453 lines
12 KiB
C
453 lines
12 KiB
C
/* Generic symbol-table support for the BFD library.
|
|
Copyright (C) 1990-1991 Free Software Foundation, Inc.
|
|
Written by Cygnus Support.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/*
|
|
SECTION
|
|
Symbols
|
|
|
|
DESCRIPTION
|
|
BFD trys to maintain as much symbol information as it can when
|
|
it moves information from file to file. BFD passes information
|
|
to applications though the <<asymbol>> structure. When the
|
|
applicationrequests the symbol table, BFD reads the table in
|
|
the native form and translates parts of it into the internal
|
|
format. To maintain more than the infomation passed to
|
|
applications some targets keep some information 'behind the
|
|
sceans', in a structure only the particular back end knows
|
|
about. For example, the coff back end keeps the original
|
|
symbol table structure as well as the canonical structure when
|
|
a BFD is read in. On output, the coff back end can reconstruct
|
|
the output symbol table so that no information is lost, even
|
|
information unique to coff which BFD doesn't know or
|
|
understand. If a coff symbol table was read, but was written
|
|
through an a.out back end, all the coff specific information
|
|
would be lost. (.. until BFD 2 :). The symbol table of a BFD
|
|
is not necessarily read in until a canonicalize request is
|
|
made. Then the BFD back end fills in a table provided by the
|
|
application with pointers to the canonical information. To
|
|
output symbols, the application provides BFD with a table of
|
|
pointers to pointers to <<asymbol>>s. This allows applications
|
|
like the linker to output a symbol as read, since the 'behind
|
|
the sceens' information will be still available.
|
|
@menu
|
|
* Reading Symbols::
|
|
* Writing Symbols::
|
|
* typedef asymbol::
|
|
* symbol handling functions::
|
|
@end menu
|
|
|
|
@node Reading Symbols, Writing Symbols, Symbols, Symbols
|
|
SUBSECTION
|
|
Reading Symbols
|
|
|
|
DESCRIPTION
|
|
There are two stages to reading a symbol table from a BFD;
|
|
allocating storage, and the actual reading process. This is an
|
|
excerpt from an appliction which reads the symbol table:
|
|
|
|
EXAMPLE
|
|
|
|
unsigned int storage_needed;
|
|
asymbol **symbol_table;
|
|
unsigned int number_of_symbols;
|
|
unsigned int i;
|
|
|
|
storage_needed = get_symtab_upper_bound (abfd);
|
|
|
|
if (storage_needed == 0) {
|
|
return ;
|
|
}
|
|
symbol_table = (asymbol **) bfd_xmalloc (storage_needed);
|
|
...
|
|
number_of_symbols =
|
|
bfd_canonicalize_symtab (abfd, symbol_table);
|
|
|
|
for (i = 0; i < number_of_symbols; i++) {
|
|
process_symbol (symbol_table[i]);
|
|
}
|
|
|
|
DESCRIPTION
|
|
|
|
All storage for the symbols themselves is in an obstack
|
|
connected to the BFD, and is freed when the BFD is closed.
