binutils-gdb/bfd/elf32-frv.c
Alan Modra 81fbe831fe PR ld/15323
bfd/
	* elf-m10300.c (mn10300_elf_check_relocs): Set non_ir_ref for
	global symbols referenced by relocs.
	* elf32-arm.c (elf32_arm_check_relocs): Likewise.
	* elf32-bfin.c (bfin_check_relocs): Likewise.
	* elf32-cr16.c (cr16_elf_check_relocs): Likewise.
	* elf32-cris.c (cris_elf_check_relocs): Likewise.
	* elf32-d10v.c (elf32_d10v_check_relocs): Likewise.
	* elf32-dlx.c (elf32_dlx_check_relocs): Likewise.
	* elf32-fr30.c (fr30_elf_check_relocs): Likewise.
	* elf32-frv.c (elf32_frv_check_relocs): Likewise.
	* elf32-hppa.c (elf32_hppa_check_relocs): Likewise.
	* elf32-i370.c (i370_elf_check_relocs): Likewise.
	* elf32-iq2000.c (iq2000_elf_check_relocs): Likewise.
	* elf32-lm32.c (lm32_elf_check_relocs): Likewise.
	* elf32-m32c.c (m32c_elf_check_relocs): Likewise.
	* elf32-m32r.c (m32r_elf_check_relocs): Likewise.
	* elf32-m68hc1x.c (elf32_m68hc11_check_relocs): Likewise.
	* elf32-m68k.c (elf_m68k_check_relocs): Likewise.
	* elf32-mcore.c (mcore_elf_check_relocs): Likewise.
	* elf32-metag.c (elf_metag_check_relocs): Likewise.
	* elf32-microblaze.c (microblaze_elf_check_relocs): Likewise.
	* elf32-moxie.c (moxie_elf_check_relocs): Likewise.
	* elf32-msp430.c (elf32_msp430_check_relocs): Likewise.
	* elf32-mt.c (mt_elf_check_relocs): Likewise.
	* elf32-nios2.c (nios2_elf32_check_relocs): Likewise.
	* elf32-openrisc.c (openrisc_elf_check_relocs): Likewise.
	* elf32-ppc.c (ppc_elf_check_relocs): Likewise.
	* elf32-rl78.c (rl78_elf_check_relocs): Likewise.
	* elf32-s390.c (elf_s390_check_relocs): Likewise.
	* elf32-score.c (s3_bfd_score_elf_check_relocs): Likewise.
	* elf32-score7.c (s7_bfd_score_elf_check_relocs): Likewise.
	* elf32-sh.c (sh_elf_check_relocs): Likewise.
	* elf32-tic6x.c (elf32_tic6x_check_relocs): Likewise.
	* elf32-tilepro.c (tilepro_elf_check_relocs): Likewise.
	* elf32-v850.c (v850_elf_check_relocs): Likewise.
	* elf32-vax.c (elf_vax_check_relocs): Likewise.
	* elf32-xstormy16.c (xstormy16_elf_check_relocs): Likewise.
	* elf32-xtensa.c (elf_xtensa_check_relocs): Likewise.
	* elf64-aarch64.c (elf64_aarch64_check_relocs): Likewise.
	* elf64-alpha.c (elf64_alpha_check_relocs): Likewise.
	* elf64-hppa.c (elf64_hppa_check_relocs): Likewise.
	* elf64-ia64-vms.c (elf64_ia64_check_relocs): Likewise.
	* elf64-mmix.c (mmix_elf_check_relocs): Likewise.
	* elf64-ppc.c (ppc64_elf_check_relocs): Likewise.
	* elf64-s390.c (elf_s390_check_relocs): Likewise.
	* elf64-sh64.c (sh_elf64_check_relocs): Likewise.
	* elfnn-ia64.c (elfNN_ia64_check_relocs): Likewise.
	* elfxx-sparc.c (_bfd_sparc_elf_check_relocs): Likewise.
	* elfxx-tilegx.c (tilegx_elf_check_relocs): Likewise.
	* elfxx-mips.c (_bfd_mips_elf_check_relocs): Likewise.  Don't
	test indirect/warning links for NULL.
ld/testsuite/
	* ld-plugin/lto.exp (pr15323a.c): Compile without -flto rather
	than using -r to effectively strip out lto info.
2013-03-30 10:14:15 +00:00

6922 lines
209 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* FRV-specific support for 32-bit ELF.
Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/frv.h"
#include "dwarf2.h"
#include "hashtab.h"
/* Forward declarations. */
static reloc_howto_type elf32_frv_howto_table [] =
{
/* This reloc does nothing. */
HOWTO (R_FRV_NONE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_NONE", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 32 bit absolute relocation. */
HOWTO (R_FRV_32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_32", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 16 bit pc-relative relocation. */
HOWTO (R_FRV_LABEL16, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_LABEL16", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* A 24-bit pc-relative relocation. */
HOWTO (R_FRV_LABEL24, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_LABEL24", /* name */
FALSE, /* partial_inplace */
0x7e03ffff, /* src_mask */
0x7e03ffff, /* dst_mask */
TRUE), /* pcrel_offset */
HOWTO (R_FRV_LO16, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_LO16", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_FRV_HI16, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_HI16", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_FRV_GPREL12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GPREL12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_FRV_GPRELU12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GPRELU12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0x3f03f, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_FRV_GPREL32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GPREL32", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_FRV_GPRELHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GPRELHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
HOWTO (R_FRV_GPRELLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GPRELLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
the symbol. */
HOWTO (R_FRV_GOT12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOT12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_FRV_GOTHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_FRV_GOTLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The 32-bit address of the canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_GOT12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_GOT12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_GOTHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_GOTHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_GOTLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_GOTLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The 64-bit descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_VALUE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_VALUE", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_GOTOFF12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_GOTOFF12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_GOTOFFHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_GOTOFFHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
canonical descriptor of a function. */
HOWTO (R_FRV_FUNCDESC_GOTOFFLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_GOTOFFLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the address of
the symbol. */
HOWTO (R_FRV_GOTOFF12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTOFF12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_FRV_GOTOFFHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTOFFHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the address of the
symbol. */
HOWTO (R_FRV_GOTOFFLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTOFFLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 24-bit pc-relative relocation referencing the TLS PLT entry for
a thread-local symbol. If the symbol number is 0, it refers to
the module. */
HOWTO (R_FRV_GETTLSOFF, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
TRUE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GETTLSOFF", /* name */
FALSE, /* partial_inplace */
0x7e03ffff, /* src_mask */
0x7e03ffff, /* dst_mask */
TRUE), /* pcrel_offset */
/* A 64-bit TLS descriptor for a symbol. This relocation is only
valid as a REL, dynamic relocation. */
HOWTO (R_FRV_TLSDESC_VALUE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSDESC_VALUE", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the TLS
descriptor of the symbol. */
HOWTO (R_FRV_GOTTLSDESC12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTTLSDESC12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the TLS descriptor of the
symbol. */
HOWTO (R_FRV_GOTTLSDESCHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTTLSDESCHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the TLS descriptor of the
symbol. */
HOWTO (R_FRV_GOTTLSDESCLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTTLSDESCLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the offset from the module base
address to the thread-local symbol address. */
HOWTO (R_FRV_TLSMOFF12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSMOFF12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the offset from the module base address to
the thread-local symbol address. */
HOWTO (R_FRV_TLSMOFFHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSMOFFHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the offset from the module base address to
the thread-local symbol address. */
HOWTO (R_FRV_TLSMOFFLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSMOFFLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 12-bit signed operand with the GOT offset for the TLSOFF entry
for a symbol. */
HOWTO (R_FRV_GOTTLSOFF12, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTTLSOFF12", /* name */
FALSE, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The upper 16 bits of the GOT offset for the TLSOFF entry for a
symbol. */
HOWTO (R_FRV_GOTTLSOFFHI, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTTLSOFFHI", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The lower 16 bits of the GOT offset for the TLSOFF entry for a
symbol. */
HOWTO (R_FRV_GOTTLSOFFLO, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GOTTLSOFFLO", /* name */
FALSE, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* The 32-bit offset from the thread pointer (not the module base
address) to a thread-local symbol. */
HOWTO (R_FRV_TLSOFF, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSOFF", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
/* An annotation for linker relaxation, that denotes the
symbol+addend whose TLS descriptor is referenced by the sum of
the two input registers of an ldd instruction. */
HOWTO (R_FRV_TLSDESC_RELAX, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSDESC_RELAX", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* An annotation for linker relaxation, that denotes the
symbol+addend whose TLS resolver entry point is given by the sum
of the two register operands of an calll instruction. */
HOWTO (R_FRV_GETTLSOFF_RELAX, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_GETTLSOFF_RELAX", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* An annotation for linker relaxation, that denotes the
symbol+addend whose TLS offset GOT entry is given by the sum of
the two input registers of an ld instruction. */
HOWTO (R_FRV_TLSOFF_RELAX, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSOFF_RELAX", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE), /* pcrel_offset */
/* A 32-bit offset from the module base address to
the thread-local symbol address. */
HOWTO (R_FRV_TLSMOFF, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSMOFF", /* name */
FALSE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE), /* pcrel_offset */
};
/* GNU extension to record C++ vtable hierarchy. */
static reloc_howto_type elf32_frv_vtinherit_howto =
HOWTO (R_FRV_GNU_VTINHERIT, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_FRV_GNU_VTINHERIT", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE); /* pcrel_offset */
/* GNU extension to record C++ vtable member usage. */
static reloc_howto_type elf32_frv_vtentry_howto =
HOWTO (R_FRV_GNU_VTENTRY, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
"R_FRV_GNU_VTENTRY", /* name */
FALSE, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
FALSE); /* pcrel_offset */
/* The following 3 relocations are REL. The only difference to the
entries in the table above are that partial_inplace is TRUE. */
static reloc_howto_type elf32_frv_rel_32_howto =
HOWTO (R_FRV_32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_32", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE); /* pcrel_offset */
static reloc_howto_type elf32_frv_rel_funcdesc_howto =
HOWTO (R_FRV_FUNCDESC, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE); /* pcrel_offset */
static reloc_howto_type elf32_frv_rel_funcdesc_value_howto =
HOWTO (R_FRV_FUNCDESC_VALUE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_FUNCDESC_VALUE", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE); /* pcrel_offset */
static reloc_howto_type elf32_frv_rel_tlsdesc_value_howto =
/* A 64-bit TLS descriptor for a symbol. The first word resolves to
an entry point, and the second resolves to a special argument.
If the symbol turns out to be in static TLS, the entry point is a
return instruction, and the special argument is the TLS offset
for the symbol. If it's in dynamic TLS, the entry point is a TLS
offset resolver, and the special argument is a pointer to a data
structure allocated by the dynamic loader, containing the GOT
address for the offset resolver, the module id, the offset within
the module, and anything else the TLS offset resolver might need
to determine the TLS offset for the symbol in the running
thread. */
HOWTO (R_FRV_TLSDESC_VALUE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
64, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSDESC_VALUE", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE); /* pcrel_offset */
static reloc_howto_type elf32_frv_rel_tlsoff_howto =
/* The 32-bit offset from the thread pointer (not the module base
address) to a thread-local symbol. */
HOWTO (R_FRV_TLSOFF, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
FALSE, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_FRV_TLSOFF", /* name */
TRUE, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
FALSE); /* pcrel_offset */
extern const bfd_target bfd_elf32_frvfdpic_vec;
#define IS_FDPIC(bfd) ((bfd)->xvec == &bfd_elf32_frvfdpic_vec)
/* An extension of the elf hash table data structure, containing some
additional FRV-specific data. */
struct frvfdpic_elf_link_hash_table
{
struct elf_link_hash_table elf;
/* A pointer to the .got section. */
asection *sgot;
/* A pointer to the .rel.got section. */
asection *sgotrel;
/* A pointer to the .rofixup section. */
asection *sgotfixup;
/* A pointer to the .plt section. */
asection *splt;
/* A pointer to the .rel.plt section. */
asection *spltrel;
/* GOT base offset. */
bfd_vma got0;
/* Location of the first non-lazy PLT entry, i.e., the number of
bytes taken by lazy PLT entries. If locally-bound TLS
descriptors require a ret instruction, it will be placed at this
offset. */
bfd_vma plt0;
/* A hash table holding information about which symbols were
referenced with which PIC-related relocations. */
struct htab *relocs_info;
/* Summary reloc information collected by
_frvfdpic_count_got_plt_entries. */
struct _frvfdpic_dynamic_got_info *g;
};
/* Get the FRV ELF linker hash table from a link_info structure. */
#define frvfdpic_hash_table(p) \
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
== FRV_ELF_DATA ? ((struct frvfdpic_elf_link_hash_table *) ((p)->hash)) : NULL)
#define frvfdpic_got_section(info) \
(frvfdpic_hash_table (info)->sgot)
#define frvfdpic_gotrel_section(info) \
(frvfdpic_hash_table (info)->sgotrel)
#define frvfdpic_gotfixup_section(info) \
(frvfdpic_hash_table (info)->sgotfixup)
#define frvfdpic_plt_section(info) \
(frvfdpic_hash_table (info)->splt)
#define frvfdpic_pltrel_section(info) \
(frvfdpic_hash_table (info)->spltrel)
#define frvfdpic_relocs_info(info) \
(frvfdpic_hash_table (info)->relocs_info)
#define frvfdpic_got_initial_offset(info) \
(frvfdpic_hash_table (info)->got0)
#define frvfdpic_plt_initial_offset(info) \
(frvfdpic_hash_table (info)->plt0)
#define frvfdpic_dynamic_got_plt_info(info) \
(frvfdpic_hash_table (info)->g)
/* Currently it's the same, but if some day we have a reason to change
it, we'd better be using a different macro.
FIXME: if there's any TLS PLT entry that uses local-exec or
initial-exec models, we could use the ret at the end of any of them
instead of adding one more. */
#define frvfdpic_plt_tls_ret_offset(info) \
(frvfdpic_plt_initial_offset (info))
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
#define DEFAULT_STACK_SIZE 0x20000
/* This structure is used to collect the number of entries present in
each addressable range of the got. */
struct _frvfdpic_dynamic_got_info
{
/* Several bits of information about the current link. */
struct bfd_link_info *info;
/* Total GOT size needed for GOT entries within the 12-, 16- or 32-bit
ranges. */
bfd_vma got12, gotlos, gothilo;
/* Total GOT size needed for function descriptor entries within the 12-,
16- or 32-bit ranges. */
bfd_vma fd12, fdlos, fdhilo;
/* Total GOT size needed by function descriptor entries referenced
in PLT entries, that would be profitable to place in offsets
close to the PIC register. */
bfd_vma fdplt;
/* Total PLT size needed by lazy PLT entries. */
bfd_vma lzplt;
/* Total GOT size needed for TLS descriptor entries within the 12-,
16- or 32-bit ranges. */
bfd_vma tlsd12, tlsdlos, tlsdhilo;
/* Total GOT size needed by TLS descriptors referenced in PLT
entries, that would be profitable to place in offers close to the
PIC register. */
bfd_vma tlsdplt;
/* Total PLT size needed by TLS lazy PLT entries. */
bfd_vma tlslzplt;
/* Number of relocations carried over from input object files. */
unsigned long relocs;
/* Number of fixups introduced by relocations in input object files. */
unsigned long fixups;
/* The number of fixups that reference the ret instruction added to
the PLT for locally-resolved TLS descriptors. */
unsigned long tls_ret_refs;
};
/* This structure is used to assign offsets to got entries, function
descriptors, plt entries and lazy plt entries. */
struct _frvfdpic_dynamic_got_plt_info
{
/* Summary information collected with _frvfdpic_count_got_plt_entries. */
struct _frvfdpic_dynamic_got_info g;
/* For each addressable range, we record a MAX (positive) and MIN
(negative) value. CUR is used to assign got entries, and it's
incremented from an initial positive value to MAX, then from MIN
to FDCUR (unless FDCUR wraps around first). FDCUR is used to
assign function descriptors, and it's decreased from an initial
non-positive value to MIN, then from MAX down to CUR (unless CUR
wraps around first). All of MIN, MAX, CUR and FDCUR always point
to even words. ODD, if non-zero, indicates an odd word to be
used for the next got entry, otherwise CUR is used and
incremented by a pair of words, wrapping around when it reaches
MAX. FDCUR is decremented (and wrapped) before the next function
descriptor is chosen. FDPLT indicates the number of remaining
slots that can be used for function descriptors used only by PLT
entries.
TMAX, TMIN and TCUR are used to assign TLS descriptors. TCUR
starts as MAX, and grows up to TMAX, then wraps around to TMIN
and grows up to MIN. TLSDPLT indicates the number of remaining
slots that can be used for TLS descriptors used only by TLS PLT
entries. */
struct _frvfdpic_dynamic_got_alloc_data
{
bfd_signed_vma max, cur, odd, fdcur, min;
bfd_signed_vma tmax, tcur, tmin;
bfd_vma fdplt, tlsdplt;
} got12, gotlos, gothilo;
};
/* Create an FRV ELF linker hash table. */
static struct bfd_link_hash_table *
frvfdpic_elf_link_hash_table_create (bfd *abfd)
{
struct frvfdpic_elf_link_hash_table *ret;
bfd_size_type amt = sizeof (struct frvfdpic_elf_link_hash_table);
ret = bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
_bfd_elf_link_hash_newfunc,
sizeof (struct elf_link_hash_entry),
FRV_ELF_DATA))
{
free (ret);
return NULL;
}
return &ret->elf.root;
}
/* Decide whether a reference to a symbol can be resolved locally or
not. If the symbol is protected, we want the local address, but
its function descriptor must be assigned by the dynamic linker. */
#define FRVFDPIC_SYM_LOCAL(INFO, H) \
(_bfd_elf_symbol_refs_local_p ((H), (INFO), 1) \
|| ! elf_hash_table (INFO)->dynamic_sections_created)
#define FRVFDPIC_FUNCDESC_LOCAL(INFO, H) \
((H)->dynindx == -1 || ! elf_hash_table (INFO)->dynamic_sections_created)
/* This structure collects information on what kind of GOT, PLT or
function descriptors are required by relocations that reference a
certain symbol. */
struct frvfdpic_relocs_info
{
/* The index of the symbol, as stored in the relocation r_info, if
we have a local symbol; -1 otherwise. */
long symndx;
union
{
/* The input bfd in which the symbol is defined, if it's a local
symbol. */
bfd *abfd;
/* If symndx == -1, the hash table entry corresponding to a global
symbol (even if it turns out to bind locally, in which case it
should ideally be replaced with section's symndx + addend). */
struct elf_link_hash_entry *h;
} d;
/* The addend of the relocation that references the symbol. */
bfd_vma addend;
/* The fields above are used to identify an entry. The fields below
contain information on how an entry is used and, later on, which
locations it was assigned. */
/* The following 3 fields record whether the symbol+addend above was
ever referenced with a GOT relocation. The 12 suffix indicates a
GOT12 relocation; los is used for GOTLO relocations that are not
matched by a GOTHI relocation; hilo is used for GOTLO/GOTHI
pairs. */
unsigned got12:1;
unsigned gotlos:1;
unsigned gothilo:1;
/* Whether a FUNCDESC relocation references symbol+addend. */
unsigned fd:1;
/* Whether a FUNCDESC_GOT relocation references symbol+addend. */
unsigned fdgot12:1;
unsigned fdgotlos:1;
unsigned fdgothilo:1;
/* Whether a FUNCDESC_GOTOFF relocation references symbol+addend. */
unsigned fdgoff12:1;
unsigned fdgofflos:1;
unsigned fdgoffhilo:1;
/* Whether a GETTLSOFF relocation references symbol+addend. */
unsigned tlsplt:1;
/* FIXME: we should probably add tlspltdesc, tlspltoff and
tlspltimm, to tell what kind of TLS PLT entry we're generating.
We might instead just pre-compute flags telling whether the
object is suitable for local exec, initial exec or general
dynamic addressing, and use that all over the place. We could
also try to do a better job of merging TLSOFF and TLSDESC entries
in main executables, but perhaps we can get rid of TLSDESC
entirely in them instead. */
/* Whether a GOTTLSDESC relocation references symbol+addend. */
unsigned tlsdesc12:1;
unsigned tlsdesclos:1;
unsigned tlsdeschilo:1;
/* Whether a GOTTLSOFF relocation references symbol+addend. */
unsigned tlsoff12:1;
unsigned tlsofflos:1;
unsigned tlsoffhilo:1;
/* Whether symbol+addend is referenced with GOTOFF12, GOTOFFLO or
GOTOFFHI relocations. The addend doesn't really matter, since we
envision that this will only be used to check whether the symbol
is mapped to the same segment as the got. */
unsigned gotoff:1;
/* Whether symbol+addend is referenced by a LABEL24 relocation. */
unsigned call:1;
/* Whether symbol+addend is referenced by a 32 or FUNCDESC_VALUE
relocation. */
unsigned sym:1;
/* Whether we need a PLT entry for a symbol. Should be implied by
something like:
(call && symndx == -1 && ! FRVFDPIC_SYM_LOCAL (info, d.h)) */
unsigned plt:1;
/* Whether a function descriptor should be created in this link unit
for symbol+addend. Should be implied by something like:
(plt || fdgotoff12 || fdgotofflos || fdgotofflohi
|| ((fd || fdgot12 || fdgotlos || fdgothilo)
&& (symndx != -1 || FRVFDPIC_FUNCDESC_LOCAL (info, d.h)))) */
unsigned privfd:1;
/* Whether a lazy PLT entry is needed for this symbol+addend.
