIE)
|
||
*/
|
||
|
||
static struct type *
|
||
read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *type; /* Type that this function returns */
|
||
struct type *ftype; /* Function that returns above type */
|
||
struct attribute *attr;
|
||
|
||
type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
ftype = get_die_type (die, cu);
|
||
if (ftype)
|
||
return ftype;
|
||
|
||
ftype = lookup_function_type (type);
|
||
|
||
/* All functions in C++, Pascal and Java have prototypes. */
|
||
attr = dwarf2_attr (die, DW_AT_prototyped, cu);
|
||
if ((attr && (DW_UNSND (attr) != 0))
|
||
|| cu->language == language_cplus
|
||
|| cu->language == language_java
|
||
|| cu->language == language_pascal)
|
||
TYPE_PROTOTYPED (ftype) = 1;
|
||
else if (producer_is_realview (cu->producer))
|
||
/* RealView does not emit DW_AT_prototyped. We can not
|
||
distinguish prototyped and unprototyped functions; default to
|
||
prototyped, since that is more common in modern code (and
|
||
RealView warns about unprototyped functions). */
|
||
TYPE_PROTOTYPED (ftype) = 1;
|
||
|
||
/* Store the calling convention in the type if it's available in
|
||
the subroutine die. Otherwise set the calling convention to
|
||
the default value DW_CC_normal. */
|
||
attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
|
||
TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
|
||
|
||
/* We need to add the subroutine type to the die immediately so
|
||
we don't infinitely recurse when dealing with parameters
|
||
declared as the same subroutine type. */
|
||
set_die_type (die, ftype, cu);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct type *void_type = objfile_type (cu->objfile)->builtin_void;
|
||
struct die_info *child_die;
|
||
int nparams, iparams;
|
||
|
||
/* Count the number of parameters.
|
||
FIXME: GDB currently ignores vararg functions, but knows about
|
||
vararg member functions. */
|
||
nparams = 0;
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_formal_parameter)
|
||
nparams++;
|
||
else if (child_die->tag == DW_TAG_unspecified_parameters)
|
||
TYPE_VARARGS (ftype) = 1;
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Allocate storage for parameters and fill them in. */
|
||
TYPE_NFIELDS (ftype) = nparams;
|
||
TYPE_FIELDS (ftype) = (struct field *)
|
||
TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
|
||
|
||
/* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
|
||
even if we error out during the parameters reading below. */
|
||
for (iparams = 0; iparams < nparams; iparams++)
|
||
TYPE_FIELD_TYPE (ftype, iparams) = void_type;
|
||
|
||
iparams = 0;
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_formal_parameter)
|
||
{
|
||
struct type *arg_type;
|
||
|
||
/* DWARF version 2 has no clean way to discern C++
|
||
static and non-static member functions. G++ helps
|
||
GDB by marking the first parameter for non-static
|
||
member functions (which is the this pointer) as
|
||
artificial. We pass this information to
|
||
dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
|
||
|
||
DWARF version 3 added DW_AT_object_pointer, which GCC
|
||
4.5 does not yet generate. */
|
||
attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
|
||
if (attr)
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
|
||
else
|
||
{
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
|
||
|
||
/* GCC/43521: In java, the formal parameter
|
||
"this" is sometimes not marked with DW_AT_artificial. */
|
||
if (cu->language == language_java)
|
||
{
|
||
const char *name = dwarf2_name (child_die, cu);
|
||
|
||
if (name && !strcmp (name, "this"))
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
|
||
}
|
||
}
|
||
arg_type = die_type (child_die, cu);
|
||
|
||
/* RealView does not mark THIS as const, which the testsuite
|
||
expects. GCC marks THIS as const in method definitions,
|
||
but not in the class specifications (GCC PR 43053). */
|
||
if (cu->language == language_cplus && !TYPE_CONST (arg_type)
|
||
&& TYPE_FIELD_ARTIFICIAL (ftype, iparams))
|
||
{
|
||
int is_this = 0;
|
||
struct dwarf2_cu *arg_cu = cu;
|
||
const char *name = dwarf2_name (child_die, cu);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
|
||
if (attr)
|
||
{
|
||
/* If the compiler emits this, use it. */
|
||
if (follow_die_ref (die, attr, &arg_cu) == child_die)
|
||
is_this = 1;
|
||
}
|
||
else if (name && strcmp (name, "this") == 0)
|
||
/* Function definitions will have the argument names. */
|
||
is_this = 1;
|
||
else if (name == NULL && iparams == 0)
|
||
/* Declarations may not have the names, so like
|
||
elsewhere in GDB, assume an artificial first
|
||
argument is "this". */
|
||
is_this = 1;
|
||
|
||
if (is_this)
|
||
arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
|
||
arg_type, 0);
|
||
}
|
||
|
||
TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
|
||
iparams++;
|
||
}
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
return ftype;
|
||
}
|
||
|
||
static struct type *
|
||
read_typedef (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *name = NULL;
|
||
struct type *this_type;
|
||
|
||
name = dwarf2_full_name (NULL, die, cu);
|
||
this_type = init_type (TYPE_CODE_TYPEDEF, 0,
|
||
TYPE_FLAG_TARGET_STUB, NULL, objfile);
|
||
TYPE_NAME (this_type) = (char *) name;
|
||
set_die_type (die, this_type, cu);
|
||
TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
|
||
return this_type;
|
||
}
|
||
|
||
/* Find a representation of a given base type and install
|
||
it in the TYPE field of the die. */
|
||
|
||
static struct type *
|
||
read_base_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type;
|
||
struct attribute *attr;
|
||
int encoding = 0, size = 0;
|
||
char *name;
|
||
enum type_code code = TYPE_CODE_INT;
|
||
int type_flags = 0;
|
||
struct type *target_type = NULL;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_encoding, cu);
|
||
if (attr)
|
||
{
|
||
encoding = DW_UNSND (attr);
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
size = DW_UNSND (attr);
|
||
}
|
||
name = dwarf2_name (die, cu);
|
||
if (!name)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_name missing from DW_TAG_base_type"));
|
||
}
|
||
|
||
switch (encoding)
|
||
{
|
||
case DW_ATE_address:
|
||
/* Turn DW_ATE_address into a void * pointer. */
|
||
code = TYPE_CODE_PTR;
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
|
||
break;
|
||
case DW_ATE_boolean:
|
||
code = TYPE_CODE_BOOL;
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
break;
|
||
case DW_ATE_complex_float:
|
||
code = TYPE_CODE_COMPLEX;
|
||
target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
|
||
break;
|
||
case DW_ATE_decimal_float:
|
||
code = TYPE_CODE_DECFLOAT;
|
||
break;
|
||
case DW_ATE_float:
|
||
code = TYPE_CODE_FLT;
|
||
break;
|
||
case DW_ATE_signed:
|
||
break;
|
||
case DW_ATE_unsigned:
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
break;
|
||
case DW_ATE_signed_char:
|
||
if (cu->language == language_ada || cu->language == language_m2
|
||
|| cu->language == language_pascal)
|
||
code = TYPE_CODE_CHAR;
|
||
break;
|
||
case DW_ATE_unsigned_char:
|
||
if (cu->language == language_ada || cu->language == language_m2
|
||
|| cu->language == language_pascal)
|
||
code = TYPE_CODE_CHAR;
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
break;
|
||
case DW_ATE_UTF:
|
||
/* We just treat this as an integer and then recognize the
|
||
type by name elsewhere. */
|
||
break;
|
||
|
||
default:
|
||
complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
|
||
dwarf_type_encoding_name (encoding));
|
||
break;
|
||
}
|
||
|
||
type = init_type (code, size, type_flags, NULL, objfile);
|
||
TYPE_NAME (type) = name;
|
||
TYPE_TARGET_TYPE (type) = target_type;
|
||
|
||
if (name && strcmp (name, "char") == 0)
|
||
TYPE_NOSIGN (type) = 1;
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Read the given DW_AT_subrange DIE. */
|
||
|
||
static struct type *
|
||
read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
|
||
struct type *base_type;
|
||
struct type *range_type;
|
||
struct attribute *attr;
|
||
LONGEST low = 0;
|
||
LONGEST high = -1;
|
||
char *name;
|
||
LONGEST negative_mask;
|
||
|
||
base_type = die_type (die, cu);
|
||
/* Preserve BASE_TYPE's original type, just set its LENGTH. */
|
||
check_typedef (base_type);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
range_type = get_die_type (die, cu);
|
||
if (range_type)
|
||
return range_type;
|
||
|
||
if (cu->language == language_fortran)
|
||
{
|
||
/* FORTRAN implies a lower bound of 1, if not given. */
|
||
low = 1;
|
||
}
|
||
|
||
/* FIXME: For variable sized arrays either of these could be
|
||
a variable rather than a constant value. We'll allow it,
|
||
but we don't know how to handle it. */
|
||
attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
|
||
if (attr)
|
||
low = dwarf2_get_attr_constant_value (attr, 0);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
|
||
if (attr)
|
||
{
|
||
if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
|
||
{
|
||
/* GCC encodes arrays with unspecified or dynamic length
|
||
with a DW_FORM_block1 attribute or a reference attribute.
|
||
FIXME: GDB does not yet know how to handle dynamic
|
||
arrays properly, treat them as arrays with unspecified
|
||
length for now.
|
||
|
||
FIXME: jimb/2003-09-22: GDB does not really know
|
||
how to handle arrays of unspecified length
|
||
either; we just represent them as zero-length
|
||
arrays. Choose an appropriate upper bound given
|
||
the lower bound we've computed above. */
|
||
high = low - 1;
|
||
}
|
||
else
|
||
high = dwarf2_get_attr_constant_value (attr, 1);
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_count, cu);
|
||
if (attr)
|
||
{
|
||
int count = dwarf2_get_attr_constant_value (attr, 1);
|
||
high = low + count - 1;
|
||
}
|
||
}
|
||
|
||
/* Dwarf-2 specifications explicitly allows to create subrange types
|
||
without specifying a base type.
|
||
In that case, the base type must be set to the type of
|
||
the lower bound, upper bound or count, in that order, if any of these
|
||
three attributes references an object that has a type.
|
||
If no base type is found, the Dwarf-2 specifications say that
|
||
a signed integer type of size equal to the size of an address should
|
||
be used.
|
||
For the following C code: `extern char gdb_int [];'
|
||
GCC produces an empty range DIE.
|
||
FIXME: muller/2010-05-28: Possible references to object for low bound,
|
||
high bound or count are not yet handled by this code.
|
||
*/
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
int addr_size = gdbarch_addr_bit (gdbarch) /8;
|
||
struct type *int_type = objfile_type (objfile)->builtin_int;
|
||
|
||
/* Test "int", "long int", and "long long int" objfile types,
|
||
and select the first one having a size above or equal to the
|
||
architecture address size. */
|
||
if (int_type && TYPE_LENGTH (int_type) >= addr_size)
|
||
base_type = int_type;
|
||
else
|
||
{
|
||
int_type = objfile_type (objfile)->builtin_long;
|
||
if (int_type && TYPE_LENGTH (int_type) >= addr_size)
|
||
base_type = int_type;
|
||
else
|
||
{
|
||
int_type = objfile_type (objfile)->builtin_long_long;
|
||
if (int_type && TYPE_LENGTH (int_type) >= addr_size)
|
||
base_type = int_type;
|
||
}
|
||
}
|
||
}
|
||
|
||
negative_mask =
|
||
(LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
|
||
if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
|
||
low |= negative_mask;
|
||
if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
|
||
high |= negative_mask;
|
||
|
||
range_type = create_range_type (NULL, base_type, low, high);
|
||
|
||
/* Mark arrays with dynamic length at least as an array of unspecified
|
||
length. GDB could check the boundary but before it gets implemented at
|
||
least allow accessing the array elements. */
|
||
if (attr && attr->form == DW_FORM_block1)
|
||
TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name)
|
||
TYPE_NAME (range_type) = name;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
TYPE_LENGTH (range_type) = DW_UNSND (attr);
|
||
|
||
set_die_type (die, range_type, cu);
|
||
|
||
/* set_die_type should be already done. */
|
||
set_descriptive_type (range_type, die, cu);
|
||
|
||
return range_type;
|
||
}
|
||
|
||
static struct type *
|
||
read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *type;
|
||
|
||
/* For now, we only support the C meaning of an unspecified type: void. */
|
||
|
||
type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
|
||
TYPE_NAME (type) = dwarf2_name (die, cu);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Trivial hash function for die_info: the hash value of a DIE
|
||
is its offset in .debug_info for this objfile. */
|
||
|
||
static hashval_t
|
||
die_hash (const void *item)
|
||
{
|
||
const struct die_info *die = item;
|
||
|
||
return die->offset;
|
||
}
|
||
|
||
/* Trivial comparison function for die_info structures: two DIEs
|
||
are equal if they have the same offset. */
|
||
|
||
static int
|
||
die_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct die_info *die_lhs = item_lhs;
|
||
const struct die_info *die_rhs = item_rhs;
|
||
|
||
return die_lhs->offset == die_rhs->offset;
|
||
}
|
||
|
||
/* Read a whole compilation unit into a linked list of dies. */
|
||
|
||
static struct die_info *
|
||
read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_reader_specs reader_specs;
|
||
int read_abbrevs = 0;
|
||
struct cleanup *back_to = NULL;
|
||
struct die_info *die;
|
||
|
||
if (cu->dwarf2_abbrevs == NULL)
|
||
{
|
||
dwarf2_read_abbrevs (cu->objfile->obfd, cu);
|
||
back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
|
||
read_abbrevs = 1;
|
||
}
|
||
|
||
gdb_assert (cu->die_hash == NULL);
|
||
cu->die_hash
|
||
= htab_create_alloc_ex (cu->header.length / 12,
|
||
die_hash,
|
||
die_eq,
|
||
NULL,
|
||
&cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
init_cu_die_reader (&reader_specs, cu);
|
||
|
||
die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
|
||
|
||
if (read_abbrevs)
|
||
do_cleanups (back_to);
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Main entry point for reading a DIE and all children.
|
||
Read the DIE and dump it if requested. */
|
||
|
||
static struct die_info *
|
||
read_die_and_children (const struct die_reader_specs *reader,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte **new_info_ptr,
|
||
struct die_info *parent)
|
||
{
|
||
struct die_info *result = read_die_and_children_1 (reader, info_ptr,
|
||
new_info_ptr, parent);
|
||
|
||
if (dwarf2_die_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"\nRead die from %s of %s:\n",
|
||
reader->buffer == dwarf2_per_objfile->info.buffer
|
||
? ".debug_info"
|
||
: reader->buffer == dwarf2_per_objfile->types.buffer
|
||
? ".debug_types"
|
||
: "unknown section",
|
||
reader->abfd->filename);
|
||
dump_die (result, dwarf2_die_debug);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Read a single die and all its descendents. Set the die's sibling
|
||
field to NULL; set other fields in the die correctly, and set all
|
||
of the descendents' fields correctly. Set *NEW_INFO_PTR to the
|
||
location of the info_ptr after reading all of those dies. PARENT
|
||
is the parent of the die in question. */
|
||
|
||
static struct die_info *
|
||
read_die_and_children_1 (const struct die_reader_specs *reader,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte **new_info_ptr,
|
||
struct die_info *parent)
|
||
{
|
||
struct die_info *die;
|
||
gdb_byte *cur_ptr;
|
||
int has_children;
|
||
|
||
cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
|
||
if (die == NULL)
|
||
{
|
||
*new_info_ptr = cur_ptr;
|
||
return NULL;
|
||
}
|
||
store_in_ref_table (die, reader->cu);
|
||
|
||
if (has_children)
|
||
die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
|
||
else
|
||
{
|
||
die->child = NULL;
|
||
*new_info_ptr = cur_ptr;
|
||
}
|
||
|
||
die->sibling = NULL;
|
||
die->parent = parent;
|
||
return die;
|
||
}
|
||
|
||
/* Read a die, all of its descendents, and all of its siblings; set
|
||
all of the fields of all of the dies correctly. Arguments are as
|
||
in read_die_and_children. */
|
||
|
||
static struct die_info *
|
||
read_die_and_siblings (const struct die_reader_specs *reader,
|
||
gdb_byte *info_ptr,
|
||
gdb_byte **new_info_ptr,
|
||
struct die_info *parent)
|
||
{
|
||
struct die_info *first_die, *last_sibling;
|
||
gdb_byte *cur_ptr;
|
||
|
||
cur_ptr = info_ptr;
|
||
first_die = last_sibling = NULL;
|
||
|
||
while (1)
|
||
{
|
||
struct die_info *die
|
||
= read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
|
||
|
||
if (die == NULL)
|
||
{
|
||
*new_info_ptr = cur_ptr;
|
||
return first_die;
|
||
}
|
||
|
||
if (!first_die)
|
||
first_die = die;
|
||
else
|
||
last_sibling->sibling = die;
|
||
|
||
last_sibling = die;
|
||
}
|
||
}
|
||
|
||
/* Read the die from the .debug_info section buffer. Set DIEP to
|
||
point to a newly allocated die with its information, except for its
|
||
child, sibling, and parent fields. Set HAS_CHILDREN to tell
|
||
whether the die has children or not. */
|
||
|
||
static gdb_byte *
|
||
read_full_die (const struct die_reader_specs *reader,
|
||
struct die_info **diep, gdb_byte *info_ptr,
|
||
int *has_children)
|
||
{
|
||
unsigned int abbrev_number, bytes_read, i, offset;
|
||
struct abbrev_info *abbrev;
|
||
struct die_info *die;
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
bfd *abfd = reader->abfd;
|
||
|
||
offset = info_ptr - reader->buffer;
|
||
abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
if (!abbrev_number)
|
||
{
|
||
*diep = NULL;
|
||
*has_children = 0;
|
||
return info_ptr;
|
||
}
|
||
|
||
abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
|
||
if (!abbrev)
|
||
error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
|
||
abbrev_number,
|
||
bfd_get_filename (abfd));
|
||
|
||
die = dwarf_alloc_die (cu, abbrev->num_attrs);
|
||
die->offset = offset;
|
||
die->tag = abbrev->tag;
|
||
die->abbrev = abbrev_number;
|
||
|
||
die->num_attrs = abbrev->num_attrs;
|
||
|
||
for (i = 0; i < abbrev->num_attrs; ++i)
|
||
info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
|
||
abfd, info_ptr, cu);
|
||
|
||
*diep = die;
|
||
*has_children = abbrev->has_children;
|
||
return info_ptr;
|
||
}
|
||
|
||
/* In DWARF version 2, the description of the debugging information is
|
||
stored in a separate .debug_abbrev section. Before we read any
|
||
dies from a section we read in all abbreviations and install them
|
||
in a hash table. This function also sets flags in CU describing
|
||
the data found in the abbrev table. */
|
||
|
||
static void
|
||
dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
|
||
{
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
gdb_byte *abbrev_ptr;
|
||
struct abbrev_info *cur_abbrev;
|
||
unsigned int abbrev_number, bytes_read, abbrev_name;
|
||
unsigned int abbrev_form, hash_number;
|
||
struct attr_abbrev *cur_attrs;
|
||
unsigned int allocated_attrs;
|
||
|
||
/* Initialize dwarf2 abbrevs */
|
||
obstack_init (&cu->abbrev_obstack);
|
||
cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
|
||
(ABBREV_HASH_SIZE
|
||
* sizeof (struct abbrev_info *)));
|
||
memset (cu->dwarf2_abbrevs, 0,
|
||
ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile,
|
||
&dwarf2_per_objfile->abbrev);
|
||
abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
|
||
abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
|
||
allocated_attrs = ATTR_ALLOC_CHUNK;
|
||
cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
|
||
|
||
/* loop until we reach an abbrev number of 0 */
|
||
while (abbrev_number)
|
||
{
|
||
cur_abbrev = dwarf_alloc_abbrev (cu);
|
||
|
||
/* read in abbrev header */
|
||
cur_abbrev->number = abbrev_number;
|
||
cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
|
||
abbrev_ptr += 1;
|
||
|
||
if (cur_abbrev->tag == DW_TAG_namespace)
|
||
cu->has_namespace_info = 1;
|
||
|
||
/* now read in declarations */
|
||
abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
while (abbrev_name)
|
||
{
|
||
if (cur_abbrev->num_attrs == allocated_attrs)
|
||
{
|
||
allocated_attrs += ATTR_ALLOC_CHUNK;
|
||
cur_attrs
|
||
= xrealloc (cur_attrs, (allocated_attrs
|
||
* sizeof (struct attr_abbrev)));
|
||
}
|
||
|
||
/* Record whether this compilation unit might have
|
||
inter-compilation-unit references. If we don't know what form
|
||
this attribute will have, then it might potentially be a
|
||
DW_FORM_ref_addr, so we conservatively expect inter-CU
|
||
references. */
|
||
|
||
if (abbrev_form == DW_FORM_ref_addr
|
||
|| abbrev_form == DW_FORM_indirect)
|
||
cu->has_form_ref_addr = 1;
|
||
|
||
cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
|
||
cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
|
||
abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
}
|
||
|
||
cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
|
||
(cur_abbrev->num_attrs
|
||
* sizeof (struct attr_abbrev)));
|
||
memcpy (cur_abbrev->attrs, cur_attrs,
|
||
cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
|
||
|
||
hash_number = abbrev_number % ABBREV_HASH_SIZE;
|
||
cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
|
||
cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
|
||
|
||
/* Get next abbreviation.
|
||
Under Irix6 the abbreviations for a compilation unit are not
|
||
always properly terminated with an abbrev number of 0.
|
||
Exit loop if we encounter an abbreviation which we have
|
||
already read (which means we are about to read the abbreviations
|
||
for the next compile unit) or if the end of the abbreviation
|
||
table is reached. */
|
||
if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
|
||
>= dwarf2_per_objfile->abbrev.size)
|
||
break;
|
||
abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
|
||
break;
|
||
}
|
||
|
||
xfree (cur_attrs);
|
||
}
|
||
|
||
/* Release the memory used by the abbrev table for a compilation unit. */
|
||
|
||
static void
|
||
dwarf2_free_abbrev_table (void *ptr_to_cu)
|
||
{
|
||
struct dwarf2_cu *cu = ptr_to_cu;
|
||
|
||
obstack_free (&cu->abbrev_obstack, NULL);
|
||
cu->dwarf2_abbrevs = NULL;
|
||
}
|
||
|
||
/* Lookup an abbrev_info structure in the abbrev hash table. */
|
||
|
||
static struct abbrev_info *
|
||
dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
|
||
{
|
||
unsigned int hash_number;
|
||
struct abbrev_info *abbrev;
|
||
|
||
hash_number = number % ABBREV_HASH_SIZE;
|
||
abbrev = cu->dwarf2_abbrevs[hash_number];
|
||
|
||
while (abbrev)
|
||
{
|
||
if (abbrev->number == number)
|
||
return abbrev;
|
||
else
|
||
abbrev = abbrev->next;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns nonzero if TAG represents a type that we might generate a partial
|
||
symbol for. */
|
||
|
||
static int
|
||
is_type_tag_for_partial (int tag)
|
||
{
|
||
switch (tag)
|
||
{
|
||
#if 0
|
||
/* Some types that would be reasonable to generate partial symbols for,
|
||
that we don't at present. */
|
||
case DW_TAG_array_type:
|
||
case DW_TAG_file_type:
|
||
case DW_TAG_ptr_to_member_type:
|
||
case DW_TAG_set_type:
|
||
case DW_TAG_string_type:
|
||
case DW_TAG_subroutine_type:
|
||
#endif
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_subrange_type:
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_union_type:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Load all DIEs that are interesting for partial symbols into memory. */
|
||
|
||
static struct partial_die_info *
|
||
load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
|
||
int building_psymtab, struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *part_die;
|
||
struct partial_die_info *parent_die, *last_die, *first_die = NULL;
|
||
struct abbrev_info *abbrev;
|
||
unsigned int bytes_read;
|
||
unsigned int load_all = 0;
|
||
|
||
int nesting_level = 1;
|
||
|
||
parent_die = NULL;
|
||
last_die = NULL;
|
||
|
||
if (cu->per_cu && cu->per_cu->load_all_dies)
|
||
load_all = 1;
|
||
|
||
cu->partial_dies
|
||
= htab_create_alloc_ex (cu->header.length / 12,
|
||
partial_die_hash,
|
||
partial_die_eq,
|
||
NULL,
|
||
&cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
part_die = obstack_alloc (&cu->comp_unit_obstack,
|
||
sizeof (struct partial_die_info));
|
||
|
||
while (1)
|
||
{
|
||
abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
|
||
|
||
/* A NULL abbrev means the end of a series of children. */
|
||
if (abbrev == NULL)
|
||
{
|
||
if (--nesting_level == 0)
|
||
{
|
||
/* PART_DIE was probably the last thing allocated on the
|
||
comp_unit_obstack, so we could call obstack_free
|
||
here. We don't do that because the waste is small,
|
||
and will be cleaned up when we're done with this
|
||
compilation unit. This way, we're also more robust
|
||
against other users of the comp_unit_obstack. */
|
||
return first_die;
|
||
}
|
||
info_ptr += bytes_read;
|
||
last_die = parent_die;
|
||
parent_die = parent_die->die_parent;
|
||
continue;
|
||
}
|
||
|
||
/* Check for template arguments. We never save these; if
|
||
they're seen, we just mark the parent, and go on our way. */
|
||
if (parent_die != NULL
|
||
&& cu->language == language_cplus
|
||
&& (abbrev->tag == DW_TAG_template_type_param
|
||
|| abbrev->tag == DW_TAG_template_value_param))
|
||
{
|
||
parent_die->has_template_arguments = 1;
|
||
|
||
if (!load_all)
|
||
{
|
||
/* We don't need a partial DIE for the template argument. */
|
||
info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
|
||
cu);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* We only recurse into subprograms looking for template arguments.
|
||
Skip their other children. */
|
||
if (!load_all
|
||
&& cu->language == language_cplus
|
||
&& parent_die != NULL
|
||
&& parent_die->tag == DW_TAG_subprogram)
|
||
{
|
||
info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
|
||
continue;
|
||
}
|
||
|
||
/* Check whether this DIE is interesting enough to save. Normally
|
||
we would not be interested in members here, but there may be
|
||
later variables referencing them via DW_AT_specification (for
|
||
static members). */
|
||
if (!load_all
|
||
&& !is_type_tag_for_partial (abbrev->tag)
|
||
&& abbrev->tag != DW_TAG_constant
|
||
&& abbrev->tag != DW_TAG_enumerator
|
||
&& abbrev->tag != DW_TAG_subprogram
|
||
&& abbrev->tag != DW_TAG_lexical_block
|
||
&& abbrev->tag != DW_TAG_variable
|
||
&& abbrev->tag != DW_TAG_namespace
|
||
&& abbrev->tag != DW_TAG_module
|
||
&& abbrev->tag != DW_TAG_member)
|
||
{
|
||
/* Otherwise we skip to the next sibling, if any. */
|
||
info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
|
||
continue;
|
||
}
|
||
|
||
info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
|
||
buffer, info_ptr, cu);
|
||
|
||
/* This two-pass algorithm for processing partial symbols has a
|
||
high cost in cache pressure. Thus, handle some simple cases
|
||
here which cover the majority of C partial symbols. DIEs
|
||
which neither have specification tags in them, nor could have
|
||
specification tags elsewhere pointing at them, can simply be
|
||
processed and discarded.
|
||
|
||
This segment is also optional; scan_partial_symbols and
|
||
add_partial_symbol will handle these DIEs if we chain
|
||
them in normally. When compilers which do not emit large
|
||
quantities of duplicate debug information are more common,
|
||
this code can probably be removed. */
|
||
|
||
/* Any complete simple types at the top level (pretty much all
|
||
of them, for a language without namespaces), can be processed
|
||
directly. */
|
||
if (parent_die == NULL
|
||
&& part_die->has_specification == 0
|
||
&& part_die->is_declaration == 0
|
||
&& (part_die->tag == DW_TAG_typedef
|
||
|| part_die->tag == DW_TAG_base_type
|
||
|| part_die->tag == DW_TAG_subrange_type))
|
||
{
|
||
if (building_psymtab && part_die->name != NULL)
|
||
add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
|
||
VAR_DOMAIN, LOC_TYPEDEF,
|
||
&cu->objfile->static_psymbols,
|
||
0, (CORE_ADDR) 0, cu->language, cu->objfile);
|
||
info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
|
||
continue;
|
||
}
|
||
|
||
/* If we're at the second level, and we're an enumerator, and
|
||
our parent has no specification (meaning possibly lives in a
|
||
namespace elsewhere), then we can add the partial symbol now
|
||
instead of queueing it. */
|
||
if (part_die->tag == DW_TAG_enumerator
|
||
&& parent_die != NULL
|
||
&& parent_die->die_parent == NULL
|
||
&& parent_die->tag == DW_TAG_enumeration_type
|
||
&& parent_die->has_specification == 0)
|
||
{
|
||
if (part_die->name == NULL)
|
||
complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
|
||
else if (building_psymtab)
|
||
add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
|
||
VAR_DOMAIN, LOC_CONST,
|
||
(cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &cu->objfile->global_psymbols
|
||
: &cu->objfile->static_psymbols,
|
||
0, (CORE_ADDR) 0, cu->language, cu->objfile);
|
||
|
||
info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
|
||
continue;
|
||
}
|
||
|
||
/* We'll save this DIE so link it in. */
|
||
part_die->die_parent = parent_die;
|
||
part_die->die_sibling = NULL;
|
||
part_die->die_child = NULL;
|
||
|
||
if (last_die && last_die == parent_die)
|
||
last_die->die_child = part_die;
|
||
else if (last_die)
|
||
last_die->die_sibling = part_die;
|
||
|
||
last_die = part_die;
|
||
|
||
if (first_die == NULL)
|
||
first_die = part_die;
|
||
|
||
/* Maybe add the DIE to the hash table. Not all DIEs that we
|
||
find interesting need to be in the hash table, because we
|
||
also have the parent/sibling/child chains; only those that we
|
||
might refer to by offset later during partial symbol reading.
|
||
|
||
For now this means things that might have be the target of a
|
||
DW_AT_specification, DW_AT_abstract_origin, or
|
||
DW_AT_extension. DW_AT_extension will refer only to
|
||
namespaces; DW_AT_abstract_origin refers to functions (and
|
||
many things under the function DIE, but we do not recurse
|
||
into function DIEs during partial symbol reading) and
|
||
possibly variables as well; DW_AT_specification refers to
|
||
declarations. Declarations ought to have the DW_AT_declaration
|
||
flag. It happens that GCC forgets to put it in sometimes, but
|
||
only for functions, not for types.
|
||
|
||
Adding more things than necessary to the hash table is harmless
|
||
except for the performance cost. Adding too few will result in
|
||
wasted time in find_partial_die, when we reread the compilation
|
||
unit with load_all_dies set. */
|
||
|
||
if (load_all
|
||
|| abbrev->tag == DW_TAG_constant
|
||
|| abbrev->tag == DW_TAG_subprogram
|
||
|| abbrev->tag == DW_TAG_variable
|
||
|| abbrev->tag == DW_TAG_namespace
|
||
|| part_die->is_declaration)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
|
||
part_die->offset, INSERT);
|
||
*slot = part_die;
|
||
}
|
||
|
||
part_die = obstack_alloc (&cu->comp_unit_obstack,
|
||
sizeof (struct partial_die_info));
|
||
|
||
/* For some DIEs we want to follow their children (if any). For C
|
||
we have no reason to follow the children of structures; for other
|
||
languages we have to, so that we can get at method physnames
|
||
to infer fully qualified class names, for DW_AT_specification,
|
||
and for C++ template arguments. For C++, we also look one level
|
||
inside functions to find template arguments (if the name of the
|
||
function does not already contain the template arguments).
