binutils-gdb/gdb/hppa-linux-nat.c
Joel Brobecker 618f726fcb GDB copyright headers update after running GDB's copyright.py script.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2016-01-01 08:43:22 +04:00

402 lines
9.8 KiB
C

/* Functions specific to running GDB native on HPPA running GNU/Linux.
Copyright (C) 2004-2016 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "regcache.h"
#include "inferior.h"
#include "target.h"
#include "linux-nat.h"
#include <sys/procfs.h>
#include "nat/gdb_ptrace.h"
#include <linux/version.h>
#include <asm/ptrace.h>
#include "hppa-linux-offsets.h"
#include "hppa-tdep.h"
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
/* These must match the order of the register names.
Some sort of lookup table is needed because the offsets associated
with the registers are all over the board. */
static const int u_offsets[] =
{
/* general registers */
-1,
PT_GR1,
PT_GR2,
PT_GR3,
PT_GR4,
PT_GR5,
PT_GR6,
PT_GR7,
PT_GR8,
PT_GR9,
PT_GR10,
PT_GR11,
PT_GR12,
PT_GR13,
PT_GR14,
PT_GR15,
PT_GR16,
PT_GR17,
PT_GR18,
PT_GR19,
PT_GR20,
PT_GR21,
PT_GR22,
PT_GR23,
PT_GR24,
PT_GR25,
PT_GR26,
PT_GR27,
PT_GR28,
PT_GR29,
PT_GR30,
PT_GR31,
PT_SAR,
PT_IAOQ0,
PT_IASQ0,
PT_IAOQ1,
PT_IASQ1,
-1, /* eiem */
PT_IIR,
PT_ISR,
PT_IOR,
PT_PSW,
-1, /* goto */
PT_SR4,
PT_SR0,
PT_SR1,
PT_SR2,
PT_SR3,
PT_SR5,
PT_SR6,
PT_SR7,
-1, /* cr0 */
-1, /* pid0 */
-1, /* pid1 */
-1, /* ccr */
-1, /* pid2 */
-1, /* pid3 */
-1, /* cr24 */
-1, /* cr25 */
-1, /* cr26 */
PT_CR27,
-1, /* cr28 */
-1, /* cr29 */
-1, /* cr30 */
/* Floating point regs. */
PT_FR0, PT_FR0 + 4,
PT_FR1, PT_FR1 + 4,
PT_FR2, PT_FR2 + 4,
PT_FR3, PT_FR3 + 4,
PT_FR4, PT_FR4 + 4,
PT_FR5, PT_FR5 + 4,
PT_FR6, PT_FR6 + 4,
PT_FR7, PT_FR7 + 4,
PT_FR8, PT_FR8 + 4,
PT_FR9, PT_FR9 + 4,
PT_FR10, PT_FR10 + 4,
PT_FR11, PT_FR11 + 4,
PT_FR12, PT_FR12 + 4,
PT_FR13, PT_FR13 + 4,
PT_FR14, PT_FR14 + 4,
PT_FR15, PT_FR15 + 4,
PT_FR16, PT_FR16 + 4,
PT_FR17, PT_FR17 + 4,
PT_FR18, PT_FR18 + 4,
PT_FR19, PT_FR19 + 4,
PT_FR20, PT_FR20 + 4,
PT_FR21, PT_FR21 + 4,
PT_FR22, PT_FR22 + 4,
PT_FR23, PT_FR23 + 4,
PT_FR24, PT_FR24 + 4,
PT_FR25, PT_FR25 + 4,
PT_FR26, PT_FR26 + 4,
PT_FR27, PT_FR27 + 4,
PT_FR28, PT_FR28 + 4,
PT_FR29, PT_FR29 + 4,
PT_FR30, PT_FR30 + 4,
PT_FR31, PT_FR31 + 4,
};
static CORE_ADDR
hppa_linux_register_addr (int regno, CORE_ADDR blockend)
{
CORE_ADDR addr;
if ((unsigned) regno >= ARRAY_SIZE (u_offsets))
error (_("Invalid register number %d."), regno);
if (u_offsets[regno] == -1)
addr = 0;
else
{
addr = (CORE_ADDR) u_offsets[regno];
}
return addr;
}
/*
* Registers saved in a coredump:
* gr0..gr31
* sr0..sr7
* iaoq0..iaoq1
* iasq0..iasq1
* sar, iir, isr, ior, ipsw
* cr0, cr24..cr31
* cr8,9,12,13
* cr10, cr15
*/
#define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
#define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
static const int greg_map[] =
{
GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
};
/* Fetch one register. */
static void
fetch_register (struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int tid;
int val;
if (gdbarch_cannot_fetch_register (gdbarch, regno))
{
regcache_raw_supply (regcache, regno, NULL);
return;
}
/* GNU/Linux LWP ID's are process ID's. */
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */
errno = 0;
val = ptrace (PTRACE_PEEKUSER, tid, hppa_linux_register_addr (regno, 0), 0);
if (errno != 0)
error (_("Couldn't read register %s (#%d): %s."),
gdbarch_register_name (gdbarch, regno),
regno, safe_strerror (errno));
regcache_raw_supply (regcache, regno, &val);
}
/* Store one register. */
static void
store_register (const struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int tid;