Should be implied by something like:
(privfd && symndx == -1 && ! FRVFDPIC_SYM_LOCAL (info, d.h)
&& ! (info->flags & DF_BIND_NOW)) */
unsigned lazyplt:1;
/* Whether we've already emitted GOT relocations and PLT entries as
needed for this symbol. */
unsigned done:1;
/* The number of R_FRV_32, R_FRV_FUNCDESC, R_FRV_FUNCDESC_VALUE and
R_FRV_TLSDESC_VALUE, R_FRV_TLSOFF relocations referencing
symbol+addend. */
unsigned relocs32, relocsfd, relocsfdv, relocstlsd, relocstlsoff;
/* The number of .rofixups entries and dynamic relocations allocated
for this symbol, minus any that might have already been used. */
unsigned fixups, dynrelocs;
/* The offsets of the GOT entries assigned to symbol+addend, to the
function descriptor's address, and to a function descriptor,
respectively. Should be zero if unassigned. The offsets are
counted from the value that will be assigned to the PIC register,
not from the beginning of the .got section. */
bfd_signed_vma got_entry, fdgot_entry, fd_entry;
/* The offsets of the PLT entries assigned to symbol+addend,
non-lazy and lazy, respectively. If unassigned, should be
(bfd_vma)-1. */
bfd_vma plt_entry, lzplt_entry;
/* The offsets of the GOT entries for TLS offset and TLS descriptor. */
bfd_signed_vma tlsoff_entry, tlsdesc_entry;
/* The offset of the TLS offset PLT entry. */
bfd_vma tlsplt_entry;
};
/* Compute a hash with the key fields of an frvfdpic_relocs_info entry. */
static hashval_t
frvfdpic_relocs_info_hash (const void *entry_)
{
const struct frvfdpic_relocs_info *entry = entry_;
return (entry->symndx == -1
? (long) entry->d.h->root.root.hash
: entry->symndx + (long) entry->d.abfd->id * 257) + entry->addend;
}
/* Test whether the key fields of two frvfdpic_relocs_info entries are
identical. */
static int
frvfdpic_relocs_info_eq (const void *entry1, const void *entry2)
{
const struct frvfdpic_relocs_info *e1 = entry1;
const struct frvfdpic_relocs_info *e2 = entry2;
return e1->symndx == e2->symndx && e1->addend == e2->addend
&& (e1->symndx == -1 ? e1->d.h == e2->d.h : e1->d.abfd == e2->d.abfd);
}
/* Find or create an entry in a hash table HT that matches the key
fields of the given ENTRY. If it's not found, memory for a new
entry is allocated in ABFD's obstack. */
static struct frvfdpic_relocs_info *
frvfdpic_relocs_info_find (struct htab *ht,
bfd *abfd,
const struct frvfdpic_relocs_info *entry,
enum insert_option insert)
{
struct frvfdpic_relocs_info **loc =
(struct frvfdpic_relocs_info **) htab_find_slot (ht, entry, insert);
if (! loc)
return NULL;
if (*loc)
return *loc;
*loc = bfd_zalloc (abfd, sizeof (**loc));
if (! *loc)
return *loc;
(*loc)->symndx = entry->symndx;
(*loc)->d = entry->d;
(*loc)->addend = entry->addend;
(*loc)->plt_entry = (bfd_vma)-1;
(*loc)->lzplt_entry = (bfd_vma)-1;
(*loc)->tlsplt_entry = (bfd_vma)-1;
return *loc;
}
/* Obtain the address of the entry in HT associated with H's symbol +
addend, creating a new entry if none existed. ABFD is only used
for memory allocation purposes. */
inline static struct frvfdpic_relocs_info *
frvfdpic_relocs_info_for_global (struct htab *ht,
bfd *abfd,
struct elf_link_hash_entry *h,
bfd_vma addend,
enum insert_option insert)
{
struct frvfdpic_relocs_info entry;
entry.symndx = -1;
entry.d.h = h;
entry.addend = addend;
return frvfdpic_relocs_info_find (ht, abfd, &entry, insert);
}
/* Obtain the address of the entry in HT associated with the SYMNDXth
local symbol of the input bfd ABFD, plus the addend, creating a new
entry if none existed. */
inline static struct frvfdpic_relocs_info *
frvfdpic_relocs_info_for_local (struct htab *ht,
bfd *abfd,
long symndx,
bfd_vma addend,
enum insert_option insert)
{
struct frvfdpic_relocs_info entry;
entry.symndx = symndx;
entry.d.abfd = abfd;
entry.addend = addend;
return frvfdpic_relocs_info_find (ht, abfd, &entry, insert);
}
/* Merge fields set by check_relocs() of two entries that end up being
mapped to the same (presumably global) symbol. */
inline static void
frvfdpic_pic_merge_early_relocs_info (struct frvfdpic_relocs_info *e2,
struct frvfdpic_relocs_info const *e1)
{
e2->got12 |= e1->got12;
e2->gotlos |= e1->gotlos;
e2->gothilo |= e1->gothilo;
e2->fd |= e1->fd;
e2->fdgot12 |= e1->fdgot12;
e2->fdgotlos |= e1->fdgotlos;
e2->fdgothilo |= e1->fdgothilo;
e2->fdgoff12 |= e1->fdgoff12;
e2->fdgofflos |= e1->fdgofflos;
e2->fdgoffhilo |= e1->fdgoffhilo;
e2->tlsplt |= e1->tlsplt;
e2->tlsdesc12 |= e1->tlsdesc12;
e2->tlsdesclos |= e1->tlsdesclos;
e2->tlsdeschilo |= e1->tlsdeschilo;
e2->tlsoff12 |= e1->tlsoff12;
e2->tlsofflos |= e1->tlsofflos;
e2->tlsoffhilo |= e1->tlsoffhilo;
e2->gotoff |= e1->gotoff;
e2->call |= e1->call;
e2->sym |= e1->sym;
}
/* Every block of 65535 lazy PLT entries shares a single call to the
resolver, inserted in the 32768th lazy PLT entry (i.e., entry #
32767, counting from 0). All other lazy PLT entries branch to it
in a single instruction. */
#define FRVFDPIC_LZPLT_BLOCK_SIZE ((bfd_vma) 8 * 65535 + 4)
#define FRVFDPIC_LZPLT_RESOLV_LOC (8 * 32767)
/* Add a dynamic relocation to the SRELOC section. */
inline static bfd_vma
_frvfdpic_add_dyn_reloc (bfd *output_bfd, asection *sreloc, bfd_vma offset,
int reloc_type, long dynindx, bfd_vma addend,
struct frvfdpic_relocs_info *entry)
{
Elf_Internal_Rela outrel;
bfd_vma reloc_offset;
outrel.r_offset = offset;
outrel.r_info = ELF32_R_INFO (dynindx, reloc_type);
outrel.r_addend = addend;
reloc_offset = sreloc->reloc_count * sizeof (Elf32_External_Rel);
BFD_ASSERT (reloc_offset < sreloc->size);
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
sreloc->contents + reloc_offset);
sreloc->reloc_count++;
/* If the entry's index is zero, this relocation was probably to a
linkonce section that got discarded. We reserved a dynamic
relocation, but it was for another entry than the one we got at
the time of emitting the relocation. Unfortunately there's no
simple way for us to catch this situation, since the relocation
is cleared right before calling relocate_section, at which point
we no longer know what the relocation used to point to. */
if (entry->symndx)
{
BFD_ASSERT (entry->dynrelocs > 0);
entry->dynrelocs--;
}
return reloc_offset;
}
/* Add a fixup to the ROFIXUP section. */
static bfd_vma
_frvfdpic_add_rofixup (bfd *output_bfd, asection *rofixup, bfd_vma offset,
struct frvfdpic_relocs_info *entry)
{
bfd_vma fixup_offset;
if (rofixup->flags & SEC_EXCLUDE)
return -1;
fixup_offset = rofixup->reloc_count * 4;
if (rofixup->contents)
{
BFD_ASSERT (fixup_offset < rofixup->size);
bfd_put_32 (output_bfd, offset, rofixup->contents + fixup_offset);
}
rofixup->reloc_count++;
if (entry && entry->symndx)
{
/* See discussion about symndx == 0 in _frvfdpic_add_dyn_reloc
above. */
BFD_ASSERT (entry->fixups > 0);
entry->fixups--;
}
return fixup_offset;
}
/* Find the segment number in which OSEC, and output section, is
located. */
static unsigned
_frvfdpic_osec_to_segment (bfd *output_bfd, asection *osec)
{
Elf_Internal_Phdr *p = _bfd_elf_find_segment_containing_section (output_bfd, osec);
return (p != NULL) ? p - elf_tdata (output_bfd)->phdr : -1;
}
inline static bfd_boolean
_frvfdpic_osec_readonly_p (bfd *output_bfd, asection *osec)
{
unsigned seg = _frvfdpic_osec_to_segment (output_bfd, osec);
return ! (elf_tdata (output_bfd)->phdr[seg].p_flags & PF_W);
}
#define FRVFDPIC_TLS_BIAS (2048 - 16)
/* Return the base VMA address which should be subtracted from real addresses
when resolving TLSMOFF relocation.
This is PT_TLS segment p_vaddr, plus the 2048-16 bias. */
static bfd_vma
tls_biased_base (struct bfd_link_info *info)
{
/* If tls_sec is NULL, we should have signalled an error already. */
if (elf_hash_table (info)->tls_sec == NULL)
return FRVFDPIC_TLS_BIAS;
return elf_hash_table (info)->tls_sec->vma + FRVFDPIC_TLS_BIAS;
}
/* Generate relocations for GOT entries, function descriptors, and
code for PLT and lazy PLT entries. */
inline static bfd_boolean
_frvfdpic_emit_got_relocs_plt_entries (struct frvfdpic_relocs_info *entry,
bfd *output_bfd,
struct bfd_link_info *info,
asection *sec,
Elf_Internal_Sym *sym,
bfd_vma addend)
{
bfd_vma fd_lazy_rel_offset = (bfd_vma)-1;
int dynindx = -1;
if (entry->done)
return TRUE;
entry->done = 1;
if (entry->got_entry || entry->fdgot_entry || entry->fd_entry
|| entry->tlsoff_entry || entry->tlsdesc_entry)
{
/* If the symbol is dynamic, consider it for dynamic
relocations, otherwise decay to section + offset. */
if (entry->symndx == -1 && entry->d.h->dynindx != -1)
dynindx = entry->d.h->dynindx;
else
{
if (sec
&& sec->output_section
&& ! bfd_is_abs_section (sec->output_section)
&& ! bfd_is_und_section (sec->output_section))
dynindx = elf_section_data (sec->output_section)->dynindx;
else
dynindx = 0;
}
}
/* Generate relocation for GOT entry pointing to the symbol. */
if (entry->got_entry)
{
int idx = dynindx;
bfd_vma ad = addend;
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (sec && (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section && elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
/* If we're linking an executable at a fixed address, we can
omit the dynamic relocation as long as the symbol is local to
this module. */
if (info->executable && !info->pie
&& (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (sec)
ad += sec->output_section->vma;
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section (info),
frvfdpic_got_section (info)->output_section
->vma
+ frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info)
+ entry->got_entry, entry);
}
else
_frvfdpic_add_dyn_reloc (output_bfd, frvfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
frvfdpic_got_section (info),
frvfdpic_got_initial_offset (info)
+ entry->got_entry)
+ frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)->output_offset,
R_FRV_32, idx, ad, entry);
bfd_put_32 (output_bfd, ad,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->got_entry);
}
/* Generate relocation for GOT entry pointing to a canonical
function descriptor. */
if (entry->fdgot_entry)
{
int reloc, idx;
bfd_vma ad = 0;
if (! (entry->symndx == -1
&& entry->d.h->root.type == bfd_link_hash_undefweak
&& FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
/* If the symbol is dynamic and there may be dynamic symbol
resolution because we are, or are linked with, a shared
library, emit a FUNCDESC relocation such that the dynamic
linker will allocate the function descriptor. If the
symbol needs a non-local function descriptor but binds
locally (e.g., its visibility is protected, emit a
dynamic relocation decayed to section+offset. */
if (entry->symndx == -1
&& ! FRVFDPIC_FUNCDESC_LOCAL (info, entry->d.h)
&& FRVFDPIC_SYM_LOCAL (info, entry->d.h)
&& !(info->executable && !info->pie))
{
reloc = R_FRV_FUNCDESC;
idx = elf_section_data (entry->d.h->root.u.def.section
->output_section)->dynindx;
ad = entry->d.h->root.u.def.section->output_offset
+ entry->d.h->root.u.def.value;
}
else if (entry->symndx == -1
&& ! FRVFDPIC_FUNCDESC_LOCAL (info, entry->d.h))
{
reloc = R_FRV_FUNCDESC;
idx = dynindx;
ad = addend;
if (ad)
{
(*info->callbacks->reloc_dangerous)
(info, _("relocation requires zero addend"),
elf_hash_table (info)->dynobj,
frvfdpic_got_section (info),
entry->fdgot_entry);
return FALSE;
}
}
else
{
/* Otherwise, we know we have a private function descriptor,
so reference it directly. */
if (elf_hash_table (info)->dynamic_sections_created)
BFD_ASSERT (entry->privfd);
reloc = R_FRV_32;
idx = elf_section_data (frvfdpic_got_section (info)
->output_section)->dynindx;
ad = frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info) + entry->fd_entry;
}
/* If there is room for dynamic symbol resolution, emit the
dynamic relocation. However, if we're linking an
executable at a fixed location, we won't have emitted a
dynamic symbol entry for the got section, so idx will be
zero, which means we can and should compute the address
of the private descriptor ourselves. */
if (info->executable && !info->pie
&& (entry->symndx != -1
|| FRVFDPIC_FUNCDESC_LOCAL (info, entry->d.h)))
{
ad += frvfdpic_got_section (info)->output_section->vma;
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section (info),
frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset
+ frvfdpic_got_initial_offset (info)
+ entry->fdgot_entry, entry);
}
else
_frvfdpic_add_dyn_reloc (output_bfd,
frvfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
frvfdpic_got_section (info),
frvfdpic_got_initial_offset (info)
+ entry->fdgot_entry)
+ frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset,
reloc, idx, ad, entry);
}
bfd_put_32 (output_bfd, ad,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->fdgot_entry);
}
/* Generate relocation to fill in a private function descriptor in
the GOT. */
if (entry->fd_entry)
{
int idx = dynindx;
bfd_vma ad = addend;
bfd_vma ofst;
long lowword, highword;
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (sec && (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section && elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
/* If we're linking an executable at a fixed address, we can
omit the dynamic relocation as long as the symbol is local to
this module. */
if (info->executable && !info->pie
&& (entry->symndx != -1 || FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (sec)
ad += sec->output_section->vma;
ofst = 0;
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
{
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section (info),
frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset
+ frvfdpic_got_initial_offset (info)
+ entry->fd_entry, entry);
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section (info),
frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset
+ frvfdpic_got_initial_offset (info)
+ entry->fd_entry + 4, entry);
}
}
else
{
ofst =
_frvfdpic_add_dyn_reloc (output_bfd,
entry->lazyplt
? frvfdpic_pltrel_section (info)
: frvfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
frvfdpic_got_section (info),
frvfdpic_got_initial_offset (info)
+ entry->fd_entry)
+ frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset,
R_FRV_FUNCDESC_VALUE, idx, ad, entry);
}
/* If we've omitted the dynamic relocation, just emit the fixed
addresses of the symbol and of the local GOT base offset. */
if (info->executable && !info->pie && sec && sec->output_section)
{
lowword = ad;
highword = frvfdpic_got_section (info)->output_section->vma
+ frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info);
}
else if (entry->lazyplt)
{
if (ad)
{
(*info->callbacks->reloc_dangerous)
(info, _("relocation requires zero addend"),
elf_hash_table (info)->dynobj,
frvfdpic_got_section (info),
entry->fd_entry);
return FALSE;
}
fd_lazy_rel_offset = ofst;
/* A function descriptor used for lazy or local resolving is
initialized such that its high word contains the output
section index in which the PLT entries are located, and
the low word contains the address of the lazy PLT entry
entry point, that must be within the memory region
assigned to that section. */
lowword = entry->lzplt_entry + 4
+ frvfdpic_plt_section (info)->output_offset
+ frvfdpic_plt_section (info)->output_section->vma;
highword = _frvfdpic_osec_to_segment
(output_bfd, frvfdpic_plt_section (info)->output_section);
}
else
{
/* A function descriptor for a local function gets the index
of the section. For a non-local function, it's
disregarded. */
lowword = ad;
if (sec == NULL
|| (entry->symndx == -1 && entry->d.h->dynindx != -1
&& entry->d.h->dynindx == idx))
highword = 0;
else
highword = _frvfdpic_osec_to_segment
(output_bfd, sec->output_section);
}
bfd_put_32 (output_bfd, lowword,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->fd_entry);
bfd_put_32 (output_bfd, highword,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->fd_entry + 4);
}
/* Generate code for the PLT entry. */
if (entry->plt_entry != (bfd_vma) -1)
{
bfd_byte *plt_code = frvfdpic_plt_section (info)->contents
+ entry->plt_entry;
BFD_ASSERT (entry->fd_entry);
/* Figure out what kind of PLT entry we need, depending on the
location of the function descriptor within the GOT. */
if (entry->fd_entry >= -(1 << (12 - 1))
&& entry->fd_entry < (1 << (12 - 1)))
{
/* lddi @(gr15, fd_entry), gr14 */
bfd_put_32 (output_bfd,
0x9cccf000 | (entry->fd_entry & ((1 << 12) - 1)),
plt_code);
plt_code += 4;
}
else
{
if (entry->fd_entry >= -(1 << (16 - 1))
&& entry->fd_entry < (1 << (16 - 1)))
{
/* setlos lo(fd_entry), gr14 */
bfd_put_32 (output_bfd,
0x9cfc0000
| (entry->fd_entry & (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
else
{
/* sethi.p hi(fd_entry), gr14
setlo lo(fd_entry), gr14 */
bfd_put_32 (output_bfd,
0x1cf80000
| ((entry->fd_entry >> 16)
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
bfd_put_32 (output_bfd,
0x9cf40000
| (entry->fd_entry & (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
/* ldd @(gr14,gr15),gr14 */
bfd_put_32 (output_bfd, 0x9c08e14f, plt_code);
plt_code += 4;
}
/* jmpl @(gr14,gr0) */
bfd_put_32 (output_bfd, 0x8030e000, plt_code);
}
/* Generate code for the lazy PLT entry. */
if (entry->lzplt_entry != (bfd_vma) -1)
{
bfd_byte *lzplt_code = frvfdpic_plt_section (info)->contents
+ entry->lzplt_entry;
bfd_vma resolverStub_addr;
bfd_put_32 (output_bfd, fd_lazy_rel_offset, lzplt_code);
lzplt_code += 4;
resolverStub_addr = entry->lzplt_entry / FRVFDPIC_LZPLT_BLOCK_SIZE
* FRVFDPIC_LZPLT_BLOCK_SIZE + FRVFDPIC_LZPLT_RESOLV_LOC;
if (resolverStub_addr >= frvfdpic_plt_initial_offset (info))
resolverStub_addr = frvfdpic_plt_initial_offset (info) - 12;
if (entry->lzplt_entry == resolverStub_addr)
{
/* This is a lazy PLT entry that includes a resolver call. */
/* ldd @(gr15,gr0), gr4
jmpl @(gr4,gr0) */
bfd_put_32 (output_bfd, 0x8808f140, lzplt_code);
bfd_put_32 (output_bfd, 0x80304000, lzplt_code + 4);
}
else
{
/* bra resolverStub */
bfd_put_32 (output_bfd,
0xc01a0000
| (((resolverStub_addr - entry->lzplt_entry)
/ 4) & (((bfd_vma)1 << 16) - 1)),
lzplt_code);
}
}
/* Generate relocation for GOT entry holding the TLS offset. */
if (entry->tlsoff_entry)
{
int idx = dynindx;
bfd_vma ad = addend;
if (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h))
{
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (sec)
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section
&& elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
}
/* *ABS*+addend is special for TLS relocations, use only the
addend. */
if (info->executable
&& idx == 0
&& (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec)))
;
/* If we're linking an executable, we can entirely omit the
dynamic relocation if the symbol is local to this module. */
else if (info->executable
&& (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (sec)
ad += sec->output_section->vma - tls_biased_base (info);
}
else
{
if (idx == 0
&& (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec)))
{
if (! elf_hash_table (info)->tls_sec)
{
(*info->callbacks->undefined_symbol)
(info, "TLS section", elf_hash_table (info)->dynobj,
frvfdpic_got_section (info), entry->tlsoff_entry, TRUE);
return FALSE;
}
idx = elf_section_data (elf_hash_table (info)->tls_sec)->dynindx;
ad += FRVFDPIC_TLS_BIAS;
}
_frvfdpic_add_dyn_reloc (output_bfd, frvfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
frvfdpic_got_section (info),
frvfdpic_got_initial_offset (info)
+ entry->tlsoff_entry)
+ frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset,
R_FRV_TLSOFF, idx, ad, entry);
}
bfd_put_32 (output_bfd, ad,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->tlsoff_entry);
}
if (entry->tlsdesc_entry)
{
int idx = dynindx;
bfd_vma ad = addend;
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (sec && (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section && elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
/* If we didn't set up a TLS offset entry, but we're linking an
executable and the symbol binds locally, we can use the
module offset in the TLS descriptor in relaxations. */
if (info->executable && ! entry->tlsoff_entry)
entry->tlsoff_entry = entry->tlsdesc_entry + 4;
if (info->executable && !info->pie
&& ((idx == 0
&& (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec)))
|| entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
/* *ABS*+addend is special for TLS relocations, use only the
addend for the TLS offset, and take the module id as
0. */
if (idx == 0
&& (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec)))
;
/* For other TLS symbols that bind locally, add the section
TLS offset to the addend. */
else if (sec)
ad += sec->output_section->vma - tls_biased_base (info);
bfd_put_32 (output_bfd,
frvfdpic_plt_section (info)->output_section->vma
+ frvfdpic_plt_section (info)->output_offset
+ frvfdpic_plt_tls_ret_offset (info),
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->tlsdesc_entry);
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section (info),
frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset
+ frvfdpic_got_initial_offset (info)
+ entry->tlsdesc_entry, entry);
BFD_ASSERT (frvfdpic_dynamic_got_plt_info (info)->tls_ret_refs);
/* We've used one of the reserved fixups, so discount it so
that we can check at the end that we've used them
all. */
frvfdpic_dynamic_got_plt_info (info)->tls_ret_refs--;
/* While at that, make sure the ret instruction makes to the
right location in the PLT. We could do it only when we
got to 0, but since the check at the end will only print
a warning, make sure we have the ret in place in case the
warning is missed. */
bfd_put_32 (output_bfd, 0xc03a4000,
frvfdpic_plt_section (info)->contents
+ frvfdpic_plt_tls_ret_offset (info));
}
else
{
if (idx == 0
&& (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec)))
{
if (! elf_hash_table (info)->tls_sec)
{
(*info->callbacks->undefined_symbol)
(info, "TLS section", elf_hash_table (info)->dynobj,
frvfdpic_got_section (info), entry->tlsdesc_entry, TRUE);
return FALSE;
}
idx = elf_section_data (elf_hash_table (info)->tls_sec)->dynindx;
ad += FRVFDPIC_TLS_BIAS;
}
_frvfdpic_add_dyn_reloc (output_bfd, frvfdpic_gotrel_section (info),
_bfd_elf_section_offset
(output_bfd, info,
frvfdpic_got_section (info),
frvfdpic_got_initial_offset (info)
+ entry->tlsdesc_entry)
+ frvfdpic_got_section (info)
->output_section->vma
+ frvfdpic_got_section (info)
->output_offset,
R_FRV_TLSDESC_VALUE, idx, ad, entry);
bfd_put_32 (output_bfd, 0,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->tlsdesc_entry);
}
bfd_put_32 (output_bfd, ad,
frvfdpic_got_section (info)->contents
+ frvfdpic_got_initial_offset (info)
+ entry->tlsdesc_entry + 4);
}
/* Generate code for the get-TLS-offset PLT entry. */
if (entry->tlsplt_entry != (bfd_vma) -1)
{
bfd_byte *plt_code = frvfdpic_plt_section (info)->contents
+ entry->tlsplt_entry;
if (info->executable
&& (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (info, entry->d.h)))
{
