binutils-gdb/gas/config/tc-avr.c

1381 lines
38 KiB
C

/* tc-avr.c -- Assembler code for the ATMEL AVR
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
Contributed by Denis Chertykov <denisc@overta.ru>
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <ctype.h>
#include "as.h"
#include "subsegs.h"
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "$";
#define AVR_ISA_1200 0x0001 /* in the beginning there was ... */
#define AVR_ISA_LPM 0x0002 /* device has LPM */
#define AVR_ISA_LPMX 0x0004 /* device has LPM Rd,Z[+] */
#define AVR_ISA_SRAM 0x0008 /* device has SRAM (LD, ST, PUSH, POP, ...) */
#define AVR_ISA_WRAP 0x0010 /* device has exactly 8K program memory */
#define AVR_ISA_MEGA 0x0020 /* device has >8K program memory (JMP, CALL) */
#define AVR_ISA_MUL 0x0040 /* device has new core (MUL, MOVW, ...) */
#define AVR_ISA_ELPM 0x0080 /* device has >64K program memory (ELPM) */
#define AVR_ISA_ELPMX 0x0100 /* device has ELPM Rd,Z[+] (none yet) */
#define AVR_ISA_SPM 0x0200 /* device can program itself (<=64K) */
#define AVR_ISA_ESPM 0x0400 /* device can program itself (>64K, none yet) */
#define AVR_ISA_EIND 0x0800 /* device has >128K program memory (none yet) */
#define AVR_ISA_TINY1 (AVR_ISA_1200 | AVR_ISA_LPM)
#define AVR_ISA_2xxx (AVR_ISA_TINY1 | AVR_ISA_SRAM)
#define AVR_ISA_85xx (AVR_ISA_2xxx | AVR_ISA_WRAP)
#define AVR_ISA_M603 (AVR_ISA_2xxx | AVR_ISA_MEGA)
#define AVR_ISA_M103 (AVR_ISA_M603 | AVR_ISA_ELPM)
#define AVR_ISA_M161 (AVR_ISA_M603 | AVR_ISA_MUL | AVR_ISA_LPMX | AVR_ISA_SPM)
#define AVR_ISA_94K (AVR_ISA_M603 | AVR_ISA_MUL | AVR_ISA_LPMX)
#define AVR_ISA_ALL 0xFFFF
const char *md_shortopts = "m:";
struct mcu_type_s
{
char *name;
int isa;
int mach;
};
static struct mcu_type_s mcu_types[] =
{
{"avr1", AVR_ISA_TINY1, bfd_mach_avr1},
{"avr2", AVR_ISA_85xx, bfd_mach_avr2},
{"avr3", AVR_ISA_M103, bfd_mach_avr3},
{"avr4", AVR_ISA_ALL, bfd_mach_avr4},
{"at90s1200", AVR_ISA_1200, bfd_mach_avr1},
{"attiny10", AVR_ISA_TINY1, bfd_mach_avr1},
{"attiny11", AVR_ISA_TINY1, bfd_mach_avr1},
{"attiny12", AVR_ISA_TINY1, bfd_mach_avr1},
{"attiny15", AVR_ISA_TINY1, bfd_mach_avr1},
{"attiny28", AVR_ISA_TINY1, bfd_mach_avr1},
{"at90s2313", AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s2323", AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s2333", AVR_ISA_2xxx, bfd_mach_avr2},
{"attiny22" , AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s2343", AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s4433", AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s4414", AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s4434", AVR_ISA_2xxx, bfd_mach_avr2},
{"at90s8515", AVR_ISA_85xx, bfd_mach_avr2},
{"at90s8535", AVR_ISA_85xx, bfd_mach_avr2},
{"at90c8534", AVR_ISA_85xx, bfd_mach_avr2},
{"atmega603", AVR_ISA_M603, bfd_mach_avr3},
{"atmega103", AVR_ISA_M103, bfd_mach_avr3},
{"atmega161", AVR_ISA_M161, bfd_mach_avr4},
{"at94k10", AVR_ISA_94K, bfd_mach_avr4},
{"at94k20", AVR_ISA_94K, bfd_mach_avr4},
{"at94k40", AVR_ISA_94K, bfd_mach_avr4},
{NULL, 0, 0}
};
/* Current MCU type. */
static struct mcu_type_s default_mcu = {"avr2", AVR_ISA_2xxx,bfd_mach_avr2};
static struct mcu_type_s *avr_mcu = &default_mcu;
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
static void avr_set_arch (int dummy);
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{"arch", avr_set_arch, 0},
{ NULL, NULL, 0}
};
#define LDI_IMMEDIATE(x) (((x) & 0xf) | (((x) << 4) & 0xf00))
#define REGISTER_P(x) ((x) == 'r' \
|| (x) == 'd' \
|| (x) == 'w' \
|| (x) == 'a' \
|| (x) == 'v')
struct avr_opcodes_s
{
char *name;
char *constraints;
char *opcode;
int insn_size; /* in words */
int isa;
unsigned int bin_opcode;
};
static char * skip_space (char * s);
static char * extract_word (char *from, char *to, int limit);
static unsigned int avr_operand (struct avr_opcodes_s *opcode,