|
|
|
|
|
|
@node Writing Symbols, typedef asymbol, Reading Symbols, Symbols
|
|
SUBSECTION
|
|
Writing Symbols
|
|
|
|
DESCRIPTION
|
|
Writing of a symbol table is automatic when a BFD open for
|
|
writing is closed. The application attaches a vector of
|
|
pointers to pointers to symbols to the BFD being written, and
|
|
fills in the symbol count. The close and cleanup code reads
|
|
through the table provided and performs all the necessary
|
|
operations. The outputing code must always be provided with an
|
|
'owned' symbol; one which has come from another BFD, or one
|
|
which has been created using <<bfd_make_empty_symbol>>. An
|
|
example showing the creation of a symbol table with only one element:
|
|
|
|
EXAMPLE
|
|
#include "bfd.h"
|
|
main()
|
|
{
|
|
bfd *abfd;
|
|
asymbol *ptrs[2];
|
|
asymbol *new;
|
|
|
|
abfd = bfd_openw("foo","a.out-sunos-big");
|
|
bfd_set_format(abfd, bfd_object);
|
|
new = bfd_make_empty_symbol(abfd);
|
|
new->name = "dummy_symbol";
|
|
new->section = (asection *)0;
|
|
new->flags = BSF_ABSOLUTE | BSF_GLOBAL;
|
|
new->value = 0x12345;
|
|
|
|
ptrs[0] = new;
|
|
ptrs[1] = (asymbol *)0;
|
|
|
|
bfd_set_symtab(abfd, ptrs, 1);
|
|
bfd_close(abfd);
|
|
}
|
|
|
|
./makesym
|
|
nm foo
|
|
00012345 A dummy_symbol
|
|
|
|
|
|
DESCRIPTION
|
|
Many formats cannot represent arbitary symbol information; for
|
|
instance the <<a.out>> object format does not allow an
|
|
arbitary number of sections. A symbol pointing to a section
|
|
which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
|
|
be described.
|
|
|
|
*/
|
|
|
|
|
|
/*doc*
|
|
@node typedef asymbol, symbol handling functions, Writing Symbols, Symbols
|
|
|
|
*/
|
|
/*
|
|
TYPEDEF
|
|
typedef asymbol
|
|
|
|
DESCRIPTION
|
|
An <<asymbol>> has the form:
|
|
|
|
.typedef struct symbol_cache_entry
|
|
.{
|
|
A pointer to the BFD which owns the symbol. This information
|
|
is necessary so that a back end can work out what additional
|
|
(invisible to the application writer) information is carried
|
|
with the symbol.
|
|
|
|
. struct _bfd *the_bfd;
|
|
|
|
The text of the symbol. The name is left alone, and not copied - the
|
|
application may not alter it.
|
|
|
|
. CONST char *name;
|
|
|
|
The value of the symbol.
|
|
|
|
. symvalue value;
|
|
|
|
Attributes of a symbol:
|
|
|
|
.#define BSF_NO_FLAGS 0x00
|
|
|
|
The symbol has local scope; <<static>> in <<C>>. The value is
|
|
the offset into the section of the data.
|
|
|
|
.#define BSF_LOCAL 0x01
|
|
|
|
The symbol has global scope; initialized data in <<C>>. The value
|
|
is the offset into the section of the data.
|
|
|
|
.#define BSF_GLOBAL 0x02
|
|
|
|
Obsolete
|
|
|
|
.#define BSF_IMPORT 0x04
|
|
|
|
The symbol has global scope, and is exported. The value is the offset
|
|
into the section of the data.
|
|
|
|
.#define BSF_EXPORT 0x08
|
|
|
|
The symbol is undefined. <<extern>> in <<C>>. The value has no meaning.
|
|
|
|
.#define BSF_UNDEFINED 0x10
|
|
|
|
The symbol is common, initialized to zero; default in <<C>>. The
|
|
value is the size of the object in bytes.
|
|
|
|
.#define BSF_FORT_COMM 0x20
|
|
|
|
A normal <<C>> symbol would be one of:
|
|
<<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or <<BSF_EXPORT|BSD_GLOBAL>>
|
|
|
|
The symbol is a debugging record. The value has an arbitary meaning.
|
|
|
|
.#define BSF_DEBUGGING 0x40
|
|
|
|
The symbol has no section attached, any value is the actual value and
|
|
is not a relative offset to a section.
|
|
|
|
.#define BSF_ABSOLUTE 0x80
|
|
|
|
Used by the linker
|
|
|
|
.#define BSF_KEEP 0x10000
|
|
.#define BSF_KEEP_G 0x80000
|
|
|
|
Unused
|
|
|
|
.#define BSF_WEAK 0x100000
|
|
.#define BSF_CTOR 0x200000
|
|
.#define BSF_FAKE 0x400000
|
|
|
|
The symbol used to be a common symbol, but now it is allocated.