int idx = dynindx;
bfd_vma ad = addend;
/* sec may be NULL when referencing an undefweak symbol
while linking a static executable. */
if (!sec)
{
BFD_ASSERT (entry->symndx == -1
&& entry->d.h->root.type == bfd_link_hash_undefweak);
}
else
{
if (entry->symndx == -1)
ad += entry->d.h->root.u.def.value;
else
ad += sym->st_value;
ad += sec->output_offset;
if (sec->output_section
&& elf_section_data (sec->output_section))
idx = elf_section_data (sec->output_section)->dynindx;
else
idx = 0;
}
/* *ABS*+addend is special for TLS relocations, use only the
addend for the TLS offset, and take the module id as
0. */
if (idx == 0
&& (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec)))
;
/* For other TLS symbols that bind locally, add the section
TLS offset to the addend. */
else if (sec)
ad += sec->output_section->vma - tls_biased_base (info);
if ((bfd_signed_vma)ad >= -(1 << (16 - 1))
&& (bfd_signed_vma)ad < (1 << (16 - 1)))
{
/* setlos lo(ad), gr9 */
bfd_put_32 (output_bfd,
0x92fc0000
| (ad
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
else
{
/* sethi.p hi(ad), gr9
setlo lo(ad), gr9 */
bfd_put_32 (output_bfd,
0x12f80000
| ((ad >> 16)
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
bfd_put_32 (output_bfd,
0x92f40000
| (ad
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
/* ret */
bfd_put_32 (output_bfd, 0xc03a4000, plt_code);
}
else if (entry->tlsoff_entry)
{
/* Figure out what kind of PLT entry we need, depending on the
location of the TLS descriptor within the GOT. */
if (entry->tlsoff_entry >= -(1 << (12 - 1))
&& entry->tlsoff_entry < (1 << (12 - 1)))
{
/* ldi @(gr15, tlsoff_entry), gr9 */
bfd_put_32 (output_bfd,
0x92c8f000 | (entry->tlsoff_entry
& ((1 << 12) - 1)),
plt_code);
plt_code += 4;
}
else
{
if (entry->tlsoff_entry >= -(1 << (16 - 1))
&& entry->tlsoff_entry < (1 << (16 - 1)))
{
/* setlos lo(tlsoff_entry), gr8 */
bfd_put_32 (output_bfd,
0x90fc0000
| (entry->tlsoff_entry
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
else
{
/* sethi.p hi(tlsoff_entry), gr8
setlo lo(tlsoff_entry), gr8 */
bfd_put_32 (output_bfd,
0x10f80000
| ((entry->tlsoff_entry >> 16)
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
bfd_put_32 (output_bfd,
0x90f40000
| (entry->tlsoff_entry
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
/* ld @(gr15,gr8),gr9 */
bfd_put_32 (output_bfd, 0x9008f108, plt_code);
plt_code += 4;
}
/* ret */
bfd_put_32 (output_bfd, 0xc03a4000, plt_code);
}
else
{
BFD_ASSERT (entry->tlsdesc_entry);
/* Figure out what kind of PLT entry we need, depending on the
location of the TLS descriptor within the GOT. */
if (entry->tlsdesc_entry >= -(1 << (12 - 1))
&& entry->tlsdesc_entry < (1 << (12 - 1)))
{
/* lddi @(gr15, tlsdesc_entry), gr8 */
bfd_put_32 (output_bfd,
0x90ccf000 | (entry->tlsdesc_entry
& ((1 << 12) - 1)),
plt_code);
plt_code += 4;
}
else
{
if (entry->tlsdesc_entry >= -(1 << (16 - 1))
&& entry->tlsdesc_entry < (1 << (16 - 1)))
{
/* setlos lo(tlsdesc_entry), gr8 */
bfd_put_32 (output_bfd,
0x90fc0000
| (entry->tlsdesc_entry
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
else
{
/* sethi.p hi(tlsdesc_entry), gr8
setlo lo(tlsdesc_entry), gr8 */
bfd_put_32 (output_bfd,
0x10f80000
| ((entry->tlsdesc_entry >> 16)
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
bfd_put_32 (output_bfd,
0x90f40000
| (entry->tlsdesc_entry
& (((bfd_vma)1 << 16) - 1)),
plt_code);
plt_code += 4;
}
/* ldd @(gr15,gr8),gr8 */
bfd_put_32 (output_bfd, 0x9008f148, plt_code);
plt_code += 4;
}
/* jmpl @(gr8,gr0) */
bfd_put_32 (output_bfd, 0x80308000, plt_code);
}
}
return TRUE;
}
/* Handle an FRV small data reloc. */
static bfd_reloc_status_type
elf32_frv_relocate_gprel12 (struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
Elf_Internal_Rela *relocation,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
bfd_vma gp;
struct bfd_link_hash_entry *h;
h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
gp = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
value -= input_section->output_section->vma;
value -= (gp - input_section->output_section->vma);
insn = bfd_get_32 (input_bfd, contents + relocation->r_offset);
value += relocation->r_addend;
if ((long) value > 0x7ff || (long) value < -0x800)
return bfd_reloc_overflow;
bfd_put_32 (input_bfd,
(insn & 0xfffff000) | (value & 0xfff),
contents + relocation->r_offset);
return bfd_reloc_ok;
}
/* Handle an FRV small data reloc. for the u12 field. */
static bfd_reloc_status_type
elf32_frv_relocate_gprelu12 (struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
Elf_Internal_Rela *relocation,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
bfd_vma gp;
struct bfd_link_hash_entry *h;
bfd_vma mask;
h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
gp = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
value -= input_section->output_section->vma;
value -= (gp - input_section->output_section->vma);
insn = bfd_get_32 (input_bfd, contents + relocation->r_offset);
value += relocation->r_addend;
if ((long) value > 0x7ff || (long) value < -0x800)
return bfd_reloc_overflow;
/* The high 6 bits go into bits 17-12. The low 6 bits go into bits 5-0. */
mask = 0x3f03f;
insn = (insn & ~mask) | ((value & 0xfc0) << 12) | (value & 0x3f);
bfd_put_32 (input_bfd, insn, contents + relocation->r_offset);
return bfd_reloc_ok;
}
/* Handle an FRV ELF HI16 reloc. */
static bfd_reloc_status_type
elf32_frv_relocate_hi16 (bfd *input_bfd,
Elf_Internal_Rela *relhi,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
insn = bfd_get_32 (input_bfd, contents + relhi->r_offset);
value += relhi->r_addend;
value = ((value >> 16) & 0xffff);
insn = (insn & 0xffff0000) | value;
if ((long) value > 0xffff || (long) value < -0x10000)
return bfd_reloc_overflow;
bfd_put_32 (input_bfd, insn, contents + relhi->r_offset);
return bfd_reloc_ok;
}
static bfd_reloc_status_type
elf32_frv_relocate_lo16 (bfd *input_bfd,
Elf_Internal_Rela *rello,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
insn = bfd_get_32 (input_bfd, contents + rello->r_offset);
value += rello->r_addend;
value = value & 0xffff;
insn = (insn & 0xffff0000) | value;
if ((long) value > 0xffff || (long) value < -0x10000)
return bfd_reloc_overflow;
bfd_put_32 (input_bfd, insn, contents + rello->r_offset);
return bfd_reloc_ok;
}
/* Perform the relocation for the CALL label24 instruction. */
static bfd_reloc_status_type
elf32_frv_relocate_label24 (bfd *input_bfd,
asection *input_section,
Elf_Internal_Rela *rello,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
bfd_vma label6;
bfd_vma label18;
/* The format for the call instruction is:
0 000000 0001111 000000000000000000
label6 opcode label18
The branch calculation is: pc + (4*label24)
where label24 is the concatenation of label6 and label18. */
/* Grab the instruction. */
insn = bfd_get_32 (input_bfd, contents + rello->r_offset);
value -= input_section->output_section->vma + input_section->output_offset;
value -= rello->r_offset;
value += rello->r_addend;
value = value >> 2;
label6 = value & 0xfc0000;
label6 = label6 << 7;
label18 = value & 0x3ffff;
insn = insn & 0x803c0000;
insn = insn | label6;
insn = insn | label18;
bfd_put_32 (input_bfd, insn, contents + rello->r_offset);
return bfd_reloc_ok;
}
static bfd_reloc_status_type
elf32_frv_relocate_gprelhi (struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
Elf_Internal_Rela *relocation,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
bfd_vma gp;
struct bfd_link_hash_entry *h;
h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
gp = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
value -= input_section->output_section->vma;
value -= (gp - input_section->output_section->vma);
value += relocation->r_addend;
value = ((value >> 16) & 0xffff);
if ((long) value > 0xffff || (long) value < -0x10000)
return bfd_reloc_overflow;
insn = bfd_get_32 (input_bfd, contents + relocation->r_offset);
insn = (insn & 0xffff0000) | value;
bfd_put_32 (input_bfd, insn, contents + relocation->r_offset);
return bfd_reloc_ok;
}
static bfd_reloc_status_type
elf32_frv_relocate_gprello (struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
Elf_Internal_Rela *relocation,
bfd_byte *contents,
bfd_vma value)
{
bfd_vma insn;
bfd_vma gp;
struct bfd_link_hash_entry *h;
h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
gp = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
value -= input_section->output_section->vma;
value -= (gp - input_section->output_section->vma);
value += relocation->r_addend;
value = value & 0xffff;
if ((long) value > 0xffff || (long) value < -0x10000)
return bfd_reloc_overflow;
insn = bfd_get_32 (input_bfd, contents + relocation->r_offset);
insn = (insn & 0xffff0000) | value;
bfd_put_32 (input_bfd, insn, contents + relocation->r_offset);
return bfd_reloc_ok;
}
static reloc_howto_type *
frv_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
switch (code)
{
default:
break;
case BFD_RELOC_NONE:
return &elf32_frv_howto_table[ (int) R_FRV_NONE];
case BFD_RELOC_32:
if (elf_elfheader (abfd)->e_type == ET_EXEC
|| elf_elfheader (abfd)->e_type == ET_DYN)
return &elf32_frv_rel_32_howto;
/* Fall through. */
case BFD_RELOC_CTOR:
return &elf32_frv_howto_table[ (int) R_FRV_32];
case BFD_RELOC_FRV_LABEL16:
return &elf32_frv_howto_table[ (int) R_FRV_LABEL16];
case BFD_RELOC_FRV_LABEL24:
return &elf32_frv_howto_table[ (int) R_FRV_LABEL24];
case BFD_RELOC_FRV_LO16:
return &elf32_frv_howto_table[ (int) R_FRV_LO16];
case BFD_RELOC_FRV_HI16:
return &elf32_frv_howto_table[ (int) R_FRV_HI16];
case BFD_RELOC_FRV_GPREL12:
return &elf32_frv_howto_table[ (int) R_FRV_GPREL12];
case BFD_RELOC_FRV_GPRELU12:
return &elf32_frv_howto_table[ (int) R_FRV_GPRELU12];
case BFD_RELOC_FRV_GPREL32:
return &elf32_frv_howto_table[ (int) R_FRV_GPREL32];
case BFD_RELOC_FRV_GPRELHI:
return &elf32_frv_howto_table[ (int) R_FRV_GPRELHI];
case BFD_RELOC_FRV_GPRELLO:
return &elf32_frv_howto_table[ (int) R_FRV_GPRELLO];
case BFD_RELOC_FRV_GOT12:
return &elf32_frv_howto_table[ (int) R_FRV_GOT12];
case BFD_RELOC_FRV_GOTHI:
return &elf32_frv_howto_table[ (int) R_FRV_GOTHI];
case BFD_RELOC_FRV_GOTLO:
return &elf32_frv_howto_table[ (int) R_FRV_GOTLO];
case BFD_RELOC_FRV_FUNCDESC:
if (elf_elfheader (abfd)->e_type == ET_EXEC
|| elf_elfheader (abfd)->e_type == ET_DYN)
return &elf32_frv_rel_funcdesc_howto;
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC];
case BFD_RELOC_FRV_FUNCDESC_GOT12:
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOT12];
case BFD_RELOC_FRV_FUNCDESC_GOTHI:
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTHI];
case BFD_RELOC_FRV_FUNCDESC_GOTLO:
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTLO];
case BFD_RELOC_FRV_FUNCDESC_VALUE:
if (elf_elfheader (abfd)->e_type == ET_EXEC
|| elf_elfheader (abfd)->e_type == ET_DYN)
return &elf32_frv_rel_funcdesc_value_howto;
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_VALUE];
case BFD_RELOC_FRV_FUNCDESC_GOTOFF12:
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTOFF12];
case BFD_RELOC_FRV_FUNCDESC_GOTOFFHI:
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTOFFHI];
case BFD_RELOC_FRV_FUNCDESC_GOTOFFLO:
return &elf32_frv_howto_table[ (int) R_FRV_FUNCDESC_GOTOFFLO];
case BFD_RELOC_FRV_GOTOFF12:
return &elf32_frv_howto_table[ (int) R_FRV_GOTOFF12];
case BFD_RELOC_FRV_GOTOFFHI:
return &elf32_frv_howto_table[ (int) R_FRV_GOTOFFHI];
case BFD_RELOC_FRV_GOTOFFLO:
return &elf32_frv_howto_table[ (int) R_FRV_GOTOFFLO];
case BFD_RELOC_FRV_GETTLSOFF:
return &elf32_frv_howto_table[ (int) R_FRV_GETTLSOFF];
case BFD_RELOC_FRV_TLSDESC_VALUE:
if (elf_elfheader (abfd)->e_type == ET_EXEC
|| elf_elfheader (abfd)->e_type == ET_DYN)
return &elf32_frv_rel_tlsdesc_value_howto;
return &elf32_frv_howto_table[ (int) R_FRV_TLSDESC_VALUE];
case BFD_RELOC_FRV_GOTTLSDESC12:
return &elf32_frv_howto_table[ (int) R_FRV_GOTTLSDESC12];
case BFD_RELOC_FRV_GOTTLSDESCHI:
return &elf32_frv_howto_table[ (int) R_FRV_GOTTLSDESCHI];
case BFD_RELOC_FRV_GOTTLSDESCLO:
return &elf32_frv_howto_table[ (int) R_FRV_GOTTLSDESCLO];
case BFD_RELOC_FRV_TLSMOFF12:
return &elf32_frv_howto_table[ (int) R_FRV_TLSMOFF12];
case BFD_RELOC_FRV_TLSMOFFHI:
return &elf32_frv_howto_table[ (int) R_FRV_TLSMOFFHI];
case BFD_RELOC_FRV_TLSMOFFLO:
return &elf32_frv_howto_table[ (int) R_FRV_TLSMOFFLO];
case BFD_RELOC_FRV_GOTTLSOFF12:
return &elf32_frv_howto_table[ (int) R_FRV_GOTTLSOFF12];
case BFD_RELOC_FRV_GOTTLSOFFHI:
return &elf32_frv_howto_table[ (int) R_FRV_GOTTLSOFFHI];
case BFD_RELOC_FRV_GOTTLSOFFLO:
return &elf32_frv_howto_table[ (int) R_FRV_GOTTLSOFFLO];
case BFD_RELOC_FRV_TLSOFF:
if (elf_elfheader (abfd)->e_type == ET_EXEC
|| elf_elfheader (abfd)->e_type == ET_DYN)
return &elf32_frv_rel_tlsoff_howto;
return &elf32_frv_howto_table[ (int) R_FRV_TLSOFF];
case BFD_RELOC_FRV_TLSDESC_RELAX:
return &elf32_frv_howto_table[ (int) R_FRV_TLSDESC_RELAX];
case BFD_RELOC_FRV_GETTLSOFF_RELAX:
return &elf32_frv_howto_table[ (int) R_FRV_GETTLSOFF_RELAX];
case BFD_RELOC_FRV_TLSOFF_RELAX:
return &elf32_frv_howto_table[ (int) R_FRV_TLSOFF_RELAX];
case BFD_RELOC_FRV_TLSMOFF:
return &elf32_frv_howto_table[ (int) R_FRV_TLSMOFF];
case BFD_RELOC_VTABLE_INHERIT:
return &elf32_frv_vtinherit_howto;
case BFD_RELOC_VTABLE_ENTRY:
return &elf32_frv_vtentry_howto;
}
return NULL;
}
static reloc_howto_type *
frv_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (elf32_frv_howto_table) / sizeof (elf32_frv_howto_table[0]);
i++)
if (elf32_frv_howto_table[i].name != NULL
&& strcasecmp (elf32_frv_howto_table[i].name, r_name) == 0)
return &elf32_frv_howto_table[i];
if (strcasecmp (elf32_frv_vtinherit_howto.name, r_name) == 0)
return &elf32_frv_vtinherit_howto;
if (strcasecmp (elf32_frv_vtentry_howto.name, r_name) == 0)
return &elf32_frv_vtentry_howto;
return NULL;
}
/* Set the howto pointer for an FRV ELF reloc. */
static void
frv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
switch (r_type)
{
case R_FRV_GNU_VTINHERIT:
cache_ptr->howto = &elf32_frv_vtinherit_howto;
break;
case R_FRV_GNU_VTENTRY:
cache_ptr->howto = &elf32_frv_vtentry_howto;
break;
default:
cache_ptr->howto = & elf32_frv_howto_table [r_type];
break;
}
}
/* Set the howto pointer for an FRV ELF REL reloc. */
static void
frvfdpic_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED,
arelent *cache_ptr, Elf_Internal_Rela *dst)
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
switch (r_type)
{
case R_FRV_32:
cache_ptr->howto = &elf32_frv_rel_32_howto;
break;
case R_FRV_FUNCDESC:
cache_ptr->howto = &elf32_frv_rel_funcdesc_howto;
break;
case R_FRV_FUNCDESC_VALUE:
cache_ptr->howto = &elf32_frv_rel_funcdesc_value_howto;
break;
case R_FRV_TLSDESC_VALUE:
cache_ptr->howto = &elf32_frv_rel_tlsdesc_value_howto;
break;
case R_FRV_TLSOFF:
cache_ptr->howto = &elf32_frv_rel_tlsoff_howto;
break;
default:
cache_ptr->howto = NULL;
break;
}
}
/* Perform a single relocation. By default we use the standard BFD
routines, but a few relocs, we have to do them ourselves. */
static bfd_reloc_status_type
frv_final_link_relocate (reloc_howto_type *howto,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *rel,
bfd_vma relocation)
{
return _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset, relocation,
rel->r_addend);
}
/* Relocate an FRV ELF section.
The RELOCATE_SECTION function is called by the new ELF backend linker
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjusting the section contents as
necessary, and (if using Rela relocs and generating a relocatable
output file) adjusting the reloc addend as necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocatable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
elf32_frv_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
unsigned isec_segment, got_segment, plt_segment, gprel_segment, tls_segment,
check_segment[2];
int silence_segment_error = !(info->shared || info->pie);
unsigned long insn;
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
relend = relocs + input_section->reloc_count;
isec_segment = _frvfdpic_osec_to_segment (output_bfd,
input_section->output_section);
if (IS_FDPIC (output_bfd) && frvfdpic_got_section (info))
got_segment = _frvfdpic_osec_to_segment (output_bfd,
frvfdpic_got_section (info)
->output_section);
else
got_segment = -1;
if (IS_FDPIC (output_bfd) && frvfdpic_gotfixup_section (info))
gprel_segment = _frvfdpic_osec_to_segment (output_bfd,
frvfdpic_gotfixup_section (info)
->output_section);
else
gprel_segment = -1;
if (IS_FDPIC (output_bfd) && frvfdpic_plt_section (info))
plt_segment = _frvfdpic_osec_to_segment (output_bfd,
frvfdpic_plt_section (info)
->output_section);
else
plt_segment = -1;
if (elf_hash_table (info)->tls_sec)
tls_segment = _frvfdpic_osec_to_segment (output_bfd,
elf_hash_table (info)->tls_sec);
else
tls_segment = -1;
for (rel = relocs; rel < relend; rel ++)
{
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
bfd_vma relocation;
bfd_reloc_status_type r;
const char *name;
int r_type;
asection *osec;
struct frvfdpic_relocs_info *picrel;
bfd_vma orig_addend = rel->r_addend;
r_type = ELF32_R_TYPE (rel->r_info);
if ( r_type == R_FRV_GNU_VTINHERIT
|| r_type == R_FRV_GNU_VTENTRY)
continue;
r_symndx = ELF32_R_SYM (rel->r_info);
howto = elf32_frv_howto_table + ELF32_R_TYPE (rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
osec = sec = local_sections [r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
name = bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name);
if (name == NULL || name[0] == 0)
name = bfd_section_name (input_bfd, sec);
}
else
{
bfd_boolean warned;
bfd_boolean unresolved_reloc;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned);
osec = sec;
name = h->root.root.string;
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (info->relocatable)
continue;
if (r_type != R_FRV_TLSMOFF
&& h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& !FRVFDPIC_SYM_LOCAL (info, h))
{
osec = sec = NULL;
relocation = 0;
}
switch (r_type)
{
case R_FRV_LABEL24:
case R_FRV_32:
if (! IS_FDPIC (output_bfd))
goto non_fdpic;
case R_FRV_GOT12:
case R_FRV_GOTHI:
case R_FRV_GOTLO:
case R_FRV_FUNCDESC_GOT12:
case R_FRV_FUNCDESC_GOTHI:
case R_FRV_FUNCDESC_GOTLO:
case R_FRV_GOTOFF12:
case R_FRV_GOTOFFHI:
case R_FRV_GOTOFFLO:
case R_FRV_FUNCDESC_GOTOFF12:
case R_FRV_FUNCDESC_GOTOFFHI:
case R_FRV_FUNCDESC_GOTOFFLO:
case R_FRV_FUNCDESC:
case R_FRV_FUNCDESC_VALUE:
case R_FRV_GETTLSOFF:
case R_FRV_TLSDESC_VALUE:
case R_FRV_GOTTLSDESC12:
case R_FRV_GOTTLSDESCHI:
case R_FRV_GOTTLSDESCLO:
case R_FRV_TLSMOFF12:
case R_FRV_TLSMOFFHI:
case R_FRV_TLSMOFFLO:
case R_FRV_GOTTLSOFF12:
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSOFFLO:
case R_FRV_TLSOFF:
case R_FRV_TLSDESC_RELAX:
case R_FRV_GETTLSOFF_RELAX:
case R_FRV_TLSOFF_RELAX:
case R_FRV_TLSMOFF:
if (h != NULL)
picrel = frvfdpic_relocs_info_for_global (frvfdpic_relocs_info
(info), input_bfd, h,
orig_addend, INSERT);
else
/* In order to find the entry we created before, we must
use the original addend, not the one that may have been
modified by _bfd_elf_rela_local_sym(). */
picrel = frvfdpic_relocs_info_for_local (frvfdpic_relocs_info
(info), input_bfd, r_symndx,
orig_addend, INSERT);
if (! picrel)
return FALSE;
if (!_frvfdpic_emit_got_relocs_plt_entries (picrel, output_bfd, info,
osec, sym,
rel->r_addend))
{
info->callbacks->einfo
(_("%H: relocation to `%s+%v'"
" may have caused the error above\n"),
input_bfd, input_section, rel->r_offset, name, rel->r_addend);
return FALSE;
}
break;
default:
non_fdpic:
picrel = NULL;
if (h
&& ! FRVFDPIC_SYM_LOCAL (info, h)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
{
info->callbacks->einfo
(_("%H: relocation references symbol"
" not defined in the module\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
break;
}
switch (r_type)
{
case R_FRV_GETTLSOFF:
case R_FRV_TLSDESC_VALUE:
case R_FRV_GOTTLSDESC12:
case R_FRV_GOTTLSDESCHI:
case R_FRV_GOTTLSDESCLO:
case R_FRV_TLSMOFF12:
case R_FRV_TLSMOFFHI:
case R_FRV_TLSMOFFLO:
case R_FRV_GOTTLSOFF12:
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSOFFLO:
case R_FRV_TLSOFF:
case R_FRV_TLSDESC_RELAX:
case R_FRV_GETTLSOFF_RELAX:
case R_FRV_TLSOFF_RELAX:
case R_FRV_TLSMOFF:
if (sec && (bfd_is_abs_section (sec) || bfd_is_und_section (sec)))
relocation += tls_biased_base (info);
break;
default:
break;
}
/* Try to apply TLS relaxations. */
if (1)
switch (r_type)
{
#define LOCAL_EXEC_P(info, picrel) \
((info)->executable \
&& (picrel->symndx != -1 || FRVFDPIC_SYM_LOCAL ((info), (picrel)->d.h)))
#define INITIAL_EXEC_P(info, picrel) \
(((info)->executable || (info)->flags & DF_STATIC_TLS) \
&& (picrel)->tlsoff_entry)
#define IN_RANGE_FOR_OFST12_P(value) \
((bfd_vma)((value) + 2048) < (bfd_vma)4096)
#define IN_RANGE_FOR_SETLOS_P(value) \
((bfd_vma)((value) + 32768) < (bfd_vma)65536)
#define TLSMOFF_IN_RANGE_FOR_SETLOS_P(value, info) \
(IN_RANGE_FOR_SETLOS_P ((value) - tls_biased_base (info)))
#define RELAX_GETTLSOFF_LOCAL_EXEC_P(info, picrel, value) \
(LOCAL_EXEC_P ((info), (picrel)) \
&& TLSMOFF_IN_RANGE_FOR_SETLOS_P((value), (info)))
#define RELAX_GETTLSOFF_INITIAL_EXEC_P(info, picrel) \
(INITIAL_EXEC_P ((info), (picrel)) \
&& IN_RANGE_FOR_OFST12_P ((picrel)->tlsoff_entry))
#define RELAX_TLSDESC_LOCAL_EXEC_P(info, picrel, value) \
(LOCAL_EXEC_P ((info), (picrel)))
#define RELAX_TLSDESC_INITIAL_EXEC_P(info, picrel) \
(INITIAL_EXEC_P ((info), (picrel)))
#define RELAX_GOTTLSOFF_LOCAL_EXEC_P(info, picrel, value) \
(LOCAL_EXEC_P ((info), (picrel)) \
&& TLSMOFF_IN_RANGE_FOR_SETLOS_P((value), (info)))
case R_FRV_GETTLSOFF:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a call instruction? */
if ((insn & (unsigned long)0x01fc0000) != 0x003c0000)
{
info->callbacks->einfo
(_("%H: R_FRV_GETTLSOFF not applied to a call instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_GETTLSOFF_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend))
{
/* Replace the call instruction (except the packing bit)
with setlos #tlsmofflo(symbol+offset), gr9. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x12fc0000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_GETTLSOFF_INITIAL_EXEC_P (info, picrel))
{
/* Replace the call instruction (except the packing bit)
with ldi @(gr15, #gottlsoff12(symbol+addend)), gr9. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x12c8f000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_GOTTLSOFF12;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_FRV_GOTTLSDESC12:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this an lddi instruction? */
if ((insn & (unsigned long)0x01fc0000) != 0x00cc0000)
{
info->callbacks->einfo
(_("%H: R_FRV_GOTTLSDESC12"
" not applied to an lddi instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
&& TLSMOFF_IN_RANGE_FOR_SETLOS_P (relocation + rel->r_addend,
info))
{
/* Replace lddi @(grB, #gottlsdesc12(symbol+offset), grC
with setlos #tlsmofflo(symbol+offset), gr<C+1>.