int val;
if (gdbarch_cannot_store_register (gdbarch, regno))
return;
/* GNU/Linux LWP ID's are process ID's. */
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */
errno = 0;
regcache_raw_collect (regcache, regno, &val);
ptrace (PTRACE_POKEUSER, tid, hppa_linux_register_addr (regno, 0), val);
if (errno != 0)
error (_("Couldn't write register %s (#%d): %s."),
gdbarch_register_name (gdbarch, regno),
regno, safe_strerror (errno));
}
/* Fetch registers from the child process. Fetch all registers if
regno == -1, otherwise fetch all general registers or all floating
point registers depending upon the value of regno. */
static void
hppa_linux_fetch_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
if (-1 == regno)
{
for (regno = 0;
regno < gdbarch_num_regs (get_regcache_arch (regcache));
regno++)
fetch_register (regcache, regno);
}
else
{
fetch_register (regcache, regno);
}
}
/* Store registers back into the inferior. Store all registers if
regno == -1, otherwise store all general registers or all floating
point registers depending upon the value of regno. */
static void
hppa_linux_store_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
if (-1 == regno)
{
for (regno = 0;
regno < gdbarch_num_regs (get_regcache_arch (regcache));
regno++)
store_register (regcache, regno);
}
else
{
store_register (regcache, regno);
}
}
/* Fill GDB's register array with the general-purpose register values
in *gregsetp. */
void
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
{
int i;
const greg_t *regp = (const elf_greg_t *) gregsetp;
for (i = 0; i < sizeof (greg_map) / sizeof (greg_map[0]); i++, regp++)
{
int regno = greg_map[i];
regcache_raw_supply (regcache, regno, regp);
}
}
/* Fill register regno (if it is a general-purpose register) in
*gregsetp with the appropriate value from GDB's register array.
If regno is -1, do this for all registers. */
void
fill_gregset (const struct regcache *regcache,
gdb_gregset_t *gregsetp, int regno)
{
int i;
for (i = 0; i < sizeof (greg_map) / sizeof (greg_map[0]); i++)
{
int mregno = greg_map[i];
if (regno == -1 || regno == mregno)
{
regcache_raw_collect(regcache, mregno, &(*gregsetp)[i]);
}
}
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), unpack the register contents and supply them as gdb's
idea of the current floating point register values. */
void
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
{
int regi;
const char *from;
for (regi = 0; regi <= 31; regi++)
{
from = (const char *) &((*fpregsetp)[regi]);
regcache_raw_supply (regcache, 2*regi + HPPA_FP0_REGNUM, from);
regcache_raw_supply (regcache, 2*regi + HPPA_FP0_REGNUM + 1, from + 4);
}
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), update the register specified by REGNO from gdb's idea
of the current floating point register set. If REGNO is -1, update
them all. */
void
fill_fpregset (const struct regcache *regcache,
gdb_fpregset_t *fpregsetp, int regno)
{
int i;
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32 * 2; i++)
{
/* Gross. fpregset_t is double, registers[x] has single
precision reg. */
char *to = (char *) &((*fpregsetp)[(i - HPPA_FP0_REGNUM) / 2]);
if ((i - HPPA_FP0_REGNUM) & 1)
to += 4;
regcache_raw_collect (regcache, i, to);
}
}
void _initialize_hppa_linux_nat (void);
void
_initialize_hppa_linux_nat (void)
{
struct target_ops *t;
/* Fill in the generic GNU/Linux methods. */
t = linux_target ();
/* Add our register access methods. */
t->to_fetch_registers = hppa_linux_fetch_inferior_registers;
t->to_store_registers = hppa_linux_store_inferior_registers;
/* Register the target. */
linux_nat_add_target (t);
}