|
|
|
|
.#define BSF_OLD_COMMON 0x800000
|
|
|
|
The default value for common data.
|
|
|
|
.#define BFD_FORT_COMM_DEFAULT_VALUE 0
|
|
|
|
In some files the type of a symbol sometimes alters its location
|
|
in an output file - ie in coff a <<ISFCN>> symbol which is also <<C_EXT>>
|
|
symbol appears where it was declared and not at the end of a section.
|
|
This bit is set by the target BFD part to convey this information.
|
|
|
|
.#define BSF_NOT_AT_END 0x40000
|
|
|
|
Signal that the symbol is the label of constructor section.
|
|
|
|
.#define BSF_CONSTRUCTOR 0x1000000
|
|
|
|
Signal that the symbol is a warning symbol. If the symbol is a warning
|
|
symbol, then the value field (I know this is tacky) will point to the
|
|
asymbol which when referenced will cause the warning.
|
|
|
|
.#define BSF_WARNING 0x2000000
|
|
|
|
Signal that the symbol is indirect. The value of the symbol is a
|
|
pointer to an undefined asymbol which contains the name to use
|
|
instead.
|
|
|
|
.#define BSF_INDIRECT 0x4000000
|
|
|
|
. flagword flags;
|
|
|
|
A pointer to the section to which this symbol is relative, or 0 if the
|
|
symbol is absolute or undefined. Note that it is not sufficient to set
|
|
this location to 0 to mark a symbol as absolute - the flag
|
|
<<BSF_ABSOLUTE>> must be set also.
|
|
|
|
. struct sec *section;
|
|
|
|
Back end special data. This is being phased out in favour of making
|
|
this a union.
|
|
|
|
. PTR udata;
|
|
.} asymbol;
|
|
|
|
*/
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "libbfd.h"
|
|
#include "stab.gnu.h"
|
|
|
|
/*
|
|
@node symbol handling functions, , typedef asymbol, Symbols
|
|
SUBSECTION
|
|
Symbol Handling Functions
|
|
|
|
*/
|
|
|
|
/*
|
|
FUNCTION
|
|
get_symtab_upper_bound
|
|
|
|
DESCRIPTION
|
|
Returns the number of bytes required in a vector of pointers
|
|
to <<asymbols>> for all the symbols in the supplied BFD,
|
|
including a terminal NULL pointer. If there are no symbols in
|
|
the BFD, then 0 is returned.
|
|
|
|
.#define get_symtab_upper_bound(abfd) \
|
|
. BFD_SEND (abfd, _get_symtab_upper_bound, (abfd))
|
|
|
|
*/
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_canonicalize_symtab
|
|
|
|
DESCRIPTION
|
|
Supplied a BFD and a pointer to an uninitialized vector of
|
|
pointers. This reads in the symbols from the BFD, and fills in
|
|
the table with pointers to the symbols, and a trailing NULL.
|
|
The routine returns the actual number of symbol pointers not
|
|
including the NULL.
|
|
|
|
|
|
.#define bfd_canonicalize_symtab(abfd, location) \
|
|
. BFD_SEND (abfd, _bfd_canonicalize_symtab,\
|
|
. (abfd, location))
|
|
|
|
*/
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_set_symtab
|
|
|
|
DESCRIPTION
|
|
Provided a table of pointers to symbols and a count, writes to
|
|
the output BFD the symbols when closed.
|
|
|
|
SYNOPSIS
|
|
boolean bfd_set_symtab (bfd *, asymbol **, unsigned int );
|
|
*/
|
|
|
|
boolean
|
|
bfd_set_symtab (abfd, location, symcount)
|
|
bfd *abfd;
|
|
asymbol **location;
|
|
unsigned int symcount;
|
|
{
|
|
if ((abfd->format != bfd_object) || (bfd_read_p (abfd))) {
|
|
bfd_error = invalid_operation;
|
|
return false;
|
|
}
|
|
|
|
bfd_get_outsymbols (abfd) = location;
|
|
bfd_get_symcount (abfd) = symcount;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_print_symbol_vandf
|
|
|
|
DESCRIPTION
|
|
Prints the value and flags of the symbol supplied to the stream file.