Preserve the packing bit. */
insn = (insn & (unsigned long)0x80000000)
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
insn |= (unsigned long)0x00fc0000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend))
{
/* Replace lddi @(grB, #gottlsdesc12(symbol+offset), grC
with sethi #tlsmoffhi(symbol+offset), gr<C+1>.
Preserve the packing bit. */
insn = (insn & (unsigned long)0x80000000)
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
insn |= (unsigned long)0x00f80000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFHI;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel))
{
/* Replace lddi @(grB, #gottlsdesc12(symbol+offset), grC
with ldi @(grB, #gottlsoff12(symbol+offset),
gr<C+1>. Preserve the packing bit. If gottlsoff12
overflows, we'll error out, but that's sort-of ok,
since we'd started with gottlsdesc12, that's actually
more demanding. Compiling with -fPIE instead of
-fpie would fix it; linking with --relax should fix
it as well. */
insn = (insn & (unsigned long)0x80cbf000)
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_GOTTLSOFF12;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_FRV_GOTTLSDESCHI:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a sethi instruction? */
if ((insn & (unsigned long)0x01ff0000) != 0x00f80000)
{
info->callbacks->einfo
(_("%H: R_FRV_GOTTLSDESCHI"
" not applied to a sethi instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
|| (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel)
&& IN_RANGE_FOR_SETLOS_P (picrel->tlsoff_entry)))
{
/* Replace sethi with a nop. Preserve the packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel))
{
/* Simply decay GOTTLSDESC to GOTTLSOFF. */
r_type = R_FRV_GOTTLSOFFHI;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_FRV_GOTTLSDESCLO:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a setlo or setlos instruction? */
if ((insn & (unsigned long)0x01f70000) != 0x00f40000)
{
info->callbacks->einfo
(_("%H: R_FRV_GOTTLSDESCLO"
" not applied to a setlo or setlos instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
|| (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel)
&& IN_RANGE_FOR_OFST12_P (picrel->tlsoff_entry)))
{
/* Replace setlo/setlos with a nop. Preserve the
packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel))
{
/* If the corresponding sethi (if it exists) decayed
to a nop, make sure this becomes (or already is) a
setlos, not setlo. */
if (IN_RANGE_FOR_SETLOS_P (picrel->tlsoff_entry))
{
insn |= (unsigned long)0x00080000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
}
/* Simply decay GOTTLSDESC to GOTTLSOFF. */
r_type = R_FRV_GOTTLSOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_FRV_TLSDESC_RELAX:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this an ldd instruction? */
if ((insn & (unsigned long)0x01fc0fc0) != 0x00080140)
{
info->callbacks->einfo
(_("%H: R_FRV_TLSDESC_RELAX"
" not applied to an ldd instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
&& TLSMOFF_IN_RANGE_FOR_SETLOS_P (relocation + rel->r_addend,
info))
{
/* Replace ldd #tlsdesc(symbol+offset)@(grB, grA), grC
with setlos #tlsmofflo(symbol+offset), gr<C+1>.
Preserve the packing bit. */
insn = (insn & (unsigned long)0x80000000)
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
insn |= (unsigned long)0x00fc0000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend))
{
/* Replace ldd #tlsdesc(symbol+offset)@(grB, grA), grC
with sethi #tlsmoffhi(symbol+offset), gr<C+1>.
Preserve the packing bit. */
insn = (insn & (unsigned long)0x80000000)
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
insn |= (unsigned long)0x00f80000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFHI;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel)
&& IN_RANGE_FOR_OFST12_P (picrel->tlsoff_entry))
{
/* Replace ldd #tlsdesc(symbol+offset)@(grB, grA), grC
with ldi @(grB, #gottlsoff12(symbol+offset), gr<C+1>.
Preserve the packing bit. */
insn = (insn & (unsigned long)0x8003f000)
| (unsigned long)0x00c80000
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_GOTTLSOFF12;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel))
{
/* Replace ldd #tlsdesc(symbol+offset)@(grB, grA), grC
with ld #tlsoff(symbol+offset)@(grB, grA), gr<C+1>.
Preserve the packing bit. */
insn = (insn & (unsigned long)0x81ffffbf)
| ((insn + (unsigned long)0x02000000)
& (unsigned long)0x7e000000);
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* #tlsoff(symbol+offset) is just a relaxation
annotation, so there's nothing left to
relocate. */
continue;
}
break;
case R_FRV_GETTLSOFF_RELAX:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a calll or callil instruction? */
if ((insn & (unsigned long)0x7ff80fc0) != 0x02300000)
{
info->callbacks->einfo
(_("%H: R_FRV_GETTLSOFF_RELAX"
" not applied to a calll instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
&& TLSMOFF_IN_RANGE_FOR_SETLOS_P (relocation + rel->r_addend,
info))
{
/* Replace calll with a nop. Preserve the packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
else if (RELAX_TLSDESC_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend))
{
/* Replace calll with setlo #tlsmofflo(symbol+offset), gr9.
Preserve the packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x12f40000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel))
{
/* Replace calll with a nop. Preserve the packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
break;
case R_FRV_GOTTLSOFF12:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this an ldi instruction? */
if ((insn & (unsigned long)0x01fc0000) != 0x00c80000)
{
info->callbacks->einfo
(_("%H: R_FRV_GOTTLSOFF12"
" not applied to an ldi instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_GOTTLSOFF_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend))
{
/* Replace ldi @(grB, #gottlsoff12(symbol+offset), grC
with setlos #tlsmofflo(symbol+offset), grC.
Preserve the packing bit. */
insn &= (unsigned long)0xfe000000;
insn |= (unsigned long)0x00fc0000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_FRV_GOTTLSOFFHI:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a sethi instruction? */
if ((insn & (unsigned long)0x01ff0000) != 0x00f80000)
{
info->callbacks->einfo
(_("%H: R_FRV_GOTTLSOFFHI"
" not applied to a sethi instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_GOTTLSOFF_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
|| (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel)
&& IN_RANGE_FOR_OFST12_P (picrel->tlsoff_entry)))
{
/* Replace sethi with a nop. Preserve the packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
break;
case R_FRV_GOTTLSOFFLO:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a setlo or setlos instruction? */
if ((insn & (unsigned long)0x01f70000) != 0x00f40000)
{
info->callbacks->einfo
(_("%H: R_FRV_GOTTLSOFFLO"
" not applied to a setlo or setlos instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_GOTTLSOFF_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend)
|| (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel)
&& IN_RANGE_FOR_OFST12_P (picrel->tlsoff_entry)))
{
/* Replace setlo/setlos with a nop. Preserve the
packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
break;
case R_FRV_TLSOFF_RELAX:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this an ld instruction? */
if ((insn & (unsigned long)0x01fc0fc0) != 0x00080100)
{
info->callbacks->einfo
(_("%H: R_FRV_TLSOFF_RELAX"
" not applied to an ld instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (RELAX_GOTTLSOFF_LOCAL_EXEC_P (info, picrel,
relocation + rel->r_addend))
{
/* Replace ld #gottlsoff(symbol+offset)@(grB, grA), grC
with setlos #tlsmofflo(symbol+offset), grC.
Preserve the packing bit. */
insn &= (unsigned long)0xfe000000;
insn |= (unsigned long)0x00fc0000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_TLSMOFFLO;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
else if (RELAX_TLSDESC_INITIAL_EXEC_P (info, picrel)
&& IN_RANGE_FOR_OFST12_P (picrel->tlsoff_entry))
{
/* Replace ld #tlsoff(symbol+offset)@(grB, grA), grC
with ldi @(grB, #gottlsoff12(symbol+offset), grC.
Preserve the packing bit. */
insn = (insn & (unsigned long)0xfe03f000)
| (unsigned long)0x00c80000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
r_type = R_FRV_GOTTLSOFF12;
howto = elf32_frv_howto_table + r_type;
rel->r_info = ELF32_R_INFO (r_symndx, r_type);
}
break;
case R_FRV_TLSMOFFHI:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a sethi instruction? */
if ((insn & (unsigned long)0x01ff0000) != 0x00f80000)
{
info->callbacks->einfo
(_("%H: R_FRV_TLSMOFFHI"
" not applied to a sethi instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (TLSMOFF_IN_RANGE_FOR_SETLOS_P (relocation + rel->r_addend,
info))
{
/* Replace sethi with a nop. Preserve the packing bit. */
insn &= (unsigned long)0x80000000;
insn |= (unsigned long)0x00880000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
/* Nothing to relocate. */
continue;
}
break;
case R_FRV_TLSMOFFLO:
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* Is this a setlo or setlos instruction? */
if ((insn & (unsigned long)0x01f70000) != 0x00f40000)
{
info->callbacks->einfo
(_("R_FRV_TLSMOFFLO"
" not applied to a setlo or setlos instruction\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (TLSMOFF_IN_RANGE_FOR_SETLOS_P (relocation + rel->r_addend,
info))
/* If the corresponding sethi (if it exists) decayed
to a nop, make sure this becomes (or already is) a
setlos, not setlo. */
{
insn |= (unsigned long)0x00080000;
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
}
break;
/*
There's nothing to relax in these:
R_FRV_TLSDESC_VALUE
R_FRV_TLSOFF
R_FRV_TLSMOFF12
R_FRV_TLSMOFFHI
R_FRV_TLSMOFFLO
R_FRV_TLSMOFF
*/
default:
break;
}
switch (r_type)
{
case R_FRV_LABEL24:
check_segment[0] = isec_segment;
if (! IS_FDPIC (output_bfd))
check_segment[1] = isec_segment;
else if (picrel->plt)
{
relocation = frvfdpic_plt_section (info)->output_section->vma
+ frvfdpic_plt_section (info)->output_offset
+ picrel->plt_entry;
check_segment[1] = plt_segment;
}
/* We don't want to warn on calls to undefined weak symbols,
as calls to them must be protected by non-NULL tests
anyway, and unprotected calls would invoke undefined
behavior. */
else if (picrel->symndx == -1
&& picrel->d.h->root.type == bfd_link_hash_undefweak)
check_segment[1] = check_segment[0];
else
check_segment[1] = sec
? _frvfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
case R_FRV_GOT12:
case R_FRV_GOTHI:
case R_FRV_GOTLO:
relocation = picrel->got_entry;
check_segment[0] = check_segment[1] = got_segment;
break;
case R_FRV_FUNCDESC_GOT12:
case R_FRV_FUNCDESC_GOTHI:
case R_FRV_FUNCDESC_GOTLO:
relocation = picrel->fdgot_entry;
check_segment[0] = check_segment[1] = got_segment;
break;
case R_FRV_GOTOFFHI:
case R_FRV_GOTOFF12:
case R_FRV_GOTOFFLO:
relocation -= frvfdpic_got_section (info)->output_section->vma
+ frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info);
check_segment[0] = got_segment;
check_segment[1] = sec
? _frvfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
case R_FRV_FUNCDESC_GOTOFF12:
case R_FRV_FUNCDESC_GOTOFFHI:
case R_FRV_FUNCDESC_GOTOFFLO:
relocation = picrel->fd_entry;
check_segment[0] = check_segment[1] = got_segment;
break;
case R_FRV_FUNCDESC:
{
int dynindx;
bfd_vma addend = rel->r_addend;
if (! (h && h->root.type == bfd_link_hash_undefweak
&& FRVFDPIC_SYM_LOCAL (info, h)))
{
/* If the symbol is dynamic and there may be dynamic
symbol resolution because we are or are linked with a
shared library, emit a FUNCDESC relocation such that
the dynamic linker will allocate the function
descriptor. If the symbol needs a non-local function
descriptor but binds locally (e.g., its visibility is
protected, emit a dynamic relocation decayed to
section+offset. */
if (h && ! FRVFDPIC_FUNCDESC_LOCAL (info, h)
&& FRVFDPIC_SYM_LOCAL (info, h)
&& !(info->executable && !info->pie))
{
dynindx = elf_section_data (h->root.u.def.section
->output_section)->dynindx;
addend += h->root.u.def.section->output_offset
+ h->root.u.def.value;
}
else if (h && ! FRVFDPIC_FUNCDESC_LOCAL (info, h))
{
if (addend)
{
info->callbacks->einfo
(_("%H: R_FRV_FUNCDESC references dynamic symbol"
" with nonzero addend\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
dynindx = h->dynindx;
}
else
{
/* Otherwise, we know we have a private function
descriptor, so reference it directly. */
BFD_ASSERT (picrel->privfd);
r_type = R_FRV_32;
dynindx = elf_section_data (frvfdpic_got_section (info)
->output_section)->dynindx;
addend = frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info)
+ picrel->fd_entry;
}
/* If there is room for dynamic symbol resolution, emit
the dynamic relocation. However, if we're linking an
executable at a fixed location, we won't have emitted a
dynamic symbol entry for the got section, so idx will
be zero, which means we can and should compute the
address of the private descriptor ourselves. */
if (info->executable && !info->pie
&& (!h || FRVFDPIC_FUNCDESC_LOCAL (info, h)))
{
addend += frvfdpic_got_section (info)->output_section->vma;
if ((bfd_get_section_flags (output_bfd,
input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
bfd_vma offset;
if (_frvfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->einfo
(_("%H: cannot emit fixups"
" in read-only section\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
offset = _bfd_elf_section_offset
(output_bfd, info,
input_section, rel->r_offset);
if (offset != (bfd_vma)-1)
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section
(info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
picrel);
}
}
else if ((bfd_get_section_flags (output_bfd,
input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
bfd_vma offset;
if (_frvfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->einfo
(_("%H: cannot emit dynamic relocations"
" in read-only section\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
offset = _bfd_elf_section_offset
(output_bfd, info,
input_section, rel->r_offset);
if (offset != (bfd_vma)-1)
_frvfdpic_add_dyn_reloc (output_bfd,
frvfdpic_gotrel_section (info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
r_type, dynindx, addend, picrel);
}
else
addend += frvfdpic_got_section (info)->output_section->vma;
}
/* We want the addend in-place because dynamic
relocations are REL. Setting relocation to it should
arrange for it to be installed. */
relocation = addend - rel->r_addend;
}
check_segment[0] = check_segment[1] = got_segment;
break;
case R_FRV_32:
if (! IS_FDPIC (output_bfd))
{
check_segment[0] = check_segment[1] = -1;
break;
}
/* Fall through. */
case R_FRV_FUNCDESC_VALUE:
{
int dynindx;
bfd_vma addend = rel->r_addend;
/* If the symbol is dynamic but binds locally, use
section+offset. */
if (h && ! FRVFDPIC_SYM_LOCAL (info, h))
{
if (addend && r_type == R_FRV_FUNCDESC_VALUE)
{
info->callbacks->einfo
(_("%H: R_FRV_FUNCDESC_VALUE"
" references dynamic symbol with nonzero addend\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
dynindx = h->dynindx;
}
else
{
if (h)
addend += h->root.u.def.value;
else
addend += sym->st_value;
if (osec)
addend += osec->output_offset;
if (osec && osec->output_section
&& ! bfd_is_abs_section (osec->output_section)
&& ! bfd_is_und_section (osec->output_section))
dynindx = elf_section_data (osec->output_section)->dynindx;
else
dynindx = 0;
}
/* If we're linking an executable at a fixed address, we
can omit the dynamic relocation as long as the symbol
is defined in the current link unit (which is implied
by its output section not being NULL). */
if (info->executable && !info->pie
&& (!h || FRVFDPIC_SYM_LOCAL (info, h)))
{
if (osec)
addend += osec->output_section->vma;
if (IS_FDPIC (input_bfd)
&& (bfd_get_section_flags (output_bfd,
input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
if (_frvfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->einfo
(_("%H: cannot emit fixups in read-only section\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
if (!h || h->root.type != bfd_link_hash_undefweak)
{
bfd_vma offset = _bfd_elf_section_offset
(output_bfd, info,
input_section, rel->r_offset);
if (offset != (bfd_vma)-1)
{
_frvfdpic_add_rofixup (output_bfd,
frvfdpic_gotfixup_section
(info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
picrel);
if (r_type == R_FRV_FUNCDESC_VALUE)
_frvfdpic_add_rofixup
(output_bfd,
frvfdpic_gotfixup_section (info),
offset
+ input_section->output_section->vma
+ input_section->output_offset + 4, picrel);
}
}
}
}
else
{
if ((bfd_get_section_flags (output_bfd,
input_section->output_section)
& (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
bfd_vma offset;
if (_frvfdpic_osec_readonly_p (output_bfd,
input_section
->output_section))
{
info->callbacks->einfo
(_("%H: cannot emit dynamic relocations"
" in read-only section\n"),
input_bfd, input_section, rel->r_offset);
return FALSE;
}
offset = _bfd_elf_section_offset
(output_bfd, info,
input_section, rel->r_offset);
if (offset != (bfd_vma)-1)
_frvfdpic_add_dyn_reloc (output_bfd,
frvfdpic_gotrel_section (info),
offset + input_section
->output_section->vma
+ input_section->output_offset,
r_type, dynindx, addend, picrel);
}
else if (osec)
addend += osec->output_section->vma;
/* We want the addend in-place because dynamic
relocations are REL. Setting relocation to it
should arrange for it to be installed. */
relocation = addend - rel->r_addend;
}
if (r_type == R_FRV_FUNCDESC_VALUE)
{
/* If we've omitted the dynamic relocation, just emit
the fixed addresses of the symbol and of the local
GOT base offset. */
if (info->executable && !info->pie
&& (!h || FRVFDPIC_SYM_LOCAL (info, h)))
bfd_put_32 (output_bfd,
frvfdpic_got_section (info)->output_section->vma
+ frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info),
contents + rel->r_offset + 4);
else
/* A function descriptor used for lazy or local
resolving is initialized such that its high word
contains the output section index in which the
PLT entries are located, and the low word
contains the offset of the lazy PLT entry entry
point into that section. */
bfd_put_32 (output_bfd,
h && ! FRVFDPIC_SYM_LOCAL (info, h)
? 0
: _frvfdpic_osec_to_segment (output_bfd,
sec
->output_section),
contents + rel->r_offset + 4);
}
}
check_segment[0] = check_segment[1] = got_segment;
break;
case R_FRV_GPREL12:
case R_FRV_GPRELU12:
case R_FRV_GPREL32:
case R_FRV_GPRELHI:
case R_FRV_GPRELLO:
check_segment[0] = gprel_segment;
check_segment[1] = sec
? _frvfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
case R_FRV_GETTLSOFF:
relocation = frvfdpic_plt_section (info)->output_section->vma
+ frvfdpic_plt_section (info)->output_offset
+ picrel->tlsplt_entry;
BFD_ASSERT (picrel->tlsplt_entry != (bfd_vma)-1
&& picrel->tlsdesc_entry);
check_segment[0] = isec_segment;
check_segment[1] = plt_segment;
break;
case R_FRV_GOTTLSDESC12:
case R_FRV_GOTTLSDESCHI:
case R_FRV_GOTTLSDESCLO:
BFD_ASSERT (picrel->tlsdesc_entry);
relocation = picrel->tlsdesc_entry;
check_segment[0] = tls_segment;
check_segment[1] = sec
&& ! bfd_is_abs_section (sec)
&& ! bfd_is_und_section (sec)
? _frvfdpic_osec_to_segment (output_bfd, sec->output_section)
: tls_segment;
break;
case R_FRV_TLSMOFF12:
case R_FRV_TLSMOFFHI:
case R_FRV_TLSMOFFLO:
case R_FRV_TLSMOFF:
check_segment[0] = tls_segment;
if (! sec)
check_segment[1] = -1;
else if (bfd_is_abs_section (sec)
|| bfd_is_und_section (sec))
{
relocation = 0;
check_segment[1] = tls_segment;
}
else if (sec->output_section)
{
relocation -= tls_biased_base (info);
check_segment[1] =
_frvfdpic_osec_to_segment (output_bfd, sec->output_section);
}
else
check_segment[1] = -1;
break;
case R_FRV_GOTTLSOFF12:
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSOFFLO:
BFD_ASSERT (picrel->tlsoff_entry);
relocation = picrel->tlsoff_entry;
check_segment[0] = tls_segment;
check_segment[1] = sec
&& ! bfd_is_abs_section (sec)
&& ! bfd_is_und_section (sec)
? _frvfdpic_osec_to_segment (output_bfd, sec->output_section)
: tls_segment;
break;
case R_FRV_TLSDESC_VALUE:
case R_FRV_TLSOFF:
/* These shouldn't be present in input object files. */
check_segment[0] = check_segment[1] = isec_segment;
break;
case R_FRV_TLSDESC_RELAX:
case R_FRV_GETTLSOFF_RELAX:
case R_FRV_TLSOFF_RELAX:
/* These are just annotations for relaxation, nothing to do
here. */
continue;
default:
check_segment[0] = isec_segment;
check_segment[1] = sec
? _frvfdpic_osec_to_segment (output_bfd, sec->output_section)
: (unsigned)-1;
break;
}
if (check_segment[0] != check_segment[1] && IS_FDPIC (output_bfd))
{
/* If you take this out, remove the #error from fdpic-static-6.d
in the ld testsuite. */
/* This helps catch problems in GCC while we can't do more
than static linking. The idea is to test whether the
input file basename is crt0.o only once. */
if (silence_segment_error == 1)
silence_segment_error =
(strlen (input_bfd->filename) == 6
&& filename_cmp (input_bfd->filename, "crt0.o") == 0)
|| (strlen (input_bfd->filename) > 6
&& filename_cmp (input_bfd->filename
+ strlen (input_bfd->filename) - 7,
"/crt0.o") == 0)
? -1 : 0;
if (!silence_segment_error
/* We don't want duplicate errors for undefined
symbols. */
&& !(picrel && picrel->symndx == -1
&& picrel->d.h->root.type == bfd_link_hash_undefined))
{
info->callbacks->einfo
(_("%H: reloc against `%s' references a different segment\n"),
input_bfd, input_section, rel->r_offset, name);
}
if (!silence_segment_error && (info->shared || info->pie))
return FALSE;
elf_elfheader (output_bfd)->e_flags |= EF_FRV_PIC;
}
switch (r_type)
{
case R_FRV_GOTOFFHI:
case R_FRV_TLSMOFFHI:
/* We need the addend to be applied before we shift the
value right. */
relocation += rel->r_addend;
/* Fall through. */
case R_FRV_GOTHI:
case R_FRV_FUNCDESC_GOTHI:
case R_FRV_FUNCDESC_GOTOFFHI:
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSDESCHI:
relocation >>= 16;
/* Fall through. */
case R_FRV_GOTLO:
case R_FRV_FUNCDESC_GOTLO:
case R_FRV_GOTOFFLO:
case R_FRV_FUNCDESC_GOTOFFLO:
case R_FRV_GOTTLSOFFLO:
case R_FRV_GOTTLSDESCLO:
case R_FRV_TLSMOFFLO:
relocation &= 0xffff;
break;
default:
break;
}
switch (r_type)
{
case R_FRV_LABEL24:
if (! IS_FDPIC (output_bfd) || ! picrel->plt)
break;
/* Fall through. */
/* When referencing a GOT entry, a function descriptor or a
PLT, we don't want the addend to apply to the reference,
but rather to the referenced symbol. The actual entry
will have already been created taking the addend into
account, so cancel it out here. */
case R_FRV_GOT12:
case R_FRV_GOTHI:
case R_FRV_GOTLO:
case R_FRV_FUNCDESC_GOT12:
case R_FRV_FUNCDESC_GOTHI:
case R_FRV_FUNCDESC_GOTLO:
case R_FRV_FUNCDESC_GOTOFF12:
case R_FRV_FUNCDESC_GOTOFFHI:
case R_FRV_FUNCDESC_GOTOFFLO:
case R_FRV_GETTLSOFF:
case R_FRV_GOTTLSDESC12:
case R_FRV_GOTTLSDESCHI:
case R_FRV_GOTTLSDESCLO:
case R_FRV_GOTTLSOFF12:
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSOFFLO:
/* Note that we only want GOTOFFHI, not GOTOFFLO or GOTOFF12
here, since we do want to apply the addend to the others.