|
||
|
||
For Ada, we need to scan the children of subprograms and lexical
|
||
blocks as well because Ada allows the definition of nested
|
||
entities that could be interesting for the debugger, such as
|
||
nested subprograms for instance. */
|
||
if (last_die->has_children
|
||
&& (load_all
|
||
|| last_die->tag == DW_TAG_namespace
|
||
|| last_die->tag == DW_TAG_module
|
||
|| last_die->tag == DW_TAG_enumeration_type
|
||
|| (cu->language == language_cplus
|
||
&& last_die->tag == DW_TAG_subprogram
|
||
&& (last_die->name == NULL
|
||
|| strchr (last_die->name, '<') == NULL))
|
||
|| (cu->language != language_c
|
||
&& (last_die->tag == DW_TAG_class_type
|
||
|| last_die->tag == DW_TAG_interface_type
|
||
|| last_die->tag == DW_TAG_structure_type
|
||
|| last_die->tag == DW_TAG_union_type))
|
||
|| (cu->language == language_ada
|
||
&& (last_die->tag == DW_TAG_subprogram
|
||
|| last_die->tag == DW_TAG_lexical_block))))
|
||
{
|
||
nesting_level++;
|
||
parent_die = last_die;
|
||
continue;
|
||
}
|
||
|
||
/* Otherwise we skip to the next sibling, if any. */
|
||
info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
|
||
|
||
/* Back to the top, do it again. */
|
||
}
|
||
}
|
||
|
||
/* Read a minimal amount of information into the minimal die structure. */
|
||
|
||
static gdb_byte *
|
||
read_partial_die (struct partial_die_info *part_die,
|
||
struct abbrev_info *abbrev,
|
||
unsigned int abbrev_len, bfd *abfd,
|
||
gdb_byte *buffer, gdb_byte *info_ptr,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
unsigned int i;
|
||
struct attribute attr;
|
||
int has_low_pc_attr = 0;
|
||
int has_high_pc_attr = 0;
|
||
|
||
memset (part_die, 0, sizeof (struct partial_die_info));
|
||
|
||
part_die->offset = info_ptr - buffer;
|
||
|
||
info_ptr += abbrev_len;
|
||
|
||
if (abbrev == NULL)
|
||
return info_ptr;
|
||
|
||
part_die->tag = abbrev->tag;
|
||
part_die->has_children = abbrev->has_children;
|
||
|
||
for (i = 0; i < abbrev->num_attrs; ++i)
|
||
{
|
||
info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
|
||
|
||
/* Store the data if it is of an attribute we want to keep in a
|
||
partial symbol table. */
|
||
switch (attr.name)
|
||
{
|
||
case DW_AT_name:
|
||
switch (part_die->tag)
|
||
{
|
||
case DW_TAG_compile_unit:
|
||
case DW_TAG_type_unit:
|
||
/* Compilation units have a DW_AT_name that is a filename, not
|
||
a source language identifier. */
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_enumerator:
|
||
/* These tags always have simple identifiers already; no need
|
||
to canonicalize them. */
|
||
part_die->name = DW_STRING (&attr);
|
||
break;
|
||
default:
|
||
part_die->name
|
||
= dwarf2_canonicalize_name (DW_STRING (&attr), cu,
|
||
&cu->objfile->objfile_obstack);
|
||
break;
|
||
}
|
||
break;
|
||
case DW_AT_linkage_name:
|
||
case DW_AT_MIPS_linkage_name:
|
||
/* Note that both forms of linkage name might appear. We
|
||
assume they will be the same, and we only store the last
|
||
one we see. */
|
||
if (cu->language == language_ada)
|
||
part_die->name = DW_STRING (&attr);
|
||
part_die->linkage_name = DW_STRING (&attr);
|
||
break;
|
||
case DW_AT_low_pc:
|
||
has_low_pc_attr = 1;
|
||
part_die->lowpc = DW_ADDR (&attr);
|
||
break;
|
||
case DW_AT_high_pc:
|
||
has_high_pc_attr = 1;
|
||
part_die->highpc = DW_ADDR (&attr);
|
||
break;
|
||
case DW_AT_location:
|
||
/* Support the .debug_loc offsets */
|
||
if (attr_form_is_block (&attr))
|
||
{
|
||
part_die->locdesc = DW_BLOCK (&attr);
|
||
}
|
||
else if (attr_form_is_section_offset (&attr))
|
||
{
|
||
dwarf2_complex_location_expr_complaint ();
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
|
||
"partial symbol information");
|
||
}
|
||
break;
|
||
case DW_AT_external:
|
||
part_die->is_external = DW_UNSND (&attr);
|
||
break;
|
||
case DW_AT_declaration:
|
||
part_die->is_declaration = DW_UNSND (&attr);
|
||
break;
|
||
case DW_AT_type:
|
||
part_die->has_type = 1;
|
||
break;
|
||
case DW_AT_abstract_origin:
|
||
case DW_AT_specification:
|
||
case DW_AT_extension:
|
||
part_die->has_specification = 1;
|
||
part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
|
||
break;
|
||
case DW_AT_sibling:
|
||
/* Ignore absolute siblings, they might point outside of
|
||
the current compile unit. */
|
||
if (attr.form == DW_FORM_ref_addr)
|
||
complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
|
||
else
|
||
part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
|
||
break;
|
||
case DW_AT_byte_size:
|
||
part_die->has_byte_size = 1;
|
||
break;
|
||
case DW_AT_calling_convention:
|
||
/* DWARF doesn't provide a way to identify a program's source-level
|
||
entry point. DW_AT_calling_convention attributes are only meant
|
||
to describe functions' calling conventions.
|
||
|
||
However, because it's a necessary piece of information in
|
||
Fortran, and because DW_CC_program is the only piece of debugging
|
||
information whose definition refers to a 'main program' at all,
|
||
several compilers have begun marking Fortran main programs with
|
||
DW_CC_program --- even when those functions use the standard
|
||
calling conventions.
|
||
|
||
So until DWARF specifies a way to provide this information and
|
||
compilers pick up the new representation, we'll support this
|
||
practice. */
|
||
if (DW_UNSND (&attr) == DW_CC_program
|
||
&& cu->language == language_fortran)
|
||
{
|
||
set_main_name (part_die->name);
|
||
|
||
/* As this DIE has a static linkage the name would be difficult
|
||
to look up later. */
|
||
language_of_main = language_fortran;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* When using the GNU linker, .gnu.linkonce. sections are used to
|
||
eliminate duplicate copies of functions and vtables and such.
|
||
The linker will arbitrarily choose one and discard the others.
|
||
The AT_*_pc values for such functions refer to local labels in
|
||
these sections. If the section from that file was discarded, the
|
||
labels are not in the output, so the relocs get a value of 0.
|
||
If this is a discarded function, mark the pc bounds as invalid,
|
||
so that GDB will ignore it. */
|
||
if (has_low_pc_attr && has_high_pc_attr
|
||
&& part_die->lowpc < part_die->highpc
|
||
&& (part_die->lowpc != 0
|
||
|| dwarf2_per_objfile->has_section_at_zero))
|
||
part_die->has_pc_info = 1;
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Find a cached partial DIE at OFFSET in CU. */
|
||
|
||
static struct partial_die_info *
|
||
find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *lookup_die = NULL;
|
||
struct partial_die_info part_die;
|
||
|
||
part_die.offset = offset;
|
||
lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
|
||
|
||
return lookup_die;
|
||
}
|
||
|
||
/* Find a partial DIE at OFFSET, which may or may not be in CU,
|
||
except in the case of .debug_types DIEs which do not reference
|
||
outside their CU (they do however referencing other types via
|
||
DW_FORM_sig8). */
|
||
|
||
static struct partial_die_info *
|
||
find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = NULL;
|
||
struct partial_die_info *pd = NULL;
|
||
|
||
if (cu->per_cu->from_debug_types)
|
||
{
|
||
pd = find_partial_die_in_comp_unit (offset, cu);
|
||
if (pd != NULL)
|
||
return pd;
|
||
goto not_found;
|
||
}
|
||
|
||
if (offset_in_cu_p (&cu->header, offset))
|
||
{
|
||
pd = find_partial_die_in_comp_unit (offset, cu);
|
||
if (pd != NULL)
|
||
return pd;
|
||
}
|
||
|
||
per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
|
||
|
||
if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
|
||
load_partial_comp_unit (per_cu, cu->objfile);
|
||
|
||
per_cu->cu->last_used = 0;
|
||
pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
|
||
|
||
if (pd == NULL && per_cu->load_all_dies == 0)
|
||
{
|
||
struct cleanup *back_to;
|
||
struct partial_die_info comp_unit_die;
|
||
struct abbrev_info *abbrev;
|
||
unsigned int bytes_read;
|
||
char *info_ptr;
|
||
|
||
per_cu->load_all_dies = 1;
|
||
|
||
/* Re-read the DIEs. */
|
||
back_to = make_cleanup (null_cleanup, 0);
|
||
if (per_cu->cu->dwarf2_abbrevs == NULL)
|
||
{
|
||
dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
|
||
make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
|
||
}
|
||
info_ptr = (dwarf2_per_objfile->info.buffer
|
||
+ per_cu->cu->header.offset
|
||
+ per_cu->cu->header.first_die_offset);
|
||
abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
|
||
info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
|
||
per_cu->cu->objfile->obfd,
|
||
dwarf2_per_objfile->info.buffer, info_ptr,
|
||
per_cu->cu);
|
||
if (comp_unit_die.has_children)
|
||
load_partial_dies (per_cu->cu->objfile->obfd,
|
||
dwarf2_per_objfile->info.buffer, info_ptr,
|
||
0, per_cu->cu);
|
||
do_cleanups (back_to);
|
||
|
||
pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
|
||
}
|
||
|
||
not_found:
|
||
|
||
if (pd == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find partial DIE 0x%x in cache [from module %s]\n"),
|
||
offset, bfd_get_filename (cu->objfile->obfd));
|
||
return pd;
|
||
}
|
||
|
||
/* See if we can figure out if the class lives in a namespace. We do
|
||
this by looking for a member function; its demangled name will
|
||
contain namespace info, if there is any. */
|
||
|
||
static void
|
||
guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
/* NOTE: carlton/2003-10-07: Getting the info this way changes
|
||
what template types look like, because the demangler
|
||
frequently doesn't give the same name as the debug info. We
|
||
could fix this by only using the demangled name to get the
|
||
prefix (but see comment in read_structure_type). */
|
||
|
||
struct partial_die_info *real_pdi;
|
||
struct partial_die_info *child_pdi;
|
||
|
||
/* If this DIE (this DIE's specification, if any) has a parent, then
|
||
we should not do this. We'll prepend the parent's fully qualified
|
||
name when we create the partial symbol. */
|
||
|
||
real_pdi = struct_pdi;
|
||
while (real_pdi->has_specification)
|
||
real_pdi = find_partial_die (real_pdi->spec_offset, cu);
|
||
|
||
if (real_pdi->die_parent != NULL)
|
||
return;
|
||
|
||
for (child_pdi = struct_pdi->die_child;
|
||
child_pdi != NULL;
|
||
child_pdi = child_pdi->die_sibling)
|
||
{
|
||
if (child_pdi->tag == DW_TAG_subprogram
|
||
&& child_pdi->linkage_name != NULL)
|
||
{
|
||
char *actual_class_name
|
||
= language_class_name_from_physname (cu->language_defn,
|
||
child_pdi->linkage_name);
|
||
if (actual_class_name != NULL)
|
||
{
|
||
struct_pdi->name
|
||
= obsavestring (actual_class_name,
|
||
strlen (actual_class_name),
|
||
&cu->objfile->objfile_obstack);
|
||
xfree (actual_class_name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Adjust PART_DIE before generating a symbol for it. This function
|
||
may set the is_external flag or change the DIE's name. */
|
||
|
||
static void
|
||
fixup_partial_die (struct partial_die_info *part_die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
/* Once we've fixed up a die, there's no point in doing so again.
|
||
This also avoids a memory leak if we were to call
|
||
guess_partial_die_structure_name multiple times. */
|
||
if (part_die->fixup_called)
|
||
return;
|
||
|
||
/* If we found a reference attribute and the DIE has no name, try
|
||
to find a name in the referred to DIE. */
|
||
|
||
if (part_die->name == NULL && part_die->has_specification)
|
||
{
|
||
struct partial_die_info *spec_die;
|
||
|
||
spec_die = find_partial_die (part_die->spec_offset, cu);
|
||
|
||
fixup_partial_die (spec_die, cu);
|
||
|
||
if (spec_die->name)
|
||
{
|
||
part_die->name = spec_die->name;
|
||
|
||
/* Copy DW_AT_external attribute if it is set. */
|
||
if (spec_die->is_external)
|
||
part_die->is_external = spec_die->is_external;
|
||
}
|
||
}
|
||
|
||
/* Set default names for some unnamed DIEs. */
|
||
|
||
if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
|
||
part_die->name = "(anonymous namespace)";
|
||
|
||
/* If there is no parent die to provide a namespace, and there are
|
||
children, see if we can determine the namespace from their linkage
|
||
name.
|
||
NOTE: We need to do this even if cu->has_namespace_info != 0.
|
||
gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
|
||
if (cu->language == language_cplus
|
||
&& dwarf2_per_objfile->types.asection != NULL
|
||
&& part_die->die_parent == NULL
|
||
&& part_die->has_children
|
||
&& (part_die->tag == DW_TAG_class_type
|
||
|| part_die->tag == DW_TAG_structure_type
|
||
|| part_die->tag == DW_TAG_union_type))
|
||
guess_partial_die_structure_name (part_die, cu);
|
||
|
||
part_die->fixup_called = 1;
|
||
}
|
||
|
||
/* Read an attribute value described by an attribute form. */
|
||
|
||
static gdb_byte *
|
||
read_attribute_value (struct attribute *attr, unsigned form,
|
||
bfd *abfd, gdb_byte *info_ptr,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
unsigned int bytes_read;
|
||
struct dwarf_block *blk;
|
||
|
||
attr->form = form;
|
||
switch (form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
if (cu->header.version == 2)
|
||
DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
|
||
else
|
||
DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_addr:
|
||
DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_block2:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_block4:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_4_bytes (abfd, info_ptr);
|
||
info_ptr += 4;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_data2:
|
||
DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
break;
|
||
case DW_FORM_data4:
|
||
DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
|
||
info_ptr += 4;
|
||
break;
|
||
case DW_FORM_data8:
|
||
DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_sec_offset:
|
||
DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_string:
|
||
DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
|
||
DW_STRING_IS_CANONICAL (attr) = 0;
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_strp:
|
||
DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
|
||
&bytes_read);
|
||
DW_STRING_IS_CANONICAL (attr) = 0;
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_exprloc:
|
||
case DW_FORM_block:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_block1:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_data1:
|
||
DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_flag:
|
||
DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_flag_present:
|
||
DW_UNSND (attr) = 1;
|
||
break;
|
||
case DW_FORM_sdata:
|
||
DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_udata:
|
||
DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_ref1:
|
||
DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_ref2:
|
||
DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
break;
|
||
case DW_FORM_ref4:
|
||
DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
|
||
info_ptr += 4;
|
||
break;
|
||
case DW_FORM_ref8:
|
||
DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_sig8:
|
||
/* Convert the signature to something we can record in DW_UNSND
|
||
for later lookup.
|
||
NOTE: This is NULL if the type wasn't found. */
|
||
DW_SIGNATURED_TYPE (attr) =
|
||
lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_ref_udata:
|
||
DW_ADDR (attr) = (cu->header.offset
|
||
+ read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_indirect:
|
||
form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
|
||
break;
|
||
default:
|
||
error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
|
||
dwarf_form_name (form),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
/* We have seen instances where the compiler tried to emit a byte
|
||
size attribute of -1 which ended up being encoded as an unsigned
|
||
0xffffffff. Although 0xffffffff is technically a valid size value,
|
||
an object of this size seems pretty unlikely so we can relatively
|
||
safely treat these cases as if the size attribute was invalid and
|
||
treat them as zero by default. */
|
||
if (attr->name == DW_AT_byte_size
|
||
&& form == DW_FORM_data4
|
||
&& DW_UNSND (attr) >= 0xffffffff)
|
||
{
|
||
complaint
|
||
(&symfile_complaints,
|
||
_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
|
||
hex_string (DW_UNSND (attr)));
|
||
DW_UNSND (attr) = 0;
|
||
}
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Read an attribute described by an abbreviated attribute. */
|
||
|
||
static gdb_byte *
|
||
read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
|
||
bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
|
||
{
|
||
attr->name = abbrev->name;
|
||
return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
|
||
}
|
||
|
||
/* read dwarf information from a buffer */
|
||
|
||
static unsigned int
|
||
read_1_byte (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_8 (abfd, buf);
|
||
}
|
||
|
||
static int
|
||
read_1_signed_byte (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_signed_8 (abfd, buf);
|
||
}
|
||
|
||
static unsigned int
|
||
read_2_bytes (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_16 (abfd, buf);
|
||
}
|
||
|
||
static int
|
||
read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_signed_16 (abfd, buf);
|
||
}
|
||
|
||
static unsigned int
|
||
read_4_bytes (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_32 (abfd, buf);
|
||
}
|
||
|
||
static int
|
||
read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_signed_32 (abfd, buf);
|
||
}
|
||
|
||
static ULONGEST
|
||
read_8_bytes (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
return bfd_get_64 (abfd, buf);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
|
||
unsigned int *bytes_read)
|
||
{
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
CORE_ADDR retval = 0;
|
||
|
||
if (cu_header->signed_addr_p)
|
||
{
|
||
switch (cu_header->addr_size)
|
||
{
|
||
case 2:
|
||
retval = bfd_get_signed_16 (abfd, buf);
|
||
break;
|
||
case 4:
|
||
retval = bfd_get_signed_32 (abfd, buf);
|
||
break;
|
||
case 8:
|
||
retval = bfd_get_signed_64 (abfd, buf);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_address: bad switch, signed [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (cu_header->addr_size)
|
||
{
|
||
case 2:
|
||
retval = bfd_get_16 (abfd, buf);
|
||
break;
|
||
case 4:
|
||
retval = bfd_get_32 (abfd, buf);
|
||
break;
|
||
case 8:
|
||
retval = bfd_get_64 (abfd, buf);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_address: bad switch, unsigned [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
|
||
*bytes_read = cu_header->addr_size;
|
||
return retval;
|
||
}
|
||
|
||
/* Read the initial length from a section. The (draft) DWARF 3
|
||
specification allows the initial length to take up either 4 bytes
|
||
or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
|
||
bytes describe the length and all offsets will be 8 bytes in length
|
||
instead of 4.
|
||
|
||
An older, non-standard 64-bit format is also handled by this
|
||
function. The older format in question stores the initial length
|
||
as an 8-byte quantity without an escape value. Lengths greater
|
||
than 2^32 aren't very common which means that the initial 4 bytes
|
||
is almost always zero. Since a length value of zero doesn't make
|
||
sense for the 32-bit format, this initial zero can be considered to
|
||
be an escape value which indicates the presence of the older 64-bit
|
||
format. As written, the code can't detect (old format) lengths
|
||
greater than 4GB. If it becomes necessary to handle lengths
|
||
somewhat larger than 4GB, we could allow other small values (such
|
||
as the non-sensical values of 1, 2, and 3) to also be used as
|
||
escape values indicating the presence of the old format.
|
||
|
||
The value returned via bytes_read should be used to increment the
|
||
relevant pointer after calling read_initial_length().
|
||
|
||
[ Note: read_initial_length() and read_offset() are based on the
|
||
document entitled "DWARF Debugging Information Format", revision
|
||
3, draft 8, dated November 19, 2001. This document was obtained
|
||
from:
|
||
|
||
http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
|
||
|
||
This document is only a draft and is subject to change. (So beware.)
|
||
|
||
Details regarding the older, non-standard 64-bit format were
|
||
determined empirically by examining 64-bit ELF files produced by
|
||
the SGI toolchain on an IRIX 6.5 machine.
|
||
|
||
- Kevin, July 16, 2002
|
||
] */
|
||
|
||
static LONGEST
|
||
read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
|
||
{
|
||
LONGEST length = bfd_get_32 (abfd, buf);
|
||
|
||
if (length == 0xffffffff)
|
||
{
|
||
length = bfd_get_64 (abfd, buf + 4);
|
||
*bytes_read = 12;
|
||
}
|
||
else if (length == 0)
|
||
{
|
||
/* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
|
||
length = bfd_get_64 (abfd, buf);
|
||
*bytes_read = 8;
|
||
}
|
||
else
|
||
{
|
||
*bytes_read = 4;
|
||
}
|
||
|
||
return length;
|
||
}
|
||
|
||
/* Cover function for read_initial_length.
|
||
Returns the length of the object at BUF, and stores the size of the
|
||
initial length in *BYTES_READ and stores the size that offsets will be in
|
||
*OFFSET_SIZE.
|
||
If the initial length size is not equivalent to that specified in
|
||
CU_HEADER then issue a complaint.
|
||
This is useful when reading non-comp-unit headers. */
|
||
|
||
static LONGEST
|
||
read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
|
||
const struct comp_unit_head *cu_header,
|
||
unsigned int *bytes_read,
|
||
unsigned int *offset_size)
|
||
{
|
||
LONGEST length = read_initial_length (abfd, buf, bytes_read);
|
||
|
||
gdb_assert (cu_header->initial_length_size == 4
|
||
|| cu_header->initial_length_size == 8
|
||
|| cu_header->initial_length_size == 12);
|
||
|
||
if (cu_header->initial_length_size != *bytes_read)
|
||
complaint (&symfile_complaints,
|
||
_("intermixed 32-bit and 64-bit DWARF sections"));
|
||
|
||
*offset_size = (*bytes_read == 4) ? 4 : 8;
|
||
return length;
|
||
}
|
||
|
||
/* Read an offset from the data stream. The size of the offset is
|
||
given by cu_header->offset_size. */
|
||
|
||
static LONGEST
|
||
read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
|
||
unsigned int *bytes_read)
|
||
{
|
||
LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
|
||
|
||
*bytes_read = cu_header->offset_size;
|
||
return offset;
|
||
}
|
||
|
||
/* Read an offset from the data stream. */
|
||
|
||
static LONGEST
|
||
read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
|
||
{
|
||
LONGEST retval = 0;
|
||
|
||
switch (offset_size)
|
||
{
|
||
case 4:
|
||
retval = bfd_get_32 (abfd, buf);
|
||
break;
|
||
case 8:
|
||
retval = bfd_get_64 (abfd, buf);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_offset_1: bad switch [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
static gdb_byte *
|
||
read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
|
||
{
|
||
/* If the size of a host char is 8 bits, we can return a pointer
|
||
to the buffer, otherwise we have to copy the data to a buffer
|
||
allocated on the temporary obstack. */
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
return buf;
|
||
}
|
||
|
||
static char *
|
||
read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
|
||
{
|
||
/* If the size of a host char is 8 bits, we can return a pointer
|
||
to the string, otherwise we have to copy the string to a buffer
|
||
allocated on the temporary obstack. */
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
if (*buf == '\0')
|
||
{
|
||
*bytes_read_ptr = 1;
|
||
return NULL;
|
||
}
|
||
*bytes_read_ptr = strlen ((char *) buf) + 1;
|
||
return (char *) buf;
|
||
}
|
||
|
||
static char *
|
||
read_indirect_string (bfd *abfd, gdb_byte *buf,
|
||
const struct comp_unit_head *cu_header,
|
||
unsigned int *bytes_read_ptr)
|
||
{
|
||
LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
|
||
if (dwarf2_per_objfile->str.buffer == NULL)
|
||
{
|
||
error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
return NULL;
|
||
}
|
||
if (str_offset >= dwarf2_per_objfile->str.size)
|
||
{
|
||
error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
return NULL;
|
||
}
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
|
||
return NULL;
|
||
return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
|
||
}
|
||
|
||
static unsigned long
|
||
read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
|
||
{
|
||
unsigned long result;
|
||
unsigned int num_read;
|
||
int i, shift;
|
||
unsigned char byte;
|
||
|
||
result = 0;
|
||
shift = 0;
|
||
num_read = 0;
|
||
i = 0;
|
||
while (1)
|
||
{
|
||
byte = bfd_get_8 (abfd, buf);
|
||
buf++;
|
||
num_read++;
|
||
result |= ((unsigned long)(byte & 127) << shift);
|
||
if ((byte & 128) == 0)
|
||
{
|
||
break;
|
||
}
|
||
shift += 7;
|
||
}
|
||
*bytes_read_ptr = num_read;
|
||
return result;
|
||
}
|
||
|
||
static long
|
||
read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
|
||
{
|
||
long result;
|
||
int i, shift, num_read;
|
||
unsigned char byte;
|
||
|
||
result = 0;
|
||
shift = 0;
|
||
num_read = 0;
|
||
i = 0;
|
||
while (1)
|
||
{
|
||
byte = bfd_get_8 (abfd, buf);
|
||
buf++;
|
||
num_read++;
|
||
result |= ((long)(byte & 127) << shift);
|
||
shift += 7;
|
||
if ((byte & 128) == 0)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if ((shift < 8 * sizeof (result)) && (byte & 0x40))
|
||
result |= -(((long)1) << shift);
|
||
*bytes_read_ptr = num_read;
|
||
return result;
|
||
}
|
||
|
||
/* Return a pointer to just past the end of an LEB128 number in BUF. */
|
||
|
||
static gdb_byte *
|
||
skip_leb128 (bfd *abfd, gdb_byte *buf)
|
||
{
|
||
int byte;
|
||
|
||
while (1)
|
||
{
|
||
byte = bfd_get_8 (abfd, buf);
|
||
buf++;
|
||
if ((byte & 128) == 0)
|
||
return buf;
|
||
}
|
||
}
|
||
|
||
static void
|
||
set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
|
||
{
|
||
switch (lang)
|
||
{
|
||
case DW_LANG_C89:
|
||
case DW_LANG_C99:
|
||
case DW_LANG_C:
|
||
cu->language = language_c;
|
||
break;
|
||
case DW_LANG_C_plus_plus:
|
||
cu->language = language_cplus;
|
||
break;
|
||
case DW_LANG_D:
|
||
cu->language = language_d;
|
||
break;
|
||
case DW_LANG_Fortran77:
|
||
case DW_LANG_Fortran90:
|
||
case DW_LANG_Fortran95:
|
||
cu->language = language_fortran;
|
||
break;
|
||
case DW_LANG_Mips_Assembler:
|
||
cu->language = language_asm;
|
||
break;
|
||
case DW_LANG_Java:
|
||
cu->language = language_java;
|
||
break;
|
||
case DW_LANG_Ada83:
|
||
case DW_LANG_Ada95:
|
||
cu->language = language_ada;
|
||
break;
|
||
case DW_LANG_Modula2:
|
||
cu->language = language_m2;
|
||
break;
|
||
case DW_LANG_Pascal83:
|
||
cu->language = language_pascal;
|
||
break;
|
||
case DW_LANG_ObjC:
|
||
cu->language = language_objc;
|
||
break;
|
||
case DW_LANG_Cobol74:
|
||
case DW_LANG_Cobol85:
|
||
default:
|
||
cu->language = language_minimal;
|
||
break;
|
||
}
|
||
cu->language_defn = language_def (cu->language);
|
||
}
|
||
|
||
/* Return the named attribute or NULL if not there. */
|
||
|
||
static struct attribute *
|
||
dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
|
||
{
|
||
unsigned int i;
|
||
struct attribute *spec = NULL;
|
||
|
||
for (i = 0; i < die->num_attrs; ++i)
|
||
{
|
||
if (die->attrs[i].name == name)
|
||
return &die->attrs[i];
|
||
if (die->attrs[i].name == DW_AT_specification
|
||
|| die->attrs[i].name == DW_AT_abstract_origin)
|
||
spec = &die->attrs[i];
|
||
}
|
||
|
||
if (spec)
|
||
{
|
||
die = follow_die_ref (die, spec, &cu);
|
||
return dwarf2_attr (die, name, cu);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the named attribute or NULL if not there,
|
||
but do not follow DW_AT_specification, etc.
|
||
This is for use in contexts where we're reading .debug_types dies.
|
||
Following DW_AT_specification, DW_AT_abstract_origin will take us
|
||
back up the chain, and we want to go down. */
|
||
|
||
static struct attribute *
|
||
dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < die->num_attrs; ++i)
|
||
if (die->attrs[i].name == name)
|
||
return &die->attrs[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return non-zero iff the attribute NAME is defined for the given DIE,
|
||
and holds a non-zero value. This function should only be used for
|
||
DW_FORM_flag or DW_FORM_flag_present attributes. */
|
||
|
||
static int
|
||
dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr = dwarf2_attr (die, name, cu);
|
||
|
||
return (attr && DW_UNSND (attr));
|
||
}
|
||
|
||
static int
|
||
die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
/* A DIE is a declaration if it has a DW_AT_declaration attribute
|
||
which value is non-zero. However, we have to be careful with
|
||
DIEs having a DW_AT_specification attribute, because dwarf2_attr()
|
||
(via dwarf2_flag_true_p) follows this attribute. So we may
|
||
end up accidently finding a declaration attribute that belongs
|
||
to a different DIE referenced by the specification attribute,
|
||
even though the given DIE does not have a declaration attribute. */
|
||
return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
|
||
&& dwarf2_attr (die, DW_AT_specification, cu) == NULL);
|
||
}
|
||
|
||
/* Return the die giving the specification for DIE, if there is
|
||
one. *SPEC_CU is the CU containing DIE on input, and the CU
|
||
containing the return value on output. If there is no
|
||
specification, but there is an abstract origin, that is
|
||
returned. */
|
||
|
||
static struct die_info *
|
||
die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
|
||
{
|
||
struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
|
||
*spec_cu);
|
||
|
||
if (spec_attr == NULL)
|
||
spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
|
||
|
||
if (spec_attr == NULL)
|
||
return NULL;
|
||
else
|
||
return follow_die_ref (die, spec_attr, spec_cu);
|
||
}
|
||
|
||
/* Free the line_header structure *LH, and any arrays and strings it
|
||
refers to. */
|
||
static void
|
||
free_line_header (struct line_header *lh)
|
||
{
|
||
if (lh->standard_opcode_lengths)
|
||
xfree (lh->standard_opcode_lengths);
|
||
|
||
/* Remember that all the lh->file_names[i].name pointers are
|
||
pointers into debug_line_buffer, and don't need to be freed. */
|
||
if (lh->file_names)
|
||
xfree (lh->file_names);
|
||
|
||
/* Similarly for the include directory names. */
|
||
if (lh->include_dirs)
|
||
xfree (lh->include_dirs);
|
||
|
||
xfree (lh);
|
||
}
|
||
|
||
|
||
/* Add an entry to LH's include directory table. */
|
||
static void
|
||
add_include_dir (struct line_header *lh, char *include_dir)
|
||
{
|
||
/* Grow the array if necessary. */
|
||
if (lh->include_dirs_size == 0)
|
||
{
|
||
lh->include_dirs_size = 1; /* for testing */
|
||
lh->include_dirs = xmalloc (lh->include_dirs_size
|
||
* sizeof (*lh->include_dirs));
|
||
}
|
||
else if (lh->num_include_dirs >= lh->include_dirs_size)
|
||
{
|
||
lh->include_dirs_size *= 2;
|
||
lh->include_dirs = xrealloc (lh->include_dirs,
|
||
(lh->include_dirs_size
|
||
* sizeof (*lh->include_dirs)));
|
||
}
|
||
|
||
lh->include_dirs[lh->num_include_dirs++] = include_dir;
|
||
}
|
||
|
||
|
||
/* Add an entry to LH's file name table. */
|
||
static void
|
||
add_file_name (struct line_header *lh,
|
||
char *name,
|
||
unsigned int dir_index,
|
||
unsigned int mod_time,
|
||
unsigned int length)
|
||
{
|
||
struct file_entry *fe;
|
||
|
||
/* Grow the array if necessary. */
|
||
if (lh->file_names_size == 0)
|
||
{
|
||
lh->file_names_size = 1; /* for testing */
|
||
lh->file_names = xmalloc (lh->file_names_size
|
||
* sizeof (*lh->file_names));
|
||
}
|
||
else if (lh->num_file_names >= lh->file_names_size)
|
||
{
|
||
lh->file_names_size *= 2;
|
||
lh->file_names = xrealloc (lh->file_names,
|
||
(lh->file_names_size
|
||
* sizeof (*lh->file_names)));
|
||
}
|
||
|
||
fe = &lh->file_names[lh->num_file_names++];
|
||
fe->name = name;
|
||
fe->dir_index = dir_index;
|
||
fe->mod_time = mod_time;
|
||
fe->length = length;
|
||
fe->included_p = 0;
|
||
fe->symtab = NULL;
|
||
}
|
||
|
||
|
||
/* Read the statement program header starting at OFFSET in
|
||
.debug_line, according to the endianness of ABFD. Return a pointer
|
||
to a struct line_header, allocated using xmalloc.