int where, char *op, char **line);
static unsigned int avr_operands (struct avr_opcodes_s *opcode, char **line);
static unsigned int avr_get_constant (char * str, int max);
static char *parse_exp (char *s, expressionS * op);
static bfd_reloc_code_real_type avr_ldi_expression (expressionS *exp);
long md_pcrel_from_section PARAMS ((fixS *, segT));
/* constraint letters
r - any register
d - `ldi' register (r16-r31)
v - `movw' even register (r0, r2, ..., r28, r30)
a - `fmul' register (r16-r23)
w - `adiw' register (r24,r26,r28,r30)
e - pointer registers (X,Y,Z)
b - base pointer register and displacement ([YZ]+disp)
z - Z pointer register (for [e]lpm Rd,Z[+])
M - immediate value from 0 to 255
n - immediate value from 0 to 255 ( n = ~M ). Relocation impossible
s - immediate value from 0 to 7
P - Port address value from 0 to 64. (in, out)
p - Port address value from 0 to 32. (cbi, sbi, sbic, sbis)
K - immediate value from 0 to 64 (used in `adiw', `sbiw')
i - immediate value
l - signed pc relative offset from -64 to 63
L - signed pc relative offset from -2048 to 2047
h - absolut code address (call, jmp)
S - immediate value from 0 to 7 (S = s << 4)
*/
struct avr_opcodes_s avr_opcodes[] =
{
{"adc", "r,r", "000111rdddddrrrr", 1, AVR_ISA_1200, 0x1c00},
{"add", "r,r", "000011rdddddrrrr", 1, AVR_ISA_1200, 0x0c00},
{"and", "r,r", "001000rdddddrrrr", 1, AVR_ISA_1200, 0x2000},
{"cp", "r,r", "000101rdddddrrrr", 1, AVR_ISA_1200, 0x1400},
{"cpc", "r,r", "000001rdddddrrrr", 1, AVR_ISA_1200, 0x0400},
{"cpse", "r,r", "000100rdddddrrrr", 1, AVR_ISA_1200, 0x1000},
{"eor", "r,r", "001001rdddddrrrr", 1, AVR_ISA_1200, 0x2400},
{"mov", "r,r", "001011rdddddrrrr", 1, AVR_ISA_1200, 0x2c00},
{"mul", "r,r", "100111rdddddrrrr", 1, AVR_ISA_MUL, 0x9c00},
{"or", "r,r", "001010rdddddrrrr", 1, AVR_ISA_1200, 0x2800},
{"sbc", "r,r", "000010rdddddrrrr", 1, AVR_ISA_1200, 0x0800},
{"sub", "r,r", "000110rdddddrrrr", 1, AVR_ISA_1200, 0x1800},
{"clr", "r=r", "001001rdddddrrrr", 1, AVR_ISA_1200, 0x2400},
{"lsl", "r=r", "000011rdddddrrrr", 1, AVR_ISA_1200, 0x0c00},
{"rol", "r=r", "000111rdddddrrrr", 1, AVR_ISA_1200, 0x1c00},
{"tst", "r=r", "001000rdddddrrrr", 1, AVR_ISA_1200, 0x2000},
{"andi", "d,M", "0111KKKKddddKKKK", 1, AVR_ISA_1200, 0x7000},
/*XXX special case*/
{"cbr", "d,n", "0111KKKKddddKKKK", 1, AVR_ISA_1200, 0x7000},
{"cpi", "d,M", "0011KKKKddddKKKK", 1, AVR_ISA_1200, 0x3000},
{"ldi", "d,M", "1110KKKKddddKKKK", 1, AVR_ISA_1200, 0xe000},
{"ori", "d,M", "0110KKKKddddKKKK", 1, AVR_ISA_1200, 0x6000},
{"sbci", "d,M", "0100KKKKddddKKKK", 1, AVR_ISA_1200, 0x4000},
{"sbr", "d,M", "0110KKKKddddKKKK", 1, AVR_ISA_1200, 0x6000},
{"subi", "d,M", "0101KKKKddddKKKK", 1, AVR_ISA_1200, 0x5000},
{"sbrc", "r,s", "1111110rrrrr0sss", 1, AVR_ISA_1200, 0xfc00},
{"sbrs", "r,s", "1111111rrrrr0sss", 1, AVR_ISA_1200, 0xfe00},
{"bld", "r,s", "1111100ddddd0sss", 1, AVR_ISA_1200, 0xf800},
{"bst", "r,s", "1111101ddddd0sss", 1, AVR_ISA_1200, 0xfa00},
{"in", "r,P", "10110PPdddddPPPP", 1, AVR_ISA_1200, 0xb000},
{"out", "P,r", "10111PPrrrrrPPPP", 1, AVR_ISA_1200, 0xb800},
{"adiw", "w,K", "10010110KKddKKKK", 1, AVR_ISA_2xxx, 0x9600},
{"sbiw", "w,K", "10010111KKddKKKK", 1, AVR_ISA_2xxx, 0x9700},
{"cbi", "p,s", "10011000pppppsss", 1, AVR_ISA_1200, 0x9800},
{"sbi", "p,s", "10011010pppppsss", 1, AVR_ISA_1200, 0x9a00},
{"sbic", "p,s", "10011001pppppsss", 1, AVR_ISA_1200, 0x9900},
{"sbis", "p,s", "10011011pppppsss", 1, AVR_ISA_1200, 0x9b00},
/* ee = {X=11,Y=10,Z=00, 0} */
{"ld", "r,e", "100!000dddddee-+", 1, AVR_ISA_2xxx, 0x8000},
{"st", "e,r", "100!001rrrrree-+", 1, AVR_ISA_2xxx, 0x8200},
{"ldd", "r,b", "10o0oo0dddddbooo", 1, AVR_ISA_2xxx, 0x8000},
{"std", "b,r", "10o0oo1rrrrrbooo", 1, AVR_ISA_2xxx, 0x8200},
{"sts", "i,r", "1001001ddddd0000", 2, AVR_ISA_2xxx, 0x9200},
{"lds", "r,i", "1001000ddddd0000", 2, AVR_ISA_2xxx, 0x9000},
