binutils-gdb/gdb/ft32-tdep.c
Yao Qi 04180708ef Remove GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION
Both of them are used in conversion.  We can remove them since the
conversion is done.

There are many architectures only have one breakpoint instruction,
so their gdbarch methods breakpoint_kind_from_pc and
sw_breakpoint_from_kind look very similar.  Instead of macro, we
use template "template <size_t, const gdb_byte *> struct bp_manipulation"
for these architectures.  In order to use template, I also change
breakpoint instruction of type "static const gdb_byte[]" to
"constexpr gdb_byte[]", and rename them to ARCH_break_insn.

gdb:

2016-11-03  Yao Qi  <yao.qi@linaro.org>
	    Pedro Alves <palves@redhat.com>

	* aarch64-tdep.c (aarch64_default_breakpoint): Change it to
	constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(aarch64_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* alpha-tdep.c (break_insn): Rename to alpha_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(alpha_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* arc-tdep.c (arc_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* arch-utils.h (GDBARCH_BREAKPOINT_MANIPULATION): Remove.
	(struct bp_manipulation): New.
	(SET_GDBARCH_BREAKPOINT_MANIPULATION): Remove.
	(struct bp_manipulation_endian): New.
	(BP_MANIPULATION): New.
	(BP_MANIPULATION_ENDIAN): New.
	* arm-tdep.c (arm_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* avr-tdep.c (avr_break_insn): Change it constexpr.
	(avr_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* bfin-tdep.c (bfin_gdbarch_init): Likewise.
	* cris-tdep.c (cris_gdbarch_init): Likewise.
	* frv-tdep.c (breakpoint): Rename it to frv_break_insn, and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(frv_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* ft32-tdep.c (breakpoint): Rename it to ft32_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(ft32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* h8300-tdep.c (breakpoint): Rename it to h8300_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(h8300_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* hppa-tdep.c (breakpoint): Rename it to h8300_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(hppa_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* i386-tdep.c (break_insn): Rename it to i386_break_insn.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(i386_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* iq2000-tdep.c (iq2000_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* lm32-tdep.c (breakpoint): Rename it to lm32_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(lm32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m32c-tdep.c (break_insn): Rename it to m32c_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m32c_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m32r-tdep.c (m32r_gdbarch_init): Likewise.
	* m68hc11-tdep.c (breakpoint): Rename it to m68hc11_break_insn and
	change its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m68hc11_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m68k-tdep.c (break_insn): Rename it to m68k_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m68k_gdbarch_init):  Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* m88k-tdep.c (break_insn): Rename it to m88k_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(m88k_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* mep-tdep.c (breakpoint): Rename it to mep_break_insn and change
	its type to constexpr.  Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(mep_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* microblaze-tdep.c (break_insn): Rename it to
	microblaze_break_insn and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(microblaze_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* mips-tdep.c (mips_gdbarch_init): Likewise.
	* mn10300-tdep.c (breakpoint): Rename it to mn10300_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(mn10300_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* moxie-tdep.c (breakpoint): Rename it to moxie_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(moxie_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* msp430-tdep.c (breakpoint): Rename it to msp430_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(msp430_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* mt-tdep.c (mt_gdbarch_init): Likewise.
	* nds32-tdep.c (break_insn): Rename it to nds32_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(nds32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* nios2-tdep.c (nios2_gdbarch_init): Likewise.
	* rl78-tdep.c (breakpoint): Rename it to rl78_break_ins
	and change its type to rl78_break_insn.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(rl78_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* rs6000-tdep.c (big_breakpoint): Change its type to
	constexpr.
	(little_breakpoint): Likewise.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION_ENDIAN.
	(rs6000_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* rx-tdep.c (breakpoint): Rename it to rx_break_insn and
	change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(rx_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* s390-linux-tdep.c (breakpoint): Rename it to s390_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION
	(s390_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* score-tdep.c (score_gdbarch_init): Likewise.
	* sh-tdep.c (sh_gdbarch_init): Likewise.
	* sh64-tdep.c (sh64_gdbarch_init): Likewise.
	* sparc-tdep.c (break_insn): Rename it to sparc_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(sparc32_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* spu-tdep.c (breakpoint): Rename it to spu_break_insn and change
	its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(spu_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* tic6x-tdep.c (tic6x_gdbarch_init): Likewise.
	* tilegx-tdep.c (breakpoint): Rename it to tilegx_break_insn
	and change its type to constexpr.  Don't use
	GDBARCH_BREAKPOINT_MANIPULATION.
	(tilegx_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* v850-tdep.c (v850_gdbarch_init): Likewise.
	* vax-tdep.c (break_insn): Rename it to vax_break_insn and
	change its type to constexpr.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(vax_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* xstormy16-tdep.c (breakpoint): Rename it to
	xstormy16_break_insn and change its type to constexpr.