|
||
|
||
NOTE: the strings in the include directory and file name tables of
|
||
the returned object point into debug_line_buffer, and must not be
|
||
freed. */
|
||
static struct line_header *
|
||
dwarf_decode_line_header (unsigned int offset, bfd *abfd,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct cleanup *back_to;
|
||
struct line_header *lh;
|
||
gdb_byte *line_ptr;
|
||
unsigned int bytes_read, offset_size;
|
||
int i;
|
||
char *cur_dir, *cur_file;
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
|
||
if (dwarf2_per_objfile->line.buffer == NULL)
|
||
{
|
||
complaint (&symfile_complaints, _("missing .debug_line section"));
|
||
return 0;
|
||
}
|
||
|
||
/* Make sure that at least there's room for the total_length field.
|
||
That could be 12 bytes long, but we're just going to fudge that. */
|
||
if (offset + 4 >= dwarf2_per_objfile->line.size)
|
||
{
|
||
dwarf2_statement_list_fits_in_line_number_section_complaint ();
|
||
return 0;
|
||
}
|
||
|
||
lh = xmalloc (sizeof (*lh));
|
||
memset (lh, 0, sizeof (*lh));
|
||
back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
|
||
(void *) lh);
|
||
|
||
line_ptr = dwarf2_per_objfile->line.buffer + offset;
|
||
|
||
/* Read in the header. */
|
||
lh->total_length =
|
||
read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
|
||
&bytes_read, &offset_size);
|
||
line_ptr += bytes_read;
|
||
if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
|
||
+ dwarf2_per_objfile->line.size))
|
||
{
|
||
dwarf2_statement_list_fits_in_line_number_section_complaint ();
|
||
return 0;
|
||
}
|
||
lh->statement_program_end = line_ptr + lh->total_length;
|
||
lh->version = read_2_bytes (abfd, line_ptr);
|
||
line_ptr += 2;
|
||
lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
|
||
line_ptr += offset_size;
|
||
lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
if (lh->version >= 4)
|
||
{
|
||
lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
}
|
||
else
|
||
lh->maximum_ops_per_instruction = 1;
|
||
|
||
if (lh->maximum_ops_per_instruction == 0)
|
||
{
|
||
lh->maximum_ops_per_instruction = 1;
|
||
complaint (&symfile_complaints,
|
||
_("invalid maximum_ops_per_instruction in `.debug_line' section"));
|
||
}
|
||
|
||
lh->default_is_stmt = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->line_base = read_1_signed_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->line_range = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->opcode_base = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->standard_opcode_lengths
|
||
= xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
|
||
|
||
lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
|
||
for (i = 1; i < lh->opcode_base; ++i)
|
||
{
|
||
lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
}
|
||
|
||
/* Read directory table. */
|
||
while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
|
||
{
|
||
line_ptr += bytes_read;
|
||
add_include_dir (lh, cur_dir);
|
||
}
|
||
line_ptr += bytes_read;
|
||
|
||
/* Read file name table. */
|
||
while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
|
||
{
|
||
unsigned int dir_index, mod_time, length;
|
||
|
||
line_ptr += bytes_read;
|
||
dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
|
||
add_file_name (lh, cur_file, dir_index, mod_time, length);
|
||
}
|
||
line_ptr += bytes_read;
|
||
lh->statement_program_start = line_ptr;
|
||
|
||
if (line_ptr > (dwarf2_per_objfile->line.buffer
|
||
+ dwarf2_per_objfile->line.size))
|
||
complaint (&symfile_complaints,
|
||
_("line number info header doesn't fit in `.debug_line' section"));
|
||
|
||
discard_cleanups (back_to);
|
||
return lh;
|
||
}
|
||
|
||
/* This function exists to work around a bug in certain compilers
|
||
(particularly GCC 2.95), in which the first line number marker of a
|
||
function does not show up until after the prologue, right before
|
||
the second line number marker. This function shifts ADDRESS down
|
||
to the beginning of the function if necessary, and is called on
|
||
addresses passed to record_line. */
|
||
|
||
static CORE_ADDR
|
||
check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
|
||
{
|
||
struct function_range *fn;
|
||
|
||
/* Find the function_range containing address. */
|
||
if (!cu->first_fn)
|
||
return address;
|
||
|
||
if (!cu->cached_fn)
|
||
cu->cached_fn = cu->first_fn;
|
||
|
||
fn = cu->cached_fn;
|
||
while (fn)
|
||
if (fn->lowpc <= address && fn->highpc > address)
|
||
goto found;
|
||
else
|
||
fn = fn->next;
|
||
|
||
fn = cu->first_fn;
|
||
while (fn && fn != cu->cached_fn)
|
||
if (fn->lowpc <= address && fn->highpc > address)
|
||
goto found;
|
||
else
|
||
fn = fn->next;
|
||
|
||
return address;
|
||
|
||
found:
|
||
if (fn->seen_line)
|
||
return address;
|
||
if (address != fn->lowpc)
|
||
complaint (&symfile_complaints,
|
||
_("misplaced first line number at 0x%lx for '%s'"),
|
||
(unsigned long) address, fn->name);
|
||
fn->seen_line = 1;
|
||
return fn->lowpc;
|
||
}
|
||
|
||
/* Subroutine of dwarf_decode_lines to simplify it.
|
||
Return the file name of the psymtab for included file FILE_INDEX
|
||
in line header LH of PST.
|
||
COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
|
||
If space for the result is malloc'd, it will be freed by a cleanup.
|
||
Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
|
||
|
||
static char *
|
||
psymtab_include_file_name (const struct line_header *lh, int file_index,
|
||
const struct partial_symtab *pst,
|
||
const char *comp_dir)
|
||
{
|
||
const struct file_entry fe = lh->file_names [file_index];
|
||
char *include_name = fe.name;
|
||
char *include_name_to_compare = include_name;
|
||
char *dir_name = NULL;
|
||
const char *pst_filename;
|
||
char *copied_name = NULL;
|
||
int file_is_pst;
|
||
|
||
if (fe.dir_index)
|
||
dir_name = lh->include_dirs[fe.dir_index - 1];
|
||
|
||
if (!IS_ABSOLUTE_PATH (include_name)
|
||
&& (dir_name != NULL || comp_dir != NULL))
|
||
{
|
||
/* Avoid creating a duplicate psymtab for PST.
|
||
We do this by comparing INCLUDE_NAME and PST_FILENAME.
|
||
Before we do the comparison, however, we need to account
|
||
for DIR_NAME and COMP_DIR.
|
||
First prepend dir_name (if non-NULL). If we still don't
|
||
have an absolute path prepend comp_dir (if non-NULL).
|
||
However, the directory we record in the include-file's
|
||
psymtab does not contain COMP_DIR (to match the
|
||
corresponding symtab(s)).
|
||
|
||
Example:
|
||
|
||
bash$ cd /tmp
|
||
bash$ gcc -g ./hello.c
|
||
include_name = "hello.c"
|
||
dir_name = "."
|
||
DW_AT_comp_dir = comp_dir = "/tmp"
|
||
DW_AT_name = "./hello.c" */
|
||
|
||
if (dir_name != NULL)
|
||
{
|
||
include_name = concat (dir_name, SLASH_STRING,
|
||
include_name, (char *)NULL);
|
||
include_name_to_compare = include_name;
|
||
make_cleanup (xfree, include_name);
|
||
}
|
||
if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
|
||
{
|
||
include_name_to_compare = concat (comp_dir, SLASH_STRING,
|
||
include_name, (char *)NULL);
|
||
}
|
||
}
|
||
|
||
pst_filename = pst->filename;
|
||
if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
|
||
{
|
||
copied_name = concat (pst->dirname, SLASH_STRING,
|
||
pst_filename, (char *)NULL);
|
||
pst_filename = copied_name;
|
||
}
|
||
|
||
file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
|
||
|
||
if (include_name_to_compare != include_name)
|
||
xfree (include_name_to_compare);
|
||
if (copied_name != NULL)
|
||
xfree (copied_name);
|
||
|
||
if (file_is_pst)
|
||
return NULL;
|
||
return include_name;
|
||
}
|
||
|
||
/* Decode the Line Number Program (LNP) for the given line_header
|
||
structure and CU. The actual information extracted and the type
|
||
of structures created from the LNP depends on the value of PST.
|
||
|
||
1. If PST is NULL, then this procedure uses the data from the program
|
||
to create all necessary symbol tables, and their linetables.
|
||
|
||
2. If PST is not NULL, this procedure reads the program to determine
|
||
the list of files included by the unit represented by PST, and
|
||
builds all the associated partial symbol tables.
|
||
|
||
COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
|
||
It is used for relative paths in the line table.
|
||
NOTE: When processing partial symtabs (pst != NULL),
|
||
comp_dir == pst->dirname.
|
||
|
||
NOTE: It is important that psymtabs have the same file name (via strcmp)
|
||
as the corresponding symtab. Since COMP_DIR is not used in the name of the
|
||
symtab we don't use it in the name of the psymtabs we create.
|
||
E.g. expand_line_sal requires this when finding psymtabs to expand.
|
||
A good testcase for this is mb-inline.exp. */
|
||
|
||
static void
|
||
dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
|
||
struct dwarf2_cu *cu, struct partial_symtab *pst)
|
||
{
|
||
gdb_byte *line_ptr, *extended_end;
|
||
gdb_byte *line_end;
|
||
unsigned int bytes_read, extended_len;
|
||
unsigned char op_code, extended_op, adj_opcode;
|
||
CORE_ADDR baseaddr;
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
const int decode_for_pst_p = (pst != NULL);
|
||
struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
line_ptr = lh->statement_program_start;
|
||
line_end = lh->statement_program_end;
|
||
|
||
/* Read the statement sequences until there's nothing left. */
|
||
while (line_ptr < line_end)
|
||
{
|
||
/* state machine registers */
|
||
CORE_ADDR address = 0;
|
||
unsigned int file = 1;
|
||
unsigned int line = 1;
|
||
unsigned int column = 0;
|
||
int is_stmt = lh->default_is_stmt;
|
||
int basic_block = 0;
|
||
int end_sequence = 0;
|
||
CORE_ADDR addr;
|
||
unsigned char op_index = 0;
|
||
|
||
if (!decode_for_pst_p && lh->num_file_names >= file)
|
||
{
|
||
/* Start a subfile for the current file of the state machine. */
|
||
/* lh->include_dirs and lh->file_names are 0-based, but the
|
||
directory and file name numbers in the statement program
|
||
are 1-based. */
|
||
struct file_entry *fe = &lh->file_names[file - 1];
|
||
char *dir = NULL;
|
||
|
||
if (fe->dir_index)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
|
||
dwarf2_start_subfile (fe->name, dir, comp_dir);
|
||
}
|
||
|
||
/* Decode the table. */
|
||
while (!end_sequence)
|
||
{
|
||
op_code = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
if (line_ptr > line_end)
|
||
{
|
||
dwarf2_debug_line_missing_end_sequence_complaint ();
|
||
break;
|
||
}
|
||
|
||
if (op_code >= lh->opcode_base)
|
||
{
|
||
/* Special operand. */
|
||
adj_opcode = op_code - lh->opcode_base;
|
||
address += (((op_index + (adj_opcode / lh->line_range))
|
||
/ lh->maximum_ops_per_instruction)
|
||
* lh->minimum_instruction_length);
|
||
op_index = ((op_index + (adj_opcode / lh->line_range))
|
||
% lh->maximum_ops_per_instruction);
|
||
line += lh->line_base + (adj_opcode % lh->line_range);
|
||
if (lh->num_file_names < file || file == 0)
|
||
dwarf2_debug_line_missing_file_complaint ();
|
||
/* For now we ignore lines not starting on an
|
||
instruction boundary. */
|
||
else if (op_index == 0)
|
||
{
|
||
lh->file_names[file - 1].included_p = 1;
|
||
if (!decode_for_pst_p && is_stmt)
|
||
{
|
||
if (last_subfile != current_subfile)
|
||
{
|
||
addr = gdbarch_addr_bits_remove (gdbarch, address);
|
||
if (last_subfile)
|
||
record_line (last_subfile, 0, addr);
|
||
last_subfile = current_subfile;
|
||
}
|
||
/* Append row to matrix using current values. */
|
||
addr = check_cu_functions (address, cu);
|
||
addr = gdbarch_addr_bits_remove (gdbarch, addr);
|
||
record_line (current_subfile, line, addr);
|
||
}
|
||
}
|
||
basic_block = 0;
|
||
}
|
||
else switch (op_code)
|
||
{
|
||
case DW_LNS_extended_op:
|
||
extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
extended_end = line_ptr + extended_len;
|
||
extended_op = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
switch (extended_op)
|
||
{
|
||
case DW_LNE_end_sequence:
|
||
end_sequence = 1;
|
||
break;
|
||
case DW_LNE_set_address:
|
||
address = read_address (abfd, line_ptr, cu, &bytes_read);
|
||
op_index = 0;
|
||
line_ptr += bytes_read;
|
||
address += baseaddr;
|
||
break;
|
||
case DW_LNE_define_file:
|
||
{
|
||
char *cur_file;
|
||
unsigned int dir_index, mod_time, length;
|
||
|
||
cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
dir_index =
|
||
read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
mod_time =
|
||
read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
length =
|
||
read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
add_file_name (lh, cur_file, dir_index, mod_time, length);
|
||
}
|
||
break;
|
||
case DW_LNE_set_discriminator:
|
||
/* The discriminator is not interesting to the debugger;
|
||
just ignore it. */
|
||
line_ptr = extended_end;
|
||
break;
|
||
default:
|
||
complaint (&symfile_complaints,
|
||
_("mangled .debug_line section"));
|
||
return;
|
||
}
|
||
/* Make sure that we parsed the extended op correctly. If e.g.
|
||
we expected a different address size than the producer used,
|
||
we may have read the wrong number of bytes. */
|
||
if (line_ptr != extended_end)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("mangled .debug_line section"));
|
||
return;
|
||
}
|
||
break;
|
||
case DW_LNS_copy:
|
||
if (lh->num_file_names < file || file == 0)
|
||
dwarf2_debug_line_missing_file_complaint ();
|
||
else
|
||
{
|
||
lh->file_names[file - 1].included_p = 1;
|
||
if (!decode_for_pst_p && is_stmt)
|
||
{
|
||
if (last_subfile != current_subfile)
|
||
{
|
||
addr = gdbarch_addr_bits_remove (gdbarch, address);
|
||
if (last_subfile)
|
||
record_line (last_subfile, 0, addr);
|
||
last_subfile = current_subfile;
|
||
}
|
||
addr = check_cu_functions (address, cu);
|
||
addr = gdbarch_addr_bits_remove (gdbarch, addr);
|
||
record_line (current_subfile, line, addr);
|
||
}
|
||
}
|
||
basic_block = 0;
|
||
break;
|
||
case DW_LNS_advance_pc:
|
||
{
|
||
CORE_ADDR adjust
|
||
= read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
|
||
address += (((op_index + adjust)
|
||
/ lh->maximum_ops_per_instruction)
|
||
* lh->minimum_instruction_length);
|
||
op_index = ((op_index + adjust)
|
||
% lh->maximum_ops_per_instruction);
|
||
line_ptr += bytes_read;
|
||
}
|
||
break;
|
||
case DW_LNS_advance_line:
|
||
line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
break;
|
||
case DW_LNS_set_file:
|
||
{
|
||
/* The arrays lh->include_dirs and lh->file_names are
|
||
0-based, but the directory and file name numbers in
|
||
the statement program are 1-based. */
|
||
struct file_entry *fe;
|
||
char *dir = NULL;
|
||
|
||
file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
if (lh->num_file_names < file || file == 0)
|
||
dwarf2_debug_line_missing_file_complaint ();
|
||
else
|
||
{
|
||
fe = &lh->file_names[file - 1];
|
||
if (fe->dir_index)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
if (!decode_for_pst_p)
|
||
{
|
||
last_subfile = current_subfile;
|
||
dwarf2_start_subfile (fe->name, dir, comp_dir);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
case DW_LNS_set_column:
|
||
column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
break;
|
||
case DW_LNS_negate_stmt:
|
||
is_stmt = (!is_stmt);
|
||
break;
|
||
case DW_LNS_set_basic_block:
|
||
basic_block = 1;
|
||
break;
|
||
/* Add to the address register of the state machine the
|
||
address increment value corresponding to special opcode
|
||
255. I.e., this value is scaled by the minimum
|
||
instruction length since special opcode 255 would have
|
||
scaled the the increment. */
|
||
case DW_LNS_const_add_pc:
|
||
{
|
||
CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
|
||
|
||
address += (((op_index + adjust)
|
||
/ lh->maximum_ops_per_instruction)
|
||
* lh->minimum_instruction_length);
|
||
op_index = ((op_index + adjust)
|
||
% lh->maximum_ops_per_instruction);
|
||
}
|
||
break;
|
||
case DW_LNS_fixed_advance_pc:
|
||
address += read_2_bytes (abfd, line_ptr);
|
||
op_index = 0;
|
||
line_ptr += 2;
|
||
break;
|
||
default:
|
||
{
|
||
/* Unknown standard opcode, ignore it. */
|
||
int i;
|
||
|
||
for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
|
||
{
|
||
(void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (lh->num_file_names < file || file == 0)
|
||
dwarf2_debug_line_missing_file_complaint ();
|
||
else
|
||
{
|
||
lh->file_names[file - 1].included_p = 1;
|
||
if (!decode_for_pst_p)
|
||
{
|
||
addr = gdbarch_addr_bits_remove (gdbarch, address);
|
||
record_line (current_subfile, 0, addr);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (decode_for_pst_p)
|
||
{
|
||
int file_index;
|
||
|
||
/* Now that we're done scanning the Line Header Program, we can
|
||
create the psymtab of each included file. */
|
||
for (file_index = 0; file_index < lh->num_file_names; file_index++)
|
||
if (lh->file_names[file_index].included_p == 1)
|
||
{
|
||
char *include_name =
|
||
psymtab_include_file_name (lh, file_index, pst, comp_dir);
|
||
if (include_name != NULL)
|
||
dwarf2_create_include_psymtab (include_name, pst, objfile);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Make sure a symtab is created for every file, even files
|
||
which contain only variables (i.e. no code with associated
|
||
line numbers). */
|
||
|
||
int i;
|
||
struct file_entry *fe;
|
||
|
||
for (i = 0; i < lh->num_file_names; i++)
|
||
{
|
||
char *dir = NULL;
|
||
|
||
fe = &lh->file_names[i];
|
||
if (fe->dir_index)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
dwarf2_start_subfile (fe->name, dir, comp_dir);
|
||
|
||
/* Skip the main file; we don't need it, and it must be
|
||
allocated last, so that it will show up before the
|
||
non-primary symtabs in the objfile's symtab list. */
|
||
if (current_subfile == first_subfile)
|
||
continue;
|
||
|
||
if (current_subfile->symtab == NULL)
|
||
current_subfile->symtab = allocate_symtab (current_subfile->name,
|
||
cu->objfile);
|
||
fe->symtab = current_subfile->symtab;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Start a subfile for DWARF. FILENAME is the name of the file and
|
||
DIRNAME the name of the source directory which contains FILENAME
|
||
or NULL if not known. COMP_DIR is the compilation directory for the
|
||
linetable's compilation unit or NULL if not known.
|
||
This routine tries to keep line numbers from identical absolute and
|
||
relative file names in a common subfile.
|
||
|
||
Using the `list' example from the GDB testsuite, which resides in
|
||
/srcdir and compiling it with Irix6.2 cc in /compdir using a filename
|
||
of /srcdir/list0.c yields the following debugging information for list0.c:
|
||
|
||
DW_AT_name: /srcdir/list0.c
|
||
DW_AT_comp_dir: /compdir
|
||
files.files[0].name: list0.h
|
||
files.files[0].dir: /srcdir
|
||
files.files[1].name: list0.c
|
||
files.files[1].dir: /srcdir
|
||
|
||
The line number information for list0.c has to end up in a single
|
||
subfile, so that `break /srcdir/list0.c:1' works as expected.
|
||
start_subfile will ensure that this happens provided that we pass the
|
||
concatenation of files.files[1].dir and files.files[1].name as the
|
||
subfile's name. */
|
||
|
||
static void
|
||
dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
|
||
{
|
||
char *fullname;
|
||
|
||
/* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
|
||
`start_symtab' will always pass the contents of DW_AT_comp_dir as
|
||
second argument to start_subfile. To be consistent, we do the
|
||
same here. In order not to lose the line information directory,
|
||
we concatenate it to the filename when it makes sense.
|
||
Note that the Dwarf3 standard says (speaking of filenames in line
|
||
information): ``The directory index is ignored for file names
|
||
that represent full path names''. Thus ignoring dirname in the
|
||
`else' branch below isn't an issue. */
|
||
|
||
if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
|
||
fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
|
||
else
|
||
fullname = filename;
|
||
|
||
start_subfile (fullname, comp_dir);
|
||
|
||
if (fullname != filename)
|
||
xfree (fullname);
|
||
}
|
||
|
||
static void
|
||
var_decode_location (struct attribute *attr, struct symbol *sym,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
|
||
/* NOTE drow/2003-01-30: There used to be a comment and some special
|
||
code here to turn a symbol with DW_AT_external and a
|
||
SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
|
||
necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
|
||
with some versions of binutils) where shared libraries could have
|
||
relocations against symbols in their debug information - the
|
||
minimal symbol would have the right address, but the debug info
|
||
would not. It's no longer necessary, because we will explicitly
|
||
apply relocations when we read in the debug information now. */
|
||
|
||
/* A DW_AT_location attribute with no contents indicates that a
|
||
variable has been optimized away. */
|
||
if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
|
||
{
|
||
SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
|
||
return;
|
||
}
|
||
|
||
/* Handle one degenerate form of location expression specially, to
|
||
preserve GDB's previous behavior when section offsets are
|
||
specified. If this is just a DW_OP_addr then mark this symbol
|
||
as LOC_STATIC. */
|
||
|
||
if (attr_form_is_block (attr)
|
||
&& DW_BLOCK (attr)->size == 1 + cu_header->addr_size
|
||
&& DW_BLOCK (attr)->data[0] == DW_OP_addr)
|
||
{
|
||
unsigned int dummy;
|
||
|
||
SYMBOL_VALUE_ADDRESS (sym) =
|
||
read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
fixup_symbol_section (sym, objfile);
|
||
SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
|
||
SYMBOL_SECTION (sym));
|
||
return;
|
||
}
|
||
|
||
/* NOTE drow/2002-01-30: It might be worthwhile to have a static
|
||
expression evaluator, and use LOC_COMPUTED only when necessary
|
||
(i.e. when the value of a register or memory location is
|
||
referenced, or a thread-local block, etc.). Then again, it might
|
||
not be worthwhile. I'm assuming that it isn't unless performance
|
||
or memory numbers show me otherwise. */
|
||
|
||
dwarf2_symbol_mark_computed (attr, sym, cu);
|
||
SYMBOL_CLASS (sym) = LOC_COMPUTED;
|
||
}
|
||
|
||
/* Given a pointer to a DWARF information entry, figure out if we need
|
||
to make a symbol table entry for it, and if so, create a new entry
|
||
and return a pointer to it.
|
||
If TYPE is NULL, determine symbol type from the die, otherwise
|
||
used the passed type.
|
||
If SPACE is not NULL, use it to hold the new symbol. If it is
|
||
NULL, allocate a new symbol on the objfile's obstack. */
|
||
|
||
static struct symbol *
|
||
new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
|
||
struct symbol *space)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct symbol *sym = NULL;
|
||
char *name;
|
||
struct attribute *attr = NULL;
|
||
struct attribute *attr2 = NULL;
|
||
CORE_ADDR baseaddr;
|
||
struct pending **list_to_add = NULL;
|
||
|
||
int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name)
|
||
{
|
||
const char *linkagename;
|
||
int suppress_add = 0;
|
||
|
||
if (space)
|
||
sym = space;
|
||
else
|
||
sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
|
||
OBJSTAT (objfile, n_syms++);
|
||
|
||
/* Cache this symbol's name and the name's demangled form (if any). */
|
||
SYMBOL_SET_LANGUAGE (sym, cu->language);
|
||
linkagename = dwarf2_physname (name, die, cu);
|
||
SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
|
||
|
||
/* Fortran does not have mangling standard and the mangling does differ
|
||
between gfortran, iFort etc. */
|
||
if (cu->language == language_fortran
|
||
&& symbol_get_demangled_name (&(sym->ginfo)) == NULL)
|
||
symbol_set_demangled_name (&(sym->ginfo),
|
||
(char *) dwarf2_full_name (name, die, cu),
|
||
NULL);
|
||
|
||
/* Default assumptions.
|
||
Use the passed type or decode it from the die. */
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
|
||
if (type != NULL)
|
||
SYMBOL_TYPE (sym) = type;
|
||
else
|
||
SYMBOL_TYPE (sym) = die_type (die, cu);
|
||
attr = dwarf2_attr (die,
|
||
inlined_func ? DW_AT_call_line : DW_AT_decl_line,
|
||
cu);
|
||
if (attr)
|
||
{
|
||
SYMBOL_LINE (sym) = DW_UNSND (attr);
|
||
}
|
||
|
||
attr = dwarf2_attr (die,
|
||
inlined_func ? DW_AT_call_file : DW_AT_decl_file,
|
||
cu);
|
||
if (attr)
|
||
{
|
||
int file_index = DW_UNSND (attr);
|
||
|
||
if (cu->line_header == NULL
|
||
|| file_index > cu->line_header->num_file_names)
|
||
complaint (&symfile_complaints,
|
||
_("file index out of range"));
|
||
else if (file_index > 0)
|
||
{
|
||
struct file_entry *fe;
|
||
|
||
fe = &cu->line_header->file_names[file_index - 1];
|
||
SYMBOL_SYMTAB (sym) = fe->symtab;
|
||
}
|
||
}
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_label:
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
|
||
}
|
||
SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
|
||
SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
|
||
SYMBOL_CLASS (sym) = LOC_LABEL;
|
||
add_symbol_to_list (sym, cu->list_in_scope);
|
||
break;
|
||
case DW_TAG_subprogram:
|
||
/* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
|
||
finish_block. */
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
if ((attr2 && (DW_UNSND (attr2) != 0))
|
||
|| cu->language == language_ada)
|
||
{
|
||
/* Subprograms marked external are stored as a global symbol.
|
||
Ada subprograms, whether marked external or not, are always
|
||
stored as a global symbol, because we want to be able to
|
||
access them globally. For instance, we want to be able
|
||
to break on a nested subprogram without having to
|
||
specify the context. */
|
||
list_to_add = &global_symbols;
|
||
}
|
||
else
|
||
{
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
break;
|
||
case DW_TAG_inlined_subroutine:
|
||
/* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
|
||
finish_block. */
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
SYMBOL_INLINED (sym) = 1;
|
||
/* Do not add the symbol to any lists. It will be found via
|
||
BLOCK_FUNCTION from the blockvector. */
|
||
break;
|
||
case DW_TAG_template_value_param:
|
||
suppress_add = 1;
|
||
/* Fall through. */
|
||
case DW_TAG_constant:
|
||
case DW_TAG_variable:
|
||
case DW_TAG_member:
|
||
/* Compilation with minimal debug info may result in variables
|
||
with missing type entries. Change the misleading `void' type
|
||
to something sensible. */
|
||
if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
|
||
SYMBOL_TYPE (sym)
|
||
= objfile_type (objfile)->nodebug_data_symbol;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
/* In the case of DW_TAG_member, we should only be called for
|
||
static const members. */
|
||
if (die->tag == DW_TAG_member)
|
||
{
|
||
/* dwarf2_add_field uses die_is_declaration,
|
||
so we do the same. */
|
||
gdb_assert (die_is_declaration (die, cu));
|
||
gdb_assert (attr);
|
||
}
|
||
if (attr)
|
||
{
|
||
dwarf2_const_value (attr, sym, cu);
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (!suppress_add)
|
||
{
|
||
if (attr2 && (DW_UNSND (attr2) != 0))
|
||
list_to_add = &global_symbols;
|
||
else
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
break;
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (attr)
|
||
{
|
||
var_decode_location (attr, sym, cu);
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (SYMBOL_CLASS (sym) == LOC_STATIC
|
||
&& SYMBOL_VALUE_ADDRESS (sym) == 0
|
||
&& !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
/* When a static variable is eliminated by the linker,
|
||
the corresponding debug information is not stripped
|
||
out, but the variable address is set to null;
|
||
do not add such variables into symbol table. */
|
||
}
|
||
else if (attr2 && (DW_UNSND (attr2) != 0))
|
||
{
|
||
/* Workaround gfortran PR debug/40040 - it uses
|
||
DW_AT_location for variables in -fPIC libraries which may
|
||
get overriden by other libraries/executable and get
|
||
a different address. Resolve it by the minimal symbol
|
||
which may come from inferior's executable using copy
|
||
relocation. Make this workaround only for gfortran as for
|
||
other compilers GDB cannot guess the minimal symbol
|
||
Fortran mangling kind. */
|
||
if (cu->language == language_fortran && die->parent
|
||
&& die->parent->tag == DW_TAG_module
|
||
&& cu->producer
|
||
&& strncmp (cu->producer, "GNU Fortran ", 12) == 0)
|
||
SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
|
||
|
||
/* A variable with DW_AT_external is never static,
|
||
but it may be block-scoped. */
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
? &global_symbols : cu->list_in_scope);
|
||
}
|
||
else
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
else
|
||
{
|
||
/* We do not know the address of this symbol.
|
||
If it is an external symbol and we have type information
|
||
for it, enter the symbol as a LOC_UNRESOLVED symbol.
|
||
The address of the variable will then be determined from
|
||
the minimal symbol table whenever the variable is
|
||
referenced. */
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (attr2 && (DW_UNSND (attr2) != 0)
|
||
&& dwarf2_attr (die, DW_AT_type, cu) != NULL)
|
||
{
|
||
/* A variable with DW_AT_external is never static, but it
|
||
may be block-scoped. */
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
? &global_symbols : cu->list_in_scope);
|
||
|
||
SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
|
||
}
|
||
else if (!die_is_declaration (die, cu))
|
||
{
|
||
/* Use the default LOC_OPTIMIZED_OUT class. */
|
||
gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
|
||
if (!suppress_add)
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
}
|
||
break;
|
||
case DW_TAG_formal_parameter:
|
||
/* If we are inside a function, mark this as an argument. If
|
||
not, we might be looking at an argument to an inlined function
|
||
when we do not have enough information to show inlined frames;
|
||
pretend it's a local variable in that case so that the user can
|
||
still see it. */
|
||
if (context_stack_depth > 0
|
||
&& context_stack[context_stack_depth - 1].name != NULL)
|
||
SYMBOL_IS_ARGUMENT (sym) = 1;
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (attr)
|
||
{
|
||
var_decode_location (attr, sym, cu);
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr)
|
||
{
|
||
dwarf2_const_value (attr, sym, cu);
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
|
||
if (attr && DW_UNSND (attr))
|
||
{
|
||
struct type *ref_type;
|
||
|
||
ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
|
||
SYMBOL_TYPE (sym) = ref_type;
|
||
}
|
||
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_unspecified_parameters:
|
||
/* From varargs functions; gdb doesn't seem to have any
|
||
interest in this information, so just ignore it for now.