{"brbc", "s,l", "111101lllllllsss", 1, AVR_ISA_1200, 0xf400},
{"brbs", "s,l", "111100lllllllsss", 1, AVR_ISA_1200, 0xf000},
{"brcc", "l", "111101lllllll000", 1, AVR_ISA_1200, 0xf400},
{"brcs", "l", "111100lllllll000", 1, AVR_ISA_1200, 0xf000},
{"breq", "l", "111100lllllll001", 1, AVR_ISA_1200, 0xf001},
{"brge", "l", "111101lllllll100", 1, AVR_ISA_1200, 0xf404},
{"brhc", "l", "111101lllllll101", 1, AVR_ISA_1200, 0xf405},
{"brhs", "l", "111100lllllll101", 1, AVR_ISA_1200, 0xf005},
{"brid", "l", "111101lllllll111", 1, AVR_ISA_1200, 0xf407},
{"brie", "l", "111100lllllll111", 1, AVR_ISA_1200, 0xf007},
{"brlo", "l", "111100lllllll000", 1, AVR_ISA_1200, 0xf000},
{"brlt", "l", "111100lllllll100", 1, AVR_ISA_1200, 0xf004},
{"brmi", "l", "111100lllllll010", 1, AVR_ISA_1200, 0xf002},
{"brne", "l", "111101lllllll001", 1, AVR_ISA_1200, 0xf401},
{"brpl", "l", "111101lllllll010", 1, AVR_ISA_1200, 0xf402},
{"brsh", "l", "111101lllllll000", 1, AVR_ISA_1200, 0xf400},
{"brtc", "l", "111101lllllll110", 1, AVR_ISA_1200, 0xf406},
{"brts", "l", "111100lllllll110", 1, AVR_ISA_1200, 0xf006},
{"brvc", "l", "111101lllllll011", 1, AVR_ISA_1200, 0xf403},
{"brvs", "l", "111100lllllll011", 1, AVR_ISA_1200, 0xf003},
{"rcall", "L", "1101LLLLLLLLLLLL", 1, AVR_ISA_1200, 0xd000},
{"rjmp", "L", "1100LLLLLLLLLLLL", 1, AVR_ISA_1200, 0xc000},
{"call", "h", "1001010hhhhh111h", 2, AVR_ISA_MEGA, 0x940e},
{"jmp", "h", "1001010hhhhh110h", 2, AVR_ISA_MEGA, 0x940c},
{"asr", "r", "1001010rrrrr0101", 1, AVR_ISA_1200, 0x9405},
{"com", "r", "1001010rrrrr0000", 1, AVR_ISA_1200, 0x9400},
{"dec", "r", "1001010rrrrr1010", 1, AVR_ISA_1200, 0x940a},
{"inc", "r", "1001010rrrrr0011", 1, AVR_ISA_1200, 0x9403},
{"lsr", "r", "1001010rrrrr0110", 1, AVR_ISA_1200, 0x9406},
{"neg", "r", "1001010rrrrr0001", 1, AVR_ISA_1200, 0x9401},
{"pop", "r", "1001000rrrrr1111", 1, AVR_ISA_2xxx, 0x900f},
{"push", "r", "1001001rrrrr1111", 1, AVR_ISA_2xxx, 0x920f},
{"ror", "r", "1001010rrrrr0111", 1, AVR_ISA_1200, 0x9407},
{"ser", "d", "11101111dddd1111", 1, AVR_ISA_1200, 0xef0f},
{"swap", "r", "1001010rrrrr0010", 1, AVR_ISA_1200, 0x9402},
{"bclr", "S", "100101001SSS1000", 1, AVR_ISA_1200, 0x9488},
{"bset", "S", "100101000SSS1000", 1, AVR_ISA_1200, 0x9408},
{"clc", "", "1001010010001000", 1, AVR_ISA_1200, 0x9488},
{"clh", "", "1001010011011000", 1, AVR_ISA_1200, 0x94d8},
{"cli", "", "1001010011111000", 1, AVR_ISA_1200, 0x94f8},
{"cln", "", "1001010010101000", 1, AVR_ISA_1200, 0x94a8},
{"cls", "", "1001010011001000", 1, AVR_ISA_1200, 0x94c8},
{"clt", "", "1001010011101000", 1, AVR_ISA_1200, 0x94e8},
{"clv", "", "1001010010111000", 1, AVR_ISA_1200, 0x94b8},
{"clz", "", "1001010010011000", 1, AVR_ISA_1200, 0x9498},
{"icall","", "1001010100001001", 1, AVR_ISA_2xxx, 0x9509},
{"ijmp", "", "1001010000001001", 1, AVR_ISA_2xxx, 0x9409},
{"lpm", "", "1001010111001000", 1, AVR_ISA_TINY1,0x95c8},
{"nop", "", "0000000000000000", 1, AVR_ISA_1200, 0x0000},
{"ret", "", "1001010100001000", 1, AVR_ISA_1200, 0x9508},
{"reti", "", "1001010100011000", 1, AVR_ISA_1200, 0x9518},
{"sec", "", "1001010000001000", 1, AVR_ISA_1200, 0x9408},
{"seh", "", "1001010001011000", 1, AVR_ISA_1200, 0x9458},
{"sei", "", "1001010001111000", 1, AVR_ISA_1200, 0x9478},
{"sen", "", "1001010000101000", 1, AVR_ISA_1200, 0x9428},
{"ses", "", "1001010001001000", 1, AVR_ISA_1200, 0x9448},
{"set", "", "1001010001101000", 1, AVR_ISA_1200, 0x9468},
{"sev", "", "1001010000111000", 1, AVR_ISA_1200, 0x9438},
{"sez", "", "1001010000011000", 1, AVR_ISA_1200, 0x9418},
{"sleep","", "1001010110001000", 1, AVR_ISA_1200, 0x9588},
{"wdr", "", "1001010110101000", 1, AVR_ISA_1200, 0x95a8},
{"elpm", "", "1001010111011000", 1, AVR_ISA_ELPM, 0x95d8},
{"spm", "", "1001010111101000", 1, AVR_ISA_SPM, 0x95e8},
{"movw", "v,v", "00000001ddddrrrr", 1, AVR_ISA_MUL, 0x0100},
{"muls", "d,d", "00000010ddddrrrr", 1, AVR_ISA_MUL, 0x0200},