Note that we've applied the addend to GOTOFFHI before we
shifted it right. */
case R_FRV_GOTOFFHI:
case R_FRV_TLSMOFFHI:
relocation -= rel->r_addend;
break;
default:
break;
}
if (r_type == R_FRV_HI16)
r = elf32_frv_relocate_hi16 (input_bfd, rel, contents, relocation);
else if (r_type == R_FRV_LO16)
r = elf32_frv_relocate_lo16 (input_bfd, rel, contents, relocation);
else if (r_type == R_FRV_LABEL24 || r_type == R_FRV_GETTLSOFF)
r = elf32_frv_relocate_label24 (input_bfd, input_section, rel,
contents, relocation);
else if (r_type == R_FRV_GPREL12)
r = elf32_frv_relocate_gprel12 (info, input_bfd, input_section, rel,
contents, relocation);
else if (r_type == R_FRV_GPRELU12)
r = elf32_frv_relocate_gprelu12 (info, input_bfd, input_section, rel,
contents, relocation);
else if (r_type == R_FRV_GPRELLO)
r = elf32_frv_relocate_gprello (info, input_bfd, input_section, rel,
contents, relocation);
else if (r_type == R_FRV_GPRELHI)
r = elf32_frv_relocate_gprelhi (info, input_bfd, input_section, rel,
contents, relocation);
else if (r_type == R_FRV_TLSOFF
|| r_type == R_FRV_TLSDESC_VALUE)
r = bfd_reloc_notsupported;
else
r = frv_final_link_relocate (howto, input_bfd, input_section, contents,
rel, relocation);
if (r != bfd_reloc_ok)
{
const char * msg = (const char *) NULL;
switch (r)
{
case bfd_reloc_overflow:
r = info->callbacks->reloc_overflow
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
break;
case bfd_reloc_undefined:
r = info->callbacks->undefined_symbol
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
break;
case bfd_reloc_outofrange:
msg = _("internal error: out of range error");
break;
case bfd_reloc_notsupported:
msg = _("internal error: unsupported relocation error");
break;
case bfd_reloc_dangerous:
msg = _("internal error: dangerous relocation");
break;
default:
msg = _("internal error: unknown error");
break;
}
if (msg)
{
info->callbacks->einfo
(_("%H: reloc against `%s': %s\n"),
input_bfd, input_section, rel->r_offset, name, msg);
return FALSE;
}
if (! r)
return FALSE;
}
}
return TRUE;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
elf32_frv_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
switch (ELF32_R_TYPE (rel->r_info))
{
case R_FRV_GNU_VTINHERIT:
case R_FRV_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
/* Hook called by the linker routine which adds symbols from an object
file. We use it to put .comm items in .scomm, and not .comm. */
static bfd_boolean
elf32_frv_add_symbol_hook (bfd *abfd,
struct bfd_link_info *info,
Elf_Internal_Sym *sym,
const char **namep ATTRIBUTE_UNUSED,
flagword *flagsp ATTRIBUTE_UNUSED,
asection **secp,
bfd_vma *valp)
{
if (sym->st_shndx == SHN_COMMON
&& !info->relocatable
&& (int)sym->st_size <= (int)bfd_get_gp_size (abfd))
{
/* Common symbols less than or equal to -G nn bytes are
automatically put into .sbss. */
asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
if (scomm == NULL)
{
scomm = bfd_make_section_with_flags (abfd, ".scommon",
(SEC_ALLOC
| SEC_IS_COMMON
| SEC_LINKER_CREATED));
if (scomm == NULL)
return FALSE;
}
*secp = scomm;
*valp = sym->st_size;
}
return TRUE;
}
/* We need dynamic symbols for every section, since segments can
relocate independently. */
static bfd_boolean
_frvfdpic_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info
ATTRIBUTE_UNUSED,
asection *p ATTRIBUTE_UNUSED)
{
switch (elf_section_data (p)->this_hdr.sh_type)
{
case SHT_PROGBITS:
case SHT_NOBITS:
/* If sh_type is yet undecided, assume it could be
SHT_PROGBITS/SHT_NOBITS. */
case SHT_NULL:
return FALSE;
/* There shouldn't be section relative relocations
against any other section. */
default:
return TRUE;
}
}
/* Create a .got section, as well as its additional info field. This
is almost entirely copied from
elflink.c:_bfd_elf_create_got_section(). */
static bfd_boolean
_frv_create_got_section (bfd *abfd, struct bfd_link_info *info)
{
flagword flags, pltflags;
asection *s;
struct elf_link_hash_entry *h;
struct bfd_link_hash_entry *bh;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
int ptralign;
int offset;
/* This function may be called more than once. */
s = bfd_get_linker_section (abfd, ".got");
if (s != NULL)
return TRUE;
/* Machine specific: although pointers are 32-bits wide, we want the
GOT to be aligned to a 64-bit boundary, such that function
descriptors in it can be accessed with 64-bit loads and
stores. */
ptralign = 3;
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
pltflags = flags;
s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
if (s == NULL
|| !bfd_set_section_alignment (abfd, s, ptralign))
return FALSE;
if (bed->want_got_plt)
{
s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
if (s == NULL
|| !bfd_set_section_alignment (abfd, s, ptralign))
return FALSE;
}
if (bed->want_got_sym)
{
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
(or .got.plt) section. We don't do this in the linker script
because we don't want to define the symbol if we are not creating
a global offset table. */
h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
elf_hash_table (info)->hgot = h;
if (h == NULL)
return FALSE;
/* Machine-specific: we want the symbol for executables as
well. */
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
/* The first bit of the global offset table is the header. */
s->size += bed->got_header_size;
/* This is the machine-specific part. Create and initialize section
data for the got. */
if (IS_FDPIC (abfd))
{
frvfdpic_got_section (info) = s;
frvfdpic_relocs_info (info) = htab_try_create (1,
frvfdpic_relocs_info_hash,
frvfdpic_relocs_info_eq,
(htab_del) NULL);
if (! frvfdpic_relocs_info (info))
return FALSE;
s = bfd_make_section_anyway_with_flags (abfd, ".rel.got",
(flags | SEC_READONLY));
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, 2))
return FALSE;
frvfdpic_gotrel_section (info) = s;
/* Machine-specific. */
s = bfd_make_section_anyway_with_flags (abfd, ".rofixup",
(flags | SEC_READONLY));
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, 2))
return FALSE;
frvfdpic_gotfixup_section (info) = s;
offset = -2048;
flags = BSF_GLOBAL;
}
else
{
offset = 2048;
flags = BSF_GLOBAL | BSF_WEAK;
}
/* Define _gp in .rofixup, for FDPIC, or .got otherwise. If it
turns out that we're linking with a different linker script, the
linker script will override it. */
bh = NULL;
if (!(_bfd_generic_link_add_one_symbol
(info, abfd, "_gp", flags, s, offset, (const char *) NULL, FALSE,
bed->collect, &bh)))
return FALSE;
h = (struct elf_link_hash_entry *) bh;
h->def_regular = 1;
h->type = STT_OBJECT;
/* h->other = STV_HIDDEN; */ /* Should we? */
/* Machine-specific: we want the symbol for executables as well. */
if (IS_FDPIC (abfd) && ! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
if (!IS_FDPIC (abfd))
return TRUE;
/* FDPIC supports Thread Local Storage, and this may require a
procedure linkage table for TLS PLT entries. */
/* This is mostly copied from
elflink.c:_bfd_elf_create_dynamic_sections(). */
flags = pltflags;
pltflags |= SEC_CODE;
if (bed->plt_not_loaded)
pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
if (bed->plt_readonly)
pltflags |= SEC_READONLY;
s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
return FALSE;
/* FRV-specific: remember it. */
frvfdpic_plt_section (info) = s;
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
.plt section. */
if (bed->want_plt_sym)
{
h = _bfd_elf_define_linkage_sym (abfd, info, s,
"_PROCEDURE_LINKAGE_TABLE_");
elf_hash_table (info)->hplt = h;
if (h == NULL)
return FALSE;
}
/* FRV-specific: we want rel relocations for the plt. */
s = bfd_make_section_anyway_with_flags (abfd, ".rel.plt",
flags | SEC_READONLY);
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
/* FRV-specific: remember it. */
frvfdpic_pltrel_section (info) = s;
return TRUE;
}
/* Make sure the got and plt sections exist, and that our pointers in
the link hash table point to them. */
static bfd_boolean
elf32_frvfdpic_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
/* This is mostly copied from
elflink.c:_bfd_elf_create_dynamic_sections(). */
flagword flags;
asection *s;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
/* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
.rel[a].bss sections. */
/* FRV-specific: we want to create the GOT and the PLT in the FRV
way. */
if (! _frv_create_got_section (abfd, info))
return FALSE;
/* FRV-specific: make sure we created everything we wanted. */
BFD_ASSERT (frvfdpic_got_section (info) && frvfdpic_gotrel_section (info)
&& frvfdpic_gotfixup_section (info)
&& frvfdpic_plt_section (info)
&& frvfdpic_pltrel_section (info));
if (bed->want_dynbss)
{
/* The .dynbss section is a place to put symbols which are defined
by dynamic objects, are referenced by regular objects, and are
not functions. We must allocate space for them in the process
image and use a R_*_COPY reloc to tell the dynamic linker to
initialize them at run time. The linker script puts the .dynbss
section into the .bss section of the final image. */
s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
SEC_ALLOC | SEC_LINKER_CREATED);
if (s == NULL)
return FALSE;
/* The .rel[a].bss section holds copy relocs. This section is not
normally needed. We need to create it here, though, so that the
linker will map it to an output section. We can't just create it
only if we need it, because we will not know whether we need it
until we have seen all the input files, and the first time the
main linker code calls BFD after examining all the input files
(size_dynamic_sections) the input sections have already been
mapped to the output sections. If the section turns out not to
be needed, we can discard it later. We will never need this
section when generating a shared object, since they do not use
copy relocs. */
if (! info->shared)
{
s = bfd_make_section_anyway_with_flags (abfd,
(bed->default_use_rela_p
? ".rela.bss" : ".rel.bss"),
flags | SEC_READONLY);
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
}
}
return TRUE;
}
/* Compute the total GOT and PLT size required by each symbol in each
range. Symbols may require up to 4 words in the GOT: an entry
pointing to the symbol, an entry pointing to its function
descriptor, and a private function descriptors taking two
words. */
static void
_frvfdpic_count_nontls_entries (struct frvfdpic_relocs_info *entry,
struct _frvfdpic_dynamic_got_info *dinfo)
{
/* Allocate space for a GOT entry pointing to the symbol. */
if (entry->got12)
dinfo->got12 += 4;
else if (entry->gotlos)
dinfo->gotlos += 4;
else if (entry->gothilo)
dinfo->gothilo += 4;
else
entry->relocs32--;
entry->relocs32++;
/* Allocate space for a GOT entry pointing to the function
descriptor. */
if (entry->fdgot12)
dinfo->got12 += 4;
else if (entry->fdgotlos)
dinfo->gotlos += 4;
else if (entry->fdgothilo)
dinfo->gothilo += 4;
else
entry->relocsfd--;
entry->relocsfd++;
/* Decide whether we need a PLT entry, a function descriptor in the
GOT, and a lazy PLT entry for this symbol. */
entry->plt = entry->call
&& entry->symndx == -1 && ! FRVFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)
&& elf_hash_table (dinfo->info)->dynamic_sections_created;
entry->privfd = entry->plt
|| entry->fdgoff12 || entry->fdgofflos || entry->fdgoffhilo
|| ((entry->fd || entry->fdgot12 || entry->fdgotlos || entry->fdgothilo)
&& (entry->symndx != -1
|| FRVFDPIC_FUNCDESC_LOCAL (dinfo->info, entry->d.h)));
entry->lazyplt = entry->privfd
&& entry->symndx == -1 && ! FRVFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)
&& ! (dinfo->info->flags & DF_BIND_NOW)
&& elf_hash_table (dinfo->info)->dynamic_sections_created;
/* Allocate space for a function descriptor. */
if (entry->fdgoff12)
dinfo->fd12 += 8;
else if (entry->fdgofflos)
dinfo->fdlos += 8;
else if (entry->privfd && entry->plt)
dinfo->fdplt += 8;
else if (entry->privfd)
dinfo->fdhilo += 8;
else
entry->relocsfdv--;
entry->relocsfdv++;
if (entry->lazyplt)
dinfo->lzplt += 8;
}
/* Compute the total GOT size required by each TLS symbol in each
range. Symbols may require up to 5 words in the GOT: an entry
holding the TLS offset for the symbol, and an entry with a full TLS
descriptor taking 4 words. */
static void
_frvfdpic_count_tls_entries (struct frvfdpic_relocs_info *entry,
struct _frvfdpic_dynamic_got_info *dinfo,
bfd_boolean subtract)
{
const int l = subtract ? -1 : 1;
/* Allocate space for a GOT entry with the TLS offset of the
symbol. */
if (entry->tlsoff12)
dinfo->got12 += 4 * l;
else if (entry->tlsofflos)
dinfo->gotlos += 4 * l;
else if (entry->tlsoffhilo)
dinfo->gothilo += 4 * l;
else
entry->relocstlsoff -= l;
entry->relocstlsoff += l;
/* If there's any TLSOFF relocation, mark the output file as not
suitable for dlopening. This mark will remain even if we relax
all such relocations, but this is not a problem, since we'll only
do so for executables, and we definitely don't want anyone
dlopening executables. */
if (entry->relocstlsoff)
dinfo->info->flags |= DF_STATIC_TLS;
/* Allocate space for a TLS descriptor. */
if (entry->tlsdesc12)
dinfo->tlsd12 += 8 * l;
else if (entry->tlsdesclos)
dinfo->tlsdlos += 8 * l;
else if (entry->tlsplt)
dinfo->tlsdplt += 8 * l;
else if (entry->tlsdeschilo)
dinfo->tlsdhilo += 8 * l;
else
entry->relocstlsd -= l;
entry->relocstlsd += l;
}
/* Compute the number of dynamic relocations and fixups that a symbol
requires, and add (or subtract) from the grand and per-symbol
totals. */
static void
_frvfdpic_count_relocs_fixups (struct frvfdpic_relocs_info *entry,
struct _frvfdpic_dynamic_got_info *dinfo,
bfd_boolean subtract)
{
bfd_vma relocs = 0, fixups = 0, tlsrets = 0;
if (!dinfo->info->executable || dinfo->info->pie)
{
relocs = entry->relocs32 + entry->relocsfd + entry->relocsfdv
+ entry->relocstlsd;
/* In the executable, TLS relocations to symbols that bind
locally (including those that resolve to global TLS offsets)
are resolved immediately, without any need for fixups or
dynamic relocations. In shared libraries, however, we must
emit dynamic relocations even for local symbols, because we
don't know the module id the library is going to get at
run-time, nor its TLS base offset. */
if (!dinfo->info->executable
|| (entry->symndx == -1
&& ! FRVFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)))
relocs += entry->relocstlsoff;
}
else
{
if (entry->symndx != -1 || FRVFDPIC_SYM_LOCAL (dinfo->info, entry->d.h))
{
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
fixups += entry->relocs32 + 2 * entry->relocsfdv;
fixups += entry->relocstlsd;
tlsrets += entry->relocstlsd;
}
else
{
relocs += entry->relocs32 + entry->relocsfdv
+ entry->relocstlsoff + entry->relocstlsd;
}
if (entry->symndx != -1
|| FRVFDPIC_FUNCDESC_LOCAL (dinfo->info, entry->d.h))
{
if (entry->symndx != -1
|| entry->d.h->root.type != bfd_link_hash_undefweak)
fixups += entry->relocsfd;
}
else
relocs += entry->relocsfd;
}
if (subtract)
{
relocs = - relocs;
fixups = - fixups;
tlsrets = - tlsrets;
}
entry->dynrelocs += relocs;
entry->fixups += fixups;
dinfo->relocs += relocs;
dinfo->fixups += fixups;
dinfo->tls_ret_refs += tlsrets;
}
/* Look for opportunities to relax TLS relocations. We can assume
we're linking the main executable or a static-tls library, since
otherwise we wouldn't have got here. When relaxing, we have to
first undo any previous accounting of TLS uses of fixups, dynamic
relocations, GOT and PLT entries. */
static void
_frvfdpic_relax_tls_entries (struct frvfdpic_relocs_info *entry,
struct _frvfdpic_dynamic_got_info *dinfo,
bfd_boolean relaxing)
{
bfd_boolean changed = ! relaxing;
BFD_ASSERT (dinfo->info->executable
|| (dinfo->info->flags & DF_STATIC_TLS));
if (entry->tlsdesc12 || entry->tlsdesclos || entry->tlsdeschilo)
{
if (! changed)
{
_frvfdpic_count_relocs_fixups (entry, dinfo, TRUE);
_frvfdpic_count_tls_entries (entry, dinfo, TRUE);
changed = TRUE;
}
/* When linking an executable, we can always decay GOTTLSDESC to
TLSMOFF, if the symbol is local, or GOTTLSOFF, otherwise.