|
||
(FIXME?) */
|
||
break;
|
||
case DW_TAG_template_type_param:
|
||
suppress_add = 1;
|
||
/* Fall through. */
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_set_type:
|
||
case DW_TAG_enumeration_type:
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
|
||
|
||
{
|
||
/* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
|
||
really ever be static objects: otherwise, if you try
|
||
to, say, break of a class's method and you're in a file
|
||
which doesn't mention that class, it won't work unless
|
||
the check for all static symbols in lookup_symbol_aux
|
||
saves you. See the OtherFileClass tests in
|
||
gdb.c++/namespace.exp. */
|
||
|
||
if (!suppress_add)
|
||
{
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
&& (cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &global_symbols : cu->list_in_scope);
|
||
|
||
/* The semantics of C++ state that "struct foo {
|
||
... }" also defines a typedef for "foo". A Java
|
||
class declaration also defines a typedef for the
|
||
class. */
|
||
if (cu->language == language_cplus
|
||
|| cu->language == language_java
|
||
|| cu->language == language_ada)
|
||
{
|
||
/* The symbol's name is already allocated along
|
||
with this objfile, so we don't need to
|
||
duplicate it for the type. */
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
|
||
TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
case DW_TAG_typedef:
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_enumerator:
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr)
|
||
{
|
||
dwarf2_const_value (attr, sym, cu);
|
||
}
|
||
{
|
||
/* NOTE: carlton/2003-11-10: See comment above in the
|
||
DW_TAG_class_type, etc. block. */
|
||
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
&& (cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &global_symbols : cu->list_in_scope);
|
||
}
|
||
break;
|
||
case DW_TAG_namespace:
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
list_to_add = &global_symbols;
|
||
break;
|
||
default:
|
||
/* Not a tag we recognize. Hopefully we aren't processing
|
||
trash data, but since we must specifically ignore things
|
||
we don't recognize, there is nothing else we should do at
|
||
this point. */
|
||
complaint (&symfile_complaints, _("unsupported tag: '%s'"),
|
||
dwarf_tag_name (die->tag));
|
||
break;
|
||
}
|
||
|
||
if (suppress_add)
|
||
{
|
||
sym->hash_next = objfile->template_symbols;
|
||
objfile->template_symbols = sym;
|
||
list_to_add = NULL;
|
||
}
|
||
|
||
if (list_to_add != NULL)
|
||
add_symbol_to_list (sym, list_to_add);
|
||
|
||
/* For the benefit of old versions of GCC, check for anonymous
|
||
namespaces based on the demangled name. */
|
||
if (!processing_has_namespace_info
|
||
&& cu->language == language_cplus)
|
||
cp_scan_for_anonymous_namespaces (sym);
|
||
}
|
||
return (sym);
|
||
}
|
||
|
||
/* A wrapper for new_symbol_full that always allocates a new symbol. */
|
||
|
||
static struct symbol *
|
||
new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
|
||
{
|
||
return new_symbol_full (die, type, cu, NULL);
|
||
}
|
||
|
||
/* Given an attr with a DW_FORM_dataN value in host byte order,
|
||
zero-extend it as appropriate for the symbol's type. The DWARF
|
||
standard (v4) is not entirely clear about the meaning of using
|
||
DW_FORM_dataN for a constant with a signed type, where the type is
|
||
wider than the data. The conclusion of a discussion on the DWARF
|
||
list was that this is unspecified. We choose to always zero-extend
|
||
because that is the interpretation long in use by GCC. */
|
||
|
||
static gdb_byte *
|
||
dwarf2_const_value_data (struct attribute *attr, struct type *type,
|
||
const char *name, struct obstack *obstack,
|
||
struct dwarf2_cu *cu, long *value, int bits)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
|
||
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
||
LONGEST l = DW_UNSND (attr);
|
||
|
||
if (bits < sizeof (*value) * 8)
|
||
{
|
||
l &= ((LONGEST) 1 << bits) - 1;
|
||
*value = l;
|
||
}
|
||
else if (bits == sizeof (*value) * 8)
|
||
*value = l;
|
||
else
|
||
{
|
||
gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
|
||
store_unsigned_integer (bytes, bits / 8, byte_order, l);
|
||
return bytes;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Read a constant value from an attribute. Either set *VALUE, or if
|
||
the value does not fit in *VALUE, set *BYTES - either already
|
||
allocated on the objfile obstack, or newly allocated on OBSTACK,
|
||
or, set *BATON, if we translated the constant to a location
|
||
expression. */
|
||
|
||
static void
|
||
dwarf2_const_value_attr (struct attribute *attr, struct type *type,
|
||
const char *name, struct obstack *obstack,
|
||
struct dwarf2_cu *cu,
|
||
long *value, gdb_byte **bytes,
|
||
struct dwarf2_locexpr_baton **baton)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
struct dwarf_block *blk;
|
||
enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
|
||
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
|
||
|
||
*value = 0;
|
||
*bytes = NULL;
|
||
*baton = NULL;
|
||
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_addr:
|
||
{
|
||
gdb_byte *data;
|
||
|
||
if (TYPE_LENGTH (type) != cu_header->addr_size)
|
||
dwarf2_const_value_length_mismatch_complaint (name,
|
||
cu_header->addr_size,
|
||
TYPE_LENGTH (type));
|
||
/* Symbols of this form are reasonably rare, so we just
|
||
piggyback on the existing location code rather than writing
|
||
a new implementation of symbol_computed_ops. */
|
||
*baton = obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct dwarf2_locexpr_baton));
|
||
(*baton)->per_cu = cu->per_cu;
|
||
gdb_assert ((*baton)->per_cu);
|
||
|
||
(*baton)->size = 2 + cu_header->addr_size;
|
||
data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
|
||
(*baton)->data = data;
|
||
|
||
data[0] = DW_OP_addr;
|
||
store_unsigned_integer (&data[1], cu_header->addr_size,
|
||
byte_order, DW_ADDR (attr));
|
||
data[cu_header->addr_size + 1] = DW_OP_stack_value;
|
||
}
|
||
break;
|
||
case DW_FORM_string:
|
||
case DW_FORM_strp:
|
||
/* DW_STRING is already allocated on the objfile obstack, point
|
||
directly to it. */
|
||
*bytes = (gdb_byte *) DW_STRING (attr);
|
||
break;
|
||
case DW_FORM_block1:
|
||
case DW_FORM_block2:
|
||
case DW_FORM_block4:
|
||
case DW_FORM_block:
|
||
case DW_FORM_exprloc:
|
||
blk = DW_BLOCK (attr);
|
||
if (TYPE_LENGTH (type) != blk->size)
|
||
dwarf2_const_value_length_mismatch_complaint (name, blk->size,
|
||
TYPE_LENGTH (type));
|
||
*bytes = blk->data;
|
||
break;
|
||
|
||
/* The DW_AT_const_value attributes are supposed to carry the
|
||
symbol's value "represented as it would be on the target
|
||
architecture." By the time we get here, it's already been
|
||
converted to host endianness, so we just need to sign- or
|
||
zero-extend it as appropriate. */
|
||
case DW_FORM_data1:
|
||
*bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
|
||
break;
|
||
case DW_FORM_data2:
|
||
*bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
|
||
break;
|
||
case DW_FORM_data4:
|
||
*bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
|
||
break;
|
||
case DW_FORM_data8:
|
||
*bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
|
||
break;
|
||
|
||
case DW_FORM_sdata:
|
||
*value = DW_SND (attr);
|
||
break;
|
||
|
||
case DW_FORM_udata:
|
||
*value = DW_UNSND (attr);
|
||
break;
|
||
|
||
default:
|
||
complaint (&symfile_complaints,
|
||
_("unsupported const value attribute form: '%s'"),
|
||
dwarf_form_name (attr->form));
|
||
*value = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Copy constant value from an attribute to a symbol. */
|
||
|
||
static void
|
||
dwarf2_const_value (struct attribute *attr, struct symbol *sym,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
long value;
|
||
gdb_byte *bytes;
|
||
struct dwarf2_locexpr_baton *baton;
|
||
|
||
dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
|
||
SYMBOL_PRINT_NAME (sym),
|
||
&objfile->objfile_obstack, cu,
|
||
&value, &bytes, &baton);
|
||
|
||
if (baton != NULL)
|
||
{
|
||
SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
SYMBOL_CLASS (sym) = LOC_COMPUTED;
|
||
}
|
||
else if (bytes != NULL)
|
||
{
|
||
SYMBOL_VALUE_BYTES (sym) = bytes;
|
||
SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_VALUE (sym) = value;
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
}
|
||
}
|
||
|
||
/* Return the type of the die in question using its DW_AT_type attribute. */
|
||
|
||
static struct type *
|
||
die_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *type_attr;
|
||
|
||
type_attr = dwarf2_attr (die, DW_AT_type, cu);
|
||
if (!type_attr)
|
||
{
|
||
/* A missing DW_AT_type represents a void type. */
|
||
return objfile_type (cu->objfile)->builtin_void;
|
||
}
|
||
|
||
return lookup_die_type (die, type_attr, cu);
|
||
}
|
||
|
||
/* True iff CU's producer generates GNAT Ada auxiliary information
|
||
that allows to find parallel types through that information instead
|
||
of having to do expensive parallel lookups by type name. */
|
||
|
||
static int
|
||
need_gnat_info (struct dwarf2_cu *cu)
|
||
{
|
||
/* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
|
||
of GNAT produces this auxiliary information, without any indication
|
||
that it is produced. Part of enhancing the FSF version of GNAT
|
||
to produce that information will be to put in place an indicator
|
||
that we can use in order to determine whether the descriptive type
|
||
info is available or not. One suggestion that has been made is
|
||
to use a new attribute, attached to the CU die. For now, assume
|
||
that the descriptive type info is not available. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the auxiliary type of the die in question using its
|
||
DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
|
||
attribute is not present. */
|
||
|
||
static struct type *
|
||
die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *type_attr;
|
||
|
||
type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
|
||
if (!type_attr)
|
||
return NULL;
|
||
|
||
return lookup_die_type (die, type_attr, cu);
|
||
}
|
||
|
||
/* If DIE has a descriptive_type attribute, then set the TYPE's
|
||
descriptive type accordingly. */
|
||
|
||
static void
|
||
set_descriptive_type (struct type *type, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct type *descriptive_type = die_descriptive_type (die, cu);
|
||
|
||
if (descriptive_type)
|
||
{
|
||
ALLOCATE_GNAT_AUX_TYPE (type);
|
||
TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
|
||
}
|
||
}
|
||
|
||
/* Return the containing type of the die in question using its
|
||
DW_AT_containing_type attribute. */
|
||
|
||
static struct type *
|
||
die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *type_attr;
|
||
|
||
type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
|
||
if (!type_attr)
|
||
error (_("Dwarf Error: Problem turning containing type into gdb type "
|
||
"[in module %s]"), cu->objfile->name);
|
||
|
||
return lookup_die_type (die, type_attr, cu);
|
||
}
|
||
|
||
/* Look up the type of DIE in CU using its type attribute ATTR.
|
||
If there is no type substitute an error marker. */
|
||
|
||
static struct type *
|
||
lookup_die_type (struct die_info *die, struct attribute *attr,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type;
|
||
|
||
/* First see if we have it cached. */
|
||
|
||
if (is_ref_attr (attr))
|
||
{
|
||
unsigned int offset = dwarf2_get_ref_die_offset (attr);
|
||
|
||
this_type = get_die_type_at_offset (offset, cu->per_cu);
|
||
}
|
||
else if (attr->form == DW_FORM_sig8)
|
||
{
|
||
struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
|
||
struct dwarf2_cu *sig_cu;
|
||
unsigned int offset;
|
||
|
||
/* sig_type will be NULL if the signatured type is missing from
|
||
the debug info. */
|
||
if (sig_type == NULL)
|
||
error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
|
||
"at 0x%x [in module %s]"),
|
||
die->offset, cu->objfile->name);
|
||
|
||
gdb_assert (sig_type->per_cu.from_debug_types);
|
||
offset = sig_type->offset + sig_type->type_offset;
|
||
this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
|
||
}
|
||
else
|
||
{
|
||
dump_die_for_error (die);
|
||
error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
|
||
dwarf_attr_name (attr->name), cu->objfile->name);
|
||
}
|
||
|
||
/* If not cached we need to read it in. */
|
||
|
||
if (this_type == NULL)
|
||
{
|
||
struct die_info *type_die;
|
||
struct dwarf2_cu *type_cu = cu;
|
||
|
||
type_die = follow_die_ref_or_sig (die, attr, &type_cu);
|
||
/* If the type is cached, we should have found it above. */
|
||
gdb_assert (get_die_type (type_die, type_cu) == NULL);
|
||
this_type = read_type_die_1 (type_die, type_cu);
|
||
}
|
||
|
||
/* If we still don't have a type use an error marker. */
|
||
|
||
if (this_type == NULL)
|
||
{
|
||
char *message, *saved;
|
||
|
||
/* read_type_die already issued a complaint. */
|
||
message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
|
||
cu->objfile->name,
|
||
cu->header.offset,
|
||
die->offset);
|
||
saved = obstack_copy0 (&cu->objfile->objfile_obstack,
|
||
message, strlen (message));
|
||
xfree (message);
|
||
|
||
this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
|
||
}
|
||
|
||
return this_type;
|
||
}
|
||
|
||
/* Return the type in DIE, CU.
|
||
Returns NULL for invalid types.
|
||
|
||
This first does a lookup in the appropriate type_hash table,
|
||
and only reads the die in if necessary.
|
||
|
||
NOTE: This can be called when reading in partial or full symbols. */
|
||
|
||
static struct type *
|
||
read_type_die (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type;
|
||
|
||
this_type = get_die_type (die, cu);
|
||
if (this_type)
|
||
return this_type;
|
||
|
||
return read_type_die_1 (die, cu);
|
||
}
|
||
|
||
/* Read the type in DIE, CU.
|
||
Returns NULL for invalid types. */
|
||
|
||
static struct type *
|
||
read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type = NULL;
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
this_type = read_structure_type (die, cu);
|
||
break;
|
||
case DW_TAG_enumeration_type:
|
||
this_type = read_enumeration_type (die, cu);
|
||
break;
|
||
case DW_TAG_subprogram:
|
||
case DW_TAG_subroutine_type:
|
||
case DW_TAG_inlined_subroutine:
|
||
this_type = read_subroutine_type (die, cu);
|
||
break;
|
||
case DW_TAG_array_type:
|
||
this_type = read_array_type (die, cu);
|
||
break;
|
||
case DW_TAG_set_type:
|
||
this_type = read_set_type (die, cu);
|
||
break;
|
||
case DW_TAG_pointer_type:
|
||
this_type = read_tag_pointer_type (die, cu);
|
||
break;
|
||
case DW_TAG_ptr_to_member_type:
|
||
this_type = read_tag_ptr_to_member_type (die, cu);
|
||
break;
|
||
case DW_TAG_reference_type:
|
||
this_type = read_tag_reference_type (die, cu);
|
||
break;
|
||
case DW_TAG_const_type:
|
||
this_type = read_tag_const_type (die, cu);
|
||
break;
|
||
case DW_TAG_volatile_type:
|
||
this_type = read_tag_volatile_type (die, cu);
|
||
break;
|
||
case DW_TAG_string_type:
|
||
this_type = read_tag_string_type (die, cu);
|
||
break;
|
||
case DW_TAG_typedef:
|
||
this_type = read_typedef (die, cu);
|
||
break;
|
||
case DW_TAG_subrange_type:
|
||
this_type = read_subrange_type (die, cu);
|
||
break;
|
||
case DW_TAG_base_type:
|
||
this_type = read_base_type (die, cu);
|
||
break;
|
||
case DW_TAG_unspecified_type:
|
||
this_type = read_unspecified_type (die, cu);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
this_type = read_namespace_type (die, cu);
|
||
break;
|
||
case DW_TAG_module:
|
||
this_type = read_module_type (die, cu);
|
||
break;
|
||
default:
|
||
complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
|
||
dwarf_tag_name (die->tag));
|
||
break;
|
||
}
|
||
|
||
return this_type;
|
||
}
|
||
|
||
/* See if we can figure out if the class lives in a namespace. We do
|
||
this by looking for a member function; its demangled name will
|
||
contain namespace info, if there is any.
|
||
Return the computed name or NULL.
|
||
Space for the result is allocated on the objfile's obstack.
|
||
This is the full-die version of guess_partial_die_structure_name.
|
||
In this case we know DIE has no useful parent. */
|
||
|
||
static char *
|
||
guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *spec_die;
|
||
struct dwarf2_cu *spec_cu;
|
||
struct die_info *child;
|
||
|
||
spec_cu = cu;
|
||
spec_die = die_specification (die, &spec_cu);
|
||
if (spec_die != NULL)
|
||
{
|
||
die = spec_die;
|
||
cu = spec_cu;
|
||
}
|
||
|
||
for (child = die->child;
|
||
child != NULL;
|
||
child = child->sibling)
|
||
{
|
||
if (child->tag == DW_TAG_subprogram)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
|
||
if (attr == NULL)
|
||
attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
|
||
if (attr != NULL)
|
||
{
|
||
char *actual_name
|
||
= language_class_name_from_physname (cu->language_defn,
|
||
DW_STRING (attr));
|
||
char *name = NULL;
|
||
|
||
if (actual_name != NULL)
|
||
{
|
||
char *die_name = dwarf2_name (die, cu);
|
||
|
||
if (die_name != NULL
|
||
&& strcmp (die_name, actual_name) != 0)
|
||
{
|
||
/* Strip off the class name from the full name.
|
||
We want the prefix. */
|
||
int die_name_len = strlen (die_name);
|
||
int actual_name_len = strlen (actual_name);
|
||
|
||
/* Test for '::' as a sanity check. */
|
||
if (actual_name_len > die_name_len + 2
|
||
&& actual_name[actual_name_len - die_name_len - 1] == ':')
|
||
name =
|
||
obsavestring (actual_name,
|
||
actual_name_len - die_name_len - 2,
|
||
&cu->objfile->objfile_obstack);
|
||
}
|
||
}
|
||
xfree (actual_name);
|
||
return name;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the name of the namespace/class that DIE is defined within,
|
||
or "" if we can't tell. The caller should not xfree the result.
|
||
|
||
For example, if we're within the method foo() in the following
|
||
code:
|
||
|
||
namespace N {
|
||
class C {
|
||
void foo () {
|
||
}
|
||
};
|
||
}
|
||
|
||
then determine_prefix on foo's die will return "N::C". */
|
||
|
||
static char *
|
||
determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *parent, *spec_die;
|
||
struct dwarf2_cu *spec_cu;
|
||
struct type *parent_type;
|
||
|
||
if (cu->language != language_cplus && cu->language != language_java
|
||
&& cu->language != language_fortran)
|
||
return "";
|
||
|
||
/* We have to be careful in the presence of DW_AT_specification.
|
||
For example, with GCC 3.4, given the code
|
||
|
||
namespace N {
|
||
void foo() {
|
||
// Definition of N::foo.
|
||
}
|
||
}
|
||
|
||
then we'll have a tree of DIEs like this:
|
||
|
||
1: DW_TAG_compile_unit
|
||
2: DW_TAG_namespace // N
|
||
3: DW_TAG_subprogram // declaration of N::foo
|
||
4: DW_TAG_subprogram // definition of N::foo
|
||
DW_AT_specification // refers to die #3
|
||
|
||
Thus, when processing die #4, we have to pretend that we're in
|
||
the context of its DW_AT_specification, namely the contex of die
|
||
#3. */
|
||
spec_cu = cu;
|
||
spec_die = die_specification (die, &spec_cu);
|
||
if (spec_die == NULL)
|
||
parent = die->parent;
|
||
else
|
||
{
|
||
parent = spec_die->parent;
|
||
cu = spec_cu;
|
||
}
|
||
|
||
if (parent == NULL)
|
||
return "";
|
||
else if (parent->building_fullname)
|
||
{
|
||
const char *name;
|
||
const char *parent_name;
|
||
|
||
/* It has been seen on RealView 2.2 built binaries,
|
||
DW_TAG_template_type_param types actually _defined_ as
|
||
children of the parent class:
|
||
|
||
enum E {};
|
||
template class <class Enum> Class{};
|
||
Class<enum E> class_e;
|
||
|
||
1: DW_TAG_class_type (Class)
|
||
2: DW_TAG_enumeration_type (E)
|
||
3: DW_TAG_enumerator (enum1:0)
|
||
3: DW_TAG_enumerator (enum2:1)
|
||
...
|
||
2: DW_TAG_template_type_param
|
||
DW_AT_type DW_FORM_ref_udata (E)
|
||
|
||
Besides being broken debug info, it can put GDB into an
|
||
infinite loop. Consider:
|
||
|
||
When we're building the full name for Class<E>, we'll start
|
||
at Class, and go look over its template type parameters,
|
||
finding E. We'll then try to build the full name of E, and
|
||
reach here. We're now trying to build the full name of E,
|
||
and look over the parent DIE for containing scope. In the
|
||
broken case, if we followed the parent DIE of E, we'd again
|
||
find Class, and once again go look at its template type
|
||
arguments, etc., etc. Simply don't consider such parent die
|
||
as source-level parent of this die (it can't be, the language
|
||
doesn't allow it), and break the loop here. */
|
||
name = dwarf2_name (die, cu);
|
||
parent_name = dwarf2_name (parent, cu);
|
||
complaint (&symfile_complaints,
|
||
_("template param type '%s' defined within parent '%s'"),
|
||
name ? name : "<unknown>",
|
||
parent_name ? parent_name : "<unknown>");
|
||
return "";
|
||
}
|
||
else
|
||
switch (parent->tag)
|
||
{
|
||
case DW_TAG_namespace:
|
||
parent_type = read_type_die (parent, cu);
|
||
/* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
|
||
DW_TAG_namespace DIEs with a name of "::" for the global namespace.
|
||
Work around this problem here. */
|
||
if (cu->language == language_cplus
|
||
&& strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
|
||
return "";
|
||
/* We give a name to even anonymous namespaces. */
|
||
return TYPE_TAG_NAME (parent_type);
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_module:
|
||
parent_type = read_type_die (parent, cu);
|
||
if (TYPE_TAG_NAME (parent_type) != NULL)
|
||
return TYPE_TAG_NAME (parent_type);
|
||
else
|
||
/* An anonymous structure is only allowed non-static data
|
||
members; no typedefs, no member functions, et cetera.
|
||
So it does not need a prefix. */
|
||
return "";
|
||
case DW_TAG_compile_unit:
|
||
/* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
|
||
if (cu->language == language_cplus
|
||
&& dwarf2_per_objfile->types.asection != NULL
|
||
&& die->child != NULL
|
||
&& (die->tag == DW_TAG_class_type
|
||
|| die->tag == DW_TAG_structure_type
|
||
|| die->tag == DW_TAG_union_type))
|
||
{
|
||
char *name = guess_full_die_structure_name (die, cu);
|
||
if (name != NULL)
|
||
return name;
|
||
}
|
||
return "";
|
||
default:
|
||
return determine_prefix (parent, cu);
|
||
}
|
||
}
|
||
|
||
/* Return a newly-allocated string formed by concatenating PREFIX and
|
||
SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
|
||
simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
|
||
perform an obconcat, otherwise allocate storage for the result. The CU argument
|
||
is used to determine the language and hence, the appropriate separator. */
|
||
|
||
#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
|
||
|
||
static char *
|
||
typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
|
||
int physname, struct dwarf2_cu *cu)
|
||
{
|
||
const char *lead = "";
|
||
const char *sep;
|
||
|
||
if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
|
||
sep = "";
|
||
else if (cu->language == language_java)
|
||
sep = ".";
|
||
else if (cu->language == language_fortran && physname)
|
||
{
|
||
/* This is gfortran specific mangling. Normally DW_AT_linkage_name or
|
||
DW_AT_MIPS_linkage_name is preferred and used instead. */
|
||
|
||
lead = "__";
|
||
sep = "_MOD_";
|
||
}
|
||
else
|
||
sep = "::";
|
||
|
||
if (prefix == NULL)
|
||
prefix = "";
|
||
if (suffix == NULL)
|
||
suffix = "";
|
||
|
||
if (obs == NULL)
|
||
{
|
||
char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
|
||
|
||
strcpy (retval, lead);
|
||
strcat (retval, prefix);
|
||
strcat (retval, sep);
|
||
strcat (retval, suffix);
|
||
return retval;
|
||
}
|
||
else
|
||
{
|
||
/* We have an obstack. */
|
||
return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
|
||
}
|
||
}
|
||
|
||
/* Return sibling of die, NULL if no sibling. */
|
||
|
||
static struct die_info *
|
||
sibling_die (struct die_info *die)
|
||
{
|
||
return die->sibling;
|
||
}
|
||
|
||
/* Get name of a die, return NULL if not found. */
|
||
|
||
static char *
|
||
dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
|
||
struct obstack *obstack)
|
||
{
|
||
if (name && cu->language == language_cplus)
|
||
{
|
||
char *canon_name = cp_canonicalize_string (name);
|
||
|
||
if (canon_name != NULL)
|
||
{
|
||
if (strcmp (canon_name, name) != 0)
|
||
name = obsavestring (canon_name, strlen (canon_name),
|
||
obstack);
|
||
xfree (canon_name);
|
||
}
|
||
}
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Get name of a die, return NULL if not found. */
|
||
|
||
static char *
|
||
dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_name, cu);
|
||
if (!attr || !DW_STRING (attr))
|
||
return NULL;
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_compile_unit:
|
||
/* Compilation units have a DW_AT_name that is a filename, not
|
||
a source language identifier. */
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_enumerator:
|
||
/* These tags always have simple identifiers already; no need
|
||
to canonicalize them. */
|
||
return DW_STRING (attr);
|
||
|
||
case DW_TAG_subprogram:
|
||
/* Java constructors will all be named "<init>", so return
|
||
the class name when we see this special case. */
|
||
if (cu->language == language_java
|
||
&& DW_STRING (attr) != NULL
|
||
&& strcmp (DW_STRING (attr), "<init>") == 0)
|
||
{
|
||
struct dwarf2_cu *spec_cu = cu;
|
||
struct die_info *spec_die;
|
||
|
||
/* GCJ will output '<init>' for Java constructor names.
|
||
For this special case, return the name of the parent class. */
|
||
|
||
/* GCJ may output suprogram DIEs with AT_specification set.