{"mulsu","a,a", "000000110ddd0rrr", 1, AVR_ISA_MUL, 0x0300},
{"fmul", "a,a", "000000110ddd1rrr", 1, AVR_ISA_MUL, 0x0308},
{"fmuls","a,a", "000000111ddd0rrr", 1, AVR_ISA_MUL, 0x0380},
{"fmulsu","a,a","000000111ddd1rrr", 1, AVR_ISA_MUL, 0x0388},
{"lpmx", "r,z", "1001000ddddd010+", 1, AVR_ISA_LPMX, 0x9004},
/* these are for devices that don't exists yet */
/* >64K program memory, new core */
{"elpmx","r,z", "1001000ddddd011+", 1, AVR_ISA_ELPMX,0x9006},
{"espm", "", "1001010111111000", 1, AVR_ISA_ESPM, 0x95f8},
/* >128K program memory (PC = EIND:Z) */
{"eicall", "", "1001010100011001", 1, AVR_ISA_EIND, 0x9519},
{"eijmp", "", "1001010000011001", 1, AVR_ISA_EIND, 0x9419},
{NULL, NULL, NULL, 0, 0, 0}
};
#define EXP_MOD_NAME(i) exp_mod[i].name
#define EXP_MOD_RELOC(i) exp_mod[i].reloc
#define EXP_MOD_NEG_RELOC(i) exp_mod[i].neg_reloc
#define HAVE_PM_P(i) exp_mod[i].have_pm
struct exp_mod_s
{
char * name;
bfd_reloc_code_real_type reloc;
bfd_reloc_code_real_type neg_reloc;
int have_pm;
};
static struct exp_mod_s exp_mod[] = {
{"hh8", BFD_RELOC_AVR_HH8_LDI, BFD_RELOC_AVR_HH8_LDI_NEG, 1},
{"pm_hh8", BFD_RELOC_AVR_HH8_LDI_PM, BFD_RELOC_AVR_HH8_LDI_PM_NEG, 0},
{"hi8", BFD_RELOC_AVR_HI8_LDI, BFD_RELOC_AVR_HI8_LDI_NEG, 1},
{"pm_hi8", BFD_RELOC_AVR_HI8_LDI_PM, BFD_RELOC_AVR_HI8_LDI_PM_NEG, 0},
{"lo8", BFD_RELOC_AVR_LO8_LDI, BFD_RELOC_AVR_LO8_LDI_NEG, 1},
{"pm_lo8", BFD_RELOC_AVR_LO8_LDI_PM, BFD_RELOC_AVR_LO8_LDI_PM_NEG, 0},
{"hlo8", -BFD_RELOC_AVR_LO8_LDI, -BFD_RELOC_AVR_LO8_LDI_NEG, 0},
{"hhi8", -BFD_RELOC_AVR_HI8_LDI, -BFD_RELOC_AVR_HI8_LDI_NEG, 0},
};
/* Opcode hash table. */
static struct hash_control *avr_hash;
/* Reloc modifiers hash control (hh8,hi8,lo8,pm_xx). */
static struct hash_control *avr_mod_hash;
#define OPTION_MMCU (OPTION_MD_BASE + 1)
struct option md_longopts[] = {
{"mmcu", required_argument, NULL, 'm'},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
static inline char *
skip_space (s)
char * s;
{
while (*s == ' ' || *s == '\t')
++s;
return s;
}
/* Extract one word from FROM and copy it to TO. */
static char *
extract_word (char *from, char *to, int limit)
{
char *op_start;
char *op_end;
int size = 0;
/* Drop leading whitespace. */
from = skip_space (from);
*to = 0;
/* Find the op code end. */
for (op_start = op_end = from; *op_end != 0 && is_part_of_name(*op_end); )
{
to[size++] = *op_end++;
if (size + 1 >= limit)
break;
}
to[size] = 0;
return op_end;
}
int
md_estimate_size_before_relax (fragp, seg)
fragS *fragp ATTRIBUTE_UNUSED;
asection *seg ATTRIBUTE_UNUSED;
{
abort ();
return 0;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf
(stream,
_ ("AVR options:\n"
" -mmcu=[avr-name] select microcontroller variant\n"
" [avr-name] can be:\n"
" avr1 - AT90S1200\n"
" avr2 - AT90S2xxx, AT90S4xxx, AT90S85xx, ATtiny22\n"
" avr3 - ATmega103 or ATmega603\n"
" avr4 - ATmega161\n"
" or immediate microcontroller name.\n"));
}
static void
avr_set_arch (dummy)
int dummy ATTRIBUTE_UNUSED;
{
char * str;
str = (char *)alloca (20);
input_line_pointer = extract_word (input_line_pointer, str, 20);
md_parse_option ('m', str);
bfd_set_arch_mach (stdoutput, TARGET_ARCH, avr_mcu->mach);
}
int
md_parse_option (c, arg)
int c;
char *arg;
{
char *t = alloca (strlen (arg) + 1);
char *s = t;
char *arg1 = arg;
do
*t = tolower (*arg1++);
while (*t++);
if (c == 'm')
{
int i;
for (i = 0; mcu_types[i].name; ++i)
if (strcmp (mcu_types[i].name, s) == 0)
break;
if (!mcu_types[i].name)
as_fatal (_ ("unknown MCU: %s\n"), arg);
if (avr_mcu == &default_mcu)
avr_mcu = &mcu_types[i];
else
as_fatal (_ ("redefinition of mcu type `%s'"), mcu_types[i].name);
return 1;
}
return 0;
}
symbolS *
md_undefined_symbol(name)
char *name ATTRIBUTE_UNUSED;
{
return 0;
}
/* Convert a string pointed to by input_line_pointer into a floating point
constant of type `type', and store the appropriate bytes to `*litP'.
