Binutils with MCST patches
3693fdb3c8
Trying to print a function local static variable of a const-qualified method still doesn't work after the previous fixes: (gdb) p 'S::method() const'::static_var $1 = {i1 = 1, i2 = 2, i3 = 3} (gdb) p S::method() const::static_var No symbol "static_var" in specified context. The reason is that the expression parser/evaluator loses the "const", and the above unquoted case is just like trying to print a variable of the non-const overload, if it exists, even. As if the above unquoted case had been written as: (gdb) p S::method()::static_var No symbol "static_var" in specified context. We can see the problem without static vars in the picture. With: struct S { void method (); void method () const; }; Compare: (gdb) print 'S::method(void) const' $1 = {void (const S * const)} 0x400606 <S::method() const> (gdb) print S::method(void) const $2 = {void (S * const)} 0x4005d8 <S::method()> # wrong method! That's what we need to fix. If we fix that, the function local static case starts working. The grammar production for function/method types is this one: exp: exp '(' parameter_typelist ')' const_or_volatile This results in a TYPE_INSTANCE expression evaluator operator. For the example above, we get something like this ("set debug expression 1"): ... 0 TYPE_INSTANCE 1 TypeInstance: Type @0x560fda958be0 (void) 5 OP_SCOPE Type @0x560fdaa544d8 (S) Field name: `method' ... While evaluating TYPE_INSTANCE, we end up in value_struct_elt_for_reference, trying to find the method named "method" that has the prototype recorded in TYPE_INSTANCE. In this case, TYPE_INSTANCE says that we're looking for a method that has "(void)" as parameters (that's what "1 TypeInstance: Type @0x560fda958be0 (void)" above means. The trouble is that nowhere in this mechanism do we communicate to value_struct_elt_for_reference that we're looking for the _const_ overload. value_struct_elt_for_reference only compared parameters, and the non-const "method()" overload has matching parameters, so it's considered the right match... Conveniently, the "const_or_volatile" production in the grammar already records "const" and "volatile" info in the type stack. The type stack is not used in this code path, but we can borrow the information. The patch converts the info in the type stack to an "instance flags" enum, and adds that as another element in TYPE_INSTANCE operators. This type instance flags is then applied to the temporary type that is passed to value_struct_elt_for_reference for matching. The other side of the problem is that methods in the debug info aren't marked const/volatile, so with that in place, the matching never finds const/volatile-qualified methods. The problem is that in the DWARF, there's no indication at all whether a method is const/volatile qualified... For example (c++filt applied to the linkage name for convenience): <2><d3>: Abbrev Number: 6 (DW_TAG_subprogram) <d4> DW_AT_external : 1 <d4> DW_AT_name : (indirect string, offset: 0x3df): method <d8> DW_AT_decl_file : 1 <d9> DW_AT_decl_line : 58 <da> DW_AT_linkage_name: (indirect string, offset: 0x5b2): S::method() const <de> DW_AT_declaration : 1 <de> DW_AT_object_pointer: <0xe6> <e2> DW_AT_sibling : <0xec> I see the same with both GCC and Clang. The patch works around this by extracting the cv qualification from the "const" and "volatile" in the demangled name. This will need further tweaking for "&" and "const &" overloads, but we don't support them in the parser yet, anyway. The TYPE_CONST changes were necessary otherwise the comparisons in valops.c: if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j)) continue; would fail, because when both TYPE_CONST() TYPE_FN_FIELD_CONST() were true, their values were different. BTW, I'm recording the const/volatile-ness of methods in the TYPE_FN_FIELD info because #1 - I'm not sure it's kosher to change the method's type directly (vs having to call make_cv_type to create a new type), and #2 it's what stabsread.c does: ... case 'A': /* Normal functions. */ new_sublist->fn_field.is_const = 0; new_sublist->fn_field.is_volatile = 0; (*pp)++; break; case 'B': /* `const' member functions. */ new_sublist->fn_field.is_const = 1; new_sublist->fn_field.is_volatile = 0; ... After all this, this finally all works: print S::method(void) const $1 = {void (const S * const)} 0x400606 <S::method() const> (gdb) p S::method() const::static_var $2 = {i1 = 1, i2 = 2, i3 = 3} gdb/ChangeLog: 2017-09-04 Pedro Alves <palves@redhat.com> * c-exp.y (function_method, function_method_void): Add current instance flags to TYPE_INSTANCE. * dwarf2read.c (check_modifier): New. (compute_delayed_physnames): Assert that only C++ adds delayed physnames. Mark fn_fields as const/volatile depending on physname. * eval.c (make_params): New type_instance_flags parameter. Use it as the new type's instance flags. (evaluate_subexp_standard) <TYPE_INSTANCE>: Extract the instance flags element and pass it to make_params. * expprint.c (print_subexp_standard) <TYPE_INSTANCE>: Handle instance flags element. (dump_subexp_body_standard) <TYPE_INSTANCE>: Likewise. * gdbtypes.h: Include "enum-flags.h". (type_instance_flags): New enum-flags type. (TYPE_CONST, TYPE_VOLATILE, TYPE_RESTRICT, TYPE_ATOMIC) (TYPE_CODE_SPACE, TYPE_DATA_SPACE): Return boolean. * parse.c (operator_length_standard) <TYPE_INSTANCE>: Adjust. (follow_type_instance_flags): New function. (operator_check_standard) <TYPE_INSTANCE>: Adjust. * parser-defs.h (follow_type_instance_flags): Declare. * valops.c (value_struct_elt_for_reference): const/volatile must match too. gdb/testsuite/ChangeLog: 2017-09-04 Pedro Alves <palves@redhat.com> * gdb.base/func-static.c (S::method const, S::method volatile) (S::method volatile const): New methods. (c_s, v_s, cv_s): New instances. (main): Call method() on them. * gdb.base/func-static.exp (syntax_re, cannot_resolve_re): New variables. (cannot_resolve): New procedure. (cxx_scopes_list): Test cv methods. Add print-scope-quote and print-quote-unquoted columns. (do_test): Test printing each scope too. |
||
---|---|---|
bfd | ||
binutils | ||
config | ||
cpu | ||
elfcpp | ||
etc | ||
gas | ||
gdb | ||
gold | ||
gprof | ||
include | ||
intl | ||
ld | ||
libdecnumber | ||
libiberty | ||
opcodes | ||
readline | ||
sim | ||
texinfo | ||
zlib | ||
.cvsignore | ||
.gitattributes | ||
.gitignore | ||
ChangeLog | ||
compile | ||
config-ml.in | ||
config.guess | ||
config.rpath | ||
config.sub | ||
configure | ||
configure.ac | ||
COPYING | ||
COPYING3 | ||
COPYING3.LIB | ||
COPYING.LIB | ||
COPYING.LIBGLOSS | ||
COPYING.NEWLIB | ||
depcomp | ||
djunpack.bat | ||
install-sh | ||
libtool.m4 | ||
lt~obsolete.m4 | ||
ltgcc.m4 | ||
ltmain.sh | ||
ltoptions.m4 | ||
ltsugar.m4 | ||
ltversion.m4 | ||
MAINTAINERS | ||
Makefile.def | ||
Makefile.in | ||
Makefile.tpl | ||
makefile.vms | ||
missing | ||
mkdep | ||
mkinstalldirs | ||
move-if-change | ||
README | ||
README-maintainer-mode | ||
setup.com | ||
src-release.sh | ||
symlink-tree | ||
ylwrap |
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.