|
||
If so, use the name of the specified DIE. */
|
||
spec_die = die_specification (die, &spec_cu);
|
||
if (spec_die != NULL)
|
||
return dwarf2_name (spec_die, spec_cu);
|
||
|
||
do
|
||
{
|
||
die = die->parent;
|
||
if (die->tag == DW_TAG_class_type)
|
||
return dwarf2_name (die, cu);
|
||
}
|
||
while (die->tag != DW_TAG_compile_unit);
|
||
}
|
||
break;
|
||
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
/* Some GCC versions emit spurious DW_AT_name attributes for unnamed
|
||
structures or unions. These were of the form "._%d" in GCC 4.1,
|
||
or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
|
||
and GCC 4.4. We work around this problem by ignoring these. */
|
||
if (strncmp (DW_STRING (attr), "._", 2) == 0
|
||
|| strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
|
||
return NULL;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (!DW_STRING_IS_CANONICAL (attr))
|
||
{
|
||
DW_STRING (attr)
|
||
= dwarf2_canonicalize_name (DW_STRING (attr), cu,
|
||
&cu->objfile->objfile_obstack);
|
||
DW_STRING_IS_CANONICAL (attr) = 1;
|
||
}
|
||
return DW_STRING (attr);
|
||
}
|
||
|
||
/* Return the die that this die in an extension of, or NULL if there
|
||
is none. *EXT_CU is the CU containing DIE on input, and the CU
|
||
containing the return value on output. */
|
||
|
||
static struct die_info *
|
||
dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
|
||
if (attr == NULL)
|
||
return NULL;
|
||
|
||
return follow_die_ref (die, attr, ext_cu);
|
||
}
|
||
|
||
/* Convert a DIE tag into its string name. */
|
||
|
||
static char *
|
||
dwarf_tag_name (unsigned tag)
|
||
{
|
||
switch (tag)
|
||
{
|
||
case DW_TAG_padding:
|
||
return "DW_TAG_padding";
|
||
case DW_TAG_array_type:
|
||
return "DW_TAG_array_type";
|
||
case DW_TAG_class_type:
|
||
return "DW_TAG_class_type";
|
||
case DW_TAG_entry_point:
|
||
return "DW_TAG_entry_point";
|
||
case DW_TAG_enumeration_type:
|
||
return "DW_TAG_enumeration_type";
|
||
case DW_TAG_formal_parameter:
|
||
return "DW_TAG_formal_parameter";
|
||
case DW_TAG_imported_declaration:
|
||
return "DW_TAG_imported_declaration";
|
||
case DW_TAG_label:
|
||
return "DW_TAG_label";
|
||
case DW_TAG_lexical_block:
|
||
return "DW_TAG_lexical_block";
|
||
case DW_TAG_member:
|
||
return "DW_TAG_member";
|
||
case DW_TAG_pointer_type:
|
||
return "DW_TAG_pointer_type";
|
||
case DW_TAG_reference_type:
|
||
return "DW_TAG_reference_type";
|
||
case DW_TAG_compile_unit:
|
||
return "DW_TAG_compile_unit";
|
||
case DW_TAG_string_type:
|
||
return "DW_TAG_string_type";
|
||
case DW_TAG_structure_type:
|
||
return "DW_TAG_structure_type";
|
||
case DW_TAG_subroutine_type:
|
||
return "DW_TAG_subroutine_type";
|
||
case DW_TAG_typedef:
|
||
return "DW_TAG_typedef";
|
||
case DW_TAG_union_type:
|
||
return "DW_TAG_union_type";
|
||
case DW_TAG_unspecified_parameters:
|
||
return "DW_TAG_unspecified_parameters";
|
||
case DW_TAG_variant:
|
||
return "DW_TAG_variant";
|
||
case DW_TAG_common_block:
|
||
return "DW_TAG_common_block";
|
||
case DW_TAG_common_inclusion:
|
||
return "DW_TAG_common_inclusion";
|
||
case DW_TAG_inheritance:
|
||
return "DW_TAG_inheritance";
|
||
case DW_TAG_inlined_subroutine:
|
||
return "DW_TAG_inlined_subroutine";
|
||
case DW_TAG_module:
|
||
return "DW_TAG_module";
|
||
case DW_TAG_ptr_to_member_type:
|
||
return "DW_TAG_ptr_to_member_type";
|
||
case DW_TAG_set_type:
|
||
return "DW_TAG_set_type";
|
||
case DW_TAG_subrange_type:
|
||
return "DW_TAG_subrange_type";
|
||
case DW_TAG_with_stmt:
|
||
return "DW_TAG_with_stmt";
|
||
case DW_TAG_access_declaration:
|
||
return "DW_TAG_access_declaration";
|
||
case DW_TAG_base_type:
|
||
return "DW_TAG_base_type";
|
||
case DW_TAG_catch_block:
|
||
return "DW_TAG_catch_block";
|
||
case DW_TAG_const_type:
|
||
return "DW_TAG_const_type";
|
||
case DW_TAG_constant:
|
||
return "DW_TAG_constant";
|
||
case DW_TAG_enumerator:
|
||
return "DW_TAG_enumerator";
|
||
case DW_TAG_file_type:
|
||
return "DW_TAG_file_type";
|
||
case DW_TAG_friend:
|
||
return "DW_TAG_friend";
|
||
case DW_TAG_namelist:
|
||
return "DW_TAG_namelist";
|
||
case DW_TAG_namelist_item:
|
||
return "DW_TAG_namelist_item";
|
||
case DW_TAG_packed_type:
|
||
return "DW_TAG_packed_type";
|
||
case DW_TAG_subprogram:
|
||
return "DW_TAG_subprogram";
|
||
case DW_TAG_template_type_param:
|
||
return "DW_TAG_template_type_param";
|
||
case DW_TAG_template_value_param:
|
||
return "DW_TAG_template_value_param";
|
||
case DW_TAG_thrown_type:
|
||
return "DW_TAG_thrown_type";
|
||
case DW_TAG_try_block:
|
||
return "DW_TAG_try_block";
|
||
case DW_TAG_variant_part:
|
||
return "DW_TAG_variant_part";
|
||
case DW_TAG_variable:
|
||
return "DW_TAG_variable";
|
||
case DW_TAG_volatile_type:
|
||
return "DW_TAG_volatile_type";
|
||
case DW_TAG_dwarf_procedure:
|
||
return "DW_TAG_dwarf_procedure";
|
||
case DW_TAG_restrict_type:
|
||
return "DW_TAG_restrict_type";
|
||
case DW_TAG_interface_type:
|
||
return "DW_TAG_interface_type";
|
||
case DW_TAG_namespace:
|
||
return "DW_TAG_namespace";
|
||
case DW_TAG_imported_module:
|
||
return "DW_TAG_imported_module";
|
||
case DW_TAG_unspecified_type:
|
||
return "DW_TAG_unspecified_type";
|
||
case DW_TAG_partial_unit:
|
||
return "DW_TAG_partial_unit";
|
||
case DW_TAG_imported_unit:
|
||
return "DW_TAG_imported_unit";
|
||
case DW_TAG_condition:
|
||
return "DW_TAG_condition";
|
||
case DW_TAG_shared_type:
|
||
return "DW_TAG_shared_type";
|
||
case DW_TAG_type_unit:
|
||
return "DW_TAG_type_unit";
|
||
case DW_TAG_MIPS_loop:
|
||
return "DW_TAG_MIPS_loop";
|
||
case DW_TAG_HP_array_descriptor:
|
||
return "DW_TAG_HP_array_descriptor";
|
||
case DW_TAG_format_label:
|
||
return "DW_TAG_format_label";
|
||
case DW_TAG_function_template:
|
||
return "DW_TAG_function_template";
|
||
case DW_TAG_class_template:
|
||
return "DW_TAG_class_template";
|
||
case DW_TAG_GNU_BINCL:
|
||
return "DW_TAG_GNU_BINCL";
|
||
case DW_TAG_GNU_EINCL:
|
||
return "DW_TAG_GNU_EINCL";
|
||
case DW_TAG_upc_shared_type:
|
||
return "DW_TAG_upc_shared_type";
|
||
case DW_TAG_upc_strict_type:
|
||
return "DW_TAG_upc_strict_type";
|
||
case DW_TAG_upc_relaxed_type:
|
||
return "DW_TAG_upc_relaxed_type";
|
||
case DW_TAG_PGI_kanji_type:
|
||
return "DW_TAG_PGI_kanji_type";
|
||
case DW_TAG_PGI_interface_block:
|
||
return "DW_TAG_PGI_interface_block";
|
||
default:
|
||
return "DW_TAG_<unknown>";
|
||
}
|
||
}
|
||
|
||
/* Convert a DWARF attribute code into its string name. */
|
||
|
||
static char *
|
||
dwarf_attr_name (unsigned attr)
|
||
{
|
||
switch (attr)
|
||
{
|
||
case DW_AT_sibling:
|
||
return "DW_AT_sibling";
|
||
case DW_AT_location:
|
||
return "DW_AT_location";
|
||
case DW_AT_name:
|
||
return "DW_AT_name";
|
||
case DW_AT_ordering:
|
||
return "DW_AT_ordering";
|
||
case DW_AT_subscr_data:
|
||
return "DW_AT_subscr_data";
|
||
case DW_AT_byte_size:
|
||
return "DW_AT_byte_size";
|
||
case DW_AT_bit_offset:
|
||
return "DW_AT_bit_offset";
|
||
case DW_AT_bit_size:
|
||
return "DW_AT_bit_size";
|
||
case DW_AT_element_list:
|
||
return "DW_AT_element_list";
|
||
case DW_AT_stmt_list:
|
||
return "DW_AT_stmt_list";
|
||
case DW_AT_low_pc:
|
||
return "DW_AT_low_pc";
|
||
case DW_AT_high_pc:
|
||
return "DW_AT_high_pc";
|
||
case DW_AT_language:
|
||
return "DW_AT_language";
|
||
case DW_AT_member:
|
||
return "DW_AT_member";
|
||
case DW_AT_discr:
|
||
return "DW_AT_discr";
|
||
case DW_AT_discr_value:
|
||
return "DW_AT_discr_value";
|
||
case DW_AT_visibility:
|
||
return "DW_AT_visibility";
|
||
case DW_AT_import:
|
||
return "DW_AT_import";
|
||
case DW_AT_string_length:
|
||
return "DW_AT_string_length";
|
||
case DW_AT_common_reference:
|
||
return "DW_AT_common_reference";
|
||
case DW_AT_comp_dir:
|
||
return "DW_AT_comp_dir";
|
||
case DW_AT_const_value:
|
||
return "DW_AT_const_value";
|
||
case DW_AT_containing_type:
|
||
return "DW_AT_containing_type";
|
||
case DW_AT_default_value:
|
||
return "DW_AT_default_value";
|
||
case DW_AT_inline:
|
||
return "DW_AT_inline";
|
||
case DW_AT_is_optional:
|
||
return "DW_AT_is_optional";
|
||
case DW_AT_lower_bound:
|
||
return "DW_AT_lower_bound";
|
||
case DW_AT_producer:
|
||
return "DW_AT_producer";
|
||
case DW_AT_prototyped:
|
||
return "DW_AT_prototyped";
|
||
case DW_AT_return_addr:
|
||
return "DW_AT_return_addr";
|
||
case DW_AT_start_scope:
|
||
return "DW_AT_start_scope";
|
||
case DW_AT_bit_stride:
|
||
return "DW_AT_bit_stride";
|
||
case DW_AT_upper_bound:
|
||
return "DW_AT_upper_bound";
|
||
case DW_AT_abstract_origin:
|
||
return "DW_AT_abstract_origin";
|
||
case DW_AT_accessibility:
|
||
return "DW_AT_accessibility";
|
||
case DW_AT_address_class:
|
||
return "DW_AT_address_class";
|
||
case DW_AT_artificial:
|
||
return "DW_AT_artificial";
|
||
case DW_AT_base_types:
|
||
return "DW_AT_base_types";
|
||
case DW_AT_calling_convention:
|
||
return "DW_AT_calling_convention";
|
||
case DW_AT_count:
|
||
return "DW_AT_count";
|
||
case DW_AT_data_member_location:
|
||
return "DW_AT_data_member_location";
|
||
case DW_AT_decl_column:
|
||
return "DW_AT_decl_column";
|
||
case DW_AT_decl_file:
|
||
return "DW_AT_decl_file";
|
||
case DW_AT_decl_line:
|
||
return "DW_AT_decl_line";
|
||
case DW_AT_declaration:
|
||
return "DW_AT_declaration";
|
||
case DW_AT_discr_list:
|
||
return "DW_AT_discr_list";
|
||
case DW_AT_encoding:
|
||
return "DW_AT_encoding";
|
||
case DW_AT_external:
|
||
return "DW_AT_external";
|
||
case DW_AT_frame_base:
|
||
return "DW_AT_frame_base";
|
||
case DW_AT_friend:
|
||
return "DW_AT_friend";
|
||
case DW_AT_identifier_case:
|
||
return "DW_AT_identifier_case";
|
||
case DW_AT_macro_info:
|
||
return "DW_AT_macro_info";
|
||
case DW_AT_namelist_items:
|
||
return "DW_AT_namelist_items";
|
||
case DW_AT_priority:
|
||
return "DW_AT_priority";
|
||
case DW_AT_segment:
|
||
return "DW_AT_segment";
|
||
case DW_AT_specification:
|
||
return "DW_AT_specification";
|
||
case DW_AT_static_link:
|
||
return "DW_AT_static_link";
|
||
case DW_AT_type:
|
||
return "DW_AT_type";
|
||
case DW_AT_use_location:
|
||
return "DW_AT_use_location";
|
||
case DW_AT_variable_parameter:
|
||
return "DW_AT_variable_parameter";
|
||
case DW_AT_virtuality:
|
||
return "DW_AT_virtuality";
|
||
case DW_AT_vtable_elem_location:
|
||
return "DW_AT_vtable_elem_location";
|
||
/* DWARF 3 values. */
|
||
case DW_AT_allocated:
|
||
return "DW_AT_allocated";
|
||
case DW_AT_associated:
|
||
return "DW_AT_associated";
|
||
case DW_AT_data_location:
|
||
return "DW_AT_data_location";
|
||
case DW_AT_byte_stride:
|
||
return "DW_AT_byte_stride";
|
||
case DW_AT_entry_pc:
|
||
return "DW_AT_entry_pc";
|
||
case DW_AT_use_UTF8:
|
||
return "DW_AT_use_UTF8";
|
||
case DW_AT_extension:
|
||
return "DW_AT_extension";
|
||
case DW_AT_ranges:
|
||
return "DW_AT_ranges";
|
||
case DW_AT_trampoline:
|
||
return "DW_AT_trampoline";
|
||
case DW_AT_call_column:
|
||
return "DW_AT_call_column";
|
||
case DW_AT_call_file:
|
||
return "DW_AT_call_file";
|
||
case DW_AT_call_line:
|
||
return "DW_AT_call_line";
|
||
case DW_AT_description:
|
||
return "DW_AT_description";
|
||
case DW_AT_binary_scale:
|
||
return "DW_AT_binary_scale";
|
||
case DW_AT_decimal_scale:
|
||
return "DW_AT_decimal_scale";
|
||
case DW_AT_small:
|
||
return "DW_AT_small";
|
||
case DW_AT_decimal_sign:
|
||
return "DW_AT_decimal_sign";
|
||
case DW_AT_digit_count:
|
||
return "DW_AT_digit_count";
|
||
case DW_AT_picture_string:
|
||
return "DW_AT_picture_string";
|
||
case DW_AT_mutable:
|
||
return "DW_AT_mutable";
|
||
case DW_AT_threads_scaled:
|
||
return "DW_AT_threads_scaled";
|
||
case DW_AT_explicit:
|
||
return "DW_AT_explicit";
|
||
case DW_AT_object_pointer:
|
||
return "DW_AT_object_pointer";
|
||
case DW_AT_endianity:
|
||
return "DW_AT_endianity";
|
||
case DW_AT_elemental:
|
||
return "DW_AT_elemental";
|
||
case DW_AT_pure:
|
||
return "DW_AT_pure";
|
||
case DW_AT_recursive:
|
||
return "DW_AT_recursive";
|
||
/* DWARF 4 values. */
|
||
case DW_AT_signature:
|
||
return "DW_AT_signature";
|
||
case DW_AT_linkage_name:
|
||
return "DW_AT_linkage_name";
|
||
/* SGI/MIPS extensions. */
|
||
#ifdef MIPS /* collides with DW_AT_HP_block_index */
|
||
case DW_AT_MIPS_fde:
|
||
return "DW_AT_MIPS_fde";
|
||
#endif
|
||
case DW_AT_MIPS_loop_begin:
|
||
return "DW_AT_MIPS_loop_begin";
|
||
case DW_AT_MIPS_tail_loop_begin:
|
||
return "DW_AT_MIPS_tail_loop_begin";
|
||
case DW_AT_MIPS_epilog_begin:
|
||
return "DW_AT_MIPS_epilog_begin";
|
||
case DW_AT_MIPS_loop_unroll_factor:
|
||
return "DW_AT_MIPS_loop_unroll_factor";
|
||
case DW_AT_MIPS_software_pipeline_depth:
|
||
return "DW_AT_MIPS_software_pipeline_depth";
|
||
case DW_AT_MIPS_linkage_name:
|
||
return "DW_AT_MIPS_linkage_name";
|
||
case DW_AT_MIPS_stride:
|
||
return "DW_AT_MIPS_stride";
|
||
case DW_AT_MIPS_abstract_name:
|
||
return "DW_AT_MIPS_abstract_name";
|
||
case DW_AT_MIPS_clone_origin:
|
||
return "DW_AT_MIPS_clone_origin";
|
||
case DW_AT_MIPS_has_inlines:
|
||
return "DW_AT_MIPS_has_inlines";
|
||
/* HP extensions. */
|
||
#ifndef MIPS /* collides with DW_AT_MIPS_fde */
|
||
case DW_AT_HP_block_index:
|
||
return "DW_AT_HP_block_index";
|
||
#endif
|
||
case DW_AT_HP_unmodifiable:
|
||
return "DW_AT_HP_unmodifiable";
|
||
case DW_AT_HP_actuals_stmt_list:
|
||
return "DW_AT_HP_actuals_stmt_list";
|
||
case DW_AT_HP_proc_per_section:
|
||
return "DW_AT_HP_proc_per_section";
|
||
case DW_AT_HP_raw_data_ptr:
|
||
return "DW_AT_HP_raw_data_ptr";
|
||
case DW_AT_HP_pass_by_reference:
|
||
return "DW_AT_HP_pass_by_reference";
|
||
case DW_AT_HP_opt_level:
|
||
return "DW_AT_HP_opt_level";
|
||
case DW_AT_HP_prof_version_id:
|
||
return "DW_AT_HP_prof_version_id";
|
||
case DW_AT_HP_opt_flags:
|
||
return "DW_AT_HP_opt_flags";
|
||
case DW_AT_HP_cold_region_low_pc:
|
||
return "DW_AT_HP_cold_region_low_pc";
|
||
case DW_AT_HP_cold_region_high_pc:
|
||
return "DW_AT_HP_cold_region_high_pc";
|
||
case DW_AT_HP_all_variables_modifiable:
|
||
return "DW_AT_HP_all_variables_modifiable";
|
||
case DW_AT_HP_linkage_name:
|
||
return "DW_AT_HP_linkage_name";
|
||
case DW_AT_HP_prof_flags:
|
||
return "DW_AT_HP_prof_flags";
|
||
/* GNU extensions. */
|
||
case DW_AT_sf_names:
|
||
return "DW_AT_sf_names";
|
||
case DW_AT_src_info:
|
||
return "DW_AT_src_info";
|
||
case DW_AT_mac_info:
|
||
return "DW_AT_mac_info";
|
||
case DW_AT_src_coords:
|
||
return "DW_AT_src_coords";
|
||
case DW_AT_body_begin:
|
||
return "DW_AT_body_begin";
|
||
case DW_AT_body_end:
|
||
return "DW_AT_body_end";
|
||
case DW_AT_GNU_vector:
|
||
return "DW_AT_GNU_vector";
|
||
case DW_AT_GNU_odr_signature:
|
||
return "DW_AT_GNU_odr_signature";
|
||
/* VMS extensions. */
|
||
case DW_AT_VMS_rtnbeg_pd_address:
|
||
return "DW_AT_VMS_rtnbeg_pd_address";
|
||
/* UPC extension. */
|
||
case DW_AT_upc_threads_scaled:
|
||
return "DW_AT_upc_threads_scaled";
|
||
/* PGI (STMicroelectronics) extensions. */
|
||
case DW_AT_PGI_lbase:
|
||
return "DW_AT_PGI_lbase";
|
||
case DW_AT_PGI_soffset:
|
||
return "DW_AT_PGI_soffset";
|
||
case DW_AT_PGI_lstride:
|
||
return "DW_AT_PGI_lstride";
|
||
default:
|
||
return "DW_AT_<unknown>";
|
||
}
|
||
}
|
||
|
||
/* Convert a DWARF value form code into its string name. */
|
||
|
||
static char *
|
||
dwarf_form_name (unsigned form)
|
||
{
|
||
switch (form)
|
||
{
|
||
case DW_FORM_addr:
|
||
return "DW_FORM_addr";
|
||
case DW_FORM_block2:
|
||
return "DW_FORM_block2";
|
||
case DW_FORM_block4:
|
||
return "DW_FORM_block4";
|
||
case DW_FORM_data2:
|
||
return "DW_FORM_data2";
|
||
case DW_FORM_data4:
|
||
return "DW_FORM_data4";
|
||
case DW_FORM_data8:
|
||
return "DW_FORM_data8";
|
||
case DW_FORM_string:
|
||
return "DW_FORM_string";
|
||
case DW_FORM_block:
|
||
return "DW_FORM_block";
|
||
case DW_FORM_block1:
|
||
return "DW_FORM_block1";
|
||
case DW_FORM_data1:
|
||
return "DW_FORM_data1";
|
||
case DW_FORM_flag:
|
||
return "DW_FORM_flag";
|
||
case DW_FORM_sdata:
|
||
return "DW_FORM_sdata";
|
||
case DW_FORM_strp:
|
||
return "DW_FORM_strp";
|
||
case DW_FORM_udata:
|
||
return "DW_FORM_udata";
|
||
case DW_FORM_ref_addr:
|
||
return "DW_FORM_ref_addr";
|
||
case DW_FORM_ref1:
|
||
return "DW_FORM_ref1";
|
||
case DW_FORM_ref2:
|
||
return "DW_FORM_ref2";
|
||
case DW_FORM_ref4:
|
||
return "DW_FORM_ref4";
|
||
case DW_FORM_ref8:
|
||
return "DW_FORM_ref8";
|
||
case DW_FORM_ref_udata:
|
||
return "DW_FORM_ref_udata";
|
||
case DW_FORM_indirect:
|
||
return "DW_FORM_indirect";
|
||
case DW_FORM_sec_offset:
|
||
return "DW_FORM_sec_offset";
|
||
case DW_FORM_exprloc:
|
||
return "DW_FORM_exprloc";
|
||
case DW_FORM_flag_present:
|
||
return "DW_FORM_flag_present";
|
||
case DW_FORM_sig8:
|
||
return "DW_FORM_sig8";
|
||
default:
|
||
return "DW_FORM_<unknown>";
|
||
}
|
||
}
|
||
|
||
/* Convert a DWARF stack opcode into its string name. */
|
||
|
||
const char *
|
||
dwarf_stack_op_name (unsigned op, int def)
|
||
{
|
||
switch (op)
|
||
{
|
||
case DW_OP_addr:
|
||
return "DW_OP_addr";
|
||
case DW_OP_deref:
|
||
return "DW_OP_deref";
|
||
case DW_OP_const1u:
|
||
return "DW_OP_const1u";
|
||
case DW_OP_const1s:
|
||
return "DW_OP_const1s";
|
||
case DW_OP_const2u:
|
||
return "DW_OP_const2u";
|
||
case DW_OP_const2s:
|
||
return "DW_OP_const2s";
|
||
case DW_OP_const4u:
|
||
return "DW_OP_const4u";
|
||
case DW_OP_const4s:
|
||
return "DW_OP_const4s";
|
||
case DW_OP_const8u:
|
||
return "DW_OP_const8u";
|
||
case DW_OP_const8s:
|
||
return "DW_OP_const8s";
|
||
case DW_OP_constu:
|
||
return "DW_OP_constu";
|
||
case DW_OP_consts:
|
||
return "DW_OP_consts";
|
||
case DW_OP_dup:
|
||
return "DW_OP_dup";
|
||
case DW_OP_drop:
|
||
return "DW_OP_drop";
|
||
case DW_OP_over:
|
||
return "DW_OP_over";
|
||
case DW_OP_pick:
|
||
return "DW_OP_pick";
|
||
case DW_OP_swap:
|
||
return "DW_OP_swap";
|
||
case DW_OP_rot:
|
||
return "DW_OP_rot";
|
||
case DW_OP_xderef:
|
||
return "DW_OP_xderef";
|
||
case DW_OP_abs:
|
||
return "DW_OP_abs";
|
||
case DW_OP_and:
|
||
return "DW_OP_and";
|
||
case DW_OP_div:
|
||
return "DW_OP_div";
|
||
case DW_OP_minus:
|
||
return "DW_OP_minus";
|
||
case DW_OP_mod:
|
||
return "DW_OP_mod";
|
||
case DW_OP_mul:
|
||
return "DW_OP_mul";
|
||
case DW_OP_neg:
|
||
return "DW_OP_neg";
|
||
case DW_OP_not:
|
||
return "DW_OP_not";
|
||
case DW_OP_or:
|
||
return "DW_OP_or";
|
||
case DW_OP_plus:
|
||
return "DW_OP_plus";
|
||
case DW_OP_plus_uconst:
|
||
return "DW_OP_plus_uconst";
|
||
case DW_OP_shl:
|
||
return "DW_OP_shl";
|
||
case DW_OP_shr:
|
||
return "DW_OP_shr";
|
||
case DW_OP_shra:
|
||
return "DW_OP_shra";
|
||
case DW_OP_xor:
|
||
return "DW_OP_xor";
|
||
case DW_OP_bra:
|
||
return "DW_OP_bra";
|
||
case DW_OP_eq:
|
||
return "DW_OP_eq";
|
||
case DW_OP_ge:
|
||
return "DW_OP_ge";
|
||
case DW_OP_gt:
|
||
return "DW_OP_gt";
|
||
case DW_OP_le:
|
||
return "DW_OP_le";
|
||
case DW_OP_lt:
|
||
return "DW_OP_lt";
|
||
case DW_OP_ne:
|
||
return "DW_OP_ne";
|
||
case DW_OP_skip:
|
||
return "DW_OP_skip";
|
||
case DW_OP_lit0:
|
||
return "DW_OP_lit0";
|
||
case DW_OP_lit1:
|
||
return "DW_OP_lit1";
|
||
case DW_OP_lit2:
|
||
return "DW_OP_lit2";
|
||
case DW_OP_lit3:
|
||
return "DW_OP_lit3";
|
||
case DW_OP_lit4:
|
||
return "DW_OP_lit4";
|
||
case DW_OP_lit5:
|
||
return "DW_OP_lit5";
|
||
case DW_OP_lit6:
|
||
return "DW_OP_lit6";
|
||
case DW_OP_lit7:
|
||
return "DW_OP_lit7";
|
||
case DW_OP_lit8:
|
||
return "DW_OP_lit8";
|
||
case DW_OP_lit9:
|
||
return "DW_OP_lit9";
|
||
case DW_OP_lit10:
|
||
return "DW_OP_lit10";
|
||
case DW_OP_lit11:
|
||
return "DW_OP_lit11";
|
||
case DW_OP_lit12:
|
||
return "DW_OP_lit12";
|
||
case DW_OP_lit13:
|
||
return "DW_OP_lit13";
|
||
case DW_OP_lit14:
|
||
return "DW_OP_lit14";
|
||
case DW_OP_lit15:
|
||
return "DW_OP_lit15";
|
||
case DW_OP_lit16:
|
||
return "DW_OP_lit16";
|
||
case DW_OP_lit17:
|
||
return "DW_OP_lit17";
|
||
case DW_OP_lit18:
|
||
return "DW_OP_lit18";
|
||
case DW_OP_lit19:
|
||
return "DW_OP_lit19";
|
||
case DW_OP_lit20:
|
||
return "DW_OP_lit20";
|
||
case DW_OP_lit21:
|
||
return "DW_OP_lit21";
|
||
case DW_OP_lit22:
|
||
return "DW_OP_lit22";
|
||
case DW_OP_lit23:
|
||
return "DW_OP_lit23";
|
||
case DW_OP_lit24:
|
||
return "DW_OP_lit24";
|
||
case DW_OP_lit25:
|
||
return "DW_OP_lit25";
|
||
case DW_OP_lit26:
|
||
return "DW_OP_lit26";
|
||
case DW_OP_lit27:
|
||
return "DW_OP_lit27";
|
||
case DW_OP_lit28:
|
||
return "DW_OP_lit28";
|
||
case DW_OP_lit29:
|
||
return "DW_OP_lit29";
|
||
case DW_OP_lit30:
|
||
return "DW_OP_lit30";
|
||
case DW_OP_lit31:
|
||
return "DW_OP_lit31";
|
||
case DW_OP_reg0:
|
||
return "DW_OP_reg0";
|
||
case DW_OP_reg1:
|
||
return "DW_OP_reg1";
|
||
case DW_OP_reg2:
|
||
return "DW_OP_reg2";
|
||
case DW_OP_reg3:
|
||
return "DW_OP_reg3";
|
||
case DW_OP_reg4:
|
||
return "DW_OP_reg4";
|
||
case DW_OP_reg5:
|
||
return "DW_OP_reg5";
|
||
case DW_OP_reg6:
|
||
return "DW_OP_reg6";
|
||
case DW_OP_reg7:
|
||
return "DW_OP_reg7";
|
||
case DW_OP_reg8:
|
||
return "DW_OP_reg8";
|
||
case DW_OP_reg9:
|
||
return "DW_OP_reg9";
|
||
case DW_OP_reg10:
|
||
return "DW_OP_reg10";
|
||
case DW_OP_reg11:
|
||
return "DW_OP_reg11";
|
||
case DW_OP_reg12:
|
||
return "DW_OP_reg12";
|
||
case DW_OP_reg13:
|
||
return "DW_OP_reg13";
|
||
case DW_OP_reg14:
|
||
return "DW_OP_reg14";
|
||
case DW_OP_reg15:
|
||
return "DW_OP_reg15";
|
||
case DW_OP_reg16:
|
||
return "DW_OP_reg16";
|
||
case DW_OP_reg17:
|
||
return "DW_OP_reg17";
|
||
case DW_OP_reg18:
|
||
return "DW_OP_reg18";
|
||
case DW_OP_reg19:
|
||
return "DW_OP_reg19";
|
||
case DW_OP_reg20:
|
||
return "DW_OP_reg20";
|
||
case DW_OP_reg21:
|
||
return "DW_OP_reg21";
|
||
case DW_OP_reg22:
|
||
return "DW_OP_reg22";
|
||
case DW_OP_reg23:
|
||
return "DW_OP_reg23";
|
||
case DW_OP_reg24:
|
||
return "DW_OP_reg24";
|
||
case DW_OP_reg25:
|
||
return "DW_OP_reg25";
|
||
case DW_OP_reg26:
|
||
return "DW_OP_reg26";
|
||
case DW_OP_reg27:
|
||
return "DW_OP_reg27";
|
||
case DW_OP_reg28:
|
||
return "DW_OP_reg28";
|
||
case DW_OP_reg29:
|
||
return "DW_OP_reg29";
|
||
case DW_OP_reg30:
|
||
return "DW_OP_reg30";
|
||
case DW_OP_reg31:
|
||
return "DW_OP_reg31";
|
||
case DW_OP_breg0:
|
||
return "DW_OP_breg0";
|
||
case DW_OP_breg1:
|
||
return "DW_OP_breg1";
|
||
case DW_OP_breg2:
|
||
return "DW_OP_breg2";
|
||
case DW_OP_breg3:
|
||
return "DW_OP_breg3";
|
||
case DW_OP_breg4:
|
||
return "DW_OP_breg4";
|
||
case DW_OP_breg5:
|
||
return "DW_OP_breg5";
|
||
case DW_OP_breg6:
|
||
return "DW_OP_breg6";
|
||
case DW_OP_breg7:
|
||
return "DW_OP_breg7";
|
||
case DW_OP_breg8:
|
||
return "DW_OP_breg8";
|
||
case DW_OP_breg9:
|
||
return "DW_OP_breg9";
|
||
case DW_OP_breg10:
|
||
return "DW_OP_breg10";
|
||
case DW_OP_breg11:
|
||
return "DW_OP_breg11";
|
||
case DW_OP_breg12:
|
||
return "DW_OP_breg12";
|
||
case DW_OP_breg13:
|
||
return "DW_OP_breg13";
|
||
case DW_OP_breg14:
|
||
return "DW_OP_breg14";
|
||
case DW_OP_breg15:
|
||
return "DW_OP_breg15";
|
||
case DW_OP_breg16:
|
||
return "DW_OP_breg16";
|
||
case DW_OP_breg17:
|
||
return "DW_OP_breg17";
|
||
case DW_OP_breg18:
|
||
return "DW_OP_breg18";
|
||
case DW_OP_breg19:
|
||
return "DW_OP_breg19";
|
||
case DW_OP_breg20:
|
||
return "DW_OP_breg20";
|
||
case DW_OP_breg21:
|
||
return "DW_OP_breg21";
|
||
case DW_OP_breg22:
|
||
return "DW_OP_breg22";
|
||
case DW_OP_breg23:
|
||
return "DW_OP_breg23";
|
||
case DW_OP_breg24:
|
||
return "DW_OP_breg24";
|
||
case DW_OP_breg25:
|
||
return "DW_OP_breg25";
|
||
case DW_OP_breg26:
|
||
return "DW_OP_breg26";
|
||
case DW_OP_breg27:
|
||
return "DW_OP_breg27";
|
||
case DW_OP_breg28:
|
||
return "DW_OP_breg28";
|
||
case DW_OP_breg29:
|
||
return "DW_OP_breg29";
|
||
case DW_OP_breg30:
|
||
return "DW_OP_breg30";
|
||
case DW_OP_breg31:
|
||
return "DW_OP_breg31";
|
||
case DW_OP_regx:
|
||
return "DW_OP_regx";
|
||
case DW_OP_fbreg:
|
||
return "DW_OP_fbreg";
|
||
case DW_OP_bregx:
|
||
return "DW_OP_bregx";
|
||
case DW_OP_piece:
|
||
return "DW_OP_piece";
|
||
case DW_OP_deref_size:
|
||
return "DW_OP_deref_size";
|
||
case DW_OP_xderef_size:
|
||
return "DW_OP_xderef_size";
|
||
case DW_OP_nop:
|
||
return "DW_OP_nop";
|
||
/* DWARF 3 extensions. */
|
||
case DW_OP_push_object_address:
|
||
return "DW_OP_push_object_address";
|
||
case DW_OP_call2:
|
||
return "DW_OP_call2";
|
||
case DW_OP_call4:
|
||
return "DW_OP_call4";
|
||
case DW_OP_call_ref:
|
||
return "DW_OP_call_ref";
|
||
case DW_OP_form_tls_address:
|
||
return "DW_OP_form_tls_address";
|
||
case DW_OP_call_frame_cfa:
|
||
return "DW_OP_call_frame_cfa";
|
||
case DW_OP_bit_piece:
|
||
return "DW_OP_bit_piece";
|
||
/* DWARF 4 extensions. */
|
||
case DW_OP_implicit_value:
|
||
return "DW_OP_implicit_value";
|
||
case DW_OP_stack_value:
|
||
return "DW_OP_stack_value";
|
||
/* GNU extensions. */
|
||
case DW_OP_GNU_push_tls_address:
|
||
return "DW_OP_GNU_push_tls_address";
|
||
case DW_OP_GNU_uninit:
|
||
return "DW_OP_GNU_uninit";
|
||
case DW_OP_GNU_implicit_pointer:
|
||
return "DW_OP_GNU_implicit_pointer";
|
||
default:
|
||
return def ? "OP_<unknown>" : NULL;
|
||
}
|
||
}
|
||
|
||
static char *
|
||
dwarf_bool_name (unsigned mybool)
|
||
{
|
||
if (mybool)
|
||
return "TRUE";
|
||
else
|
||
return "FALSE";
|
||
}
|
||
|
||
/* Convert a DWARF type code into its string name. */
|
||
|
||
static char *
|
||
dwarf_type_encoding_name (unsigned enc)
|
||
{
|
||
switch (enc)
|
||
{
|
||
case DW_ATE_void:
|
||
return "DW_ATE_void";
|
||
case DW_ATE_address:
|
||
return "DW_ATE_address";
|
||
case DW_ATE_boolean:
|
||
return "DW_ATE_boolean";
|
||
case DW_ATE_complex_float:
|
||
return "DW_ATE_complex_float";
|
||
case DW_ATE_float:
|
||
return "DW_ATE_float";
|
||
case DW_ATE_signed:
|
||
return "DW_ATE_signed";
|
||
case DW_ATE_signed_char:
|
||
return "DW_ATE_signed_char";
|
||
case DW_ATE_unsigned:
|
||
return "DW_ATE_unsigned";
|
||
case DW_ATE_unsigned_char:
|
||
return "DW_ATE_unsigned_char";
|
||
/* DWARF 3. */
|
||
case DW_ATE_imaginary_float:
|
||
return "DW_ATE_imaginary_float";
|
||
case DW_ATE_packed_decimal:
|
||
return "DW_ATE_packed_decimal";
|
||
case DW_ATE_numeric_string:
|
||
return "DW_ATE_numeric_string";
|
||
case DW_ATE_edited:
|
||
return "DW_ATE_edited";
|
||
case DW_ATE_signed_fixed:
|
||
return "DW_ATE_signed_fixed";
|
||
case DW_ATE_unsigned_fixed:
|
||
return "DW_ATE_unsigned_fixed";
|
||
case DW_ATE_decimal_float:
|
||
return "DW_ATE_decimal_float";
|
||
/* DWARF 4. */
|
||
case DW_ATE_UTF:
|
||
return "DW_ATE_UTF";
|
||
/* HP extensions. */
|
||
case DW_ATE_HP_float80:
|
||
return "DW_ATE_HP_float80";
|
||
case DW_ATE_HP_complex_float80:
|
||
return "DW_ATE_HP_complex_float80";
|
||
case DW_ATE_HP_float128:
|
||
return "DW_ATE_HP_float128";
|
||
case DW_ATE_HP_complex_float128:
|
||
return "DW_ATE_HP_complex_float128";
|
||
case DW_ATE_HP_floathpintel:
|
||
return "DW_ATE_HP_floathpintel";
|
||
case DW_ATE_HP_imaginary_float80:
|
||
return "DW_ATE_HP_imaginary_float80";
|
||
case DW_ATE_HP_imaginary_float128:
|
||
return "DW_ATE_HP_imaginary_float128";
|
||
default:
|
||
return "DW_ATE_<unknown>";
|
||
}
|
||
}
|
||
|
||
/* Convert a DWARF call frame info operation to its string name. */
|
||
|
||
#if 0
|
||
static char *
|
||
dwarf_cfi_name (unsigned cfi_opc)
|
||
{
|
||
switch (cfi_opc)
|
||
{
|
||
case DW_CFA_advance_loc:
|
||
return "DW_CFA_advance_loc";
|
||
case DW_CFA_offset:
|
||
return "DW_CFA_offset";
|
||
case DW_CFA_restore:
|
||
return "DW_CFA_restore";
|
||
case DW_CFA_nop:
|
||
return "DW_CFA_nop";
|
||
case DW_CFA_set_loc:
|
||
return "DW_CFA_set_loc";
|
||
case DW_CFA_advance_loc1:
|
||
return "DW_CFA_advance_loc1";
|
||
case DW_CFA_advance_loc2:
|
||
return "DW_CFA_advance_loc2";
|
||
case DW_CFA_advance_loc4:
|
||
return "DW_CFA_advance_loc4";
|
||
case DW_CFA_offset_extended:
|
||
return "DW_CFA_offset_extended";
|
||
case DW_CFA_restore_extended:
|
||
return "DW_CFA_restore_extended";
|
||
case DW_CFA_undefined:
|
||
return "DW_CFA_undefined";
|
||
case DW_CFA_same_value:
|
||
return "DW_CFA_same_value";
|
||
case DW_CFA_register:
|
||
return "DW_CFA_register";
|
||
case DW_CFA_remember_state:
|
||
return "DW_CFA_remember_state";
|
||
case DW_CFA_restore_state:
|
||
return "DW_CFA_restore_state";
|
||
case DW_CFA_def_cfa:
|
||
return "DW_CFA_def_cfa";
|
||
case DW_CFA_def_cfa_register:
|
||
return "DW_CFA_def_cfa_register";
|
||
case DW_CFA_def_cfa_offset:
|
||
return "DW_CFA_def_cfa_offset";
|
||
/* DWARF 3. */
|
||
case DW_CFA_def_cfa_expression:
|
||
return "DW_CFA_def_cfa_expression";
|
||
case DW_CFA_expression:
|
||
return "DW_CFA_expression";
|
||
case DW_CFA_offset_extended_sf:
|
||
return "DW_CFA_offset_extended_sf";
|
||
case DW_CFA_def_cfa_sf:
|
||
return "DW_CFA_def_cfa_sf";
|
||
case DW_CFA_def_cfa_offset_sf:
|
||
return "DW_CFA_def_cfa_offset_sf";
|
||
case DW_CFA_val_offset:
|
||
return "DW_CFA_val_offset";
|
||
case DW_CFA_val_offset_sf:
|
||
return "DW_CFA_val_offset_sf";
|
||
case DW_CFA_val_expression:
|
||
return "DW_CFA_val_expression";
|
||
/* SGI/MIPS specific. */
|
||
case DW_CFA_MIPS_advance_loc8:
|
||
return "DW_CFA_MIPS_advance_loc8";
|
||
/* GNU extensions. */
|
||
case DW_CFA_GNU_window_save:
|
||
return "DW_CFA_GNU_window_save";
|
||
case DW_CFA_GNU_args_size:
|
||
return "DW_CFA_GNU_args_size";
|
||
case DW_CFA_GNU_negative_offset_extended:
|
||
return "DW_CFA_GNU_negative_offset_extended";
|
||
default:
|
||
return "DW_CFA_<unknown>";
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
|
||
{
|
||
unsigned int i;
|
||
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
|
||
dwarf_tag_name (die->tag), die->abbrev, die->offset);
|
||
|
||
if (die->parent != NULL)
|
||
{
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " parent at offset: 0x%x\n",
|
||
die->parent->offset);
|
||
}
|
||
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " has children: %s\n",
|
||
dwarf_bool_name (die->child != NULL));
|
||
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " attributes:\n");
|
||
|
||
for (i = 0; i < die->num_attrs; ++i)
|
||
{
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " %s (%s) ",
|
||
dwarf_attr_name (die->attrs[i].name),
|
||
dwarf_form_name (die->attrs[i].form));
|
||
|
||
switch (die->attrs[i].form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
case DW_FORM_addr:
|
||
fprintf_unfiltered (f, "address: ");
|
||
fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
|
||
break;
|
||
case DW_FORM_block2:
|
||
case DW_FORM_block4:
|
||
case DW_FORM_block:
|
||
case DW_FORM_block1:
|
||
fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
|
||
break;
|
||
case DW_FORM_exprloc:
|
||
fprintf_unfiltered (f, "expression: size %u",
|
||
DW_BLOCK (&die->attrs[i])->size);
|
||
break;
|
||
case DW_FORM_ref1:
|
||
case DW_FORM_ref2:
|
||
case DW_FORM_ref4:
|
||
fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
|
||
(long) (DW_ADDR (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_data1:
|
||
case DW_FORM_data2:
|
||
case DW_FORM_data4:
|
||
case DW_FORM_data8:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_sdata:
|
||
fprintf_unfiltered (f, "constant: %s",
|
||
pulongest (DW_UNSND (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_sec_offset:
|
||
fprintf_unfiltered (f, "section offset: %s",
|
||
pulongest (DW_UNSND (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_sig8:
|
||
if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
|
||
fprintf_unfiltered (f, "signatured type, offset: 0x%x",
|
||
DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
|
||
else
|
||
fprintf_unfiltered (f, "signatured type, offset: unknown");
|
||
break;
|
||
case DW_FORM_string:
|
||
case DW_FORM_strp:
|
||
fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
|
||
DW_STRING (&die->attrs[i])
|
||
? DW_STRING (&die->attrs[i]) : "",
|
||
DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
|
||
break;
|
||
case DW_FORM_flag:
|
||
if (DW_UNSND (&die->attrs[i]))
|
||
fprintf_unfiltered (f, "flag: TRUE");
|
||
else
|
||
fprintf_unfiltered (f, "flag: FALSE");
|
||
break;
|
||
case DW_FORM_flag_present:
|
||
fprintf_unfiltered (f, "flag: TRUE");
|
||
break;
|
||
case DW_FORM_indirect:
|
||
/* the reader will have reduced the indirect form to
|
||
the "base form" so this form should not occur */
|
||
fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
|
||
break;
|
||
default:
|
||
fprintf_unfiltered (f, "unsupported attribute form: %d.",
|
||
die->attrs[i].form);
|
||
break;
|
||
}
|
||
fprintf_unfiltered (f, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
dump_die_for_error (struct die_info *die)
|
||
{
|
||
dump_die_shallow (gdb_stderr, 0, die);
|
||
}
|
||
|
||
static void
|
||
dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
|
||
{
|
||
int indent = level * 4;
|
||
|
||
gdb_assert (die != NULL);
|
||
|
||
if (level >= max_level)
|
||
return;
|
||
|
||
dump_die_shallow (f, indent, die);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " Children:");
|
||
if (level + 1 < max_level)
|
||
{
|
||
fprintf_unfiltered (f, "\n");
|
||
dump_die_1 (f, level + 1, max_level, die->child);
|
||
}
|
||
else
|
||
{
|
||
fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
|
||
}
|
||
}
|
||
|
||
if (die->sibling != NULL && level > 0)
|
||
{
|
||
dump_die_1 (f, level, max_level, die->sibling);
|
||
}
|
||
}
|
||
|
||
/* This is called from the pdie macro in gdbinit.in.