When linking a static-tls shared library, using TLSMOFF is
not an option, but we can still use GOTTLSOFF. When decaying
to GOTTLSOFF, we must keep the GOT entry in range. We know
it has to fit because we'll be trading the 4 words of hte TLS
descriptor for a single word in the same range. */
if (! dinfo->info->executable
|| (entry->symndx == -1
&& ! FRVFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)))
{
entry->tlsoff12 |= entry->tlsdesc12;
entry->tlsofflos |= entry->tlsdesclos;
entry->tlsoffhilo |= entry->tlsdeschilo;
}
entry->tlsdesc12 = entry->tlsdesclos = entry->tlsdeschilo = 0;
}
/* We can only decay TLSOFFs or call #gettlsoff to TLSMOFF in the
main executable. We have to check whether the symbol's TLSOFF is
in range for a setlos. For symbols with a hash entry, we can
determine exactly what to do; for others locals, we don't have
addresses handy, so we use the size of the TLS section as an
approximation. If we get it wrong, we'll retain a GOT entry
holding the TLS offset (without dynamic relocations or fixups),
but we'll still optimize away the loads from it. Since TLS sizes
are generally very small, it's probably not worth attempting to
do better than this. */
if ((entry->tlsplt
|| entry->tlsoff12 || entry->tlsofflos || entry->tlsoffhilo)
&& dinfo->info->executable && relaxing
&& ((entry->symndx == -1
&& FRVFDPIC_SYM_LOCAL (dinfo->info, entry->d.h)
/* The above may hold for an undefweak TLS symbol, so make
sure we don't have this case before accessing def.value
and def.section. */
&& (entry->d.h->root.type == bfd_link_hash_undefweak
|| (bfd_vma)(entry->d.h->root.u.def.value
+ (entry->d.h->root.u.def.section
->output_section->vma)
+ entry->d.h->root.u.def.section->output_offset
+ entry->addend
- tls_biased_base (dinfo->info)
+ 32768) < (bfd_vma)65536))
|| (entry->symndx != -1
&& (elf_hash_table (dinfo->info)->tls_sec->size
+ abs (entry->addend) < 32768 + FRVFDPIC_TLS_BIAS))))
{
if (! changed)
{
_frvfdpic_count_relocs_fixups (entry, dinfo, TRUE);
_frvfdpic_count_tls_entries (entry, dinfo, TRUE);
changed = TRUE;
}
entry->tlsplt =
entry->tlsoff12 = entry->tlsofflos = entry->tlsoffhilo = 0;
}
/* We can decay `call #gettlsoff' to a ldi #tlsoff if we already
have a #gottlsoff12 relocation for this entry, or if we can fit
one more in the 12-bit (and 16-bit) ranges. */
if (entry->tlsplt
&& (entry->tlsoff12
|| (relaxing
&& dinfo->got12 + dinfo->fd12 + dinfo->tlsd12 <= 4096 - 12 - 4
&& (dinfo->got12 + dinfo->fd12 + dinfo->tlsd12
+ dinfo->gotlos + dinfo->fdlos + dinfo->tlsdlos
<= 65536 - 12 - 4))))
{
if (! changed)
{
_frvfdpic_count_relocs_fixups (entry, dinfo, TRUE);
_frvfdpic_count_tls_entries (entry, dinfo, TRUE);
changed = TRUE;
}
entry->tlsoff12 = 1;
entry->tlsplt = 0;
}
if (changed)
{
_frvfdpic_count_tls_entries (entry, dinfo, FALSE);
_frvfdpic_count_relocs_fixups (entry, dinfo, FALSE);
}
return;
}
/* Compute the total GOT and PLT size required by each symbol in each range. *
Symbols may require up to 4 words in the GOT: an entry pointing to
the symbol, an entry pointing to its function descriptor, and a
private function descriptors taking two words. */
static int
_frvfdpic_count_got_plt_entries (void **entryp, void *dinfo_)
{
struct frvfdpic_relocs_info *entry = *entryp;
struct _frvfdpic_dynamic_got_info *dinfo = dinfo_;
_frvfdpic_count_nontls_entries (entry, dinfo);
if (dinfo->info->executable || (dinfo->info->flags & DF_STATIC_TLS))
_frvfdpic_relax_tls_entries (entry, dinfo, FALSE);
else
{
_frvfdpic_count_tls_entries (entry, dinfo, FALSE);
_frvfdpic_count_relocs_fixups (entry, dinfo, FALSE);
}
return 1;
}
/* Determine the positive and negative ranges to be used by each
offset range in the GOT. FDCUR and CUR, that must be aligned to a
double-word boundary, are the minimum (negative) and maximum
(positive) GOT offsets already used by previous ranges, except for
an ODD entry that may have been left behind. GOT and FD indicate
the size of GOT entries and function descriptors that must be
placed within the range from -WRAP to WRAP. If there's room left,
up to FDPLT bytes should be reserved for additional function
descriptors. */
inline static bfd_signed_vma
_frvfdpic_compute_got_alloc_data (struct _frvfdpic_dynamic_got_alloc_data *gad,
bfd_signed_vma fdcur,
bfd_signed_vma odd,
bfd_signed_vma cur,
bfd_vma got,
bfd_vma fd,
bfd_vma fdplt,
bfd_vma tlsd,
bfd_vma tlsdplt,
bfd_vma wrap)
{
bfd_signed_vma wrapmin = -wrap;
const bfd_vma tdescsz = 8;
/* Start at the given initial points. */
gad->fdcur = fdcur;
gad->cur = cur;
/* If we had an incoming odd word and we have any got entries that
are going to use it, consume it, otherwise leave gad->odd at
zero. We might force gad->odd to zero and return the incoming
odd such that it is used by the next range, but then GOT entries
might appear to be out of order and we wouldn't be able to
shorten the GOT by one word if it turns out to end with an
unpaired GOT entry. */
if (odd && got)
{
gad->odd = odd;
got -= 4;
odd = 0;
}
else
gad->odd = 0;
/* If we're left with an unpaired GOT entry, compute its location
such that we can return it. Otherwise, if got doesn't require an
odd number of words here, either odd was already zero in the
block above, or it was set to zero because got was non-zero, or
got was already zero. In the latter case, we want the value of
odd to carry over to the return statement, so we don't want to
reset odd unless the condition below is true. */
if (got & 4)
{
odd = cur + got;
got += 4;
}
/* Compute the tentative boundaries of this range. */
gad->max = cur + got;
gad->min = fdcur - fd;
gad->fdplt = 0;
/* If function descriptors took too much space, wrap some of them
around. */
if (gad->min < wrapmin)
{
gad->max += wrapmin - gad->min;
gad->tmin = gad->min = wrapmin;
}
/* If GOT entries took too much space, wrap some of them around.
This may well cause gad->min to become lower than wrapmin. This
will cause a relocation overflow later on, so we don't have to
report it here . */
if ((bfd_vma) gad->max > wrap)
{
gad->min -= gad->max - wrap;
gad->max = wrap;
}
/* Add TLS descriptors. */
gad->tmax = gad->max + tlsd;
gad->tmin = gad->min;
gad->tlsdplt = 0;
/* If TLS descriptors took too much space, wrap an integral number
of them around. */
if ((bfd_vma) gad->tmax > wrap)
{
bfd_vma wrapsize = gad->tmax - wrap;
wrapsize += tdescsz / 2;
wrapsize &= ~ tdescsz / 2;
gad->tmin -= wrapsize;
gad->tmax -= wrapsize;
}
/* If there is space left and we have function descriptors
referenced in PLT entries that could take advantage of shorter
offsets, place them now. */
if (fdplt && gad->tmin > wrapmin)
{
bfd_vma fds;
if ((bfd_vma) (gad->tmin - wrapmin) < fdplt)
fds = gad->tmin - wrapmin;
else
fds = fdplt;
fdplt -= fds;
gad->min -= fds;
gad->tmin -= fds;
gad->fdplt += fds;
}
/* If there is more space left, try to place some more function
descriptors for PLT entries. */
if (fdplt && (bfd_vma) gad->tmax < wrap)
{
bfd_vma fds;
if ((bfd_vma) (wrap - gad->tmax) < fdplt)
fds = wrap - gad->tmax;
else
fds = fdplt;
fdplt -= fds;
gad->max += fds;
gad->tmax += fds;
gad->fdplt += fds;
}
/* If there is space left and we have TLS descriptors referenced in
PLT entries that could take advantage of shorter offsets, place
them now. */
if (tlsdplt && gad->tmin > wrapmin)
{
bfd_vma tlsds;
if ((bfd_vma) (gad->tmin - wrapmin) < tlsdplt)
tlsds = (gad->tmin - wrapmin) & ~ (tdescsz / 2);
else
tlsds = tlsdplt;
tlsdplt -= tlsds;
gad->tmin -= tlsds;
gad->tlsdplt += tlsds;
}
/* If there is more space left, try to place some more TLS
descriptors for PLT entries. Although we could try to fit an
additional TLS descriptor with half of it just before before the
wrap point and another right past the wrap point, this might
cause us to run out of space for the next region, so don't do
it. */
if (tlsdplt && (bfd_vma) gad->tmax < wrap - tdescsz / 2)
{
bfd_vma tlsds;
if ((bfd_vma) (wrap - gad->tmax) < tlsdplt)
tlsds = (wrap - gad->tmax) & ~ (tdescsz / 2);
else
tlsds = tlsdplt;
tlsdplt -= tlsds;
gad->tmax += tlsds;
gad->tlsdplt += tlsds;
}
/* If odd was initially computed as an offset past the wrap point,
wrap it around. */
if (odd > gad->max)
odd = gad->min + odd - gad->max;
/* _frvfdpic_get_got_entry() below will always wrap gad->cur if needed
before returning, so do it here too. This guarantees that,
should cur and fdcur meet at the wrap point, they'll both be
equal to min. */
if (gad->cur == gad->max)
gad->cur = gad->min;
/* Ditto for _frvfdpic_get_tlsdesc_entry(). */
gad->tcur = gad->max;
if (gad->tcur == gad->tmax)
gad->tcur = gad->tmin;
return odd;
}
/* Compute the location of the next GOT entry, given the allocation
data for a range. */
inline static bfd_signed_vma
_frvfdpic_get_got_entry (struct _frvfdpic_dynamic_got_alloc_data *gad)
{
bfd_signed_vma ret;
if (gad->odd)
{
/* If there was an odd word left behind, use it. */
ret = gad->odd;
gad->odd = 0;
}
else
{
/* Otherwise, use the word pointed to by cur, reserve the next
as an odd word, and skip to the next pair of words, possibly
wrapping around. */
ret = gad->cur;
gad->odd = gad->cur + 4;
gad->cur += 8;
if (gad->cur == gad->max)
gad->cur = gad->min;
}
return ret;
}
/* Compute the location of the next function descriptor entry in the
GOT, given the allocation data for a range. */
inline static bfd_signed_vma
_frvfdpic_get_fd_entry (struct _frvfdpic_dynamic_got_alloc_data *gad)
{
/* If we're at the bottom, wrap around, and only then allocate the
next pair of words. */
if (gad->fdcur == gad->min)
gad->fdcur = gad->max;
return gad->fdcur -= 8;
}
/* Compute the location of the next TLS descriptor entry in the GOT,
given the allocation data for a range. */
inline static bfd_signed_vma
_frvfdpic_get_tlsdesc_entry (struct _frvfdpic_dynamic_got_alloc_data *gad)
{
bfd_signed_vma ret;
ret = gad->tcur;
gad->tcur += 8;
/* If we're at the top of the region, wrap around to the bottom. */
if (gad->tcur == gad->tmax)
gad->tcur = gad->tmin;
return ret;
}
/* Assign GOT offsets for every GOT entry and function descriptor.
Doing everything in a single pass is tricky. */
static int
_frvfdpic_assign_got_entries (void **entryp, void *info_)
{
struct frvfdpic_relocs_info *entry = *entryp;
struct _frvfdpic_dynamic_got_plt_info *dinfo = info_;
if (entry->got12)
entry->got_entry = _frvfdpic_get_got_entry (&dinfo->got12);
else if (entry->gotlos)
entry->got_entry = _frvfdpic_get_got_entry (&dinfo->gotlos);
else if (entry->gothilo)
entry->got_entry = _frvfdpic_get_got_entry (&dinfo->gothilo);
if (entry->fdgot12)
entry->fdgot_entry = _frvfdpic_get_got_entry (&dinfo->got12);
else if (entry->fdgotlos)
entry->fdgot_entry = _frvfdpic_get_got_entry (&dinfo->gotlos);
else if (entry->fdgothilo)
entry->fdgot_entry = _frvfdpic_get_got_entry (&dinfo->gothilo);
if (entry->fdgoff12)
entry->fd_entry = _frvfdpic_get_fd_entry (&dinfo->got12);
else if (entry->plt && dinfo->got12.fdplt)
{
dinfo->got12.fdplt -= 8;
entry->fd_entry = _frvfdpic_get_fd_entry (&dinfo->got12);
}
else if (entry->fdgofflos)
entry->fd_entry = _frvfdpic_get_fd_entry (&dinfo->gotlos);
else if (entry->plt && dinfo->gotlos.fdplt)
{
dinfo->gotlos.fdplt -= 8;
entry->fd_entry = _frvfdpic_get_fd_entry (&dinfo->gotlos);
}
else if (entry->plt)
{
dinfo->gothilo.fdplt -= 8;
entry->fd_entry = _frvfdpic_get_fd_entry (&dinfo->gothilo);
}
else if (entry->privfd)
entry->fd_entry = _frvfdpic_get_fd_entry (&dinfo->gothilo);
if (entry->tlsoff12)
entry->tlsoff_entry = _frvfdpic_get_got_entry (&dinfo->got12);
else if (entry->tlsofflos)
entry->tlsoff_entry = _frvfdpic_get_got_entry (&dinfo->gotlos);
else if (entry->tlsoffhilo)
entry->tlsoff_entry = _frvfdpic_get_got_entry (&dinfo->gothilo);
if (entry->tlsdesc12)
entry->tlsdesc_entry = _frvfdpic_get_tlsdesc_entry (&dinfo->got12);
else if (entry->tlsplt && dinfo->got12.tlsdplt)
{
dinfo->got12.tlsdplt -= 8;
entry->tlsdesc_entry = _frvfdpic_get_tlsdesc_entry (&dinfo->got12);
}
else if (entry->tlsdesclos)
entry->tlsdesc_entry = _frvfdpic_get_tlsdesc_entry (&dinfo->gotlos);
else if (entry->tlsplt && dinfo->gotlos.tlsdplt)
{
dinfo->gotlos.tlsdplt -= 8;
entry->tlsdesc_entry = _frvfdpic_get_tlsdesc_entry (&dinfo->gotlos);
}
else if (entry->tlsplt)
{
dinfo->gothilo.tlsdplt -= 8;
entry->tlsdesc_entry = _frvfdpic_get_tlsdesc_entry (&dinfo->gothilo);
}
else if (entry->tlsdeschilo)
entry->tlsdesc_entry = _frvfdpic_get_tlsdesc_entry (&dinfo->gothilo);
return 1;
}
/* Assign GOT offsets to private function descriptors used by PLT
entries (or referenced by 32-bit offsets), as well as PLT entries
and lazy PLT entries. */
static int
_frvfdpic_assign_plt_entries (void **entryp, void *info_)
{
struct frvfdpic_relocs_info *entry = *entryp;
struct _frvfdpic_dynamic_got_plt_info *dinfo = info_;
if (entry->privfd)
BFD_ASSERT (entry->fd_entry);
if (entry->plt)
{
int size;
/* We use the section's raw size to mark the location of the
next PLT entry. */
entry->plt_entry = frvfdpic_plt_section (dinfo->g.info)->size;
/* Figure out the length of this PLT entry based on the
addressing mode we need to reach the function descriptor. */
BFD_ASSERT (entry->fd_entry);
if (entry->fd_entry >= -(1 << (12 - 1))
&& entry->fd_entry < (1 << (12 - 1)))
size = 8;
else if (entry->fd_entry >= -(1 << (16 - 1))
&& entry->fd_entry < (1 << (16 - 1)))
size = 12;
else
size = 16;
frvfdpic_plt_section (dinfo->g.info)->size += size;
}
if (entry->lazyplt)
{
entry->lzplt_entry = dinfo->g.lzplt;
dinfo->g.lzplt += 8;
/* If this entry is the one that gets the resolver stub, account
for the additional instruction. */
if (entry->lzplt_entry % FRVFDPIC_LZPLT_BLOCK_SIZE
== FRVFDPIC_LZPLT_RESOLV_LOC)
dinfo->g.lzplt += 4;
}
if (entry->tlsplt)
{
int size;
entry->tlsplt_entry
= frvfdpic_plt_section (dinfo->g.info)->size;
if (dinfo->g.info->executable
&& (entry->symndx != -1
|| FRVFDPIC_SYM_LOCAL (dinfo->g.info, entry->d.h)))
{
if ((bfd_signed_vma)entry->addend >= -(1 << (16 - 1))
/* FIXME: here we use the size of the TLS section
as an upper bound for the value of the TLS
symbol, because we may not know the exact value
yet. If we get it wrong, we'll just waste a
word in the PLT, and we should never get even
close to 32 KiB of TLS anyway. */
&& elf_hash_table (dinfo->g.info)->tls_sec
&& (elf_hash_table (dinfo->g.info)->tls_sec->size
+ (bfd_signed_vma)(entry->addend) <= (1 << (16 - 1))))
size = 8;
else
size = 12;
}
else if (entry->tlsoff_entry)
{
if (entry->tlsoff_entry >= -(1 << (12 - 1))
&& entry->tlsoff_entry < (1 << (12 - 1)))
size = 8;
else if (entry->tlsoff_entry >= -(1 << (16 - 1))
&& entry->tlsoff_entry < (1 << (16 - 1)))
size = 12;
else
size = 16;
}
else
{
BFD_ASSERT (entry->tlsdesc_entry);
if (entry->tlsdesc_entry >= -(1 << (12 - 1))
&& entry->tlsdesc_entry < (1 << (12 - 1)))
size = 8;
else if (entry->tlsdesc_entry >= -(1 << (16 - 1))
&& entry->tlsdesc_entry < (1 << (16 - 1)))
size = 12;
else
size = 16;
}
frvfdpic_plt_section (dinfo->g.info)->size += size;
}
return 1;
}
/* Cancel out any effects of calling _frvfdpic_assign_got_entries and
_frvfdpic_assign_plt_entries. */
static int
_frvfdpic_reset_got_plt_entries (void **entryp, void *ignore ATTRIBUTE_UNUSED)
{
struct frvfdpic_relocs_info *entry = *entryp;
entry->got_entry = 0;
entry->fdgot_entry = 0;
entry->fd_entry = 0;
entry->plt_entry = (bfd_vma)-1;
entry->lzplt_entry = (bfd_vma)-1;
entry->tlsoff_entry = 0;
entry->tlsdesc_entry = 0;
entry->tlsplt_entry = (bfd_vma)-1;
return 1;
}
/* Follow indirect and warning hash entries so that each got entry
points to the final symbol definition. P must point to a pointer
to the hash table we're traversing. Since this traversal may
modify the hash table, we set this pointer to NULL to indicate
we've made a potentially-destructive change to the hash table, so
the traversal must be restarted. */
static int
_frvfdpic_resolve_final_relocs_info (void **entryp, void *p)
{
struct frvfdpic_relocs_info *entry = *entryp;
htab_t *htab = p;
if (entry->symndx == -1)
{
struct elf_link_hash_entry *h = entry->d.h;
struct frvfdpic_relocs_info *oentry;
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *)h->root.u.i.link;
if (entry->d.h == h)
return 1;
oentry = frvfdpic_relocs_info_for_global (*htab, 0, h, entry->addend,
NO_INSERT);
if (oentry)
{
/* Merge the two entries. */
frvfdpic_pic_merge_early_relocs_info (oentry, entry);
htab_clear_slot (*htab, entryp);
return 1;
}
entry->d.h = h;
/* If we can't find this entry with the new bfd hash, re-insert
it, and get the traversal restarted. */
if (! htab_find (*htab, entry))
{
htab_clear_slot (*htab, entryp);
entryp = htab_find_slot (*htab, entry, INSERT);
if (! *entryp)
*entryp = entry;
/* Abort the traversal, since the whole table may have
moved, and leave it up to the parent to restart the
process. */
*(htab_t *)p = NULL;
return 0;
}
}
return 1;
}
/* Compute the total size of the GOT, the PLT, the dynamic relocations
section and the rofixup section. Assign locations for GOT and PLT
entries. */
static bfd_boolean
_frvfdpic_size_got_plt (bfd *output_bfd,
struct _frvfdpic_dynamic_got_plt_info *gpinfop)
{
bfd_signed_vma odd;
bfd_vma limit, tlslimit;
struct bfd_link_info *info = gpinfop->g.info;
bfd *dynobj = elf_hash_table (info)->dynobj;
memcpy (frvfdpic_dynamic_got_plt_info (info), &gpinfop->g,
sizeof (gpinfop->g));
odd = 12;
/* Compute the total size taken by entries in the 12-bit and 16-bit
ranges, to tell how many PLT function descriptors we can bring
into the 12-bit range without causing the 16-bit range to
overflow. */
limit = odd + gpinfop->g.got12 + gpinfop->g.gotlos
+ gpinfop->g.fd12 + gpinfop->g.fdlos
+ gpinfop->g.tlsd12 + gpinfop->g.tlsdlos;
if (limit < (bfd_vma)1 << 16)
limit = ((bfd_vma)1 << 16) - limit;
else
limit = 0;
if (gpinfop->g.fdplt < limit)
{
tlslimit = (limit - gpinfop->g.fdplt) & ~ (bfd_vma) 8;
limit = gpinfop->g.fdplt;
}
else
tlslimit = 0;
if (gpinfop->g.tlsdplt < tlslimit)
tlslimit = gpinfop->g.tlsdplt;
/* Determine the ranges of GOT offsets that we can use for each
range of addressing modes. */
odd = _frvfdpic_compute_got_alloc_data (&gpinfop->got12,
0,
odd,
16,
gpinfop->g.got12,
gpinfop->g.fd12,
limit,
gpinfop->g.tlsd12,
tlslimit,
(bfd_vma)1 << (12-1));
odd = _frvfdpic_compute_got_alloc_data (&gpinfop->gotlos,
gpinfop->got12.tmin,
odd,
gpinfop->got12.tmax,
gpinfop->g.gotlos,
gpinfop->g.fdlos,
gpinfop->g.fdplt
- gpinfop->got12.fdplt,
gpinfop->g.tlsdlos,
gpinfop->g.tlsdplt
- gpinfop->got12.tlsdplt,
(bfd_vma)1 << (16-1));
odd = _frvfdpic_compute_got_alloc_data (&gpinfop->gothilo,
gpinfop->gotlos.tmin,
odd,
gpinfop->gotlos.tmax,
gpinfop->g.gothilo,
gpinfop->g.fdhilo,
gpinfop->g.fdplt
- gpinfop->got12.fdplt
- gpinfop->gotlos.fdplt,
gpinfop->g.tlsdhilo,
gpinfop->g.tlsdplt
- gpinfop->got12.tlsdplt
- gpinfop->gotlos.tlsdplt,
(bfd_vma)1 << (32-1));
/* Now assign (most) GOT offsets. */
htab_traverse (frvfdpic_relocs_info (info), _frvfdpic_assign_got_entries,
gpinfop);
frvfdpic_got_section (info)->size = gpinfop->gothilo.tmax
- gpinfop->gothilo.tmin
/* If an odd word is the last word of the GOT, we don't need this
word to be part of the GOT. */
- (odd + 4 == gpinfop->gothilo.tmax ? 4 : 0);
if (frvfdpic_got_section (info)->size == 0)
frvfdpic_got_section (info)->flags |= SEC_EXCLUDE;
else if (frvfdpic_got_section (info)->size == 12
&& ! elf_hash_table (info)->dynamic_sections_created)
{
frvfdpic_got_section (info)->flags |= SEC_EXCLUDE;
frvfdpic_got_section (info)->size = 0;
}
/* This will be non-NULL during relaxation. The assumption is that
the size of one of these sections will never grow, only shrink,
so we can use the larger buffer we allocated before. */
else if (frvfdpic_got_section (info)->contents == NULL)
{
frvfdpic_got_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
frvfdpic_got_section (info)->size);
if (frvfdpic_got_section (info)->contents == NULL)
return FALSE;
}