	Don't use GDBARCH_BREAKPOINT_MANIPULATION.
	(xstormy16_gdbarch_init): Don't use
	SET_GDBARCH_BREAKPOINT_MANIPULATION.
	* xtensa-tdep.c (xtensa_gdbarch_init): Likewise.
2016-11-03 14:35:14 +00:00

667 lines
19 KiB
C

/* Target-dependent code for FT32.
Copyright (C) 2009-2016 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "value.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "osabi.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "trad-frame.h"
#include "dis-asm.h"
#include "record.h"
#include "opcode/ft32.h"
#include "ft32-tdep.h"
#include "gdb/sim-ft32.h"
#include <algorithm>
#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
/* Local functions. */
extern void _initialize_ft32_tdep (void);
/* Use an invalid address -1 as 'not available' marker. */
enum { REG_UNAVAIL = (CORE_ADDR) (-1) };
struct ft32_frame_cache
{
/* Base address of the frame */
CORE_ADDR base;
/* Function this frame belongs to */
CORE_ADDR pc;
/* Total size of this frame */
LONGEST framesize;
/* Saved registers in this frame */
CORE_ADDR saved_regs[FT32_NUM_REGS];
/* Saved SP in this frame */
CORE_ADDR saved_sp;
/* Has the new frame been LINKed. */
bfd_boolean established;
};
/* Implement the "frame_align" gdbarch method. */
static CORE_ADDR
ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Align to the size of an instruction (so that they can safely be
pushed onto the stack. */
return sp & ~1;
}
constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 };
typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint;
/* FT32 register names. */
static const char *const ft32_register_names[] =
{
"fp", "sp",
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "cc",
"pc"
};
/* Implement the "register_name" gdbarch method. */
static const char *
ft32_register_name (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr < 0)
return NULL;
if (reg_nr >= FT32_NUM_REGS)
return NULL;
return ft32_register_names[reg_nr];
}
/* Implement the "register_type" gdbarch method. */
static struct type *
ft32_register_type (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr == FT32_PC_REGNUM)
return gdbarch_tdep (gdbarch)->pc_type;
else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
else
return builtin_type (gdbarch)->builtin_int32;
}
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
static void
ft32_store_return_value (struct type *type, struct regcache *regcache,
const gdb_byte *valbuf)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR regval;
int len = TYPE_LENGTH (type);
/* Things always get returned in RET1_REGNUM, RET2_REGNUM. */
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval);
if (len > 4)
{
regval = extract_unsigned_integer (valbuf + 4,
len - 4, byte_order);
regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval);
}
}
/* Decode the instructions within the given address range. Decide
when we must have reached the end of the function prologue. If a
frame_info pointer is provided, fill in its saved_regs etc.
Returns the address of the first instruction after the prologue. */
static CORE_ADDR
ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr,
struct ft32_frame_cache *cache,
struct gdbarch *gdbarch)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR next_addr;
ULONGEST inst;
int regnum, pushreg;
struct bound_minimal_symbol msymbol;
const int first_saved_reg = 13; /* The first saved register. */
/* PROLOGS are addresses of the subroutine prologs, PROLOGS[n]
is the address of __prolog_$rN.