|
||
It's not static so gcc will keep a copy callable from gdb. */
|
||
|
||
void
|
||
dump_die (struct die_info *die, int max_level)
|
||
{
|
||
dump_die_1 (gdb_stdlog, 0, max_level, die);
|
||
}
|
||
|
||
static void
|
||
store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
|
||
|
||
*slot = die;
|
||
}
|
||
|
||
static int
|
||
is_ref_attr (struct attribute *attr)
|
||
{
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
case DW_FORM_ref1:
|
||
case DW_FORM_ref2:
|
||
case DW_FORM_ref4:
|
||
case DW_FORM_ref8:
|
||
case DW_FORM_ref_udata:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static unsigned int
|
||
dwarf2_get_ref_die_offset (struct attribute *attr)
|
||
{
|
||
if (is_ref_attr (attr))
|
||
return DW_ADDR (attr);
|
||
|
||
complaint (&symfile_complaints,
|
||
_("unsupported die ref attribute form: '%s'"),
|
||
dwarf_form_name (attr->form));
|
||
return 0;
|
||
}
|
||
|
||
/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
|
||
* the value held by the attribute is not constant. */
|
||
|
||
static LONGEST
|
||
dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
|
||
{
|
||
if (attr->form == DW_FORM_sdata)
|
||
return DW_SND (attr);
|
||
else if (attr->form == DW_FORM_udata
|
||
|| attr->form == DW_FORM_data1
|
||
|| attr->form == DW_FORM_data2
|
||
|| attr->form == DW_FORM_data4
|
||
|| attr->form == DW_FORM_data8)
|
||
return DW_UNSND (attr);
|
||
else
|
||
{
|
||
complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
|
||
dwarf_form_name (attr->form));
|
||
return default_value;
|
||
}
|
||
}
|
||
|
||
/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
|
||
unit and add it to our queue.
|
||
The result is non-zero if PER_CU was queued, otherwise the result is zero
|
||
meaning either PER_CU is already queued or it is already loaded. */
|
||
|
||
static int
|
||
maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
/* We may arrive here during partial symbol reading, if we need full
|
||
DIEs to process an unusual case (e.g. template arguments). Do
|
||
not queue PER_CU, just tell our caller to load its DIEs. */
|
||
if (dwarf2_per_objfile->reading_partial_symbols)
|
||
{
|
||
if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Mark the dependence relation so that we don't flush PER_CU
|
||
too early. */
|
||
dwarf2_add_dependence (this_cu, per_cu);
|
||
|
||
/* If it's already on the queue, we have nothing to do. */
|
||
if (per_cu->queued)
|
||
return 0;
|
||
|
||
/* If the compilation unit is already loaded, just mark it as
|
||
used. */
|
||
if (per_cu->cu != NULL)
|
||
{
|
||
per_cu->cu->last_used = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Add it to the queue. */
|
||
queue_comp_unit (per_cu, this_cu->objfile);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Follow reference or signature attribute ATTR of SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result. */
|
||
|
||
static struct die_info *
|
||
follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
struct die_info *die;
|
||
|
||
if (is_ref_attr (attr))
|
||
die = follow_die_ref (src_die, attr, ref_cu);
|
||
else if (attr->form == DW_FORM_sig8)
|
||
die = follow_die_sig (src_die, attr, ref_cu);
|
||
else
|
||
{
|
||
dump_die_for_error (src_die);
|
||
error (_("Dwarf Error: Expected reference attribute [in module %s]"),
|
||
(*ref_cu)->objfile->name);
|
||
}
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Follow reference OFFSET.
|
||
On entry *REF_CU is the CU of the source die referencing OFFSET.
|
||
On exit *REF_CU is the CU of the result.
|
||
Returns NULL if OFFSET is invalid. */
|
||
|
||
static struct die_info *
|
||
follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
|
||
{
|
||
struct die_info temp_die;
|
||
struct dwarf2_cu *target_cu, *cu = *ref_cu;
|
||
|
||
gdb_assert (cu->per_cu != NULL);
|
||
|
||
target_cu = cu;
|
||
|
||
if (cu->per_cu->from_debug_types)
|
||
{
|
||
/* .debug_types CUs cannot reference anything outside their CU.
|
||
If they need to, they have to reference a signatured type via
|
||
DW_FORM_sig8. */
|
||
if (! offset_in_cu_p (&cu->header, offset))
|
||
return NULL;
|
||
}
|
||
else if (! offset_in_cu_p (&cu->header, offset))
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
|
||
|
||
/* If necessary, add it to the queue and load its DIEs. */
|
||
if (maybe_queue_comp_unit (cu, per_cu))
|
||
load_full_comp_unit (per_cu, cu->objfile);
|
||
|
||
target_cu = per_cu->cu;
|
||
}
|
||
else if (cu->dies == NULL)
|
||
{
|
||
/* We're loading full DIEs during partial symbol reading. */
|
||
gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
|
||
load_full_comp_unit (cu->per_cu, cu->objfile);
|
||
}
|
||
|
||
*ref_cu = target_cu;
|
||
temp_die.offset = offset;
|
||
return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
|
||
}
|
||
|
||
/* Follow reference attribute ATTR of SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result. */
|
||
|
||
static struct die_info *
|
||
follow_die_ref (struct die_info *src_die, struct attribute *attr,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
unsigned int offset = dwarf2_get_ref_die_offset (attr);
|
||
struct dwarf2_cu *cu = *ref_cu;
|
||
struct die_info *die;
|
||
|
||
die = follow_die_offset (offset, ref_cu);
|
||
if (!die)
|
||
error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
|
||
"at 0x%x [in module %s]"),
|
||
offset, src_die->offset, cu->objfile->name);
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
|
||
value is intended for DW_OP_call*. */
|
||
|
||
struct dwarf2_locexpr_baton
|
||
dwarf2_fetch_die_location_block (unsigned int offset,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
CORE_ADDR (*get_frame_pc) (void *baton),
|
||
void *baton)
|
||
{
|
||
struct dwarf2_cu *cu = per_cu->cu;
|
||
struct die_info *die;
|
||
struct attribute *attr;
|
||
struct dwarf2_locexpr_baton retval;
|
||
|
||
dw2_setup (per_cu->objfile);
|
||
|
||
die = follow_die_offset (offset, &cu);
|
||
if (!die)
|
||
error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
|
||
offset, per_cu->cu->objfile->name);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (!attr)
|
||
{
|
||
/* DWARF: "If there is no such attribute, then there is no effect.". */
|
||
|
||
retval.data = NULL;
|
||
retval.size = 0;
|
||
}
|
||
else if (attr_form_is_section_offset (attr))
|
||
{
|
||
struct dwarf2_loclist_baton loclist_baton;
|
||
CORE_ADDR pc = (*get_frame_pc) (baton);
|
||
size_t size;
|
||
|
||
fill_in_loclist_baton (cu, &loclist_baton, attr);
|
||
|
||
retval.data = dwarf2_find_location_expression (&loclist_baton,
|
||
&size, pc);
|
||
retval.size = size;
|
||
}
|
||
else
|
||
{
|
||
if (!attr_form_is_block (attr))
|
||
error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
|
||
"is neither DW_FORM_block* nor DW_FORM_exprloc"),
|
||
offset, per_cu->cu->objfile->name);
|
||
|
||
retval.data = DW_BLOCK (attr)->data;
|
||
retval.size = DW_BLOCK (attr)->size;
|
||
}
|
||
retval.per_cu = cu->per_cu;
|
||
return retval;
|
||
}
|
||
|
||
/* Follow the signature attribute ATTR in SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result. */
|
||
|
||
static struct die_info *
|
||
follow_die_sig (struct die_info *src_die, struct attribute *attr,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
struct objfile *objfile = (*ref_cu)->objfile;
|
||
struct die_info temp_die;
|
||
struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
|
||
struct dwarf2_cu *sig_cu;
|
||
struct die_info *die;
|
||
|
||
/* sig_type will be NULL if the signatured type is missing from
|
||
the debug info. */
|
||
if (sig_type == NULL)
|
||
error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
|
||
"at 0x%x [in module %s]"),
|
||
src_die->offset, objfile->name);
|
||
|
||
/* If necessary, add it to the queue and load its DIEs. */
|
||
|
||
if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
|
||
read_signatured_type (objfile, sig_type);
|
||
|
||
gdb_assert (sig_type->per_cu.cu != NULL);
|
||
|
||
sig_cu = sig_type->per_cu.cu;
|
||
temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
|
||
die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
|
||
if (die)
|
||
{
|
||
*ref_cu = sig_cu;
|
||
return die;
|
||
}
|
||
|
||
error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
|
||
"at 0x%x [in module %s]"),
|
||
sig_type->type_offset, src_die->offset, objfile->name);
|
||
}
|
||
|
||
/* Given an offset of a signatured type, return its signatured_type. */
|
||
|
||
static struct signatured_type *
|
||
lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
|
||
{
|
||
gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
|
||
unsigned int length, initial_length_size;
|
||
unsigned int sig_offset;
|
||
struct signatured_type find_entry, *type_sig;
|
||
|
||
length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
|
||
sig_offset = (initial_length_size
|
||
+ 2 /*version*/
|
||
+ (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
|
||
+ 1 /*address_size*/);
|
||
find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
|
||
type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
|
||
|
||
/* This is only used to lookup previously recorded types.
|
||
If we didn't find it, it's our bug. */
|
||
gdb_assert (type_sig != NULL);
|
||
gdb_assert (offset == type_sig->offset);
|
||
|
||
return type_sig;
|
||
}
|
||
|
||
/* Read in signatured type at OFFSET and build its CU and die(s). */
|
||
|
||
static void
|
||
read_signatured_type_at_offset (struct objfile *objfile,
|
||
unsigned int offset)
|
||
{
|
||
struct signatured_type *type_sig;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
|
||
|
||
/* We have the section offset, but we need the signature to do the
|
||
hash table lookup. */
|
||
type_sig = lookup_signatured_type_at_offset (objfile, offset);
|
||
|
||
gdb_assert (type_sig->per_cu.cu == NULL);
|
||
|
||
read_signatured_type (objfile, type_sig);
|
||
|
||
gdb_assert (type_sig->per_cu.cu != NULL);
|
||
}
|
||
|
||
/* Read in a signatured type and build its CU and DIEs. */
|
||
|
||
static void
|
||
read_signatured_type (struct objfile *objfile,
|
||
struct signatured_type *type_sig)
|
||
{
|
||
gdb_byte *types_ptr;
|
||
struct die_reader_specs reader_specs;
|
||
struct dwarf2_cu *cu;
|
||
ULONGEST signature;
|
||
struct cleanup *back_to, *free_cu_cleanup;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
|
||
types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
|
||
|
||
gdb_assert (type_sig->per_cu.cu == NULL);
|
||
|
||
cu = xmalloc (sizeof (*cu));
|
||
init_one_comp_unit (cu, objfile);
|
||
|
||
type_sig->per_cu.cu = cu;
|
||
cu->per_cu = &type_sig->per_cu;
|
||
|
||
/* If an error occurs while loading, release our storage. */
|
||
free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
|
||
|
||
types_ptr = read_type_comp_unit_head (&cu->header, &signature,
|
||
types_ptr, objfile->obfd);
|
||
gdb_assert (signature == type_sig->signature);
|
||
|
||
cu->die_hash
|
||
= htab_create_alloc_ex (cu->header.length / 12,
|
||
die_hash,
|
||
die_eq,
|
||
NULL,
|
||
&cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
dwarf2_read_abbrevs (cu->objfile->obfd, cu);
|
||
back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
|
||
|
||
init_cu_die_reader (&reader_specs, cu);
|
||
|
||
cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
|
||
NULL /*parent*/);
|
||
|
||
/* We try not to read any attributes in this function, because not
|
||
all objfiles needed for references have been loaded yet, and symbol
|
||
table processing isn't initialized. But we have to set the CU language,
|
||
or we won't be able to build types correctly. */
|
||
prepare_one_comp_unit (cu, cu->dies);
|
||
|
||
do_cleanups (back_to);
|
||
|
||
/* We've successfully allocated this compilation unit. Let our caller
|
||
clean it up when finished with it. */
|
||
discard_cleanups (free_cu_cleanup);
|
||
|
||
type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
|
||
dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
|
||
}
|
||
|
||
/* Decode simple location descriptions.
|
||
Given a pointer to a dwarf block that defines a location, compute
|
||
the location and return the value.
|
||
|
||
NOTE drow/2003-11-18: This function is called in two situations
|
||
now: for the address of static or global variables (partial symbols
|
||
only) and for offsets into structures which are expected to be
|
||
(more or less) constant. The partial symbol case should go away,
|
||
and only the constant case should remain. That will let this
|
||
function complain more accurately. A few special modes are allowed
|
||
without complaint for global variables (for instance, global
|
||
register values and thread-local values).
|
||
|
||
A location description containing no operations indicates that the
|
||
object is optimized out. The return value is 0 for that case.
|
||
FIXME drow/2003-11-16: No callers check for this case any more; soon all
|
||
callers will only want a very basic result and this can become a
|
||
complaint.
|
||
|
||
Note that stack[0] is unused except as a default error return. */
|
||
|
||
static CORE_ADDR
|
||
decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
int i;
|
||
int size = blk->size;
|
||
gdb_byte *data = blk->data;
|
||
CORE_ADDR stack[64];
|
||
int stacki;
|
||
unsigned int bytes_read, unsnd;
|
||
gdb_byte op;
|
||
|
||
i = 0;
|
||
stacki = 0;
|
||
stack[stacki] = 0;
|
||
stack[++stacki] = 0;
|
||
|
||
while (i < size)
|
||
{
|
||
op = data[i++];
|
||
switch (op)
|
||
{
|
||
case DW_OP_lit0:
|
||
case DW_OP_lit1:
|
||
case DW_OP_lit2:
|
||
case DW_OP_lit3:
|
||
case DW_OP_lit4:
|
||
case DW_OP_lit5:
|
||
case DW_OP_lit6:
|
||
case DW_OP_lit7:
|
||
case DW_OP_lit8:
|
||
case DW_OP_lit9:
|
||
case DW_OP_lit10:
|
||
case DW_OP_lit11:
|
||
case DW_OP_lit12:
|
||
case DW_OP_lit13:
|
||
case DW_OP_lit14:
|
||
case DW_OP_lit15:
|
||
case DW_OP_lit16:
|
||
case DW_OP_lit17:
|
||
case DW_OP_lit18:
|
||
case DW_OP_lit19:
|
||
case DW_OP_lit20:
|
||
case DW_OP_lit21:
|
||
case DW_OP_lit22:
|
||
case DW_OP_lit23:
|
||
case DW_OP_lit24:
|
||
case DW_OP_lit25:
|
||
case DW_OP_lit26:
|
||
case DW_OP_lit27:
|
||
case DW_OP_lit28:
|
||
case DW_OP_lit29:
|
||
case DW_OP_lit30:
|
||
case DW_OP_lit31:
|
||
stack[++stacki] = op - DW_OP_lit0;
|
||
break;
|
||
|
||
case DW_OP_reg0:
|
||
case DW_OP_reg1:
|
||
case DW_OP_reg2:
|
||
case DW_OP_reg3:
|
||
case DW_OP_reg4:
|
||
case DW_OP_reg5:
|
||
case DW_OP_reg6:
|
||
case DW_OP_reg7:
|
||
case DW_OP_reg8:
|
||
case DW_OP_reg9:
|
||
case DW_OP_reg10:
|
||
case DW_OP_reg11:
|
||
case DW_OP_reg12:
|
||
case DW_OP_reg13:
|
||
case DW_OP_reg14:
|
||
case DW_OP_reg15:
|
||
case DW_OP_reg16:
|
||
case DW_OP_reg17:
|
||
case DW_OP_reg18:
|
||
case DW_OP_reg19:
|
||
case DW_OP_reg20:
|
||
case DW_OP_reg21:
|
||
case DW_OP_reg22:
|
||
case DW_OP_reg23:
|
||
case DW_OP_reg24:
|
||
case DW_OP_reg25:
|
||
case DW_OP_reg26:
|
||
case DW_OP_reg27:
|
||
case DW_OP_reg28:
|
||
case DW_OP_reg29:
|
||
case DW_OP_reg30:
|
||
case DW_OP_reg31:
|
||
stack[++stacki] = op - DW_OP_reg0;
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_regx:
|
||
unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
|
||
i += bytes_read;
|
||
stack[++stacki] = unsnd;
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_addr:
|
||
stack[++stacki] = read_address (objfile->obfd, &data[i],
|
||
cu, &bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_const1u:
|
||
stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
|
||
i += 1;
|
||
break;
|
||
|
||
case DW_OP_const1s:
|
||
stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
|
||
i += 1;
|
||
break;
|
||
|
||
case DW_OP_const2u:
|
||
stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
|
||
i += 2;
|
||
break;
|
||
|
||
case DW_OP_const2s:
|
||
stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
|
||
i += 2;
|
||
break;
|
||
|
||
case DW_OP_const4u:
|
||
stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
|
||
i += 4;
|
||
break;
|
||
|
||
case DW_OP_const4s:
|
||
stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
|
||
i += 4;
|
||
break;
|
||
|
||
case DW_OP_constu:
|
||
stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
|
||
&bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_consts:
|
||
stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_dup:
|
||
stack[stacki + 1] = stack[stacki];
|
||
stacki++;
|
||
break;
|
||
|
||
case DW_OP_plus:
|
||
stack[stacki - 1] += stack[stacki];
|
||
stacki--;
|
||
break;
|
||
|
||
case DW_OP_plus_uconst:
|
||
stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_minus:
|
||
stack[stacki - 1] -= stack[stacki];
|
||
stacki--;
|
||
break;
|
||
|
||
case DW_OP_deref:
|
||
/* If we're not the last op, then we definitely can't encode
|
||
this using GDB's address_class enum. This is valid for partial
|
||
global symbols, although the variable's address will be bogus
|
||
in the psymtab. */
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_GNU_push_tls_address:
|
||
/* The top of the stack has the offset from the beginning
|
||
of the thread control block at which the variable is located. */
|
||
/* Nothing should follow this operator, so the top of stack would
|
||
be returned. */
|
||
/* This is valid for partial global symbols, but the variable's
|
||
address will be bogus in the psymtab. */
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_GNU_uninit:
|
||
break;
|
||
|
||
default:
|
||
complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
|
||
dwarf_stack_op_name (op, 1));
|
||
return (stack[stacki]);
|
||
}
|
||
|
||
/* Enforce maximum stack depth of SIZE-1 to avoid writing
|
||
outside of the allocated space. Also enforce minimum>0. */
|
||
if (stacki >= ARRAY_SIZE (stack) - 1)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("location description stack overflow"));
|
||
return 0;
|
||
}
|
||
|
||
if (stacki <= 0)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("location description stack underflow"));
|
||
return 0;
|
||
}
|
||
}
|
||
return (stack[stacki]);
|
||
}
|
||
|
||
/* memory allocation interface */
|
||
|
||
static struct dwarf_block *
|
||
dwarf_alloc_block (struct dwarf2_cu *cu)
|
||
{
|
||
struct dwarf_block *blk;
|
||
|
||
blk = (struct dwarf_block *)
|
||
obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
|
||
return (blk);
|
||
}
|
||
|
||
static struct abbrev_info *
|
||
dwarf_alloc_abbrev (struct dwarf2_cu *cu)
|
||
{
|
||
struct abbrev_info *abbrev;
|
||
|
||
abbrev = (struct abbrev_info *)
|
||
obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
|
||
memset (abbrev, 0, sizeof (struct abbrev_info));
|
||
return (abbrev);
|
||
}
|
||
|
||
static struct die_info *
|
||
dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
|
||
{
|
||
struct die_info *die;
|
||
size_t size = sizeof (struct die_info);
|
||
|
||
if (num_attrs > 1)
|
||
size += (num_attrs - 1) * sizeof (struct attribute);
|
||
|
||
die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
|
||
memset (die, 0, sizeof (struct die_info));
|
||
return (die);
|
||
}
|
||
|
||
|
||
/* Macro support. */
|
||
|
||
|
||
/* Return the full name of file number I in *LH's file name table.
|
||
Use COMP_DIR as the name of the current directory of the
|
||
compilation. The result is allocated using xmalloc; the caller is
|
||
responsible for freeing it. */
|
||
static char *
|
||
file_full_name (int file, struct line_header *lh, const char *comp_dir)
|
||
{
|
||
/* Is the file number a valid index into the line header's file name
|
||
table? Remember that file numbers start with one, not zero. */
|
||
if (1 <= file && file <= lh->num_file_names)
|
||
{
|
||
struct file_entry *fe = &lh->file_names[file - 1];
|
||
|
||
if (IS_ABSOLUTE_PATH (fe->name))
|
||
return xstrdup (fe->name);
|
||
else
|
||
{
|
||
const char *dir;
|
||
int dir_len;
|
||
char *full_name;
|
||
|
||
if (fe->dir_index)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
else
|
||
dir = comp_dir;
|
||
|
||
if (dir)
|
||
{
|
||
dir_len = strlen (dir);
|
||
full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
|
||
strcpy (full_name, dir);
|
||
full_name[dir_len] = '/';
|
||
strcpy (full_name + dir_len + 1, fe->name);
|
||
return full_name;
|
||
}
|
||
else
|
||
return xstrdup (fe->name);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The compiler produced a bogus file number. We can at least
|
||
record the macro definitions made in the file, even if we
|
||
won't be able to find the file by name. */
|
||
char fake_name[80];
|
||
|
||
sprintf (fake_name, "<bad macro file number %d>", file);
|
||
|
||
complaint (&symfile_complaints,
|
||
_("bad file number in macro information (%d)"),
|
||
file);
|
||
|
||
return xstrdup (fake_name);
|
||
}
|
||
}
|
||
|
||
|
||
static struct macro_source_file *
|
||
macro_start_file (int file, int line,
|
||
struct macro_source_file *current_file,
|
||
const char *comp_dir,
|
||
struct line_header *lh, struct objfile *objfile)
|
||
{
|
||
/* The full name of this source file. */
|
||
char *full_name = file_full_name (file, lh, comp_dir);
|
||
|
||
/* We don't create a macro table for this compilation unit
|
||
at all until we actually get a filename. */
|
||
if (! pending_macros)
|
||
pending_macros = new_macro_table (&objfile->objfile_obstack,
|
||
objfile->macro_cache);
|
||
|
||
if (! current_file)
|
||
/* If we have no current file, then this must be the start_file
|
||
directive for the compilation unit's main source file. */
|
||
current_file = macro_set_main (pending_macros, full_name);
|
||
else
|
||
current_file = macro_include (current_file, line, full_name);
|
||
|
||
xfree (full_name);
|
||
|
||
return current_file;
|
||
}
|
||
|
||
|
||
/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
|
||
followed by a null byte. */
|
||
static char *
|
||
copy_string (const char *buf, int len)
|
||
{
|
||
char *s = xmalloc (len + 1);
|
||
|
||
memcpy (s, buf, len);
|
||
s[len] = '\0';
|
||
return s;
|
||
}
|
||
|
||
|
||
static const char *
|
||
consume_improper_spaces (const char *p, const char *body)
|
||
{
|
||
if (*p == ' ')
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("macro definition contains spaces in formal argument list:\n`%s'"),
|
||
body);
|
||
|
||
while (*p == ' ')
|
||
p++;
|
||
}
|
||
|
||
return p;
|
||
}
|
||
|
||
|
||
static void
|
||
parse_macro_definition (struct macro_source_file *file, int line,
|
||
const char *body)
|
||
{
|
||
const char *p;
|
||
|
||
/* The body string takes one of two forms. For object-like macro
|
||
definitions, it should be:
|
||
|
||
<macro name> " " <definition>
|
||
|
||
For function-like macro definitions, it should be:
|
||
|
||
<macro name> "() " <definition>
|
||
or
|
||
<macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
|
||
|
||
Spaces may appear only where explicitly indicated, and in the
|
||
<definition>.