if (frvfdpic_gotrel_section (info))
/* Subtract the number of lzplt entries, since those will generate
relocations in the pltrel section. */
frvfdpic_gotrel_section (info)->size =
(gpinfop->g.relocs - gpinfop->g.lzplt / 8)
* get_elf_backend_data (output_bfd)->s->sizeof_rel;
else
BFD_ASSERT (gpinfop->g.relocs == 0);
if (frvfdpic_gotrel_section (info)->size == 0)
frvfdpic_gotrel_section (info)->flags |= SEC_EXCLUDE;
else if (frvfdpic_gotrel_section (info)->contents == NULL)
{
frvfdpic_gotrel_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
frvfdpic_gotrel_section (info)->size);
if (frvfdpic_gotrel_section (info)->contents == NULL)
return FALSE;
}
frvfdpic_gotfixup_section (info)->size = (gpinfop->g.fixups + 1) * 4;
if (frvfdpic_gotfixup_section (info)->size == 0)
frvfdpic_gotfixup_section (info)->flags |= SEC_EXCLUDE;
else if (frvfdpic_gotfixup_section (info)->contents == NULL)
{
frvfdpic_gotfixup_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
frvfdpic_gotfixup_section (info)->size);
if (frvfdpic_gotfixup_section (info)->contents == NULL)
return FALSE;
}
if (frvfdpic_pltrel_section (info))
{
frvfdpic_pltrel_section (info)->size =
gpinfop->g.lzplt / 8
* get_elf_backend_data (output_bfd)->s->sizeof_rel;
if (frvfdpic_pltrel_section (info)->size == 0)
frvfdpic_pltrel_section (info)->flags |= SEC_EXCLUDE;
else if (frvfdpic_pltrel_section (info)->contents == NULL)
{
frvfdpic_pltrel_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
frvfdpic_pltrel_section (info)->size);
if (frvfdpic_pltrel_section (info)->contents == NULL)
return FALSE;
}
}
/* Add 4 bytes for every block of at most 65535 lazy PLT entries,
such that there's room for the additional instruction needed to
call the resolver. Since _frvfdpic_assign_got_entries didn't
account for them, our block size is 4 bytes smaller than the real
block size. */
if (frvfdpic_plt_section (info))
{
frvfdpic_plt_section (info)->size = gpinfop->g.lzplt
+ ((gpinfop->g.lzplt + (FRVFDPIC_LZPLT_BLOCK_SIZE - 4) - 8)
/ (FRVFDPIC_LZPLT_BLOCK_SIZE - 4) * 4);
}
/* Reset it, such that _frvfdpic_assign_plt_entries() can use it to
actually assign lazy PLT entries addresses. */
gpinfop->g.lzplt = 0;
/* Save information that we're going to need to generate GOT and PLT
entries. */
frvfdpic_got_initial_offset (info) = -gpinfop->gothilo.tmin;
if (get_elf_backend_data (output_bfd)->want_got_sym)
elf_hash_table (info)->hgot->root.u.def.value
= frvfdpic_got_initial_offset (info);
if (frvfdpic_plt_section (info))
frvfdpic_plt_initial_offset (info) =
frvfdpic_plt_section (info)->size;
/* Allocate a ret statement at plt_initial_offset, to be used by
locally-resolved TLS descriptors. */
if (gpinfop->g.tls_ret_refs)
frvfdpic_plt_section (info)->size += 4;
htab_traverse (frvfdpic_relocs_info (info), _frvfdpic_assign_plt_entries,
gpinfop);
/* Allocate the PLT section contents only after
_frvfdpic_assign_plt_entries has a chance to add the size of the
non-lazy PLT entries. */
if (frvfdpic_plt_section (info))
{
if (frvfdpic_plt_section (info)->size == 0)
frvfdpic_plt_section (info)->flags |= SEC_EXCLUDE;
else if (frvfdpic_plt_section (info)->contents == NULL)
{
frvfdpic_plt_section (info)->contents =
(bfd_byte *) bfd_zalloc (dynobj,
frvfdpic_plt_section (info)->size);
if (frvfdpic_plt_section (info)->contents == NULL)
return FALSE;
}
}
return TRUE;
}
/* Set the sizes of the dynamic sections. */
static bfd_boolean
elf32_frvfdpic_size_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *s;
struct _frvfdpic_dynamic_got_plt_info gpinfo;
dynobj = elf_hash_table (info)->dynobj;
BFD_ASSERT (dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (info->executable)
{
s = bfd_get_linker_section (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
}
}
memset (&gpinfo, 0, sizeof (gpinfo));
gpinfo.g.info = info;
for (;;)
{
htab_t relocs = frvfdpic_relocs_info (info);
htab_traverse (relocs, _frvfdpic_resolve_final_relocs_info, &relocs);
if (relocs == frvfdpic_relocs_info (info))
break;
}
htab_traverse (frvfdpic_relocs_info (info), _frvfdpic_count_got_plt_entries,
&gpinfo.g);
/* Allocate space to save the summary information, we're going to
use it if we're doing relaxations. */
frvfdpic_dynamic_got_plt_info (info) = bfd_alloc (dynobj, sizeof (gpinfo.g));
if (!_frvfdpic_size_got_plt (output_bfd, &gpinfo))
return FALSE;
if (elf_hash_table (info)->dynamic_sections_created)
{
if (frvfdpic_got_section (info)->size)
if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0))
return FALSE;
if (frvfdpic_pltrel_section (info)->size)
if (!_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|| !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_REL)
|| !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0))
return FALSE;
if (frvfdpic_gotrel_section (info)->size)
if (!_bfd_elf_add_dynamic_entry (info, DT_REL, 0)
|| !_bfd_elf_add_dynamic_entry (info, DT_RELSZ, 0)
|| !_bfd_elf_add_dynamic_entry (info, DT_RELENT,
sizeof (Elf32_External_Rel)))
return FALSE;
}
return TRUE;
}
static bfd_boolean
elf32_frvfdpic_always_size_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
if (!info->relocatable
&& !bfd_elf_stack_segment_size (output_bfd, info,
"__stacksize", DEFAULT_STACK_SIZE))
return FALSE;
return TRUE;
}
/* Check whether any of the relocations was optimized away, and
subtract it from the relocation or fixup count. */
static bfd_boolean
_frvfdpic_check_discarded_relocs (bfd *abfd, asection *sec,
struct bfd_link_info *info,
bfd_boolean *changed)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel, *erel;
if ((sec->flags & SEC_RELOC) == 0
|| sec->reloc_count == 0)
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
rel = elf_section_data (sec)->relocs;
/* Now examine each relocation. */
for (erel = rel + sec->reloc_count; rel < erel; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
struct frvfdpic_relocs_info *picrel;
struct _frvfdpic_dynamic_got_info *dinfo;
if (ELF32_R_TYPE (rel->r_info) != R_FRV_32
&& ELF32_R_TYPE (rel->r_info) != R_FRV_FUNCDESC)
continue;
if (_bfd_elf_section_offset (sec->output_section->owner,
info, sec, rel->r_offset)
!= (bfd_vma)-1)
continue;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *)h->root.u.i.link;
}
if (h != NULL)
picrel = frvfdpic_relocs_info_for_global (frvfdpic_relocs_info (info),
abfd, h,
rel->r_addend, NO_INSERT);
else
picrel = frvfdpic_relocs_info_for_local (frvfdpic_relocs_info (info),
abfd, r_symndx,
rel->r_addend, NO_INSERT);
if (! picrel)
return FALSE;
*changed = TRUE;
dinfo = frvfdpic_dynamic_got_plt_info (info);
_frvfdpic_count_relocs_fixups (picrel, dinfo, TRUE);
if (ELF32_R_TYPE (rel->r_info) == R_FRV_32)
picrel->relocs32--;
else /* we know (ELF32_R_TYPE (rel->r_info) == R_FRV_FUNCDESC) */
picrel->relocsfd--;
_frvfdpic_count_relocs_fixups (picrel, dinfo, FALSE);
}
return TRUE;
}
static bfd_boolean
frvfdpic_elf_discard_info (bfd *ibfd,
struct elf_reloc_cookie *cookie ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd_boolean changed = FALSE;
asection *s;
bfd *obfd = NULL;
/* Account for relaxation of .eh_frame section. */
for (s = ibfd->sections; s; s = s->next)
if (s->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
{
if (!_frvfdpic_check_discarded_relocs (ibfd, s, info, &changed))
return FALSE;
obfd = s->output_section->owner;
}
if (changed)
{
struct _frvfdpic_dynamic_got_plt_info gpinfo;
memset (&gpinfo, 0, sizeof (gpinfo));
memcpy (&gpinfo.g, frvfdpic_dynamic_got_plt_info (info),
sizeof (gpinfo.g));
/* Clear GOT and PLT assignments. */
htab_traverse (frvfdpic_relocs_info (info),
_frvfdpic_reset_got_plt_entries,
NULL);
if (!_frvfdpic_size_got_plt (obfd, &gpinfo))
return FALSE;
}
return TRUE;
}
/* Look for opportunities to relax TLS relocations. We can assume
we're linking the main executable or a static-tls library, since
otherwise we wouldn't have got here. */
static int
_frvfdpic_relax_got_plt_entries (void **entryp, void *dinfo_)
{
struct frvfdpic_relocs_info *entry = *entryp;
struct _frvfdpic_dynamic_got_info *dinfo = dinfo_;
_frvfdpic_relax_tls_entries (entry, dinfo, TRUE);
return 1;
}
static bfd_boolean
elf32_frvfdpic_relax_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
struct bfd_link_info *info, bfd_boolean *again)
{
struct _frvfdpic_dynamic_got_plt_info gpinfo;
if (info->relocatable)
(*info->callbacks->einfo)
(_("%P%F: --relax and -r may not be used together\n"));
/* If we return early, we didn't change anything. */
*again = FALSE;
/* We'll do our thing when requested to relax the GOT section. */
if (sec != frvfdpic_got_section (info))
return TRUE;
/* We can only relax when linking the main executable or a library
that can't be dlopened. */
if (! info->executable && ! (info->flags & DF_STATIC_TLS))
return TRUE;
/* If there isn't a TLS section for this binary, we can't do
anything about its TLS relocations (it probably doesn't have
any. */
if (elf_hash_table (info)->tls_sec == NULL)
return TRUE;
memset (&gpinfo, 0, sizeof (gpinfo));
memcpy (&gpinfo.g, frvfdpic_dynamic_got_plt_info (info), sizeof (gpinfo.g));
/* Now look for opportunities to relax, adjusting the GOT usage
as needed. */
htab_traverse (frvfdpic_relocs_info (info),
_frvfdpic_relax_got_plt_entries,
&gpinfo.g);
/* If we changed anything, reset and re-assign GOT and PLT entries. */
if (memcmp (frvfdpic_dynamic_got_plt_info (info),
&gpinfo.g, sizeof (gpinfo.g)) != 0)
{
/* Clear GOT and PLT assignments. */
htab_traverse (frvfdpic_relocs_info (info),
_frvfdpic_reset_got_plt_entries,
NULL);
/* The owner of the TLS section is the output bfd. There should
be a better way to get to it. */
if (!_frvfdpic_size_got_plt (elf_hash_table (info)->tls_sec->owner,
&gpinfo))
return FALSE;
/* Repeat until we don't make any further changes. We could fail to
introduce changes in a round if, for example, the 12-bit range is
full, but we later release some space by getting rid of TLS
descriptors in it. We have to repeat the whole process because
we might have changed the size of a section processed before this
one. */
*again = TRUE;
}
return TRUE;
}
/* Fill in code and data in dynamic sections. */
static bfd_boolean
elf32_frv_finish_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
/* Nothing to be done for non-FDPIC. */
return TRUE;
}
static bfd_boolean
elf32_frvfdpic_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *sdyn;
dynobj = elf_hash_table (info)->dynobj;
if (frvfdpic_dynamic_got_plt_info (info))
{
BFD_ASSERT (frvfdpic_dynamic_got_plt_info (info)->tls_ret_refs == 0);
}
if (frvfdpic_got_section (info))
{
BFD_ASSERT (frvfdpic_gotrel_section (info)->size
== (frvfdpic_gotrel_section (info)->reloc_count
* sizeof (Elf32_External_Rel)));
if (frvfdpic_gotfixup_section (info))
{
struct elf_link_hash_entry *hgot = elf_hash_table (info)->hgot;
bfd_vma got_value = hgot->root.u.def.value
+ hgot->root.u.def.section->output_section->vma
+ hgot->root.u.def.section->output_offset;
struct bfd_link_hash_entry *hend;
_frvfdpic_add_rofixup (output_bfd, frvfdpic_gotfixup_section (info),
got_value, 0);
if (frvfdpic_gotfixup_section (info)->size
!= (frvfdpic_gotfixup_section (info)->reloc_count * 4))
{
error:
info->callbacks->einfo
("LINKER BUG: .rofixup section size mismatch\n");
return FALSE;
}
hend = bfd_link_hash_lookup (info->hash, "__ROFIXUP_END__",
FALSE, FALSE, TRUE);
if (hend
&& (hend->type == bfd_link_hash_defined
|| hend->type == bfd_link_hash_defweak)
&& hend->u.def.section->output_section != NULL)
{
bfd_vma value =
frvfdpic_gotfixup_section (info)->output_section->vma
+ frvfdpic_gotfixup_section (info)->output_offset
+ frvfdpic_gotfixup_section (info)->size
- hend->u.def.section->output_section->vma
- hend->u.def.section->output_offset;
BFD_ASSERT (hend->u.def.value == value);
if (hend->u.def.value != value)
goto error;
}
}
}
if (frvfdpic_pltrel_section (info))
{
BFD_ASSERT (frvfdpic_pltrel_section (info)->size
== (frvfdpic_pltrel_section (info)->reloc_count
* sizeof (Elf32_External_Rel)));
}
if (elf_hash_table (info)->dynamic_sections_created)
{
Elf32_External_Dyn * dyncon;
Elf32_External_Dyn * dynconend;
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
BFD_ASSERT (sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
break;
case DT_PLTGOT:
dyn.d_un.d_ptr = frvfdpic_got_section (info)->output_section->vma
+ frvfdpic_got_section (info)->output_offset
+ frvfdpic_got_initial_offset (info);
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_JMPREL:
dyn.d_un.d_ptr = frvfdpic_pltrel_section (info)
->output_section->vma
+ frvfdpic_pltrel_section (info)->output_offset;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
case DT_PLTRELSZ:
dyn.d_un.d_val = frvfdpic_pltrel_section (info)->size;
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
break;
}
}
}
return TRUE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. */
static bfd_boolean
elf32_frvfdpic_adjust_dynamic_symbol
(struct bfd_link_info *info ATTRIBUTE_UNUSED,
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
{
bfd * dynobj;
dynobj = elf_hash_table (info)->dynobj;
/* Make sure we know what is going on here. */
BFD_ASSERT (dynobj != NULL
&& (h->u.weakdef != NULL
|| (h->def_dynamic
&& h->ref_regular
&& !h->def_regular)));
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->u.weakdef != NULL)
{
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->u.weakdef->root.u.def.section;
h->root.u.def.value = h->u.weakdef->root.u.def.value;
}
return TRUE;
}
/* Perform any actions needed for dynamic symbols. */
static bfd_boolean
elf32_frvfdpic_finish_dynamic_symbol
(bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
{
return TRUE;
}
/* Decide whether to attempt to turn absptr or lsda encodings in
shared libraries into pcrel within the given input section. */
static bfd_boolean
frvfdpic_elf_use_relative_eh_frame
(bfd *input_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
asection *eh_frame_section ATTRIBUTE_UNUSED)
{
/* We can't use PC-relative encodings in FDPIC binaries, in general. */
return FALSE;
}
/* Adjust the contents of an eh_frame_hdr section before they're output. */
static bfd_byte
frvfdpic_elf_encode_eh_address (bfd *abfd,
struct bfd_link_info *info,
asection *osec, bfd_vma offset,
asection *loc_sec, bfd_vma loc_offset,
bfd_vma *encoded)
{
struct elf_link_hash_entry *h;
h = elf_hash_table (info)->hgot;
BFD_ASSERT (h && h->root.type == bfd_link_hash_defined);
if (! h || (_frvfdpic_osec_to_segment (abfd, osec)
== _frvfdpic_osec_to_segment (abfd, loc_sec->output_section)))
return _bfd_elf_encode_eh_address (abfd, info, osec, offset,
loc_sec, loc_offset, encoded);
BFD_ASSERT (_frvfdpic_osec_to_segment (abfd, osec)
== (_frvfdpic_osec_to_segment
(abfd, h->root.u.def.section->output_section)));
*encoded = osec->vma + offset
- (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
return DW_EH_PE_datarel | DW_EH_PE_sdata4;
}
/* Look through the relocs for a section during the first phase.
Besides handling virtual table relocs for gc, we have to deal with
all sorts of PIC-related relocations. We describe below the
general plan on how to handle such relocations, even though we only
collect information at this point, storing them in hash tables for
perusal of later passes.
32 relocations are propagated to the linker output when creating
position-independent output. LO16 and HI16 relocations are not
supposed to be encountered in this case.
LABEL16 should always be resolvable by the linker, since it's only
used by branches.
LABEL24, on the other hand, is used by calls. If it turns out that
the target of a call is a dynamic symbol, a PLT entry must be
created for it, which triggers the creation of a private function
descriptor and, unless lazy binding is disabled, a lazy PLT entry.
GPREL relocations require the referenced symbol to be in the same
segment as _gp, but this can only be checked later.
All GOT, GOTOFF and FUNCDESC relocations require a .got section to
exist. LABEL24 might as well, since it may require a PLT entry,
that will require a got.
Non-FUNCDESC GOT relocations require a GOT entry to be created
regardless of whether the symbol is dynamic. However, since a
global symbol that turns out to not be exported may have the same
address of a non-dynamic symbol, we don't assign GOT entries at
this point, such that we can share them in this case. A relocation
for the GOT entry always has to be created, be it to offset a
private symbol by the section load address, be it to get the symbol
resolved dynamically.
FUNCDESC GOT relocations require a GOT entry to be created, and
handled as if a FUNCDESC relocation was applied to the GOT entry in
an object file.
FUNCDESC relocations referencing a symbol that turns out to NOT be
dynamic cause a private function descriptor to be created. The
FUNCDESC relocation then decays to a 32 relocation that points at
the private descriptor. If the symbol is dynamic, the FUNCDESC
relocation is propagated to the linker output, such that the
dynamic linker creates the canonical descriptor, pointing to the
dynamically-resolved definition of the function.
Non-FUNCDESC GOTOFF relocations must always refer to non-dynamic
symbols that are assigned to the same segment as the GOT, but we
can only check this later, after we know the complete set of
symbols defined and/or exported.
FUNCDESC GOTOFF relocations require a function descriptor to be
created and, unless lazy binding is disabled or the symbol is not
dynamic, a lazy PLT entry. Since we can't tell at this point
whether a symbol is going to be dynamic, we have to decide later
whether to create a lazy PLT entry or bind the descriptor directly
to the private function.
FUNCDESC_VALUE relocations are not supposed to be present in object
files, but they may very well be simply propagated to the linker
output, since they have no side effect.
A function descriptor always requires a FUNCDESC_VALUE relocation.
Whether it's in .plt.rel or not depends on whether lazy binding is
enabled and on whether the referenced symbol is dynamic.
The existence of a lazy PLT requires the resolverStub lazy PLT
entry to be present.
As for assignment of GOT, PLT and lazy PLT entries, and private
descriptors, we might do them all sequentially, but we can do
better than that. For example, we can place GOT entries and
private function descriptors referenced using 12-bit operands
closer to the PIC register value, such that these relocations don't
overflow. Those that are only referenced with LO16 relocations
could come next, but we may as well place PLT-required function
descriptors in the 12-bit range to make them shorter. Symbols
referenced with LO16/HI16 may come next, but we may place
additional function descriptors in the 16-bit range if we can
reliably tell that we've already placed entries that are ever
referenced with only LO16. PLT entries are therefore generated as
small as possible, while not introducing relocation overflows in
GOT or FUNCDESC_GOTOFF relocations. Lazy PLT entries could be
generated before or after PLT entries, but not intermingled with
them, such that we can have more lazy PLT entries in range for a
branch to the resolverStub. The resolverStub should be emitted at
the most distant location from the first lazy PLT entry such that
it's still in range for a branch, or closer, if there isn't a need
for so many lazy PLT entries. Additional lazy PLT entries may be
emitted after the resolverStub, as long as branches are still in
range. If the branch goes out of range, longer lazy PLT entries
are emitted.
We could further optimize PLT and lazy PLT entries by giving them
priority in assignment to closer-to-gr17 locations depending on the
number of occurrences of references to them (assuming a function
that's called more often is more important for performance, so its
PLT entry should be faster), or taking hints from the compiler.
