538 lines
16 KiB
C
538 lines
16 KiB
C
/* Variables that describe the inferior process running under GDB:
|
||
Where it is, why it stopped, and how to step it.
|
||
Copyright 1986, 1989, 1992, 1996, 1998 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#if !defined (INFERIOR_H)
|
||
#define INFERIOR_H 1
|
||
|
||
/* For bpstat. */
|
||
#include "breakpoint.h"
|
||
|
||
/* For enum target_signal. */
|
||
#include "target.h"
|
||
|
||
/* Structure in which to save the status of the inferior. Create/Save
|
||
through "save_inferior_status", restore through
|
||
"restore_inferior_status".
|
||
|
||
This pair of routines should be called around any transfer of
|
||
control to the inferior which you don't want showing up in your
|
||
control variables. */
|
||
|
||
struct inferior_status;
|
||
|
||
extern struct inferior_status *save_inferior_status PARAMS ((int));
|
||
|
||
extern void restore_inferior_status PARAMS ((struct inferior_status *));
|
||
|
||
extern void discard_inferior_status PARAMS ((struct inferior_status *));
|
||
|
||
extern void write_inferior_status_register PARAMS ((struct inferior_status * inf_status, int regno, LONGEST val));
|
||
|
||
/* This macro gives the number of registers actually in use by the
|
||
inferior. This may be less than the total number of registers,
|
||
perhaps depending on the actual CPU in use or program being run. */
|
||
|
||
#ifndef ARCH_NUM_REGS
|
||
#define ARCH_NUM_REGS NUM_REGS
|
||
#endif
|
||
|
||
extern void set_sigint_trap PARAMS ((void));
|
||
|
||
extern void clear_sigint_trap PARAMS ((void));
|
||
|
||
extern void set_sigio_trap PARAMS ((void));
|
||
|
||
extern void clear_sigio_trap PARAMS ((void));
|
||
|
||
/* File name for default use for standard in/out in the inferior. */
|
||
|
||
extern char *inferior_io_terminal;
|
||
|
||
/* Pid of our debugged inferior, or 0 if no inferior now. */
|
||
|
||
extern int inferior_pid;
|
||
|
||
/* Is the inferior running right now, as a result of a 'run&',
|
||
'continue&' etc command? This is used in asycn gdb to determine
|
||
whether a command that the user enters while the target is running
|
||
is allowed or not. */
|
||
extern int target_executing;
|
||
|
||
/* Are we simulating synchronous execution? This is used in async gdb
|
||
to implement the 'run', 'continue' etc commands, which will not
|
||
redisplay the prompt until the execution is actually over. */
|
||
extern int sync_execution;
|
||
|
||
/* This is only valid when inferior_pid is non-zero.
|
||
|
||
If this is 0, then exec events should be noticed and responded to
|
||
by the debugger (i.e., be reported to the user).
|
||
|
||
If this is > 0, then that many subsequent exec events should be
|
||
ignored (i.e., not be reported to the user).
|
||
*/
|
||
extern int inferior_ignoring_startup_exec_events;
|
||
|
||
/* This is only valid when inferior_ignoring_startup_exec_events is
|
||
zero.
|
||
|
||
Some targets (stupidly) report more than one exec event per actual
|
||
call to an event() system call. If only the last such exec event
|
||
need actually be noticed and responded to by the debugger (i.e.,
|
||
be reported to the user), then this is the number of "leading"
|
||
exec events which should be ignored.