|
||
|
||
The Dwarf 2 spec says that an object-like macro's name is always
|
||
followed by a space, but versions of GCC around March 2002 omit
|
||
the space when the macro's definition is the empty string.
|
||
|
||
The Dwarf 2 spec says that there should be no spaces between the
|
||
formal arguments in a function-like macro's formal argument list,
|
||
but versions of GCC around March 2002 include spaces after the
|
||
commas. */
|
||
|
||
|
||
/* Find the extent of the macro name. The macro name is terminated
|
||
by either a space or null character (for an object-like macro) or
|
||
an opening paren (for a function-like macro). */
|
||
for (p = body; *p; p++)
|
||
if (*p == ' ' || *p == '(')
|
||
break;
|
||
|
||
if (*p == ' ' || *p == '\0')
|
||
{
|
||
/* It's an object-like macro. */
|
||
int name_len = p - body;
|
||
char *name = copy_string (body, name_len);
|
||
const char *replacement;
|
||
|
||
if (*p == ' ')
|
||
replacement = body + name_len + 1;
|
||
else
|
||
{
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
replacement = body + name_len;
|
||
}
|
||
|
||
macro_define_object (file, line, name, replacement);
|
||
|
||
xfree (name);
|
||
}
|
||
else if (*p == '(')
|
||
{
|
||
/* It's a function-like macro. */
|
||
char *name = copy_string (body, p - body);
|
||
int argc = 0;
|
||
int argv_size = 1;
|
||
char **argv = xmalloc (argv_size * sizeof (*argv));
|
||
|
||
p++;
|
||
|
||
p = consume_improper_spaces (p, body);
|
||
|
||
/* Parse the formal argument list. */
|
||
while (*p && *p != ')')
|
||
{
|
||
/* Find the extent of the current argument name. */
|
||
const char *arg_start = p;
|
||
|
||
while (*p && *p != ',' && *p != ')' && *p != ' ')
|
||
p++;
|
||
|
||
if (! *p || p == arg_start)
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
else
|
||
{
|
||
/* Make sure argv has room for the new argument. */
|
||
if (argc >= argv_size)
|
||
{
|
||
argv_size *= 2;
|
||
argv = xrealloc (argv, argv_size * sizeof (*argv));
|
||
}
|
||
|
||
argv[argc++] = copy_string (arg_start, p - arg_start);
|
||
}
|
||
|
||
p = consume_improper_spaces (p, body);
|
||
|
||
/* Consume the comma, if present. */
|
||
if (*p == ',')
|
||
{
|
||
p++;
|
||
|
||
p = consume_improper_spaces (p, body);
|
||
}
|
||
}
|
||
|
||
if (*p == ')')
|
||
{
|
||
p++;
|
||
|
||
if (*p == ' ')
|
||
/* Perfectly formed definition, no complaints. */
|
||
macro_define_function (file, line, name,
|
||
argc, (const char **) argv,
|
||
p + 1);
|
||
else if (*p == '\0')
|
||
{
|
||
/* Complain, but do define it. */
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
macro_define_function (file, line, name,
|
||
argc, (const char **) argv,
|
||
p);
|
||
}
|
||
else
|
||
/* Just complain. */
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
}
|
||
else
|
||
/* Just complain. */
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
|
||
xfree (name);
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < argc; i++)
|
||
xfree (argv[i]);
|
||
}
|
||
xfree (argv);
|
||
}
|
||
else
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
}
|
||
|
||
|
||
static void
|
||
dwarf_decode_macros (struct line_header *lh, unsigned int offset,
|
||
char *comp_dir, bfd *abfd,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
gdb_byte *mac_ptr, *mac_end;
|
||
struct macro_source_file *current_file = 0;
|
||
enum dwarf_macinfo_record_type macinfo_type;
|
||
int at_commandline;
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile,
|
||
&dwarf2_per_objfile->macinfo);
|
||
if (dwarf2_per_objfile->macinfo.buffer == NULL)
|
||
{
|
||
complaint (&symfile_complaints, _("missing .debug_macinfo section"));
|
||
return;
|
||
}
|
||
|
||
/* First pass: Find the name of the base filename.
|
||
This filename is needed in order to process all macros whose definition
|
||
(or undefinition) comes from the command line. These macros are defined
|
||
before the first DW_MACINFO_start_file entry, and yet still need to be
|
||
associated to the base file.
|
||
|
||
To determine the base file name, we scan the macro definitions until we
|
||
reach the first DW_MACINFO_start_file entry. We then initialize
|
||
CURRENT_FILE accordingly so that any macro definition found before the
|
||
first DW_MACINFO_start_file can still be associated to the base file. */
|
||
|
||
mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
|
||
mac_end = dwarf2_per_objfile->macinfo.buffer
|
||
+ dwarf2_per_objfile->macinfo.size;
|
||
|
||
do
|
||
{
|
||
/* Do we at least have room for a macinfo type byte? */
|
||
if (mac_ptr >= mac_end)
|
||
{
|
||
/* Complaint is printed during the second pass as GDB will probably
|
||
stop the first pass earlier upon finding DW_MACINFO_start_file. */
|
||
break;
|
||
}
|
||
|
||
macinfo_type = read_1_byte (abfd, mac_ptr);
|
||
mac_ptr++;
|
||
|
||
switch (macinfo_type)
|
||
{
|
||
/* A zero macinfo type indicates the end of the macro
|
||
information. */
|
||
case 0:
|
||
break;
|
||
|
||
case DW_MACINFO_define:
|
||
case DW_MACINFO_undef:
|
||
/* Only skip the data by MAC_PTR. */
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
}
|
||
break;
|
||
|
||
case DW_MACINFO_start_file:
|
||
{
|
||
unsigned int bytes_read;
|
||
int line, file;
|
||
|
||
line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
current_file = macro_start_file (file, line, current_file, comp_dir,
|
||
lh, cu->objfile);
|
||
}
|
||
break;
|
||
|
||
case DW_MACINFO_end_file:
|
||
/* No data to skip by MAC_PTR. */
|
||
break;
|
||
|
||
case DW_MACINFO_vendor_ext:
|
||
/* Only skip the data by MAC_PTR. */
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
} while (macinfo_type != 0 && current_file == NULL);
|
||
|
||
/* Second pass: Process all entries.
|
||
|
||
Use the AT_COMMAND_LINE flag to determine whether we are still processing
|
||
command-line macro definitions/undefinitions. This flag is unset when we
|
||
reach the first DW_MACINFO_start_file entry. */
|
||
|
||
mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
|
||
|
||
/* Determines if GDB is still before first DW_MACINFO_start_file. If true
|
||
GDB is still reading the definitions from command line. First
|
||
DW_MACINFO_start_file will need to be ignored as it was already executed
|
||
to create CURRENT_FILE for the main source holding also the command line
|
||
definitions. On first met DW_MACINFO_start_file this flag is reset to
|
||
normally execute all the remaining DW_MACINFO_start_file macinfos. */
|
||
|
||
at_commandline = 1;
|
||
|
||
do
|
||
{
|
||
/* Do we at least have room for a macinfo type byte? */
|
||
if (mac_ptr >= mac_end)
|
||
{
|
||
dwarf2_macros_too_long_complaint ();
|
||
break;
|
||
}
|
||
|
||
macinfo_type = read_1_byte (abfd, mac_ptr);
|
||
mac_ptr++;
|
||
|
||
switch (macinfo_type)
|
||
{
|
||
/* A zero macinfo type indicates the end of the macro
|
||
information. */
|
||
case 0:
|
||
break;
|
||
|
||
case DW_MACINFO_define:
|
||
case DW_MACINFO_undef:
|
||
{
|
||
unsigned int bytes_read;
|
||
int line;
|
||
char *body;
|
||
|
||
line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
body = read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
if (! current_file)
|
||
{
|
||
/* DWARF violation as no main source is present. */
|
||
complaint (&symfile_complaints,
|
||
_("debug info with no main source gives macro %s "
|
||
"on line %d: %s"),
|
||
macinfo_type == DW_MACINFO_define ?
|
||
_("definition") :
|
||
macinfo_type == DW_MACINFO_undef ?
|
||
_("undefinition") :
|
||
_("something-or-other"), line, body);
|
||
break;
|
||
}
|
||
if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
|
||
complaint (&symfile_complaints,
|
||
_("debug info gives %s macro %s with %s line %d: %s"),
|
||
at_commandline ? _("command-line") : _("in-file"),
|
||
macinfo_type == DW_MACINFO_define ?
|
||
_("definition") :
|
||
macinfo_type == DW_MACINFO_undef ?
|
||
_("undefinition") :
|
||
_("something-or-other"),
|
||
line == 0 ? _("zero") : _("non-zero"), line, body);
|
||
|
||
if (macinfo_type == DW_MACINFO_define)
|
||
parse_macro_definition (current_file, line, body);
|
||
else if (macinfo_type == DW_MACINFO_undef)
|
||
macro_undef (current_file, line, body);
|
||
}
|
||
break;
|
||
|
||
case DW_MACINFO_start_file:
|
||
{
|
||
unsigned int bytes_read;
|
||
int line, file;
|
||
|
||
line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
|
||
complaint (&symfile_complaints,
|
||
_("debug info gives source %d included "
|
||
"from %s at %s line %d"),
|
||
file, at_commandline ? _("command-line") : _("file"),
|
||
line == 0 ? _("zero") : _("non-zero"), line);
|
||
|
||
if (at_commandline)
|
||
{
|
||
/* This DW_MACINFO_start_file was executed in the pass one. */
|
||
at_commandline = 0;
|
||
}
|
||
else
|
||
current_file = macro_start_file (file, line,
|
||
current_file, comp_dir,
|
||
lh, cu->objfile);
|
||
}
|
||
break;
|
||
|
||
case DW_MACINFO_end_file:
|
||
if (! current_file)
|
||
complaint (&symfile_complaints,
|
||
_("macro debug info has an unmatched `close_file' directive"));
|
||
else
|
||
{
|
||
current_file = current_file->included_by;
|
||
if (! current_file)
|
||
{
|
||
enum dwarf_macinfo_record_type next_type;
|
||
|
||
/* GCC circa March 2002 doesn't produce the zero
|
||
type byte marking the end of the compilation
|
||
unit. Complain if it's not there, but exit no
|
||
matter what. */
|
||
|
||
/* Do we at least have room for a macinfo type byte? */
|
||
if (mac_ptr >= mac_end)
|
||
{
|
||
dwarf2_macros_too_long_complaint ();
|
||
return;
|
||
}
|
||
|
||
/* We don't increment mac_ptr here, so this is just
|
||
a look-ahead. */
|
||
next_type = read_1_byte (abfd, mac_ptr);
|
||
if (next_type != 0)
|
||
complaint (&symfile_complaints,
|
||
_("no terminating 0-type entry for macros in `.debug_macinfo' section"));
|
||
|
||
return;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DW_MACINFO_vendor_ext:
|
||
{
|
||
unsigned int bytes_read;
|
||
int constant;
|
||
char *string;
|
||
|
||
constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
string = read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
/* We don't recognize any vendor extensions. */
|
||
}
|
||
break;
|
||
}
|
||
} while (macinfo_type != 0);
|
||
}
|
||
|
||
/* Check if the attribute's form is a DW_FORM_block*
|
||
if so return true else false. */
|
||
static int
|
||
attr_form_is_block (struct attribute *attr)
|
||
{
|
||
return (attr == NULL ? 0 :
|
||
attr->form == DW_FORM_block1
|
||
|| attr->form == DW_FORM_block2
|
||
|| attr->form == DW_FORM_block4
|
||
|| attr->form == DW_FORM_block
|
||
|| attr->form == DW_FORM_exprloc);
|
||
}
|
||
|
||
/* Return non-zero if ATTR's value is a section offset --- classes
|
||
lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
|
||
You may use DW_UNSND (attr) to retrieve such offsets.
|
||
|
||
Section 7.5.4, "Attribute Encodings", explains that no attribute
|
||
may have a value that belongs to more than one of these classes; it
|
||
would be ambiguous if we did, because we use the same forms for all
|
||
of them. */
|
||
static int
|
||
attr_form_is_section_offset (struct attribute *attr)
|
||
{
|
||
return (attr->form == DW_FORM_data4
|
||
|| attr->form == DW_FORM_data8
|
||
|| attr->form == DW_FORM_sec_offset);
|
||
}
|
||
|
||
|
||
/* Return non-zero if ATTR's value falls in the 'constant' class, or
|
||
zero otherwise. When this function returns true, you can apply
|
||
dwarf2_get_attr_constant_value to it.
|
||
|
||
However, note that for some attributes you must check
|
||
attr_form_is_section_offset before using this test. DW_FORM_data4
|
||
and DW_FORM_data8 are members of both the constant class, and of
|
||
the classes that contain offsets into other debug sections
|
||
(lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
|
||
that, if an attribute's can be either a constant or one of the
|
||
section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
|
||
taken as section offsets, not constants. */
|
||
static int
|
||
attr_form_is_constant (struct attribute *attr)
|
||
{
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_sdata:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_data1:
|
||
case DW_FORM_data2:
|
||
case DW_FORM_data4:
|
||
case DW_FORM_data8:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* A helper function that fills in a dwarf2_loclist_baton. */
|
||
|
||
static void
|
||
fill_in_loclist_baton (struct dwarf2_cu *cu,
|
||
struct dwarf2_loclist_baton *baton,
|
||
struct attribute *attr)
|
||
{
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile,
|
||
&dwarf2_per_objfile->loc);
|
||
|
||
baton->per_cu = cu->per_cu;
|
||
gdb_assert (baton->per_cu);
|
||
/* We don't know how long the location list is, but make sure we
|
||
don't run off the edge of the section. */
|
||
baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
|
||
baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
|
||
baton->base_address = cu->base_address;
|
||
}
|
||
|
||
static void
|
||
dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
if (attr_form_is_section_offset (attr)
|
||
/* ".debug_loc" may not exist at all, or the offset may be outside
|
||
the section. If so, fall through to the complaint in the
|
||
other branch. */
|
||
&& DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
|
||
{
|
||
struct dwarf2_loclist_baton *baton;
|
||
|
||
baton = obstack_alloc (&cu->objfile->objfile_obstack,
|
||
sizeof (struct dwarf2_loclist_baton));
|
||
|
||
fill_in_loclist_baton (cu, baton, attr);
|
||
|
||
if (cu->base_known == 0)
|
||
complaint (&symfile_complaints,
|
||
_("Location list used without specifying the CU base address."));
|
||
|
||
SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
}
|
||
else
|
||
{
|
||
struct dwarf2_locexpr_baton *baton;
|
||
|
||
baton = obstack_alloc (&cu->objfile->objfile_obstack,
|
||
sizeof (struct dwarf2_locexpr_baton));
|
||
baton->per_cu = cu->per_cu;
|
||
gdb_assert (baton->per_cu);
|
||
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
/* Note that we're just copying the block's data pointer
|
||
here, not the actual data. We're still pointing into the
|
||
info_buffer for SYM's objfile; right now we never release
|
||
that buffer, but when we do clean up properly this may
|
||
need to change. */
|
||
baton->size = DW_BLOCK (attr)->size;
|
||
baton->data = DW_BLOCK (attr)->data;
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("location description",
|
||
SYMBOL_NATURAL_NAME (sym));
|
||
baton->size = 0;
|
||
baton->data = NULL;
|
||
}
|
||
|
||
SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
}
|
||
}
|
||
|
||
/* Return the OBJFILE associated with the compilation unit CU. If CU
|
||
came from a separate debuginfo file, then the master objfile is
|
||
returned. */
|
||
|
||
struct objfile *
|
||
dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct objfile *objfile = per_cu->objfile;
|
||
|
||
/* Return the master objfile, so that we can report and look up the
|
||
correct file containing this variable. */
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
objfile = objfile->separate_debug_objfile_backlink;
|
||
|
||
return objfile;
|
||
}
|
||
|
||
/* Return the address size given in the compilation unit header for CU. */
|
||
|
||
CORE_ADDR
|
||
dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
if (per_cu->cu)
|
||
return per_cu->cu->header.addr_size;
|
||
else
|
||
{
|
||
/* If the CU is not currently read in, we re-read its header. */
|
||
struct objfile *objfile = per_cu->objfile;
|
||
struct dwarf2_per_objfile *per_objfile
|
||
= objfile_data (objfile, dwarf2_objfile_data_key);
|
||
gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
|
||
struct comp_unit_head cu_header;
|
||
|
||
memset (&cu_header, 0, sizeof cu_header);
|
||
read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
|
||
return cu_header.addr_size;
|
||
}
|
||
}
|
||
|
||
/* Return the offset size given in the compilation unit header for CU. */
|
||
|
||
int
|
||
dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
if (per_cu->cu)
|
||
return per_cu->cu->header.offset_size;
|
||
else
|
||
{
|
||
/* If the CU is not currently read in, we re-read its header. */
|
||
struct objfile *objfile = per_cu->objfile;
|
||
struct dwarf2_per_objfile *per_objfile
|
||
= objfile_data (objfile, dwarf2_objfile_data_key);
|
||
gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
|
||
struct comp_unit_head cu_header;
|
||
|
||
memset (&cu_header, 0, sizeof cu_header);
|
||
read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
|
||
return cu_header.offset_size;
|
||
}
|
||
}
|
||
|
||
/* Return the text offset of the CU. The returned offset comes from
|
||
this CU's objfile. If this objfile came from a separate debuginfo
|
||
file, then the offset may be different from the corresponding
|
||
offset in the parent objfile. */
|
||
|
||
CORE_ADDR
|
||
dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct objfile *objfile = per_cu->objfile;
|
||
|
||
return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
/* Locate the .debug_info compilation unit from CU's objfile which contains
|
||
the DIE at OFFSET. Raises an error on failure. */
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dwarf2_find_containing_comp_unit (unsigned int offset,
|
||
struct objfile *objfile)
|
||
{
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
int low, high;
|
||
|
||
low = 0;
|
||
high = dwarf2_per_objfile->n_comp_units - 1;
|
||
while (high > low)
|
||
{
|
||
int mid = low + (high - low) / 2;
|
||
|
||
if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
|
||
high = mid;
|
||
else
|
||
low = mid + 1;
|
||
}
|
||
gdb_assert (low == high);
|
||
if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
|
||
{
|
||
if (low == 0)
|
||
error (_("Dwarf Error: could not find partial DIE containing "
|
||
"offset 0x%lx [in module %s]"),
|
||
(long) offset, bfd_get_filename (objfile->obfd));
|
||
|
||
gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
|
||
return dwarf2_per_objfile->all_comp_units[low-1];
|
||
}
|
||
else
|
||
{
|
||
this_cu = dwarf2_per_objfile->all_comp_units[low];
|
||
if (low == dwarf2_per_objfile->n_comp_units - 1
|
||
&& offset >= this_cu->offset + this_cu->length)
|
||
error (_("invalid dwarf2 offset %u"), offset);
|
||
gdb_assert (offset < this_cu->offset + this_cu->length);
|
||
return this_cu;
|
||
}
|
||
}
|
||
|
||
/* Locate the compilation unit from OBJFILE which is located at exactly
|
||
OFFSET. Raises an error on failure. */
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
|
||
{
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
|
||
this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
|
||
if (this_cu->offset != offset)
|
||
error (_("no compilation unit with offset %u."), offset);
|
||
return this_cu;
|
||
}
|
||
|
||
/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
|
||
|
||
static void
|
||
init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
|
||
{
|
||
memset (cu, 0, sizeof (*cu));
|
||
cu->objfile = objfile;
|
||
obstack_init (&cu->comp_unit_obstack);
|
||
}
|
||
|
||
/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
|
||
|
||
static void
|
||
prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
/* Set the language we're debugging. */
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
|
||
if (attr)
|
||
set_cu_language (DW_UNSND (attr), cu);
|
||
else
|
||
set_cu_language (language_minimal, cu);
|
||
}
|
||
|
||
/* Release one cached compilation unit, CU. We unlink it from the tree
|
||
of compilation units, but we don't remove it from the read_in_chain;
|
||
the caller is responsible for that.
|
||
NOTE: DATA is a void * because this function is also used as a
|
||
cleanup routine. */
|
||
|
||
static void
|
||
free_one_comp_unit (void *data)
|
||
{
|
||
struct dwarf2_cu *cu = data;
|
||
|
||
if (cu->per_cu != NULL)
|
||
cu->per_cu->cu = NULL;
|
||
cu->per_cu = NULL;
|
||
|
||
obstack_free (&cu->comp_unit_obstack, NULL);
|
||
|
||
xfree (cu);
|
||
}
|
||
|
||
/* This cleanup function is passed the address of a dwarf2_cu on the stack
|
||
when we're finished with it. We can't free the pointer itself, but be
|
||
sure to unlink it from the cache. Also release any associated storage
|
||
and perform cache maintenance.
|
||
|
||
Only used during partial symbol parsing. */
|
||
|
||
static void
|
||
free_stack_comp_unit (void *data)
|
||
{
|
||
struct dwarf2_cu *cu = data;
|
||
|
||
obstack_free (&cu->comp_unit_obstack, NULL);
|
||
cu->partial_dies = NULL;
|
||
|
||
if (cu->per_cu != NULL)
|
||
{
|
||
/* This compilation unit is on the stack in our caller, so we
|
||
should not xfree it. Just unlink it. */
|
||
cu->per_cu->cu = NULL;
|
||
cu->per_cu = NULL;
|
||
|
||
/* If we had a per-cu pointer, then we may have other compilation
|
||
units loaded, so age them now. */
|
||
age_cached_comp_units ();
|
||
}
|
||
}
|
||
|
||
/* Free all cached compilation units. */
|
||
|
||
static void
|
||
free_cached_comp_units (void *data)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu, **last_chain;
|
||
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
last_chain = &dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *next_cu;
|
||
|
||
next_cu = per_cu->cu->read_in_chain;
|
||
|
||
free_one_comp_unit (per_cu->cu);
|
||
*last_chain = next_cu;
|
||
|
||
per_cu = next_cu;
|
||
}
|
||
}
|
||
|
||
/* Increase the age counter on each cached compilation unit, and free
|
||
any that are too old. */
|
||
|
||
static void
|
||
age_cached_comp_units (void)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu, **last_chain;
|
||
|
||
dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
per_cu->cu->last_used ++;
|
||
if (per_cu->cu->last_used <= dwarf2_max_cache_age)
|
||
dwarf2_mark (per_cu->cu);
|
||
per_cu = per_cu->cu->read_in_chain;
|
||
}
|
||
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
last_chain = &dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *next_cu;
|
||
|
||
next_cu = per_cu->cu->read_in_chain;
|
||
|
||
if (!per_cu->cu->mark)
|
||
{
|
||
free_one_comp_unit (per_cu->cu);
|
||
*last_chain = next_cu;
|
||
}
|
||
else
|
||
last_chain = &per_cu->cu->read_in_chain;
|
||
|
||
per_cu = next_cu;
|
||
}
|
||
}
|
||
|
||
/* Remove a single compilation unit from the cache. */
|
||
|
||
static void
|
||
free_one_cached_comp_unit (void *target_cu)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu, **last_chain;
|
||
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
last_chain = &dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *next_cu;
|
||
|
||
next_cu = per_cu->cu->read_in_chain;
|
||
|
||
if (per_cu->cu == target_cu)
|
||
{
|
||
free_one_comp_unit (per_cu->cu);
|
||
*last_chain = next_cu;
|
||
break;
|
||
}
|
||
else
|
||
last_chain = &per_cu->cu->read_in_chain;
|
||
|
||
per_cu = next_cu;
|
||
}
|
||
}
|
||
|
||
/* Release all extra memory associated with OBJFILE. */
|
||
|
||
void
|
||
dwarf2_free_objfile (struct objfile *objfile)
|
||
{
|
||
dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
|
||
|
||
if (dwarf2_per_objfile == NULL)
|
||
return;
|
||
|
||
/* Cached DIE trees use xmalloc and the comp_unit_obstack. */
|
||
free_cached_comp_units (NULL);
|
||
|
||
if (dwarf2_per_objfile->using_index)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu =
|
||
dwarf2_per_objfile->all_comp_units[i];
|
||
|
||
if (!per_cu->v.quick->lines)
|
||
continue;
|
||
|
||
for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
|
||
{
|
||
if (per_cu->v.quick->file_names)
|
||
xfree ((void *) per_cu->v.quick->file_names[j]);
|
||
if (per_cu->v.quick->full_names)
|
||
xfree ((void *) per_cu->v.quick->full_names[j]);
|
||
}
|
||
|
||
free_line_header (per_cu->v.quick->lines);
|
||
}
|
||
}
|
||
|
||
/* Everything else should be on the objfile obstack. */
|
||
}
|
||
|
||
/* A pair of DIE offset and GDB type pointer. We store these
|
||
in a hash table separate from the DIEs, and preserve them
|
||
when the DIEs are flushed out of cache. */
|
||
|
||
struct dwarf2_offset_and_type
|
||
{
|
||
unsigned int offset;
|
||
struct type *type;
|
||
};
|
||
|
||
/* Hash function for a dwarf2_offset_and_type. */
|
||
|
||
static hashval_t
|
||
offset_and_type_hash (const void *item)
|
||
{
|
||
const struct dwarf2_offset_and_type *ofs = item;
|
||
|
||
return ofs->offset;
|
||
}
|
||
|
||
/* Equality function for a dwarf2_offset_and_type. */
|
||
|
||
static int
|
||
offset_and_type_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
|
||
const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
|
||
|
||
return ofs_lhs->offset == ofs_rhs->offset;
|
||
}
|
||
|
||
/* Set the type associated with DIE to TYPE. Save it in CU's hash
|
||
table if necessary. For convenience, return TYPE.
|
||
|
||
The DIEs reading must have careful ordering to:
|
||
* Not cause infite loops trying to read in DIEs as a prerequisite for
|
||
reading current DIE.
|
||
* Not trying to dereference contents of still incompletely read in types
|
||
while reading in other DIEs.
|
||
* Enable referencing still incompletely read in types just by a pointer to
|
||
the type without accessing its fields.
|
||
|
||
Therefore caller should follow these rules:
|
||
* Try to fetch any prerequisite types we may need to build this DIE type
|
||
before building the type and calling set_die_type.
|
||
* After building type call set_die_type for current DIE as soon as
|
||
possible before fetching more types to complete the current type.
|
||
* Make the type as complete as possible before fetching more types. */
|
||
|
||
static struct type *
|
||
set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
|
||
{
|
||
struct dwarf2_offset_and_type **slot, ofs;
|
||
struct objfile *objfile = cu->objfile;
|
||
htab_t *type_hash_ptr;
|
||
|
||
/* For Ada types, make sure that the gnat-specific data is always
|
||
initialized (if not already set). There are a few types where
|
||
we should not be doing so, because the type-specific area is
|
||
already used to hold some other piece of info (eg: TYPE_CODE_FLT
|
||
where the type-specific area is used to store the floatformat).
|
||
But this is not a problem, because the gnat-specific information
|
||
is actually not needed for these types. */
|
||
if (need_gnat_info (cu)
|
||
&& TYPE_CODE (type) != TYPE_CODE_FUNC
|
||
&& TYPE_CODE (type) != TYPE_CODE_FLT
|
||
&& !HAVE_GNAT_AUX_INFO (type))
|
||
INIT_GNAT_SPECIFIC (type);
|
||
|
||
if (cu->per_cu->from_debug_types)
|
||
type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
|
||
else
|
||
type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
|
||
|
||
if (*type_hash_ptr == NULL)
|
||
{
|
||
*type_hash_ptr
|
||
= htab_create_alloc_ex (127,
|
||
offset_and_type_hash,
|
||
offset_and_type_eq,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
ofs.offset = die->offset;
|
||
ofs.type = type;
|
||
slot = (struct dwarf2_offset_and_type **)
|
||
htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
|
||
if (*slot)
|
||
complaint (&symfile_complaints,
|
||
_("A problem internal to GDB: DIE 0x%x has type already set"),
|
||
die->offset);
|
||
*slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
|
||
**slot = ofs;
|
||
return type;
|
||
}
|
||
|
||
/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
|
||
table, or return NULL if the die does not have a saved type. */
|
||
|
||
static struct type *
|
||
get_die_type_at_offset (unsigned int offset,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct dwarf2_offset_and_type *slot, ofs;
|
||
htab_t type_hash;
|
||
|
||
if (per_cu->from_debug_types)
|
||
type_hash = dwarf2_per_objfile->debug_types_type_hash;
|
||
else
|
||
type_hash = dwarf2_per_objfile->debug_info_type_hash;
|
||
if (type_hash == NULL)
|
||
return NULL;
|
||
|
||
ofs.offset = offset;
|
||
slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
|
||
if (slot)
|
||
return slot->type;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up the type for DIE in the appropriate type_hash table,
|
||
or return NULL if DIE does not have a saved type. */
|
||
|
||
static struct type *
|
||
get_die_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
return get_die_type_at_offset (die->offset, cu->per_cu);
|
||
}
|
||
|
||
/* Add a dependence relationship from CU to REF_PER_CU. */
|
||
|
||
static void
|
||
dwarf2_add_dependence (struct dwarf2_cu *cu,
|
||
struct dwarf2_per_cu_data *ref_per_cu)
|
||
{
|
||
void **slot;
|
||
|
||
if (cu->dependencies == NULL)
|
||
cu->dependencies
|
||
= htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, &cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
|
||
if (*slot == NULL)
|
||
*slot = ref_per_cu;
|
||
}
|
||
|
||
/* Subroutine of dwarf2_mark to pass to htab_traverse.