__prolog_$rN pushes registers from 13 through n inclusive.
So for example CALL __prolog_$r15 is equivalent to:
PUSH $r13
PUSH $r14
PUSH $r15
Note that PROLOGS[0] through PROLOGS[12] are unused. */
CORE_ADDR prologs[32];
cache->saved_regs[FT32_PC_REGNUM] = 0;
cache->framesize = 0;
for (regnum = first_saved_reg; regnum < 32; regnum++)
{
char prolog_symbol[32];
snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d",
regnum);
msymbol = lookup_minimal_symbol (prolog_symbol, NULL, NULL);
if (msymbol.minsym)
prologs[regnum] = BMSYMBOL_VALUE_ADDRESS (msymbol);
else
prologs[regnum] = 0;
}
if (start_addr >= end_addr)
return end_addr;
cache->established = 0;
for (next_addr = start_addr; next_addr < end_addr;)
{
inst = read_memory_unsigned_integer (next_addr, 4, byte_order);
if (FT32_IS_PUSH (inst))
{
pushreg = FT32_PUSH_REG (inst);
cache->framesize += 4;
cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize;
next_addr += 4;
}
else if (FT32_IS_CALL (inst))
{
for (regnum = first_saved_reg; regnum < 32; regnum++)
{
if ((4 * (inst & 0x3ffff)) == prologs[regnum])
{
for (pushreg = first_saved_reg; pushreg <= regnum;
pushreg++)
{
cache->framesize += 4;
cache->saved_regs[FT32_R0_REGNUM + pushreg] =
cache->framesize;
}
next_addr += 4;
}
}
break;
}
else
break;
}
for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
{
if (cache->saved_regs[regnum] != REG_UNAVAIL)
cache->saved_regs[regnum] =
cache->framesize - cache->saved_regs[regnum];
}
cache->saved_regs[FT32_PC_REGNUM] = cache->framesize;
/* It is a LINK? */
if (next_addr < end_addr)
{
inst = read_memory_unsigned_integer (next_addr, 4, byte_order);
if (FT32_IS_LINK (inst))
{
cache->established = 1;
for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
{
if (cache->saved_regs[regnum] != REG_UNAVAIL)
cache->saved_regs[regnum] += 4;
}
cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4;
cache->saved_regs[FT32_FP_REGNUM] = 0;
cache->framesize += FT32_LINK_SIZE (inst);
next_addr += 4;
}
}
return next_addr;
}
/* Find the end of function prologue. */
static CORE_ADDR
ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR func_addr = 0, func_end = 0;
const char *func_name;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
if (post_prologue_pc != 0)
return std::max (pc, post_prologue_pc);
else
{
/* Can't determine prologue from the symbol table, need to examine
instructions. */
struct symtab_and_line sal;
struct symbol *sym;
struct ft32_frame_cache cache;
CORE_ADDR plg_end;
memset (&cache, 0, sizeof cache);
plg_end = ft32_analyze_prologue (func_addr,
func_end, &cache, gdbarch);
/* Found a function. */
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
/* Don't use line number debug info for assembly source files. */
if ((sym != NULL) && SYMBOL_LANGUAGE (sym) != language_asm)
{
sal = find_pc_line (func_addr, 0);
if (sal.end && sal.end < func_end)
{
/* Found a line number, use it as end of prologue. */
return sal.end;
}
}
/* No useable line symbol. Use result of prologue parsing method. */
return plg_end;
}
}
/* No function symbol -- just return the PC. */
return pc;
}
/* Implementation of `pointer_to_address' gdbarch method.
On FT32 address space zero is RAM, address space 1 is flash.
RAM appears at address RAM_BIAS, flash at address 0. */
static CORE_ADDR
ft32_pointer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR addr
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
if (TYPE_ADDRESS_CLASS_1 (type))
return addr;
else
return addr | RAM_BIAS;
}
/* Implementation of `address_class_type_flags' gdbarch method.
This method maps DW_AT_address_class attributes to a
type_instance_flag_value. */
static int
ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class)
{
/* The value 1 of the DW_AT_address_class attribute corresponds to the
__flash__ qualifier, meaning pointer to data in FT32 program memory.
*/
if (dwarf2_addr_class == 1)
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
return 0;
}
/* Implementation of `address_class_type_flags_to_name' gdbarch method.
Convert a type_instance_flag_value to an address space qualifier. */
static const char*
ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
{
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
return "flash";
else
return NULL;
}
/* Implementation of `address_class_name_to_type_flags' gdbarch method.
Convert an address space qualifier to a type_instance_flag_value. */
static int
ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch,
const char* name,
int *type_flags_ptr)
{
if (strcmp (name, "flash") == 0)
{
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
return 1;
}
else
return 0;
}
/* Implement the "read_pc" gdbarch method. */
static CORE_ADDR
ft32_read_pc (struct regcache *regcache)
{
ULONGEST pc;
regcache_cooked_read_unsigned (regcache, FT32_PC_REGNUM, &pc);
return pc;
}
/* Implement the "write_pc" gdbarch method. */
static void
ft32_write_pc (struct regcache *regcache, CORE_ADDR val)
{
regcache_cooked_write_unsigned (regcache, FT32_PC_REGNUM, val);
}
/* Implement the "unwind_sp" gdbarch method. */
static CORE_ADDR
ft32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, FT32_SP_REGNUM);
}
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
static void
ft32_extract_return_value (struct type *type, struct regcache *regcache,
gdb_byte *dst)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte *valbuf = dst;
int len = TYPE_LENGTH (type);
ULONGEST tmp;
/* By using store_unsigned_integer we avoid having to do
anything special for small big-endian values. */
regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp);
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
/* Ignore return values more than 8 bytes in size because the ft32
returns anything more than 8 bytes in the stack. */
if (len > 4)
{
regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp);