|
||
*/
|
||
extern int inferior_ignoring_leading_exec_events;
|
||
|
||
/* Inferior environment. */
|
||
|
||
extern struct environ *inferior_environ;
|
||
|
||
/* Character array containing an image of the inferior programs'
|
||
registers. */
|
||
|
||
extern char *registers;
|
||
|
||
/* Character array containing the current state of each register
|
||
(unavailable<0, valid=0, invalid>0). */
|
||
|
||
extern signed char *register_valid;
|
||
|
||
extern void clear_proceed_status PARAMS ((void));
|
||
|
||
extern void proceed PARAMS ((CORE_ADDR, enum target_signal, int));
|
||
|
||
extern void kill_inferior PARAMS ((void));
|
||
|
||
extern void generic_mourn_inferior PARAMS ((void));
|
||
|
||
extern void terminal_ours PARAMS ((void));
|
||
|
||
extern int run_stack_dummy PARAMS ((CORE_ADDR, char *));
|
||
|
||
extern CORE_ADDR read_pc PARAMS ((void));
|
||
|
||
extern CORE_ADDR read_pc_pid PARAMS ((int));
|
||
|
||
extern CORE_ADDR generic_target_read_pc PARAMS ((int));
|
||
|
||
extern void write_pc PARAMS ((CORE_ADDR));
|
||
|
||
extern void write_pc_pid PARAMS ((CORE_ADDR, int));
|
||
|
||
extern void generic_target_write_pc PARAMS ((CORE_ADDR, int));
|
||
|
||
extern CORE_ADDR read_sp PARAMS ((void));
|
||
|
||
extern CORE_ADDR generic_target_read_sp PARAMS ((void));
|
||
|
||
extern void write_sp PARAMS ((CORE_ADDR));
|
||
|
||
extern void generic_target_write_sp PARAMS ((CORE_ADDR));
|
||
|
||
extern CORE_ADDR read_fp PARAMS ((void));
|
||
|
||
extern CORE_ADDR generic_target_read_fp PARAMS ((void));
|
||
|
||
extern void write_fp PARAMS ((CORE_ADDR));
|
||
|
||
extern void generic_target_write_fp PARAMS ((CORE_ADDR));
|
||
|
||
extern void wait_for_inferior PARAMS ((void));
|
||
|
||
extern void fetch_inferior_event PARAMS ((void *));
|
||
|
||
extern void init_wait_for_inferior PARAMS ((void));
|
||
|
||
extern void close_exec_file PARAMS ((void));
|
||
|
||
extern void reopen_exec_file PARAMS ((void));
|
||
|
||
/* The `resume' routine should only be called in special circumstances.
|
||
Normally, use `proceed', which handles a lot of bookkeeping. */
|
||
|
||
extern void resume PARAMS ((int, enum target_signal));
|
||
|
||
/* From misc files */
|
||
|
||
extern void store_inferior_registers PARAMS ((int));
|
||
|
||
extern void fetch_inferior_registers PARAMS ((int));
|
||
|
||
extern void solib_create_inferior_hook PARAMS ((void));
|
||
|
||
extern void child_terminal_info PARAMS ((char *, int));
|
||
|
||
extern void term_info PARAMS ((char *, int));
|
||
|
||
extern void terminal_ours_for_output PARAMS ((void));
|
||
|
||
extern void terminal_inferior PARAMS ((void));
|
||
|
||
extern void terminal_init_inferior PARAMS ((void));
|
||
|
||
extern void terminal_init_inferior_with_pgrp PARAMS ((int pgrp));
|
||
|
||
/* From infptrace.c or infttrace.c */
|
||
|
||
extern int attach PARAMS ((int));
|
||
|
||
#if !defined(REQUIRE_ATTACH)
|
||
#define REQUIRE_ATTACH attach
|
||
#endif
|
||
|
||
#if !defined(REQUIRE_DETACH)
|
||
#define REQUIRE_DETACH(pid,siggnal) detach (siggnal)
|
||
#endif
|
||
|
||
extern void detach PARAMS ((int));
|
||
|
||
/* PTRACE method of waiting for inferior process. */
|
||
int ptrace_wait PARAMS ((int, int *));
|
||
|
||
extern void child_resume PARAMS ((int, int, enum target_signal));
|
||
|
||
#ifndef PTRACE_ARG3_TYPE
|
||
#define PTRACE_ARG3_TYPE int /* Correct definition for most systems. */
|
||
#endif
|
||
|
||
extern int call_ptrace PARAMS ((int, int, PTRACE_ARG3_TYPE, int));
|
||
|
||
extern void pre_fork_inferior PARAMS ((void));
|
||
|
||
/* From procfs.c */
|
||
|
||
extern int proc_iterate_over_mappings PARAMS ((int (*)(int, CORE_ADDR)));
|
||
|
||
extern int procfs_first_available PARAMS ((void));
|
||
|
||
extern int procfs_get_pid_fd PARAMS ((int));
|
||
|
||
/* From fork-child.c */
|
||
|
||
extern void fork_inferior PARAMS ((char *, char *, char **,
|
||
void (*)(void),
|
||
void (*)(int),
|
||
void (*)(void),
|
||
char *));
|
||
|
||
|
||
extern void
|
||
clone_and_follow_inferior PARAMS ((int, int *));
|
||
|
||
extern void startup_inferior PARAMS ((int));
|
||
|
||
/* From inflow.c */
|
||
|