|
|
|
|
SYNOPSIS
|
|
void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
|
|
*/
|
|
void
|
|
DEFUN(bfd_print_symbol_vandf,(file, symbol),
|
|
PTR file AND
|
|
asymbol *symbol)
|
|
{
|
|
flagword type = symbol->flags;
|
|
if (symbol->section != (asection *)NULL)
|
|
{
|
|
fprintf_vma(file, symbol->value+symbol->section->vma);
|
|
}
|
|
else
|
|
{
|
|
fprintf_vma(file, symbol->value);
|
|
}
|
|
fprintf(file," %c%c%c%c%c%c%c%c%c%c",
|
|
(type & BSF_LOCAL) ? 'l':' ',
|
|
(type & BSF_GLOBAL) ? 'g' : ' ',
|
|
(type & BSF_IMPORT) ? 'i' : ' ',
|
|
(type & BSF_EXPORT) ? 'e' : ' ',
|
|
(type & BSF_UNDEFINED) ? 'u' : ' ',
|
|
(type & BSF_FORT_COMM) ? 'c' : ' ',
|
|
(type & BSF_CONSTRUCTOR) ? 'C' : ' ',
|
|
(type & BSF_WARNING) ? 'W' : ' ',
|
|
(type & BSF_INDIRECT) ? 'I' : ' ',
|
|
(type & BSF_DEBUGGING) ? 'd' :' ');
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_make_empty_symbol
|
|
|
|
DESCRIPTION
|
|
This function creates a new <<asymbol>> structure for the BFD,
|
|
and returns a pointer to it.
|
|
|
|
This routine is necessary, since each back end has private
|
|
information surrounding the <<asymbol>>. Building your own
|
|
<<asymbol>> and pointing to it will not create the private
|
|
information, and will cause problems later on.
|
|
|
|
.#define bfd_make_empty_symbol(abfd) \
|
|
. BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
|
|
*/
|
|
|
|
/*
|
|
FUNCTION
|
|
bfd_decode_symclass
|
|
|
|
DESCRIPTION
|
|
Return a lower-case character corresponding to the symbol
|
|
class of symbol.
|
|
|
|
SYNOPSIS
|
|
int bfd_decode_symclass(asymbol *symbol);
|
|
*/
|
|
int
|
|
DEFUN(bfd_decode_symclass,(symbol),
|
|
asymbol *symbol)
|
|
{
|
|
flagword flags = symbol->flags;
|
|
|
|
if (flags & BSF_FORT_COMM) return 'C';
|
|
if (flags & BSF_UNDEFINED) return 'U';
|
|
if (flags & BSF_ABSOLUTE)
|
|
return (flags & BSF_GLOBAL) ? 'A' : 'a';
|
|
|
|
if ( flags & (BSF_GLOBAL|BSF_LOCAL) ) {
|
|
if (symbol->section == (asection *)NULL)
|
|
return '*';
|
|
else if ( !strcmp(symbol->section->name, ".text") )
|
|
return (flags & BSF_GLOBAL) ? 'T' : 't';
|
|
else if ( !strcmp(symbol->section->name, ".data") )
|
|
return (flags & BSF_GLOBAL) ? 'D' : 'd';
|
|
else if ( !strcmp(symbol->section->name, ".bss") )
|
|
return (flags & BSF_GLOBAL) ? 'B' : 'b';
|
|
else
|
|
return (flags & BSF_GLOBAL) ? 'O' : 'o';
|
|
}
|
|
|
|
/* We don't have to handle these cases just yet, but we will soon:
|
|
N_SETV: 'v';
|
|
N_SETA: 'l';
|
|
N_SETT: 'x';
|
|
N_SETD: 'z';
|
|
N_SETB: 's';
|
|
N_INDR: 'i';
|
|
*/
|
|
|
|
return '?';
|
|
}
|