The number of LITTLENUMS emitted is stored in `*sizeP'. Returns NULL if
OK, or an error message otherwise. */
char *
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[4];
LITTLENUM_TYPE *wordP;
char *t;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return _("bad call to md_atof");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
/* This loop outputs the LITTLENUMs in REVERSE order. */
for (wordP = words + prec - 1; prec--;)
{
md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return NULL;
}
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd ATTRIBUTE_UNUSED;
asection *sec ATTRIBUTE_UNUSED;
fragS *fragP ATTRIBUTE_UNUSED;
{
abort ();
}
void
md_begin ()
{
unsigned int i;
struct avr_opcodes_s *opcode;
avr_hash = hash_new();
/* Insert unique names into hash table. This hash table then provides a
quick index to the first opcode with a particular name in the opcode
table. */
for (opcode = avr_opcodes; opcode->name; opcode++)
hash_insert (avr_hash, opcode->name, (char *) opcode);
avr_mod_hash = hash_new ();
for (i = 0; i < sizeof (exp_mod) / sizeof (exp_mod[0]); ++i)
hash_insert (avr_mod_hash, EXP_MOD_NAME(i), (void*)(i+10));
bfd_set_arch_mach (stdoutput, TARGET_ARCH, avr_mcu->mach);
}
/* Resolve STR as a constant expression and return the result.
If result greater than MAX then error. */
static unsigned int
avr_get_constant (str, max)
char * str;
int max;
{
expressionS ex;
str = skip_space (str);
input_line_pointer = str;
expression (&ex);
if (ex.X_op != O_constant)
as_bad (_("constant value required"));
if (ex.X_add_number > max || ex.X_add_number < 0)
as_bad (_("number must be less than %d"), max+1);
return ex.X_add_number;
}
/* Parse instruction operands.
Returns binary opcode. */
static unsigned int
avr_operands (opcode, line)
struct avr_opcodes_s *opcode;
char **line;
{
char *op = opcode->constraints;
unsigned int bin = opcode->bin_opcode;
char *frag = frag_more (opcode->insn_size * 2);
char *str = *line;
int where = frag - frag_now->fr_literal;
static unsigned int prev = 0; /* previous opcode */
/* Opcode have operands. */
if (*op)
{
unsigned int reg1 = 0;
unsigned int reg2 = 0;
int reg1_present = 0;
int reg2_present = 0;
/* Parse first operand. */
if (REGISTER_P (*op))
reg1_present = 1;
reg1 = avr_operand (opcode, where, op, &str);
++op;
/* Parse second operand. */
if (*op)
{
if (*op == ',')
++op;
if (*op == '=')
{
reg2 = reg1;
reg2_present = 1;
}
else
{
if (REGISTER_P (*op))
reg2_present = 1;
str = skip_space (str);
if (*str++ != ',')
as_bad (_ ("`,' required"));
str = skip_space (str);
reg2 = avr_operand (opcode, where, op, &str);
}
if (reg1_present && reg2_present)
reg2 = (reg2 & 0xf) | ((reg2 << 5) & 0x200);
else if (reg2_present)
reg2 <<= 4;
}
if (reg1_present)
reg1 <<= 4;
bin |= reg1 | reg2;
}
/* detect undefined combinations (like lpm r31,Z+) */
if (((bin & 0xFDEF) == 0x91AD) || ((bin & 0xFDEF) == 0x91AE) ||
((bin & 0xFDEF) == 0x91C9) || ((bin & 0xFDEF) == 0x91CA) ||
((bin & 0xFDEF) == 0x91E1) || ((bin & 0xFDEF) == 0x91E2) ||
((bin & 0xFFED) == 0x91E5))
as_warn( _("undefined combination of operands"));
if (opcode->insn_size == 2)
{
/* warn if previous opcode was cpse/sbic/sbis/sbrc/sbrs
(AVR core bug) */
if ((prev & 0xFC00) == 0x1000
|| (prev & 0xFD00) == 0x9900
|| (prev & 0xFC08) == 0xFC00)
as_warn (_("skipping two-word instruction"));
bfd_putl32 ((bfd_vma)bin, frag);
}
else
bfd_putl16 ((bfd_vma)bin, frag);
prev = bin;
*line = str;
return bin;
}
/* Parse one instruction operand.