||
extern void new_tty_prefork PARAMS ((char *));
|
||
|
||
extern int gdb_has_a_terminal PARAMS ((void));
|
||
|
||
/* From infrun.c */
|
||
|
||
extern void start_remote PARAMS ((void));
|
||
|
||
extern void normal_stop PARAMS ((void));
|
||
|
||
extern int signal_stop_state PARAMS ((int));
|
||
|
||
extern int signal_print_state PARAMS ((int));
|
||
|
||
extern int signal_pass_state PARAMS ((int));
|
||
|
||
extern int signal_stop_update PARAMS ((int, int));
|
||
|
||
extern int signal_print_update PARAMS ((int, int));
|
||
|
||
extern int signal_pass_update PARAMS ((int, int));
|
||
|
||
/* From infcmd.c */
|
||
|
||
extern void tty_command PARAMS ((char *, int));
|
||
|
||
extern void attach_command PARAMS ((char *, int));
|
||
|
||
/* Last signal that the inferior received (why it stopped). */
|
||
|
||
extern enum target_signal stop_signal;
|
||
|
||
/* Address at which inferior stopped. */
|
||
|
||
extern CORE_ADDR stop_pc;
|
||
|
||
/* Chain containing status of breakpoint(s) that we have stopped at. */
|
||
|
||
extern bpstat stop_bpstat;
|
||
|
||
/* Flag indicating that a command has proceeded the inferior past the
|
||
current breakpoint. */
|
||
|
||
extern int breakpoint_proceeded;
|
||
|
||
/* Nonzero if stopped due to a step command. */
|
||
|
||
extern int stop_step;
|
||
|
||
/* Nonzero if stopped due to completion of a stack dummy routine. */
|
||
|
||
extern int stop_stack_dummy;
|
||
|
||
/* Nonzero if program stopped due to a random (unexpected) signal in
|
||
inferior process. */
|
||
|
||
extern int stopped_by_random_signal;
|
||
|
||
/* Range to single step within.
|
||
If this is nonzero, respond to a single-step signal
|
||
by continuing to step if the pc is in this range.
|
||
|
||
If step_range_start and step_range_end are both 1, it means to step for
|
||
a single instruction (FIXME: it might clean up wait_for_inferior in a
|
||
minor way if this were changed to the address of the instruction and
|
||
that address plus one. But maybe not.). */
|
||
|
||
extern CORE_ADDR step_range_start; /* Inclusive */
|
||
extern CORE_ADDR step_range_end; /* Exclusive */
|
||
|
||
/* Stack frame address as of when stepping command was issued.
|
||
This is how we know when we step into a subroutine call,
|
||
and how to set the frame for the breakpoint used to step out. */
|
||
|
||
extern CORE_ADDR step_frame_address;
|
||
|
||
/* Our notion of the current stack pointer. */
|
||
|
||
extern CORE_ADDR step_sp;
|
||
|
||
/* 1 means step over all subroutine calls.
|
||
-1 means step over calls to undebuggable functions. */
|
||
|
||
extern int step_over_calls;
|
||
|
||
/* If stepping, nonzero means step count is > 1
|
||
so don't print frame next time inferior stops
|
||
if it stops due to stepping. */
|
||
|
||
extern int step_multi;
|
||
|
||
/* Nonzero means expecting a trap and caller will handle it themselves.
|
||
It is used after attach, due to attaching to a process;
|
||
when running in the shell before the child program has been exec'd;
|
||
and when running some kinds of remote stuff (FIXME?). */
|
||
|
||
extern int stop_soon_quietly;
|
||
|
||
/* Nonzero if proceed is being used for a "finish" command or a similar
|
||
situation when stop_registers should be saved. */
|
||
|
||
extern int proceed_to_finish;
|
||
|
||
/* Save register contents here when about to pop a stack dummy frame,
|
||
if-and-only-if proceed_to_finish is set.
|
||
Thus this contains the return value from the called function (assuming
|
||
values are returned in a register). */
|
||
|
||
extern char *stop_registers;
|
||
|
||
/* Nonzero if the child process in inferior_pid was attached rather
|
||
than forked. */
|
||
|
||
extern int attach_flag;
|
||
|
||
/* Sigtramp is a routine that the kernel calls (which then calls the
|
||
signal handler). On most machines it is a library routine that
|
||
is linked into the executable.
|
||
|
||
This macro, given a program counter value and the name of the
|
||
function in which that PC resides (which can be null if the
|
||
name is not known), returns nonzero if the PC and name show
|
||
that we are in sigtramp.