|
||
Set the mark field in every compilation unit in the
|
||
cache that we must keep because we are keeping CU. */
|
||
|
||
static int
|
||
dwarf2_mark_helper (void **slot, void *data)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
per_cu = (struct dwarf2_per_cu_data *) *slot;
|
||
if (per_cu->cu->mark)
|
||
return 1;
|
||
per_cu->cu->mark = 1;
|
||
|
||
if (per_cu->cu->dependencies != NULL)
|
||
htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Set the mark field in CU and in every other compilation unit in the
|
||
cache that we must keep because we are keeping CU. */
|
||
|
||
static void
|
||
dwarf2_mark (struct dwarf2_cu *cu)
|
||
{
|
||
if (cu->mark)
|
||
return;
|
||
cu->mark = 1;
|
||
if (cu->dependencies != NULL)
|
||
htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
|
||
}
|
||
|
||
static void
|
||
dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
while (per_cu)
|
||
{
|
||
per_cu->cu->mark = 0;
|
||
per_cu = per_cu->cu->read_in_chain;
|
||
}
|
||
}
|
||
|
||
/* Trivial hash function for partial_die_info: the hash value of a DIE
|
||
is its offset in .debug_info for this objfile. */
|
||
|
||
static hashval_t
|
||
partial_die_hash (const void *item)
|
||
{
|
||
const struct partial_die_info *part_die = item;
|
||
|
||
return part_die->offset;
|
||
}
|
||
|
||
/* Trivial comparison function for partial_die_info structures: two DIEs
|
||
are equal if they have the same offset. */
|
||
|
||
static int
|
||
partial_die_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct partial_die_info *part_die_lhs = item_lhs;
|
||
const struct partial_die_info *part_die_rhs = item_rhs;
|
||
|
||
return part_die_lhs->offset == part_die_rhs->offset;
|
||
}
|
||
|
||
static struct cmd_list_element *set_dwarf2_cmdlist;
|
||
static struct cmd_list_element *show_dwarf2_cmdlist;
|
||
|
||
static void
|
||
set_dwarf2_cmd (char *args, int from_tty)
|
||
{
|
||
help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_dwarf2_cmd (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
|
||
}
|
||
|
||
/* If section described by INFO was mmapped, munmap it now. */
|
||
|
||
static void
|
||
munmap_section_buffer (struct dwarf2_section_info *info)
|
||
{
|
||
if (info->was_mmapped)
|
||
{
|
||
#ifdef HAVE_MMAP
|
||
intptr_t begin = (intptr_t) info->buffer;
|
||
intptr_t map_begin = begin & ~(pagesize - 1);
|
||
size_t map_length = info->size + begin - map_begin;
|
||
|
||
gdb_assert (munmap ((void *) map_begin, map_length) == 0);
|
||
#else
|
||
/* Without HAVE_MMAP, we should never be here to begin with. */
|
||
gdb_assert_not_reached ("no mmap support");
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* munmap debug sections for OBJFILE, if necessary. */
|
||
|
||
static void
|
||
dwarf2_per_objfile_free (struct objfile *objfile, void *d)
|
||
{
|
||
struct dwarf2_per_objfile *data = d;
|
||
|
||
/* This is sorted according to the order they're defined in to make it easier
|
||
to keep in sync. */
|
||
munmap_section_buffer (&data->info);
|
||
munmap_section_buffer (&data->abbrev);
|
||
munmap_section_buffer (&data->line);
|
||
munmap_section_buffer (&data->loc);
|
||
munmap_section_buffer (&data->macinfo);
|
||
munmap_section_buffer (&data->str);
|
||
munmap_section_buffer (&data->ranges);
|
||
munmap_section_buffer (&data->types);
|
||
munmap_section_buffer (&data->frame);
|
||
munmap_section_buffer (&data->eh_frame);
|
||
munmap_section_buffer (&data->gdb_index);
|
||
}
|
||
|
||
|
||
|
||
/* The contents of the hash table we create when building the string
|
||
table. */
|
||
struct strtab_entry
|
||
{
|
||
offset_type offset;
|
||
const char *str;
|
||
};
|
||
|
||
/* Hash function for a strtab_entry. */
|
||
|
||
static hashval_t
|
||
hash_strtab_entry (const void *e)
|
||
{
|
||
const struct strtab_entry *entry = e;
|
||
return mapped_index_string_hash (entry->str);
|
||
}
|
||
|
||
/* Equality function for a strtab_entry. */
|
||
|
||
static int
|
||
eq_strtab_entry (const void *a, const void *b)
|
||
{
|
||
const struct strtab_entry *ea = a;
|
||
const struct strtab_entry *eb = b;
|
||
return !strcmp (ea->str, eb->str);
|
||
}
|
||
|
||
/* Create a strtab_entry hash table. */
|
||
|
||
static htab_t
|
||
create_strtab (void)
|
||
{
|
||
return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
|
||
xfree, xcalloc, xfree);
|
||
}
|
||
|
||
/* Add a string to the constant pool. Return the string's offset in
|
||
host order. */
|
||
|
||
static offset_type
|
||
add_string (htab_t table, struct obstack *cpool, const char *str)
|
||
{
|
||
void **slot;
|
||
struct strtab_entry entry;
|
||
struct strtab_entry *result;
|
||
|
||
entry.str = str;
|
||
slot = htab_find_slot (table, &entry, INSERT);
|
||
if (*slot)
|
||
result = *slot;
|
||
else
|
||
{
|
||
result = XNEW (struct strtab_entry);
|
||
result->offset = obstack_object_size (cpool);
|
||
result->str = str;
|
||
obstack_grow_str0 (cpool, str);
|
||
*slot = result;
|
||
}
|
||
return result->offset;
|
||
}
|
||
|
||
/* An entry in the symbol table. */
|
||
struct symtab_index_entry
|
||
{
|
||
/* The name of the symbol. */
|
||
const char *name;
|
||
/* The offset of the name in the constant pool. */
|
||
offset_type index_offset;
|
||
/* A sorted vector of the indices of all the CUs that hold an object
|
||
of this name. */
|
||
VEC (offset_type) *cu_indices;
|
||
};
|
||
|
||
/* The symbol table. This is a power-of-2-sized hash table. */
|
||
struct mapped_symtab
|
||
{
|
||
offset_type n_elements;
|
||
offset_type size;
|
||
struct symtab_index_entry **data;
|
||
};
|
||
|
||
/* Hash function for a symtab_index_entry. */
|
||
|
||
static hashval_t
|
||
hash_symtab_entry (const void *e)
|
||
{
|
||
const struct symtab_index_entry *entry = e;
|
||
return iterative_hash (VEC_address (offset_type, entry->cu_indices),
|
||
sizeof (offset_type) * VEC_length (offset_type,
|
||
entry->cu_indices),
|
||
0);
|
||
}
|
||
|
||
/* Equality function for a symtab_index_entry. */
|
||
|
||
static int
|
||
eq_symtab_entry (const void *a, const void *b)
|
||
{
|
||
const struct symtab_index_entry *ea = a;
|
||
const struct symtab_index_entry *eb = b;
|
||
int len = VEC_length (offset_type, ea->cu_indices);
|
||
if (len != VEC_length (offset_type, eb->cu_indices))
|
||
return 0;
|
||
return !memcmp (VEC_address (offset_type, ea->cu_indices),
|
||
VEC_address (offset_type, eb->cu_indices),
|
||
sizeof (offset_type) * len);
|
||
}
|
||
|
||
/* Destroy a symtab_index_entry. */
|
||
|
||
static void
|
||
delete_symtab_entry (void *p)
|
||
{
|
||
struct symtab_index_entry *entry = p;
|
||
VEC_free (offset_type, entry->cu_indices);
|
||
xfree (entry);
|
||
}
|
||
|
||
/* Create a hash table holding symtab_index_entry objects. */
|
||
|
||
static htab_t
|
||
create_symbol_hash_table (void)
|
||
{
|
||
return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
|
||
delete_symtab_entry, xcalloc, xfree);
|
||
}
|
||
|
||
/* Create a new mapped symtab object. */
|
||
|
||
static struct mapped_symtab *
|
||
create_mapped_symtab (void)
|
||
{
|
||
struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
|
||
symtab->n_elements = 0;
|
||
symtab->size = 1024;
|
||
symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
|
||
return symtab;
|
||
}
|
||
|
||
/* Destroy a mapped_symtab. */
|
||
|
||
static void
|
||
cleanup_mapped_symtab (void *p)
|
||
{
|
||
struct mapped_symtab *symtab = p;
|
||
/* The contents of the array are freed when the other hash table is
|
||
destroyed. */
|
||
xfree (symtab->data);
|
||
xfree (symtab);
|
||
}
|
||
|
||
/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
|
||
the slot. */
|
||
|
||
static struct symtab_index_entry **
|
||
find_slot (struct mapped_symtab *symtab, const char *name)
|
||
{
|
||
offset_type index, step, hash = mapped_index_string_hash (name);
|
||
|
||
index = hash & (symtab->size - 1);
|
||
step = ((hash * 17) & (symtab->size - 1)) | 1;
|
||
|
||
for (;;)
|
||
{
|
||
if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
|
||
return &symtab->data[index];
|
||
index = (index + step) & (symtab->size - 1);
|
||
}
|
||
}
|
||
|
||
/* Expand SYMTAB's hash table. */
|
||
|
||
static void
|
||
hash_expand (struct mapped_symtab *symtab)
|
||
{
|
||
offset_type old_size = symtab->size;
|
||
offset_type i;
|
||
struct symtab_index_entry **old_entries = symtab->data;
|
||
|
||
symtab->size *= 2;
|
||
symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
|
||
|
||
for (i = 0; i < old_size; ++i)
|
||
{
|
||
if (old_entries[i])
|
||
{
|
||
struct symtab_index_entry **slot = find_slot (symtab,
|
||
old_entries[i]->name);
|
||
*slot = old_entries[i];
|
||
}
|
||
}
|
||
|
||
xfree (old_entries);
|
||
}
|
||
|
||
/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
|
||
is the index of the CU in which the symbol appears. */
|
||
|
||
static void
|
||
add_index_entry (struct mapped_symtab *symtab, const char *name,
|
||
offset_type cu_index)
|
||
{
|
||
struct symtab_index_entry **slot;
|
||
|
||
++symtab->n_elements;
|
||
if (4 * symtab->n_elements / 3 >= symtab->size)
|
||
hash_expand (symtab);
|
||
|
||
slot = find_slot (symtab, name);
|
||
if (!*slot)
|
||
{
|
||
*slot = XNEW (struct symtab_index_entry);
|
||
(*slot)->name = name;
|
||
(*slot)->cu_indices = NULL;
|
||
}
|
||
/* Don't push an index twice. Due to how we add entries we only
|
||
have to check the last one. */
|
||
if (VEC_empty (offset_type, (*slot)->cu_indices)
|
||
|| VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
|
||
VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
|
||
}
|
||
|
||
/* Add a vector of indices to the constant pool. */
|
||
|
||
static offset_type
|
||
add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
|
||
struct symtab_index_entry *entry)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot (symbol_hash_table, entry, INSERT);
|
||
if (!*slot)
|
||
{
|
||
offset_type len = VEC_length (offset_type, entry->cu_indices);
|
||
offset_type val = MAYBE_SWAP (len);
|
||
offset_type iter;
|
||
int i;
|
||
|
||
*slot = entry;
|
||
entry->index_offset = obstack_object_size (cpool);
|
||
|
||
obstack_grow (cpool, &val, sizeof (val));
|
||
for (i = 0;
|
||
VEC_iterate (offset_type, entry->cu_indices, i, iter);
|
||
++i)
|
||
{
|
||
val = MAYBE_SWAP (iter);
|
||
obstack_grow (cpool, &val, sizeof (val));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct symtab_index_entry *old_entry = *slot;
|
||
entry->index_offset = old_entry->index_offset;
|
||
entry = old_entry;
|
||
}
|
||
return entry->index_offset;
|
||
}
|
||
|
||
/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
|
||
constant pool entries going into the obstack CPOOL. */
|
||
|
||
static void
|
||
write_hash_table (struct mapped_symtab *symtab,
|
||
struct obstack *output, struct obstack *cpool)
|
||
{
|
||
offset_type i;
|
||
htab_t symbol_hash_table;
|
||
htab_t str_table;
|
||
|
||
symbol_hash_table = create_symbol_hash_table ();
|
||
str_table = create_strtab ();
|
||
|
||
/* We add all the index vectors to the constant pool first, to
|
||
ensure alignment is ok. */
|
||
for (i = 0; i < symtab->size; ++i)
|
||
{
|
||
if (symtab->data[i])
|
||
add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
|
||
}
|
||
|
||
/* Now write out the hash table. */
|
||
for (i = 0; i < symtab->size; ++i)
|
||
{
|
||
offset_type str_off, vec_off;
|
||
|
||
if (symtab->data[i])
|
||
{
|
||
str_off = add_string (str_table, cpool, symtab->data[i]->name);
|
||
vec_off = symtab->data[i]->index_offset;
|
||
}
|
||
else
|
||
{
|
||
/* While 0 is a valid constant pool index, it is not valid
|
||
to have 0 for both offsets. */
|
||
str_off = 0;
|
||
vec_off = 0;
|
||
}
|
||
|
||
str_off = MAYBE_SWAP (str_off);
|
||
vec_off = MAYBE_SWAP (vec_off);
|
||
|
||
obstack_grow (output, &str_off, sizeof (str_off));
|
||
obstack_grow (output, &vec_off, sizeof (vec_off));
|
||
}
|
||
|
||
htab_delete (str_table);
|
||
htab_delete (symbol_hash_table);
|
||
}
|
||
|
||
/* Struct to map psymtab to CU index in the index file. */
|
||
struct psymtab_cu_index_map
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
unsigned int cu_index;
|
||
};
|
||
|
||
static hashval_t
|
||
hash_psymtab_cu_index (const void *item)
|
||
{
|
||
const struct psymtab_cu_index_map *map = item;
|
||
|
||
return htab_hash_pointer (map->psymtab);
|
||
}
|
||
|
||
static int
|
||
eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct psymtab_cu_index_map *lhs = item_lhs;
|
||
const struct psymtab_cu_index_map *rhs = item_rhs;
|
||
|
||
return lhs->psymtab == rhs->psymtab;
|
||
}
|
||
|
||
/* Helper struct for building the address table. */
|
||
struct addrmap_index_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct obstack *addr_obstack;
|
||
htab_t cu_index_htab;
|
||
|
||
/* Non-zero if the previous_* fields are valid.
|
||
We can't write an entry until we see the next entry (since it is only then
|
||
that we know the end of the entry). */
|
||
int previous_valid;
|
||
/* Index of the CU in the table of all CUs in the index file. */
|
||
unsigned int previous_cu_index;
|
||
/* Start address of the CU. */
|
||
CORE_ADDR previous_cu_start;
|
||
};
|
||
|
||
/* Write an address entry to OBSTACK. */
|
||
|
||
static void
|
||
add_address_entry (struct objfile *objfile, struct obstack *obstack,
|
||
CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
|
||
{
|
||
offset_type cu_index_to_write;
|
||
char addr[8];
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
|
||
obstack_grow (obstack, addr, 8);
|
||
store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
|
||
obstack_grow (obstack, addr, 8);
|
||
cu_index_to_write = MAYBE_SWAP (cu_index);
|
||
obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
|
||
}
|
||
|
||
/* Worker function for traversing an addrmap to build the address table. */
|
||
|
||
static int
|
||
add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
|
||
{
|
||
struct addrmap_index_data *data = datap;
|
||
struct partial_symtab *pst = obj;
|
||
offset_type cu_index;
|
||
void **slot;
|
||
|
||
if (data->previous_valid)
|
||
add_address_entry (data->objfile, data->addr_obstack,
|
||
data->previous_cu_start, start_addr,
|
||
data->previous_cu_index);
|
||
|
||
data->previous_cu_start = start_addr;
|
||
if (pst != NULL)
|
||
{
|
||
struct psymtab_cu_index_map find_map, *map;
|
||
find_map.psymtab = pst;
|
||
map = htab_find (data->cu_index_htab, &find_map);
|
||
gdb_assert (map != NULL);
|
||
data->previous_cu_index = map->cu_index;
|
||
data->previous_valid = 1;
|
||
}
|
||
else
|
||
data->previous_valid = 0;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Write OBJFILE's address map to OBSTACK.
|
||
CU_INDEX_HTAB is used to map addrmap entries to their CU indices
|
||
in the index file. */
|
||
|
||
static void
|
||
write_address_map (struct objfile *objfile, struct obstack *obstack,
|
||
htab_t cu_index_htab)
|
||
{
|
||
struct addrmap_index_data addrmap_index_data;
|
||
|
||
/* When writing the address table, we have to cope with the fact that
|
||
the addrmap iterator only provides the start of a region; we have to
|
||
wait until the next invocation to get the start of the next region. */
|
||
|
||
addrmap_index_data.objfile = objfile;
|
||
addrmap_index_data.addr_obstack = obstack;
|
||
addrmap_index_data.cu_index_htab = cu_index_htab;
|
||
addrmap_index_data.previous_valid = 0;
|
||
|
||
addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
|
||
&addrmap_index_data);
|
||
|
||
/* It's highly unlikely the last entry (end address = 0xff...ff)
|
||
is valid, but we should still handle it.
|
||
The end address is recorded as the start of the next region, but that
|
||
doesn't work here. To cope we pass 0xff...ff, this is a rare situation
|
||
anyway. */
|
||
if (addrmap_index_data.previous_valid)
|
||
add_address_entry (objfile, obstack,
|
||
addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
|
||
addrmap_index_data.previous_cu_index);
|
||
}
|
||
|
||
/* Add a list of partial symbols to SYMTAB. */
|
||
|
||
static void
|
||
write_psymbols (struct mapped_symtab *symtab,
|
||
htab_t psyms_seen,
|
||
struct partial_symbol **psymp,
|
||
int count,
|
||
offset_type cu_index,
|
||
int is_static)
|
||
{
|
||
for (; count-- > 0; ++psymp)
|
||
{
|
||
void **slot, *lookup;
|
||
|
||
if (SYMBOL_LANGUAGE (*psymp) == language_ada)
|
||
error (_("Ada is not currently supported by the index"));
|
||
|
||
/* We only want to add a given psymbol once. However, we also
|
||
want to account for whether it is global or static. So, we
|
||
may add it twice, using slightly different values. */
|
||
if (is_static)
|
||
{
|
||
uintptr_t val = 1 | (uintptr_t) *psymp;
|
||
|
||
lookup = (void *) val;
|
||
}
|
||
else
|
||
lookup = *psymp;
|
||
|
||
/* Only add a given psymbol once. */
|
||
slot = htab_find_slot (psyms_seen, lookup, INSERT);
|
||
if (!*slot)
|
||
{
|
||
*slot = lookup;
|
||
add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Write the contents of an ("unfinished") obstack to FILE. Throw an
|
||
exception if there is an error. */
|
||
|
||
static void
|
||
write_obstack (FILE *file, struct obstack *obstack)
|
||
{
|
||
if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
|
||
file)
|
||
!= obstack_object_size (obstack))
|
||
error (_("couldn't data write to file"));
|
||
}
|
||
|
||
/* Unlink a file if the argument is not NULL. */
|
||
|
||
static void
|
||
unlink_if_set (void *p)
|
||
{
|
||
char **filename = p;
|
||
if (*filename)
|
||
unlink (*filename);
|
||
}
|
||
|
||
/* A helper struct used when iterating over debug_types. */
|
||
struct signatured_type_index_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct mapped_symtab *symtab;
|
||
struct obstack *types_list;
|
||
htab_t psyms_seen;
|
||
int cu_index;
|
||
};
|
||
|
||
/* A helper function that writes a single signatured_type to an
|
||
obstack. */
|
||
|
||
static int
|
||
write_one_signatured_type (void **slot, void *d)
|
||
{
|
||
struct signatured_type_index_data *info = d;
|
||
struct signatured_type *entry = (struct signatured_type *) *slot;
|
||
struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
|
||
struct partial_symtab *psymtab = per_cu->v.psymtab;
|
||
gdb_byte val[8];
|
||
|
||
write_psymbols (info->symtab,
|
||
info->psyms_seen,
|
||
info->objfile->global_psymbols.list + psymtab->globals_offset,
|
||
psymtab->n_global_syms, info->cu_index,
|
||
0);
|
||
write_psymbols (info->symtab,
|
||
info->psyms_seen,
|
||
info->objfile->static_psymbols.list + psymtab->statics_offset,
|
||
psymtab->n_static_syms, info->cu_index,
|
||
1);
|
||
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
|
||
obstack_grow (info->types_list, val, 8);
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
|
||
obstack_grow (info->types_list, val, 8);
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
|
||
obstack_grow (info->types_list, val, 8);
|
||
|
||
++info->cu_index;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A cleanup function for an htab_t. */
|
||
|
||
static void
|
||
cleanup_htab (void *arg)
|
||
{
|
||
htab_delete (arg);
|
||
}
|
||
|
||
/* Create an index file for OBJFILE in the directory DIR. */
|
||
|
||
static void
|
||
write_psymtabs_to_index (struct objfile *objfile, const char *dir)
|
||
{
|
||
struct cleanup *cleanup;
|
||
char *filename, *cleanup_filename;
|
||
struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
|
||
struct obstack cu_list, types_cu_list;
|
||
int i;
|
||
FILE *out_file;
|
||
struct mapped_symtab *symtab;
|
||
offset_type val, size_of_contents, total_len;
|
||
struct stat st;
|
||
char buf[8];
|
||
htab_t psyms_seen;
|
||
htab_t cu_index_htab;
|
||
struct psymtab_cu_index_map *psymtab_cu_index_map;
|
||
|
||
if (!objfile->psymtabs)
|
||
return;
|
||
if (dwarf2_per_objfile->using_index)
|
||
error (_("Cannot use an index to create the index"));
|
||
|
||
if (stat (objfile->name, &st) < 0)
|
||
perror_with_name (objfile->name);
|
||
|
||
filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
|
||
INDEX_SUFFIX, (char *) NULL);
|
||
cleanup = make_cleanup (xfree, filename);
|
||
|
||
out_file = fopen (filename, "wb");
|
||
if (!out_file)
|
||
error (_("Can't open `%s' for writing"), filename);
|
||
|
||
cleanup_filename = filename;
|
||
make_cleanup (unlink_if_set, &cleanup_filename);
|
||
|
||
symtab = create_mapped_symtab ();
|
||
make_cleanup (cleanup_mapped_symtab, symtab);
|
||
|
||
obstack_init (&addr_obstack);
|
||
make_cleanup_obstack_free (&addr_obstack);
|
||
|
||
obstack_init (&cu_list);
|
||
make_cleanup_obstack_free (&cu_list);
|
||
|
||
obstack_init (&types_cu_list);
|
||
make_cleanup_obstack_free (&types_cu_list);
|
||
|
||
psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
make_cleanup (cleanup_htab, psyms_seen);
|
||
|
||
/* While we're scanning CU's create a table that maps a psymtab pointer
|
||
(which is what addrmap records) to its index (which is what is recorded
|
||
in the index file). This will later be needed to write the address
|
||
table. */
|
||
cu_index_htab = htab_create_alloc (100,
|
||
hash_psymtab_cu_index,
|
||
eq_psymtab_cu_index,
|
||
NULL, xcalloc, xfree);
|
||
make_cleanup (cleanup_htab, cu_index_htab);
|
||
psymtab_cu_index_map = (struct psymtab_cu_index_map *)
|
||
xmalloc (sizeof (struct psymtab_cu_index_map)
|
||
* dwarf2_per_objfile->n_comp_units);
|
||
make_cleanup (xfree, psymtab_cu_index_map);
|
||
|
||
/* The CU list is already sorted, so we don't need to do additional
|
||
work here. Also, the debug_types entries do not appear in
|
||
all_comp_units, but only in their own hash table. */
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
|
||
struct partial_symtab *psymtab = per_cu->v.psymtab;
|
||
gdb_byte val[8];
|
||
struct psymtab_cu_index_map *map;
|
||
void **slot;
|
||
|
||
write_psymbols (symtab,
|
||
psyms_seen,
|
||
objfile->global_psymbols.list + psymtab->globals_offset,
|
||
psymtab->n_global_syms, i,
|
||
0);
|
||
write_psymbols (symtab,
|
||
psyms_seen,
|
||
objfile->static_psymbols.list + psymtab->statics_offset,
|
||
psymtab->n_static_syms, i,
|
||
1);
|
||
|
||
map = &psymtab_cu_index_map[i];
|
||
map->psymtab = psymtab;
|
||
map->cu_index = i;
|
||
slot = htab_find_slot (cu_index_htab, map, INSERT);
|
||
gdb_assert (slot != NULL);
|
||
gdb_assert (*slot == NULL);
|
||
*slot = map;
|
||
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
|
||
obstack_grow (&cu_list, val, 8);
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
|
||
obstack_grow (&cu_list, val, 8);
|
||
}
|
||
|
||
/* Dump the address map. */
|
||
write_address_map (objfile, &addr_obstack, cu_index_htab);
|
||
|
||
/* Write out the .debug_type entries, if any. */
|
||
if (dwarf2_per_objfile->signatured_types)
|
||
{
|
||
struct signatured_type_index_data sig_data;
|
||
|
||
sig_data.objfile = objfile;
|
||
sig_data.symtab = symtab;
|
||
sig_data.types_list = &types_cu_list;
|
||
sig_data.psyms_seen = psyms_seen;
|
||
sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
|
||
htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
|
||
write_one_signatured_type, &sig_data);
|
||
}
|
||
|
||
obstack_init (&constant_pool);
|
||
make_cleanup_obstack_free (&constant_pool);
|
||
obstack_init (&symtab_obstack);
|
||
make_cleanup_obstack_free (&symtab_obstack);
|
||
write_hash_table (symtab, &symtab_obstack, &constant_pool);
|
||
|
||
obstack_init (&contents);
|
||
make_cleanup_obstack_free (&contents);
|
||
size_of_contents = 6 * sizeof (offset_type);
|
||
total_len = size_of_contents;
|
||
|
||
/* The version number. */
|
||
val = MAYBE_SWAP (3);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
|
||
/* The offset of the CU list from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&cu_list);
|
||
|
||
/* The offset of the types CU list from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&types_cu_list);
|
||
|
||
/* The offset of the address table from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&addr_obstack);
|
||
|
||
/* The offset of the symbol table from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&symtab_obstack);
|
||
|
||
/* The offset of the constant pool from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&constant_pool);
|
||
|
||
gdb_assert (obstack_object_size (&contents) == size_of_contents);
|
||
|
||
write_obstack (out_file, &contents);
|
||
write_obstack (out_file, &cu_list);
|
||
write_obstack (out_file, &types_cu_list);
|
||
write_obstack (out_file, &addr_obstack);
|
||
write_obstack (out_file, &symtab_obstack);
|
||
write_obstack (out_file, &constant_pool);
|
||
|
||
fclose (out_file);
|
||
|
||
/* We want to keep the file, so we set cleanup_filename to NULL
|
||
here. See unlink_if_set. */
|
||
cleanup_filename = NULL;
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* The mapped index file format is designed to be directly mmap()able
|
||
on any architecture. In most cases, a datum is represented using a
|
||
little-endian 32-bit integer value, called an offset_type. Big
|
||
endian machines must byte-swap the values before using them.
|
||
Exceptions to this rule are noted. The data is laid out such that
|
||
alignment is always respected.
|
||
|
||
A mapped index consists of several sections.
|
||
|
||
1. The file header. This is a sequence of values, of offset_type
|
||
unless otherwise noted:
|
||
|
||
[0] The version number, currently 3. Versions 1 and 2 are
|
||
obsolete.
|
||
[1] The offset, from the start of the file, of the CU list.
|
||
[2] The offset, from the start of the file, of the types CU list.
|
||
Note that this section can be empty, in which case this offset will
|
||
be equal to the next offset.
|
||
[3] The offset, from the start of the file, of the address section.
|
||
[4] The offset, from the start of the file, of the symbol table.
|
||
[5] The offset, from the start of the file, of the constant pool.
|
||
|
||
2. The CU list. This is a sequence of pairs of 64-bit
|
||
little-endian values, sorted by the CU offset. The first element
|
||
in each pair is the offset of a CU in the .debug_info section. The
|
||
second element in each pair is the length of that CU. References
|
||
to a CU elsewhere in the map are done using a CU index, which is
|
||
just the 0-based index into this table. Note that if there are
|
||
type CUs, then conceptually CUs and type CUs form a single list for
|
||
the purposes of CU indices.
|
||
|
||
3. The types CU list. This is a sequence of triplets of 64-bit
|
||
little-endian values. In a triplet, the first value is the CU
|
||
offset, the second value is the type offset in the CU, and the
|
||
third value is the type signature. The types CU list is not
|
||
sorted.
|
||
|
||
4. The address section. The address section consists of a sequence
|
||
of address entries. Each address entry has three elements.
|
||
[0] The low address. This is a 64-bit little-endian value.
|
||
[1] The high address. This is a 64-bit little-endian value.
|
||
Like DW_AT_high_pc, the value is one byte beyond the end.
|
||
[2] The CU index. This is an offset_type value.
|
||
|
||
5. The symbol table. This is a hash table. The size of the hash
|
||
table is always a power of 2. The initial hash and the step are
|
||
currently defined by the `find_slot' function.
|
||
|
||
Each slot in the hash table consists of a pair of offset_type
|
||
values. The first value is the offset of the symbol's name in the
|
||
constant pool. The second value is the offset of the CU vector in
|
||
the constant pool.
|
||
|
||
If both values are 0, then this slot in the hash table is empty.
|
||
This is ok because while 0 is a valid constant pool index, it
|
||
cannot be a valid index for both a string and a CU vector.
|
||
|
||
A string in the constant pool is stored as a \0-terminated string,
|
||
as you'd expect.
|
||
|
||
A CU vector in the constant pool is a sequence of offset_type
|
||
values. The first value is the number of CU indices in the vector.
|
||
Each subsequent value is the index of a CU in the CU list. This
|
||
element in the hash table is used to indicate which CUs define the
|
||
symbol.
|
||
|
||
6. The constant pool. This is simply a bunch of bytes. It is
|
||
organized so that alignment is correct: CU vectors are stored
|
||
first, followed by strings. */
|
||
|
||
static void
|
||
save_gdb_index_command (char *arg, int from_tty)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
if (!arg || !*arg)
|
||
error (_("usage: save gdb-index DIRECTORY"));
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct stat st;
|
||
|
||
/* If the objfile does not correspond to an actual file, skip it. */
|
||
if (stat (objfile->name, &st) < 0)
|
||
continue;
|
||
|
||
dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
|
||
if (dwarf2_per_objfile)
|
||
{
|
||
volatile struct gdb_exception except;
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
write_psymtabs_to_index (objfile, arg);
|
||
}
|
||
if (except.reason < 0)
|
||
exception_fprintf (gdb_stderr, except,
|
||
_("Error while writing index for `%s': "),
|
||
objfile->name);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
int dwarf2_always_disassemble;
|
||
|
||
static void
|
||
show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Whether to always disassemble DWARF expressions is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
void _initialize_dwarf2_read (void);
|
||
|
||
void
|
||
_initialize_dwarf2_read (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
dwarf2_objfile_data_key
|
||
= register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
|
||
|
||
add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
|
||
Set DWARF 2 specific variables.\n\
|
||
Configure DWARF 2 variables such as the cache size"),
|
||
&set_dwarf2_cmdlist, "maintenance set dwarf2 ",
|
||
0/*allow-unknown*/, &maintenance_set_cmdlist);
|
||
|
||
add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
|
||
Show DWARF 2 specific variables\n\
|
||
Show DWARF 2 variables such as the cache size"),
|
||
&show_dwarf2_cmdlist, "maintenance show dwarf2 ",
|
||
0/*allow-unknown*/, &maintenance_show_cmdlist);
|
||
|
||
add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
|
||
&dwarf2_max_cache_age, _("\
|
||
Set the upper bound on the age of cached dwarf2 compilation units."), _("\
|
||
Show the upper bound on the age of cached dwarf2 compilation units."), _("\
|
||
A higher limit means that cached compilation units will be stored\n\
|
||
in memory longer, and more total memory will be used. Zero disables\n\
|
||
caching, which can slow down startup."),
|
||
NULL,
|
||
show_dwarf2_max_cache_age,
|
||
&set_dwarf2_cmdlist,
|
||
&show_dwarf2_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("always-disassemble", class_obscure,
|
||
&dwarf2_always_disassemble, _("\
|
||
Set whether `info address' always disassembles DWARF expressions."), _("\
|
||
Show whether `info address' always disassembles DWARF expressions."), _("\
|
||
When enabled, DWARF expressions are always printed in an assembly-like\n\
|
||
syntax. When disabled, expressions will be printed in a more\n\
|
||
conversational style, when possible."),
|
||
NULL,
|
||
show_dwarf2_always_disassemble,
|
||
&set_dwarf2_cmdlist,
|
||
&show_dwarf2_cmdlist);
|
||
|
||
add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
|
||
Set debugging of the dwarf2 DIE reader."), _("\
|
||
Show debugging of the dwarf2 DIE reader."), _("\
|
||
When enabled (non-zero), DIEs are dumped after they are read in.\n\
|
||
The value is the maximum depth to print."),
|
||
NULL,
|
||
NULL,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
|
||
_("\
|
||
Save a .gdb-index file.\n\
|
||
Usage: save gdb-index DIRECTORY"),
|
||
&save_cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
}
|