Returns operand bitmask. Also fixups can be generated. */
static unsigned int
avr_operand (opcode, where, op, line)
struct avr_opcodes_s *opcode;
int where;
char *op;
char **line;
{
expressionS op_expr;
unsigned int op_mask = 0;
char *str = skip_space (*line);
switch (*op)
{
/* Any register operand. */
case 'w':
case 'd':
case 'r':
case 'a':
case 'v':
{
op_mask = -1;
if (*str == 'r' || *str == 'R')
{
char r_name[20];
str = extract_word (str, r_name, sizeof (r_name));
if (isdigit(r_name[1]))
{
if (r_name[2] == '\0')
op_mask = r_name[1] - '0';
else if (r_name[1] != '0'
&& isdigit(r_name[2])
&& r_name[3] == '\0')
op_mask = (r_name[1] - '0') * 10 + r_name[2] - '0';
}
}
else
{
op_mask = avr_get_constant (str, 31);
str = input_line_pointer;
}
if (op_mask <= 31)
{
switch (*op)
{
case 'a':
if (op_mask < 16 || op_mask > 23)
as_bad (_ ("register r16-r23 required"));
op_mask -= 16;
break;
case 'd':
if (op_mask < 16)
as_bad (_ ("register number above 15 required"));
op_mask -= 16;
break;
case 'v':
if (op_mask & 1)
as_bad (_ ("even register number required"));
op_mask >>= 1;
break;
case 'w':
op_mask -= 24;
if (op_mask & 1 || op_mask > 6)
as_bad (_ ("register r24,r26,r28 or r30 required"));
op_mask >>= 1;
break;
}
break;
}
as_bad (_ ("register name or number from 0 to 31 required"));
}
break;
case 'e':
{
char c;
if (*str == '-')
{
str = skip_space (str+1);
op_mask = 0x1002;
}
c = tolower (*str);
if (c == 'x')
op_mask |= 0x100c;
else if (c == 'y')
op_mask |= 0x8;
else if (c != 'z')
as_bad (_ ("pointer register (X,Y or Z) required"));
str = skip_space (str+1);
if (*str == '+')
{
++str;
if (op_mask & 2)
as_bad (_ ("cannot both predecrement and postincrement"));
op_mask |= 0x1001;
}
}
break;
case 'z':
{
if (*str == '-')
as_bad (_ ("can't predecrement"));
if (! (*str == 'z' || *str == 'Z'))
as_bad (_ ("pointer register Z required"));
str = skip_space (str + 1);
if (*str == '+')
{
++str;
op_mask |= 1;
}
}
break;
case 'b':
{
char c = tolower (*str++);
if (c == 'y')
op_mask |= 0x8;
else if (c != 'z')
as_bad (_ ("pointer register (Y or Z) required"));
str = skip_space (str);
if (*str++ == '+')
{
unsigned int x;
x = avr_get_constant (str, 63);
str = input_line_pointer;
op_mask |= (x & 7) | ((x & (3 << 3)) << 7) | ((x & (1 << 5)) << 8);
}
}
break;
case 'h':
{
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where, opcode->insn_size * 2,
&op_expr, false, BFD_RELOC_AVR_CALL);
}
break;
case 'L':
{
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where, opcode->insn_size * 2,
&op_expr, true, BFD_RELOC_AVR_13_PCREL);
}
break;
case 'l':
{
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where, opcode->insn_size * 2,
&op_expr, true, BFD_RELOC_AVR_7_PCREL);
}
break;
case 'i':
{
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where+2, opcode->insn_size * 2,
&op_expr, false, BFD_RELOC_16);
}
break;
case 'M':
{
bfd_reloc_code_real_type r_type;
input_line_pointer = str;
r_type = avr_ldi_expression (&op_expr);
str = input_line_pointer;
fix_new_exp (frag_now, where, 3,
&op_expr, false, r_type);
}
break;
case 'n':
{
unsigned int x;
x = ~avr_get_constant (str, 255);
str = input_line_pointer;
op_mask |= (x & 0xf) | ((x << 4) & 0xf00);
}
break;
case 'K':
{
unsigned int x;
x = avr_get_constant (str, 63);
str = input_line_pointer;
op_mask |= (x & 0xf) | ((x & 0x30) << 2);
}
break;
case 'S':
case 's':
{
unsigned int x;
x = avr_get_constant (str, 7);
str = input_line_pointer;
if (*op == 'S')
x <<= 4;
op_mask |= x;
}
break;
case 'P':
{
unsigned int x;
x = avr_get_constant (str, 63);
str = input_line_pointer;
op_mask |= (x & 0xf) | ((x & 0x30) << 5);
}
break;
case 'p':
{
unsigned int x;
x = avr_get_constant (str, 31);
str = input_line_pointer;
op_mask |= x << 3;
}
break;
default:
as_bad (_ ("unknown constraint `%c'"), *op);
}
*line = str;
return op_mask;
}
/* GAS will call this function for each section at the end of the assembly,
to permit the CPU backend to adjust the alignment of a section. */
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
/* If you define this macro, it should return the offset between the
address of a PC relative fixup and the position from which the PC
relative adjustment should be made. On many processors, the base
of a PC relative instruction is the next instruction, so this
macro would return the length of an instruction. */
long
md_pcrel_from_section (fixp, sec)
fixS *fixp;
segT sec;
{
if (fixp->fx_addsy != (symbolS *)NULL
&& (!S_IS_DEFINED (fixp->fx_addsy)
|| (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
return 0;
return fixp->fx_frag->fr_address + fixp->fx_where;
}
/* GAS will call this for each fixup. It should store the correct
value in the object file. */
int