|
||
|
||
On most machines just see if the name is sigtramp (and if we have
|
||
no name, assume we are not in sigtramp). */
|
||
#if !defined (IN_SIGTRAMP)
|
||
#if defined (SIGTRAMP_START)
|
||
#define IN_SIGTRAMP(pc, name) \
|
||
((pc) >= SIGTRAMP_START(pc) \
|
||
&& (pc) < SIGTRAMP_END(pc) \
|
||
)
|
||
#else
|
||
#define IN_SIGTRAMP(pc, name) \
|
||
(name && STREQ ("_sigtramp", name))
|
||
#endif
|
||
#endif
|
||
|
||
/* Possible values for CALL_DUMMY_LOCATION. */
|
||
#define ON_STACK 1
|
||
#define BEFORE_TEXT_END 2
|
||
#define AFTER_TEXT_END 3
|
||
#define AT_ENTRY_POINT 4
|
||
|
||
#if !defined (USE_GENERIC_DUMMY_FRAMES)
|
||
#define USE_GENERIC_DUMMY_FRAMES 0
|
||
#endif
|
||
|
||
#if !defined (CALL_DUMMY_LOCATION)
|
||
#define CALL_DUMMY_LOCATION ON_STACK
|
||
#endif /* No CALL_DUMMY_LOCATION. */
|
||
|
||
#if !defined (CALL_DUMMY_ADDRESS)
|
||
#define CALL_DUMMY_ADDRESS() (internal_error ("CALL_DUMMY_ADDRESS"), 0)
|
||
#endif
|
||
#if !defined (CALL_DUMMY_START_OFFSET)
|
||
#define CALL_DUMMY_START_OFFSET (internal_error ("CALL_DUMMY_START_OFFSET"), 0)
|
||
#endif
|
||
#if !defined (CALL_DUMMY_BREAKPOINT_OFFSET)
|
||
#define CALL_DUMMY_BREAKPOINT_OFFSET_P (0)
|
||
#define CALL_DUMMY_BREAKPOINT_OFFSET (internal_error ("CALL_DUMMY_BREAKPOINT_OFFSET"), 0)
|
||
#endif
|
||
#if !defined CALL_DUMMY_BREAKPOINT_OFFSET_P
|
||
#define CALL_DUMMY_BREAKPOINT_OFFSET_P (1)
|
||
#endif
|
||
#if !defined (CALL_DUMMY_LENGTH)
|
||
#define CALL_DUMMY_LENGTH (internal_error ("CALL_DUMMY_LENGTH"), 0)
|
||
#endif
|
||
|
||
#if defined (CALL_DUMMY_STACK_ADJUST)
|
||
#if !defined (CALL_DUMMY_STACK_ADJUST_P)
|
||
#define CALL_DUMMY_STACK_ADJUST_P (1)
|
||
#endif
|
||
#endif
|
||
#if !defined (CALL_DUMMY_STACK_ADJUST)
|
||
#define CALL_DUMMY_STACK_ADJUST (internal_error ("CALL_DUMMY_STACK_ADJUST"), 0)
|
||
#endif
|
||
#if !defined (CALL_DUMMY_STACK_ADJUST_P)
|
||
#define CALL_DUMMY_STACK_ADJUST_P (0)
|
||
#endif
|
||
|
||
#if !defined (CALL_DUMMY_P)
|
||
#if defined (CALL_DUMMY)
|
||
#define CALL_DUMMY_P 1
|
||
#else
|
||
#define CALL_DUMMY_P 0
|
||
#endif
|
||
#endif
|
||
|
||
#if !defined (CALL_DUMMY_WORDS)
|
||
#if defined (CALL_DUMMY)
|
||
extern LONGEST call_dummy_words[];
|
||
#define CALL_DUMMY_WORDS (call_dummy_words)
|
||
#else
|
||
#define CALL_DUMMY_WORDS (internal_error ("CALL_DUMMY_WORDS"), (void*) 0)
|
||
#endif
|
||
#endif
|
||
|
||
#if !defined (SIZEOF_CALL_DUMMY_WORDS)
|
||
#if defined (CALL_DUMMY)
|
||
extern int sizeof_call_dummy_words;
|
||
#define SIZEOF_CALL_DUMMY_WORDS (sizeof_call_dummy_words)
|
||
#else
|
||
#define SIZEOF_CALL_DUMMY_WORDS (internal_error ("SIZEOF_CALL_DUMMY_WORDS"), 0)
|
||
#endif
|
||
#endif
|
||
|
||
#if !defined PUSH_DUMMY_FRAME
|
||
#define PUSH_DUMMY_FRAME (internal_error ("PUSH_DUMMY_FRAME"), 0)
|
||
#endif
|
||
|
||
#if !defined FIX_CALL_DUMMY
|
||
#define FIX_CALL_DUMMY(a1,a2,a3,a4,a5,a6,a7) (internal_error ("FIX_CALL_DUMMY"), 0)
|
||
#endif
|
||
|
||
#if !defined STORE_STRUCT_RETURN
|
||
#define STORE_STRUCT_RETURN(a1,a2) (internal_error ("STORE_STRUCT_RETURN"), 0)
|
||
#endif
|
||
|
||
|
||
/* Are we in a call dummy? */
|
||
|
||
extern int pc_in_call_dummy_before_text_end PARAMS ((CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address));
|
||
#if !GDB_MULTI_ARCH
|
||
#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == BEFORE_TEXT_END
|
||