store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
}
}
/* Implement the "return_value" gdbarch method. */
static enum return_value_convention
ft32_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (TYPE_LENGTH (valtype) > 8)
return RETURN_VALUE_STRUCT_CONVENTION;
else
{
if (readbuf != NULL)
ft32_extract_return_value (valtype, regcache, readbuf);
if (writebuf != NULL)
ft32_store_return_value (valtype, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
/* Allocate and initialize a ft32_frame_cache object. */
static struct ft32_frame_cache *
ft32_alloc_frame_cache (void)
{
struct ft32_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache);
for (i = 0; i < FT32_NUM_REGS; ++i)
cache->saved_regs[i] = REG_UNAVAIL;
return cache;
}
/* Populate a ft32_frame_cache object for this_frame. */
static struct ft32_frame_cache *
ft32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct ft32_frame_cache *cache;
CORE_ADDR current_pc;
int i;
if (*this_cache)
return (struct ft32_frame_cache *) *this_cache;
cache = ft32_alloc_frame_cache ();
*this_cache = cache;
cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM);
if (cache->base == 0)
return cache;
cache->pc = get_frame_func (this_frame);
current_pc = get_frame_pc (this_frame);
if (cache->pc)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch);
if (!cache->established)
cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM);
}
cache->saved_sp = cache->base - 4;
for (i = 0; i < FT32_NUM_REGS; ++i)
if (cache->saved_regs[i] != REG_UNAVAIL)
cache->saved_regs[i] = cache->base + cache->saved_regs[i];
return cache;
}
/* Implement the "unwind_pc" gdbarch method. */
static CORE_ADDR
ft32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, FT32_PC_REGNUM);
}
/* Given a GDB frame, determine the address of the calling function's
frame. This will be used to create a new GDB frame struct. */
static void
ft32_frame_this_id (struct frame_info *this_frame,
void **this_prologue_cache, struct frame_id *this_id)
{
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
this_prologue_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
*this_id = frame_id_build (cache->saved_sp, cache->pc);
}
/* Get the value of register regnum in the previous stack frame. */
static struct value *
ft32_frame_prev_register (struct frame_info *this_frame,
void **this_prologue_cache, int regnum)
{
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
this_prologue_cache);
gdb_assert (regnum >= 0);
if (regnum == FT32_SP_REGNUM && cache->saved_sp)
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
return frame_unwind_got_memory (this_frame, regnum,
RAM_BIAS | cache->saved_regs[regnum]);
return frame_unwind_got_register (this_frame, regnum, regnum);
}
static const struct frame_unwind ft32_frame_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
ft32_frame_this_id,
ft32_frame_prev_register,
NULL,
default_frame_sniffer
};
/* Return the base address of this_frame. */
static CORE_ADDR
ft32_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
this_cache);
return cache->base;
}
static const struct frame_base ft32_frame_base =
{
&ft32_frame_unwind,
ft32_frame_base_address,
ft32_frame_base_address,
ft32_frame_base_address
};
static struct frame_id
ft32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
CORE_ADDR sp = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM);
return frame_id_build (sp, get_frame_pc (this_frame));
}
/* Allocate and initialize the ft32 gdbarch object. */
static struct gdbarch *
ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
struct type *void_type;
struct type *func_void_type;
/* If there is already a candidate, use it. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
/* Allocate space for the new architecture. */
tdep = XNEW (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
/* Create a type for PC. We can't use builtin types here, as they may not
be defined. */
void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
func_void_type = make_function_type (void_type, NULL);
tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
func_void_type);
TYPE_INSTANCE_FLAGS (tdep->pc_type) |= TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
set_gdbarch_read_pc (gdbarch, ft32_read_pc);
set_gdbarch_write_pc (gdbarch, ft32_write_pc);
set_gdbarch_unwind_sp (gdbarch, ft32_unwind_sp);
set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS);
set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM);
set_gdbarch_register_name (gdbarch, ft32_register_name);
set_gdbarch_register_type (gdbarch, ft32_register_type);
set_gdbarch_return_value (gdbarch, ft32_return_value);
set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address);
set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind);
set_gdbarch_frame_align (gdbarch, ft32_frame_align);
frame_base_set_default (gdbarch, &ft32_frame_base);
/* Methods for saving / extracting a dummy frame's ID. The ID's
stack address must match the SP value returned by
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
set_gdbarch_dummy_id (gdbarch, ft32_dummy_id);
set_gdbarch_unwind_pc (gdbarch, ft32_unwind_pc);
set_gdbarch_print_insn (gdbarch, print_insn_ft32);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
/* Hook in the default unwinders. */
frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind);
/* Support simple overlay manager. */
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags);
set_gdbarch_address_class_name_to_type_flags
(gdbarch, ft32_address_class_name_to_type_flags);
set_gdbarch_address_class_type_flags_to_name
(gdbarch, ft32_address_class_type_flags_to_name);
return gdbarch;
}
/* Register this machine's init routine. */
void
_initialize_ft32_tdep (void)
{
register_gdbarch_init (bfd_arch_ft32, ft32_gdbarch_init);
}