md_apply_fix3 (fixp, valuep, seg)
fixS *fixp;
valueT *valuep;
segT seg;
{
unsigned char *where;
unsigned long insn;
long value;
if (fixp->fx_addsy == (symbolS *) NULL)
{
value = *valuep;
fixp->fx_done = 1;
}
else if (fixp->fx_pcrel)
{
segT s = S_GET_SEGMENT (fixp->fx_addsy);
if (fixp->fx_addsy && (s == seg || s == absolute_section))
{
value = S_GET_VALUE (fixp->fx_addsy) + *valuep;
fixp->fx_done = 1;
}
else
value = *valuep;
}
else
{
value = fixp->fx_offset;
if (fixp->fx_subsy != (symbolS *) NULL)
{
if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
{
value -= S_GET_VALUE (fixp->fx_subsy);
fixp->fx_done = 1;
}
else
{
/* We don't actually support subtracting a symbol. */
as_bad_where (fixp->fx_file, fixp->fx_line,
_ ("expression too complex"));
}
}
}
switch (fixp->fx_r_type)
{
default:
fixp->fx_no_overflow = 1;
break;
case BFD_RELOC_AVR_7_PCREL:
case BFD_RELOC_AVR_13_PCREL:
case BFD_RELOC_32:
case BFD_RELOC_16:
case BFD_RELOC_AVR_CALL:
break;
}
if (fixp->fx_done)
{
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again. */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
insn = bfd_getl16 (where);
switch (fixp->fx_r_type)
{
case BFD_RELOC_AVR_7_PCREL:
if (value & 1)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("odd address operand: %ld"), value);
/* Instruction addresses are always right-shifted by 1. */
value >>= 1;
--value; /* Correct PC. */
if (value < -64 || value > 63)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("operand out of range: %ld"), value);
value = (value << 3) & 0x3f8;
bfd_putl16 ((bfd_vma) (value | insn), where);
break;
case BFD_RELOC_AVR_13_PCREL:
if (value & 1)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("odd address operand: %ld"), value);
/* Instruction addresses are always right-shifted by 1. */
value >>= 1;
--value; /* Correct PC. */
if (value < -2048 || value > 2047)
{
if (avr_mcu->isa & AVR_ISA_WRAP)
{
if (value > 2047)
value -= 4096;
else
value += 4096;
}
else
as_bad_where (fixp->fx_file, fixp->fx_line,
_("operand out of range: %ld"), value);
}
value &= 0xfff;
bfd_putl16 ((bfd_vma) (value | insn), where);
break;
case BFD_RELOC_32:
bfd_putl16 ((bfd_vma) value, where);
break;
case BFD_RELOC_16:
bfd_putl16 ((bfd_vma) value, where);
break;
case BFD_RELOC_AVR_16_PM:
bfd_putl16 ((bfd_vma) (value>>1), where);
break;
case BFD_RELOC_AVR_LO8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value), where);
break;
case -BFD_RELOC_AVR_LO8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 16), where);
break;
case BFD_RELOC_AVR_HI8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 8), where);
break;
case -BFD_RELOC_AVR_HI8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 24), where);
break;
case BFD_RELOC_AVR_HH8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 16), where);
break;
case BFD_RELOC_AVR_LO8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value), where);
break;
case -BFD_RELOC_AVR_LO8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 16), where);
break;
case BFD_RELOC_AVR_HI8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 8), where);
break;
case -BFD_RELOC_AVR_HI8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 24), where);
break;
case BFD_RELOC_AVR_HH8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 16), where);
break;
case BFD_RELOC_AVR_LO8_LDI_PM:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 1), where);
break;
case BFD_RELOC_AVR_HI8_LDI_PM:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 9), where);
break;
case BFD_RELOC_AVR_HH8_LDI_PM:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 17), where);
break;
case BFD_RELOC_AVR_LO8_LDI_PM_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 1), where);
break;
case BFD_RELOC_AVR_HI8_LDI_PM_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 9), where);
break;
case BFD_RELOC_AVR_HH8_LDI_PM_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 17), where);
break;
case BFD_RELOC_AVR_CALL:
{
unsigned long x;
x = bfd_getl16 (where);
if (value & 1)
as_bad_where (fixp->fx_file, fixp->fx_line,
_("odd address operand: %ld"), value);
value >>= 1;
x |= ((value & 0x10000) | ((value << 3) & 0x1f00000)) >> 16;
bfd_putl16 ((bfd_vma) x, where);
bfd_putl16 ((bfd_vma) (value & 0xffff), where+2);
}
break;
default:
as_fatal ( _("line %d: unknown relocation type: 0x%x"),
fixp->fx_line, fixp->fx_r_type);
break;
}
}
else
{
switch (fixp->fx_r_type)
{
case -BFD_RELOC_AVR_HI8_LDI_NEG:
case -BFD_RELOC_AVR_HI8_LDI:
case -BFD_RELOC_AVR_LO8_LDI_NEG:
case -BFD_RELOC_AVR_LO8_LDI:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("only constant expression allowed"));
fixp->fx_done = 1;
break;
default:
break;
}
fixp->fx_addnumber = value;
}
return 0;
}