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_before_text_end (pc, sp, frame_address)
|
||
#endif /* Before text_end. */
|
||
#endif
|
||
|
||
extern int pc_in_call_dummy_after_text_end PARAMS ((CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address));
|
||
#if !GDB_MULTI_ARCH
|
||
#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == AFTER_TEXT_END
|
||
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_after_text_end (pc, sp, frame_address)
|
||
#endif
|
||
#endif
|
||
|
||
extern int pc_in_call_dummy_on_stack PARAMS ((CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address));
|
||
#if !GDB_MULTI_ARCH
|
||
#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == ON_STACK
|
||
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_on_stack (pc, sp, frame_address)
|
||
#endif
|
||
#endif
|
||
|
||
extern int pc_in_call_dummy_at_entry_point PARAMS ((CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address));
|
||
#if !GDB_MULTI_ARCH
|
||
#if !defined (PC_IN_CALL_DUMMY) && CALL_DUMMY_LOCATION == AT_ENTRY_POINT
|
||
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) pc_in_call_dummy_at_entry_point (pc, sp, frame_address)
|
||
#endif
|
||
#endif
|
||
|
||
/* It's often not enough for our clients to know whether the PC is merely
|
||
somewhere within the call dummy. They may need to know whether the
|
||
call dummy has actually completed. (For example, wait_for_inferior
|
||
wants to know when it should truly stop because the call dummy has
|
||
completed. If we're single-stepping because of slow watchpoints,
|
||
then we may find ourselves stopped at the entry of the call dummy,
|
||
and want to continue stepping until we reach the end.)
|
||
|
||
Note that this macro is intended for targets (like HP-UX) which
|
||
require more than a single breakpoint in their call dummies, and
|
||
therefore cannot use the CALL_DUMMY_BREAKPOINT_OFFSET mechanism.
|
||
|
||
If a target does define CALL_DUMMY_BREAKPOINT_OFFSET, then this
|
||
default implementation of CALL_DUMMY_HAS_COMPLETED is sufficient.
|
||
Else, a target may wish to supply an implementation that works in
|
||
the presense of multiple breakpoints in its call dummy.
|
||
*/
|
||
#if !defined(CALL_DUMMY_HAS_COMPLETED)
|
||
#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
|
||
PC_IN_CALL_DUMMY((pc), (sp), (frame_address))
|
||
#endif
|
||
|
||
/* If STARTUP_WITH_SHELL is set, GDB's "run"
|
||
will attempts to start up the debugee under a shell.
|
||
This is in order for argument-expansion to occur. E.g.,
|
||
(gdb) run *
|
||
The "*" gets expanded by the shell into a list of files.
|
||
While this is a nice feature, it turns out to interact badly
|
||
with some of the catch-fork/catch-exec features we have added.
|
||
In particular, if the shell does any fork/exec's before
|
||
the exec of the target program, that can confuse GDB.
|
||
To disable this feature, set STARTUP_WITH_SHELL to 0.
|
||
To enable this feature, set STARTUP_WITH_SHELL to 1.
|
||
The catch-exec traps expected during start-up will
|
||
be 1 if target is not started up with a shell, 2 if it is.
|
||
- RT
|
||
If you disable this, you need to decrement
|
||
START_INFERIOR_TRAPS_EXPECTED in tm.h. */
|
||
#define STARTUP_WITH_SHELL 1
|
||
#if !defined(START_INFERIOR_TRAPS_EXPECTED)
|
||
#define START_INFERIOR_TRAPS_EXPECTED 2
|
||
#endif
|
||
#endif /* !defined (INFERIOR_H) */
|