Given infinite time and money... :-) */
static bfd_boolean
elf32_frv_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
bfd *dynobj;
struct frvfdpic_relocs_info *picrel;
if (info->relocatable)
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
dynobj = elf_hash_table (info)->dynobj;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
/* PR15323, ref flags aren't set for references in the same
object. */
h->root.non_ir_ref = 1;
}
switch (ELF32_R_TYPE (rel->r_info))
{
case R_FRV_GETTLSOFF:
case R_FRV_TLSDESC_VALUE:
case R_FRV_GOTTLSDESC12:
case R_FRV_GOTTLSDESCHI:
case R_FRV_GOTTLSDESCLO:
case R_FRV_GOTTLSOFF12:
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSOFFLO:
case R_FRV_TLSOFF:
case R_FRV_GOT12:
case R_FRV_GOTHI:
case R_FRV_GOTLO:
case R_FRV_FUNCDESC_GOT12:
case R_FRV_FUNCDESC_GOTHI:
case R_FRV_FUNCDESC_GOTLO:
case R_FRV_GOTOFF12:
case R_FRV_GOTOFFHI:
case R_FRV_GOTOFFLO:
case R_FRV_FUNCDESC_GOTOFF12:
case R_FRV_FUNCDESC_GOTOFFHI:
case R_FRV_FUNCDESC_GOTOFFLO:
case R_FRV_FUNCDESC:
case R_FRV_FUNCDESC_VALUE:
case R_FRV_TLSMOFF12:
case R_FRV_TLSMOFFHI:
case R_FRV_TLSMOFFLO:
case R_FRV_TLSMOFF:
if (! IS_FDPIC (abfd))
goto bad_reloc;
/* Fall through. */
case R_FRV_GPREL12:
case R_FRV_GPRELU12:
case R_FRV_GPRELHI:
case R_FRV_GPRELLO:
case R_FRV_LABEL24:
case R_FRV_32:
if (! dynobj)
{
elf_hash_table (info)->dynobj = dynobj = abfd;
if (! _frv_create_got_section (abfd, info))
return FALSE;
}
if (! IS_FDPIC (abfd))
{
picrel = NULL;
break;
}
if (h != NULL)
{
if (h->dynindx == -1)
switch (ELF_ST_VISIBILITY (h->other))
{
case STV_INTERNAL:
case STV_HIDDEN:
break;
default:
bfd_elf_link_record_dynamic_symbol (info, h);
break;
}
picrel
= frvfdpic_relocs_info_for_global (frvfdpic_relocs_info (info),
abfd, h,
rel->r_addend, INSERT);
}
else
picrel = frvfdpic_relocs_info_for_local (frvfdpic_relocs_info
(info), abfd, r_symndx,
rel->r_addend, INSERT);
if (! picrel)
return FALSE;
break;
default:
picrel = NULL;
break;
}
switch (ELF32_R_TYPE (rel->r_info))
{
case R_FRV_LABEL24:
if (IS_FDPIC (abfd))
picrel->call = 1;
break;
case R_FRV_FUNCDESC_VALUE:
picrel->relocsfdv++;
if (bfd_get_section_flags (abfd, sec) & SEC_ALLOC)
picrel->relocs32--;
/* Fall through. */
case R_FRV_32:
if (! IS_FDPIC (abfd))
break;
picrel->sym = 1;
if (bfd_get_section_flags (abfd, sec) & SEC_ALLOC)
picrel->relocs32++;
break;
case R_FRV_GOT12:
picrel->got12 = 1;
break;
case R_FRV_GOTHI:
case R_FRV_GOTLO:
picrel->gothilo = 1;
break;
case R_FRV_FUNCDESC_GOT12:
picrel->fdgot12 = 1;
break;
case R_FRV_FUNCDESC_GOTHI:
case R_FRV_FUNCDESC_GOTLO:
picrel->fdgothilo = 1;
break;
case R_FRV_GOTOFF12:
case R_FRV_GOTOFFHI:
case R_FRV_GOTOFFLO:
picrel->gotoff = 1;
break;
case R_FRV_FUNCDESC_GOTOFF12:
picrel->fdgoff12 = 1;
break;
case R_FRV_FUNCDESC_GOTOFFHI:
case R_FRV_FUNCDESC_GOTOFFLO:
picrel->fdgoffhilo = 1;
break;
case R_FRV_FUNCDESC:
picrel->fd = 1;
picrel->relocsfd++;
break;
case R_FRV_GETTLSOFF:
picrel->tlsplt = 1;
break;
case R_FRV_TLSDESC_VALUE:
picrel->relocstlsd++;
goto bad_reloc;
case R_FRV_GOTTLSDESC12:
picrel->tlsdesc12 = 1;
break;
case R_FRV_GOTTLSDESCHI:
case R_FRV_GOTTLSDESCLO:
picrel->tlsdeschilo = 1;
break;
case R_FRV_TLSMOFF12:
case R_FRV_TLSMOFFHI:
case R_FRV_TLSMOFFLO:
case R_FRV_TLSMOFF:
break;
case R_FRV_GOTTLSOFF12:
picrel->tlsoff12 = 1;
info->flags |= DF_STATIC_TLS;
break;
case R_FRV_GOTTLSOFFHI:
case R_FRV_GOTTLSOFFLO:
picrel->tlsoffhilo = 1;
info->flags |= DF_STATIC_TLS;
break;
case R_FRV_TLSOFF:
picrel->relocstlsoff++;
info->flags |= DF_STATIC_TLS;
goto bad_reloc;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_FRV_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return FALSE;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_FRV_GNU_VTENTRY:
BFD_ASSERT (h != NULL);
if (h != NULL
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return FALSE;
break;
case R_FRV_LABEL16:
case R_FRV_LO16:
case R_FRV_HI16:
case R_FRV_GPREL12:
case R_FRV_GPRELU12:
case R_FRV_GPREL32:
case R_FRV_GPRELHI:
case R_FRV_GPRELLO:
case R_FRV_TLSDESC_RELAX:
case R_FRV_GETTLSOFF_RELAX:
case R_FRV_TLSOFF_RELAX:
break;
default:
bad_reloc:
info->callbacks->einfo
(_("%B: unsupported relocation type %i\n"),
abfd, ELF32_R_TYPE (rel->r_info));
return FALSE;
}
}
return TRUE;
}
/* Return the machine subcode from the ELF e_flags header. */
static int
elf32_frv_machine (bfd *abfd)
{
switch (elf_elfheader (abfd)->e_flags & EF_FRV_CPU_MASK)
{
default: break;
case EF_FRV_CPU_FR550: return bfd_mach_fr550;
case EF_FRV_CPU_FR500: return bfd_mach_fr500;
case EF_FRV_CPU_FR450: return bfd_mach_fr450;
case EF_FRV_CPU_FR405: return bfd_mach_fr400;
case EF_FRV_CPU_FR400: return bfd_mach_fr400;
case EF_FRV_CPU_FR300: return bfd_mach_fr300;
case EF_FRV_CPU_SIMPLE: return bfd_mach_frvsimple;
case EF_FRV_CPU_TOMCAT: return bfd_mach_frvtomcat;
}
return bfd_mach_frv;
}
/* Set the right machine number for a FRV ELF file. */
static bfd_boolean
elf32_frv_object_p (bfd *abfd)
{
bfd_default_set_arch_mach (abfd, bfd_arch_frv, elf32_frv_machine (abfd));
return (((elf_elfheader (abfd)->e_flags & EF_FRV_FDPIC) != 0)
== (IS_FDPIC (abfd)));
}
/* Function to set the ELF flag bits. */
static bfd_boolean
frv_elf_set_private_flags (bfd *abfd, flagword flags)
{
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
/* Copy backend specific data from one object module to another. */
static bfd_boolean
frv_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
BFD_ASSERT (!elf_flags_init (obfd)
|| elf_elfheader (obfd)->e_flags == elf_elfheader (ibfd)->e_flags);
elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
elf_flags_init (obfd) = TRUE;
/* Copy object attributes. */
_bfd_elf_copy_obj_attributes (ibfd, obfd);
return TRUE;
}
/* Return true if the architecture described by elf header flag
EXTENSION is an extension of the architecture described by BASE. */
static bfd_boolean
frv_elf_arch_extension_p (flagword base, flagword extension)
{
if (base == extension)
return TRUE;
/* CPU_GENERIC code can be merged with code for a specific
architecture, in which case the result is marked as being
for the specific architecture. Everything is therefore
an extension of CPU_GENERIC. */
if (base == EF_FRV_CPU_GENERIC)
return TRUE;
if (extension == EF_FRV_CPU_FR450)
if (base == EF_FRV_CPU_FR400 || base == EF_FRV_CPU_FR405)
return TRUE;
if (extension == EF_FRV_CPU_FR405)
if (base == EF_FRV_CPU_FR400)
return TRUE;
return FALSE;
}
static bfd_boolean
elf32_frvfdpic_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
if (! frv_elf_copy_private_bfd_data (ibfd, obfd))
return FALSE;
if (! elf_tdata (ibfd) || ! elf_tdata (ibfd)->phdr
|| ! elf_tdata (obfd) || ! elf_tdata (obfd)->phdr)
return TRUE;
return TRUE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bfd_boolean
frv_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
flagword old_flags, old_partial;
flagword new_flags, new_partial;
bfd_boolean error = FALSE;
char new_opt[80];
char old_opt[80];
new_opt[0] = old_opt[0] = '\0';
new_flags = elf_elfheader (ibfd)->e_flags;
old_flags = elf_elfheader (obfd)->e_flags;
if (new_flags & EF_FRV_FDPIC)
new_flags &= ~EF_FRV_PIC;
#ifdef DEBUG
(*_bfd_error_handler) ("old_flags = 0x%.8lx, new_flags = 0x%.8lx, init = %s, filename = %s",
old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no",
bfd_get_filename (ibfd));
#endif
if (!elf_flags_init (obfd)) /* First call, no flags set. */
{
elf_flags_init (obfd) = TRUE;
old_flags = new_flags;
}
else if (new_flags == old_flags) /* Compatible flags are ok. */
;
else /* Possibly incompatible flags. */
{
/* Warn if different # of gprs are used. Note, 0 means nothing is
said about the size of gprs. */
new_partial = (new_flags & EF_FRV_GPR_MASK);
old_partial = (old_flags & EF_FRV_GPR_MASK);
if (new_partial == old_partial)
;
else if (new_partial == 0)
;
else if (old_partial == 0)
old_flags |= new_partial;
else
{
switch (new_partial)
{
default: strcat (new_opt, " -mgpr-??"); break;
case EF_FRV_GPR_32: strcat (new_opt, " -mgpr-32"); break;
case EF_FRV_GPR_64: strcat (new_opt, " -mgpr-64"); break;
}
switch (old_partial)
{
default: strcat (old_opt, " -mgpr-??"); break;
case EF_FRV_GPR_32: strcat (old_opt, " -mgpr-32"); break;
case EF_FRV_GPR_64: strcat (old_opt, " -mgpr-64"); break;
}
}
/* Warn if different # of fprs are used. Note, 0 means nothing is
said about the size of fprs. */
new_partial = (new_flags & EF_FRV_FPR_MASK);
old_partial = (old_flags & EF_FRV_FPR_MASK);
if (new_partial == old_partial)
;
else if (new_partial == 0)
;
else if (old_partial == 0)
old_flags |= new_partial;
else
{
switch (new_partial)
{
default: strcat (new_opt, " -mfpr-?"); break;
case EF_FRV_FPR_32: strcat (new_opt, " -mfpr-32"); break;
case EF_FRV_FPR_64: strcat (new_opt, " -mfpr-64"); break;
case EF_FRV_FPR_NONE: strcat (new_opt, " -msoft-float"); break;
}
switch (old_partial)
{
default: strcat (old_opt, " -mfpr-?"); break;
case EF_FRV_FPR_32: strcat (old_opt, " -mfpr-32"); break;
case EF_FRV_FPR_64: strcat (old_opt, " -mfpr-64"); break;
case EF_FRV_FPR_NONE: strcat (old_opt, " -msoft-float"); break;
}
}
/* Warn if different dword support was used. Note, 0 means nothing is
said about the dword support. */
new_partial = (new_flags & EF_FRV_DWORD_MASK);
old_partial = (old_flags & EF_FRV_DWORD_MASK);
if (new_partial == old_partial)
;
else if (new_partial == 0)
;
else if (old_partial == 0)
old_flags |= new_partial;
else
{
switch (new_partial)
{
default: strcat (new_opt, " -mdword-?"); break;
case EF_FRV_DWORD_YES: strcat (new_opt, " -mdword"); break;
case EF_FRV_DWORD_NO: strcat (new_opt, " -mno-dword"); break;
}
switch (old_partial)
{
default: strcat (old_opt, " -mdword-?"); break;
case EF_FRV_DWORD_YES: strcat (old_opt, " -mdword"); break;
case EF_FRV_DWORD_NO: strcat (old_opt, " -mno-dword"); break;
}
}
/* Or in flags that accumulate (ie, if one module uses it, mark that the
feature is used. */
old_flags |= new_flags & (EF_FRV_DOUBLE
| EF_FRV_MEDIA
| EF_FRV_MULADD
| EF_FRV_NON_PIC_RELOCS);
/* If any module was compiled without -G0, clear the G0 bit. */
old_flags = ((old_flags & ~ EF_FRV_G0)
| (old_flags & new_flags & EF_FRV_G0));
/* If any module was compiled without -mnopack, clear the mnopack bit. */
old_flags = ((old_flags & ~ EF_FRV_NOPACK)
| (old_flags & new_flags & EF_FRV_NOPACK));
/* We don't have to do anything if the pic flags are the same, or the new
module(s) were compiled with -mlibrary-pic. */
new_partial = (new_flags & EF_FRV_PIC_FLAGS);
old_partial = (old_flags & EF_FRV_PIC_FLAGS);
if ((new_partial == old_partial) || ((new_partial & EF_FRV_LIBPIC) != 0))
;
/* If the old module(s) were compiled with -mlibrary-pic, copy in the pic
flags if any from the new module. */
else if ((old_partial & EF_FRV_LIBPIC) != 0)
old_flags = (old_flags & ~ EF_FRV_PIC_FLAGS) | new_partial;
/* If we have mixtures of -fpic and -fPIC, or in both bits. */
else if (new_partial != 0 && old_partial != 0)
old_flags |= new_partial;
/* One module was compiled for pic and the other was not, see if we have
had any relocations that are not pic-safe. */
else
{
if ((old_flags & EF_FRV_NON_PIC_RELOCS) == 0)
old_flags |= new_partial;
else
{
old_flags &= ~ EF_FRV_PIC_FLAGS;
#ifndef FRV_NO_PIC_ERROR
error = TRUE;
(*_bfd_error_handler)
(_("%s: compiled with %s and linked with modules that use non-pic relocations"),
bfd_get_filename (ibfd),
(new_flags & EF_FRV_BIGPIC) ? "-fPIC" : "-fpic");
#endif
}
}
/* Warn if different cpu is used (allow a specific cpu to override
the generic cpu). */
new_partial = (new_flags & EF_FRV_CPU_MASK);
old_partial = (old_flags & EF_FRV_CPU_MASK);
if (frv_elf_arch_extension_p (new_partial, old_partial))
;
else if (frv_elf_arch_extension_p (old_partial, new_partial))
old_flags = (old_flags & ~EF_FRV_CPU_MASK) | new_partial;
else
{
switch (new_partial)
{
default: strcat (new_opt, " -mcpu=?"); break;
case EF_FRV_CPU_GENERIC: strcat (new_opt, " -mcpu=frv"); break;
case EF_FRV_CPU_SIMPLE: strcat (new_opt, " -mcpu=simple"); break;
case EF_FRV_CPU_FR550: strcat (new_opt, " -mcpu=fr550"); break;
case EF_FRV_CPU_FR500: strcat (new_opt, " -mcpu=fr500"); break;
case EF_FRV_CPU_FR450: strcat (new_opt, " -mcpu=fr450"); break;
case EF_FRV_CPU_FR405: strcat (new_opt, " -mcpu=fr405"); break;
case EF_FRV_CPU_FR400: strcat (new_opt, " -mcpu=fr400"); break;
case EF_FRV_CPU_FR300: strcat (new_opt, " -mcpu=fr300"); break;
case EF_FRV_CPU_TOMCAT: strcat (new_opt, " -mcpu=tomcat"); break;
}
switch (old_partial)
{
default: strcat (old_opt, " -mcpu=?"); break;
case EF_FRV_CPU_GENERIC: strcat (old_opt, " -mcpu=frv"); break;
case EF_FRV_CPU_SIMPLE: strcat (old_opt, " -mcpu=simple"); break;
case EF_FRV_CPU_FR550: strcat (old_opt, " -mcpu=fr550"); break;
case EF_FRV_CPU_FR500: strcat (old_opt, " -mcpu=fr500"); break;
case EF_FRV_CPU_FR450: strcat (old_opt, " -mcpu=fr450"); break;
case EF_FRV_CPU_FR405: strcat (old_opt, " -mcpu=fr405"); break;
case EF_FRV_CPU_FR400: strcat (old_opt, " -mcpu=fr400"); break;
case EF_FRV_CPU_FR300: strcat (old_opt, " -mcpu=fr300"); break;
case EF_FRV_CPU_TOMCAT: strcat (old_opt, " -mcpu=tomcat"); break;
}
}
/* Print out any mismatches from above. */
if (new_opt[0])
{
error = TRUE;
(*_bfd_error_handler)
(_("%s: compiled with %s and linked with modules compiled with %s"),
bfd_get_filename (ibfd), new_opt, old_opt);
}
/* Warn about any other mismatches */
new_partial = (new_flags & ~ EF_FRV_ALL_FLAGS);
old_partial = (old_flags & ~ EF_FRV_ALL_FLAGS);
if (new_partial != old_partial)
{
old_flags |= new_partial;
error = TRUE;
(*_bfd_error_handler)
(_("%s: uses different unknown e_flags (0x%lx) fields than previous modules (0x%lx)"),
bfd_get_filename (ibfd), (long)new_partial, (long)old_partial);
}
}
/* If the cpu is -mcpu=simple, then set the -mnopack bit. */
if ((old_flags & EF_FRV_CPU_MASK) == EF_FRV_CPU_SIMPLE)
old_flags |= EF_FRV_NOPACK;
/* Update the old flags now with changes made above. */
old_partial = elf_elfheader (obfd)->e_flags & EF_FRV_CPU_MASK;
elf_elfheader (obfd)->e_flags = old_flags;
if (old_partial != (old_flags & EF_FRV_CPU_MASK))
bfd_default_set_arch_mach (obfd, bfd_arch_frv, elf32_frv_machine (obfd));
if (((new_flags & EF_FRV_FDPIC) == 0)
!= (! IS_FDPIC (ibfd)))
{
error = TRUE;
if (IS_FDPIC (obfd))
(*_bfd_error_handler)
(_("%s: cannot link non-fdpic object file into fdpic executable"),
bfd_get_filename (ibfd));
else
(*_bfd_error_handler)
(_("%s: cannot link fdpic object file into non-fdpic executable"),
bfd_get_filename (ibfd));
}
if (error)
bfd_set_error (bfd_error_bad_value);
return !error;
}
static bfd_boolean
frv_elf_print_private_bfd_data (bfd *abfd, void * ptr)
{
FILE *file = (FILE *) ptr;
flagword flags;
BFD_ASSERT (abfd != NULL && ptr != NULL);
/* Print normal ELF private data. */
_bfd_elf_print_private_bfd_data (abfd, ptr);
flags = elf_elfheader (abfd)->e_flags;
fprintf (file, _("private flags = 0x%lx:"), (unsigned long) flags);
switch (flags & EF_FRV_CPU_MASK)
{
default: break;
case EF_FRV_CPU_SIMPLE: fprintf (file, " -mcpu=simple"); break;
case EF_FRV_CPU_FR550: fprintf (file, " -mcpu=fr550"); break;
case EF_FRV_CPU_FR500: fprintf (file, " -mcpu=fr500"); break;
case EF_FRV_CPU_FR450: fprintf (file, " -mcpu=fr450"); break;
case EF_FRV_CPU_FR405: fprintf (file, " -mcpu=fr405"); break;
case EF_FRV_CPU_FR400: fprintf (file, " -mcpu=fr400"); break;
case EF_FRV_CPU_FR300: fprintf (file, " -mcpu=fr300"); break;
case EF_FRV_CPU_TOMCAT: fprintf (file, " -mcpu=tomcat"); break;
}
switch (flags & EF_FRV_GPR_MASK)
{
default: break;
case EF_FRV_GPR_32: fprintf (file, " -mgpr-32"); break;
case EF_FRV_GPR_64: fprintf (file, " -mgpr-64"); break;
}
switch (flags & EF_FRV_FPR_MASK)
{
default: break;
case EF_FRV_FPR_32: fprintf (file, " -mfpr-32"); break;
case EF_FRV_FPR_64: fprintf (file, " -mfpr-64"); break;
case EF_FRV_FPR_NONE: fprintf (file, " -msoft-float"); break;
}
switch (flags & EF_FRV_DWORD_MASK)
{
default: break;
case EF_FRV_DWORD_YES: fprintf (file, " -mdword"); break;
case EF_FRV_DWORD_NO: fprintf (file, " -mno-dword"); break;
}
if (flags & EF_FRV_DOUBLE)
fprintf (file, " -mdouble");
if (flags & EF_FRV_MEDIA)
fprintf (file, " -mmedia");
if (flags & EF_FRV_MULADD)
fprintf (file, " -mmuladd");
if (flags & EF_FRV_PIC)
fprintf (file, " -fpic");
if (flags & EF_FRV_BIGPIC)
fprintf (file, " -fPIC");
if (flags & EF_FRV_LIBPIC)
fprintf (file, " -mlibrary-pic");
if (flags & EF_FRV_FDPIC)
fprintf (file, " -mfdpic");
if (flags & EF_FRV_NON_PIC_RELOCS)
fprintf (file, " non-pic relocations");
if (flags & EF_FRV_G0)
fprintf (file, " -G0");
fputc ('\n', file);
return TRUE;
}
/* Support for core dump NOTE sections. */
static bfd_boolean
elf32_frv_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
unsigned int raw_size;
switch (note->descsz)
{
default:
return FALSE;
/* The Linux/FRV elf_prstatus struct is 268 bytes long. The other
hardcoded offsets and sizes listed below (and contained within
this lexical block) refer to fields in the target's elf_prstatus
struct. */
case 268:
/* `pr_cursig' is at offset 12. */
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
/* `pr_pid' is at offset 24. */
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
/* `pr_reg' is at offset 72. */
offset = 72;
/* Most grok_prstatus implementations set `raw_size' to the size
of the pr_reg field. For Linux/FRV, we set `raw_size' to be
the size of `pr_reg' plus the size of `pr_exec_fdpic_loadmap'
and `pr_interp_fdpic_loadmap', both of which (by design)
immediately follow `pr_reg'. This will allow these fields to
be viewed by GDB as registers.
`pr_reg' is 184 bytes long. `pr_exec_fdpic_loadmap' and
`pr_interp_fdpic_loadmap' are 4 bytes each. */
raw_size = 184 + 4 + 4;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg", raw_size,
note->descpos + offset);
}
static bfd_boolean
elf32_frv_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->descsz)
{
default:
return FALSE;
/* The Linux/FRV elf_prpsinfo struct is 124 bytes long. */
case 124:
/* `pr_fname' is found at offset 28 and is 16 bytes long. */
elf_tdata (abfd)->core->program
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
/* `pr_psargs' is found at offset 44 and is 80 bytes long. */
elf_tdata (abfd)->core->command
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core->command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return TRUE;
}
#define ELF_ARCH bfd_arch_frv
#define ELF_TARGET_ID FRV_ELF_DATA
#define ELF_MACHINE_CODE EM_CYGNUS_FRV
#define ELF_MAXPAGESIZE 0x1000
#define TARGET_BIG_SYM bfd_elf32_frv_vec
#define TARGET_BIG_NAME "elf32-frv"
#define elf_info_to_howto frv_info_to_howto_rela
#define elf_backend_relocate_section elf32_frv_relocate_section
#define elf_backend_gc_mark_hook elf32_frv_gc_mark_hook
#define elf_backend_check_relocs elf32_frv_check_relocs
#define elf_backend_object_p elf32_frv_object_p
#define elf_backend_add_symbol_hook elf32_frv_add_symbol_hook
#define elf_backend_stack_align 8
#define elf_backend_can_gc_sections 1
#define elf_backend_rela_normal 1
#define bfd_elf32_bfd_reloc_type_lookup frv_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup frv_reloc_name_lookup
#define bfd_elf32_bfd_set_private_flags frv_elf_set_private_flags
#define bfd_elf32_bfd_copy_private_bfd_data frv_elf_copy_private_bfd_data
#define bfd_elf32_bfd_merge_private_bfd_data frv_elf_merge_private_bfd_data
#define bfd_elf32_bfd_print_private_bfd_data frv_elf_print_private_bfd_data
#define elf_backend_want_got_sym 1
#define elf_backend_got_header_size 0
#define elf_backend_want_got_plt 0
#define elf_backend_plt_readonly 1
#define elf_backend_want_plt_sym 0
#define elf_backend_plt_header_size 0
#define elf_backend_finish_dynamic_sections \
elf32_frv_finish_dynamic_sections
#define elf_backend_grok_prstatus elf32_frv_grok_prstatus
#define elf_backend_grok_psinfo elf32_frv_grok_psinfo
#include "elf32-target.h"
#undef ELF_MAXPAGESIZE
#define ELF_MAXPAGESIZE 0x4000
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM bfd_elf32_frvfdpic_vec
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf32-frvfdpic"
#undef elf32_bed
#define elf32_bed elf32_frvfdpic_bed
#undef elf_info_to_howto_rel
#define elf_info_to_howto_rel frvfdpic_info_to_howto_rel
#undef bfd_elf32_bfd_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create \
frvfdpic_elf_link_hash_table_create
#undef elf_backend_always_size_sections
#define elf_backend_always_size_sections \
elf32_frvfdpic_always_size_sections
#undef bfd_elf32_bfd_copy_private_bfd_data
#define bfd_elf32_bfd_copy_private_bfd_data \
elf32_frvfdpic_copy_private_bfd_data
#undef elf_backend_create_dynamic_sections
#define elf_backend_create_dynamic_sections \
elf32_frvfdpic_create_dynamic_sections
#undef elf_backend_adjust_dynamic_symbol
#define elf_backend_adjust_dynamic_symbol \
elf32_frvfdpic_adjust_dynamic_symbol
#undef elf_backend_size_dynamic_sections
#define elf_backend_size_dynamic_sections \
elf32_frvfdpic_size_dynamic_sections
#undef bfd_elf32_bfd_relax_section
#define bfd_elf32_bfd_relax_section \
elf32_frvfdpic_relax_section
#undef elf_backend_finish_dynamic_symbol
#define elf_backend_finish_dynamic_symbol \
elf32_frvfdpic_finish_dynamic_symbol
#undef elf_backend_finish_dynamic_sections
#define elf_backend_finish_dynamic_sections \
elf32_frvfdpic_finish_dynamic_sections
#undef elf_backend_discard_info
#define elf_backend_discard_info \
frvfdpic_elf_discard_info
#undef elf_backend_can_make_relative_eh_frame
#define elf_backend_can_make_relative_eh_frame \
frvfdpic_elf_use_relative_eh_frame
#undef elf_backend_can_make_lsda_relative_eh_frame
#define elf_backend_can_make_lsda_relative_eh_frame \
frvfdpic_elf_use_relative_eh_frame
#undef elf_backend_encode_eh_address
#define elf_backend_encode_eh_address \
frvfdpic_elf_encode_eh_address
#undef elf_backend_may_use_rel_p
#define elf_backend_may_use_rel_p 1
#undef elf_backend_may_use_rela_p
#define elf_backend_may_use_rela_p 1
/* We use REL for dynamic relocations only. */
#undef elf_backend_default_use_rela_p
#define elf_backend_default_use_rela_p 1
#undef elf_backend_omit_section_dynsym
#define elf_backend_omit_section_dynsym _frvfdpic_link_omit_section_dynsym
#include "elf32-target.h"