/* A `BFD_ASSEMBLER' GAS will call this to generate a reloc. GAS
will pass the resulting reloc to `bfd_install_relocation'. This
currently works poorly, as `bfd_install_relocation' often does the
wrong thing, and instances of `tc_gen_reloc' have been written to
work around the problems, which in turns makes it difficult to fix
`bfd_install_relocation'. */
/* If while processing a fixup, a reloc really needs to be created
then it is done here. */
arelent *
tc_gen_reloc (seg, fixp)
asection *seg ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("reloc %d not supported by object file format"),
(int)fixp->fx_r_type);
return NULL;
}
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
reloc->address = fixp->fx_offset;
reloc->addend = fixp->fx_offset;
return reloc;
}
void
md_assemble (str)
char *str;
{
struct avr_opcodes_s * opcode;
char op[11];
str = skip_space (extract_word (str, op, sizeof(op)));
if (!op[0])
as_bad (_ ("can't find opcode "));
opcode = (struct avr_opcodes_s *) hash_find (avr_hash, op);
if (opcode == NULL)
{
as_bad (_ ("unknown opcode `%s'"), op);
return;
}
/* Special case for opcodes with optional operands (lpm, elpm) -
version with operands is listed in avr_opcodes[] with "x" suffix. */
if (*str && !(*opcode->constraints))
{
struct avr_opcodes_s *opc1;
/* known opcode, so strlen(op) <= 6 and strcat() should be safe */
strcat(op, "x");
opc1 = (struct avr_opcodes_s *) hash_find (avr_hash, op);
/* if unknown, just forget it and use the original opcode */
if (opc1)
opcode = opc1;
}
if ((opcode->isa & avr_mcu->isa) != opcode->isa)
as_bad (_ ("illegal opcode %s for mcu %s"), opcode->name, avr_mcu->name);
/* We used to set input_line_pointer to the result of get_operands,
but that is wrong. Our caller assumes we don't change it. */
{
char *t = input_line_pointer;
avr_operands (opcode, &str);
if (*skip_space (str))
as_bad (_ ("garbage at end of line"));
input_line_pointer = t;
}
}
/* Parse ordinary expression. */
static char *
parse_exp (s, op)
char *s;
expressionS * op;
{
input_line_pointer = s;
expression (op);
if (op->X_op == O_absent)
as_bad (_("missing operand"));
return input_line_pointer;
}
/* Parse special expressions (needed for LDI command):
xx8 (address)
xx8 (-address)
pm_xx8 (address)
pm_xx8 (-address)
where xx is: hh, hi, lo
*/
static bfd_reloc_code_real_type
avr_ldi_expression (exp)
expressionS *exp;
{
char *str = input_line_pointer;
char *tmp;
char op[8];
int mod;
tmp = str;
str = extract_word (str, op, sizeof (op));
if (op[0])
{
mod = (int) hash_find (avr_mod_hash, op);
if (mod)
{
int closes = 0;
mod -= 10;
str = skip_space (str);
if (*str == '(')
{
int neg_p = 0;
++str;
if (strncmp ("pm(", str, 3) == 0
|| strncmp ("-(pm(", str, 5) == 0)
{
if (HAVE_PM_P(mod))
{
++mod;
++closes;
}
else
as_bad (_ ("illegal expression"));
if (*str == '-')
{
neg_p = 1;
++closes;
str += 5;
}
else
str += 3;
}
if (*str == '-' && *(str + 1) == '(')
{
neg_p ^= 1;
++closes;
str += 2;
}
input_line_pointer = str;
expression (exp);
do
{
if (*input_line_pointer != ')')
{
as_bad (_ ("`)' required"));
break;
}
input_line_pointer++;
}
while (closes--);
return neg_p ? EXP_MOD_NEG_RELOC (mod) : EXP_MOD_RELOC (mod);
}
}
}
input_line_pointer = tmp;
expression (exp);
return BFD_RELOC_AVR_LO8_LDI;
}
/* Flag to pass `pm' mode between `avr_parse_cons_expression' and
`avr_cons_fix_new' */
static int exp_mod_pm = 0;
/* Parse special CONS expression: pm (expression)
which is used for addressing to a program memory.
Relocation: BFD_RELOC_AVR_16_PM */
void
avr_parse_cons_expression (exp, nbytes)
expressionS *exp;
int nbytes;
{
char * tmp;
exp_mod_pm = 0;
tmp = input_line_pointer = skip_space (input_line_pointer);
if (nbytes == 2)
{
char * pm_name = "pm";
int len = strlen (pm_name);
if (strncasecmp (input_line_pointer, pm_name, len) == 0)
{
input_line_pointer = skip_space (input_line_pointer + len);
if (*input_line_pointer == '(')
{
input_line_pointer = skip_space (input_line_pointer + 1);
exp_mod_pm = 1;
expression (exp);
if (*input_line_pointer == ')')
++input_line_pointer;
else
{
as_bad (_ ("`)' required"));
exp_mod_pm = 0;
}
return;
}
input_line_pointer = tmp;
}
}
expression (exp);
}
void
avr_cons_fix_new(frag, where, nbytes, exp)
fragS *frag;
int where;
int nbytes;
expressionS *exp;
{
if (exp_mod_pm == 0)
{
if (nbytes == 2)
fix_new_exp (frag, where, nbytes, exp, false, BFD_RELOC_16);
else if (nbytes == 4)
fix_new_exp (frag, where, nbytes, exp, false, BFD_RELOC_32);
else
as_bad (_ ("illegal %srelocation size: %d"), "", nbytes);
}
else
{
if (nbytes == 2)
fix_new_exp (frag, where, nbytes, exp, false, BFD_RELOC_AVR_16_PM);
else
as_bad (_ ("illegal %srelocation size: %d"), "`pm' ", nbytes);
exp_mod_pm = 0;
}
}