7813437494
Remove TYPE_CODE, changing all the call sites to use type::code directly. This is quite a big diff, but this was mostly done using sed and coccinelle. A few call sites were done by hand. gdb/ChangeLog: * gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use type::code instead.
2192 lines
69 KiB
C
2192 lines
69 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986-2020 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "regcache.h"
|
|
#include "value.h"
|
|
#include "osabi.h"
|
|
#include "regset.h"
|
|
#include "solib-svr4.h"
|
|
#include "solib.h"
|
|
#include "solist.h"
|
|
#include "ppc-tdep.h"
|
|
#include "ppc64-tdep.h"
|
|
#include "ppc-linux-tdep.h"
|
|
#include "arch/ppc-linux-common.h"
|
|
#include "arch/ppc-linux-tdesc.h"
|
|
#include "glibc-tdep.h"
|
|
#include "trad-frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "tramp-frame.h"
|
|
#include "observable.h"
|
|
#include "auxv.h"
|
|
#include "elf/common.h"
|
|
#include "elf/ppc64.h"
|
|
#include "arch-utils.h"
|
|
#include "xml-syscall.h"
|
|
#include "linux-tdep.h"
|
|
#include "linux-record.h"
|
|
#include "record-full.h"
|
|
#include "infrun.h"
|
|
|
|
#include "stap-probe.h"
|
|
#include "ax.h"
|
|
#include "ax-gdb.h"
|
|
#include "cli/cli-utils.h"
|
|
#include "parser-defs.h"
|
|
#include "user-regs.h"
|
|
#include <ctype.h>
|
|
#include "elf-bfd.h"
|
|
|
|
#include "features/rs6000/powerpc-32l.c"
|
|
#include "features/rs6000/powerpc-altivec32l.c"
|
|
#include "features/rs6000/powerpc-vsx32l.c"
|
|
#include "features/rs6000/powerpc-isa205-32l.c"
|
|
#include "features/rs6000/powerpc-isa205-altivec32l.c"
|
|
#include "features/rs6000/powerpc-isa205-vsx32l.c"
|
|
#include "features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c"
|
|
#include "features/rs6000/powerpc-isa207-vsx32l.c"
|
|
#include "features/rs6000/powerpc-isa207-htm-vsx32l.c"
|
|
#include "features/rs6000/powerpc-64l.c"
|
|
#include "features/rs6000/powerpc-altivec64l.c"
|
|
#include "features/rs6000/powerpc-vsx64l.c"
|
|
#include "features/rs6000/powerpc-isa205-64l.c"
|
|
#include "features/rs6000/powerpc-isa205-altivec64l.c"
|
|
#include "features/rs6000/powerpc-isa205-vsx64l.c"
|
|
#include "features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c"
|
|
#include "features/rs6000/powerpc-isa207-vsx64l.c"
|
|
#include "features/rs6000/powerpc-isa207-htm-vsx64l.c"
|
|
#include "features/rs6000/powerpc-e500l.c"
|
|
|
|
/* Shared library operations for PowerPC-Linux. */
|
|
static struct target_so_ops powerpc_so_ops;
|
|
|
|
/* The syscall's XML filename for PPC and PPC64. */
|
|
#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
|
|
#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
|
|
|
|
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
|
|
in much the same fashion as memory_remove_breakpoint in mem-break.c,
|
|
but is careful not to write back the previous contents if the code
|
|
in question has changed in between inserting the breakpoint and
|
|
removing it.
|
|
|
|
Here is the problem that we're trying to solve...
|
|
|
|
Once upon a time, before introducing this function to remove
|
|
breakpoints from the inferior, setting a breakpoint on a shared
|
|
library function prior to running the program would not work
|
|
properly. In order to understand the problem, it is first
|
|
necessary to understand a little bit about dynamic linking on
|
|
this platform.
|
|
|
|
A call to a shared library function is accomplished via a bl
|
|
(branch-and-link) instruction whose branch target is an entry
|
|
in the procedure linkage table (PLT). The PLT in the object
|
|
file is uninitialized. To gdb, prior to running the program, the
|
|
entries in the PLT are all zeros.
|
|
|
|
Once the program starts running, the shared libraries are loaded
|
|
and the procedure linkage table is initialized, but the entries in
|
|
the table are not (necessarily) resolved. Once a function is
|
|
actually called, the code in the PLT is hit and the function is
|
|
resolved. In order to better illustrate this, an example is in
|
|
order; the following example is from the gdb testsuite.
|
|
|
|
We start the program shmain.
|
|
|
|
[kev@arroyo testsuite]$ ../gdb gdb.base/shmain
|
|
[...]
|
|
|
|
We place two breakpoints, one on shr1 and the other on main.
|
|
|
|
(gdb) b shr1
|
|
Breakpoint 1 at 0x100409d4
|
|
(gdb) b main
|
|
Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
|
|
|
|
Examine the instruction (and the immediatly following instruction)
|
|
upon which the breakpoint was placed. Note that the PLT entry
|
|
for shr1 contains zeros.
|
|
|
|
(gdb) x/2i 0x100409d4
|
|
0x100409d4 <shr1>: .long 0x0
|
|
0x100409d8 <shr1+4>: .long 0x0
|
|
|
|
Now run 'til main.
|
|
|
|
(gdb) r
|
|
Starting program: gdb.base/shmain
|
|
Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
|
|
|
|
Breakpoint 2, main ()
|
|
at gdb.base/shmain.c:44
|
|
44 g = 1;
|
|
|
|
Examine the PLT again. Note that the loading of the shared
|
|
library has initialized the PLT to code which loads a constant
|
|
(which I think is an index into the GOT) into r11 and then
|
|
branches a short distance to the code which actually does the
|
|
resolving.
|
|
|
|
(gdb) x/2i 0x100409d4
|
|
0x100409d4 <shr1>: li r11,4
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
|
(gdb) c
|
|
Continuing.
|
|
|
|
Breakpoint 1, shr1 (x=1)
|
|
at gdb.base/shr1.c:19
|
|
19 l = 1;
|
|
|
|
Now we've hit the breakpoint at shr1. (The breakpoint was
|
|
reset from the PLT entry to the actual shr1 function after the
|
|
shared library was loaded.) Note that the PLT entry has been
|
|
resolved to contain a branch that takes us directly to shr1.
|
|
(The real one, not the PLT entry.)
|
|
|
|
(gdb) x/2i 0x100409d4
|
|
0x100409d4 <shr1>: b 0xffaf76c <shr1>
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
|
|
|
The thing to note here is that the PLT entry for shr1 has been
|
|
changed twice.
|
|
|
|
Now the problem should be obvious. GDB places a breakpoint (a
|
|
trap instruction) on the zero value of the PLT entry for shr1.
|
|
Later on, after the shared library had been loaded and the PLT
|
|
initialized, GDB gets a signal indicating this fact and attempts
|
|
(as it always does when it stops) to remove all the breakpoints.
|
|
|
|
The breakpoint removal was causing the former contents (a zero
|
|
word) to be written back to the now initialized PLT entry thus
|
|
destroying a portion of the initialization that had occurred only a
|
|
short time ago. When execution continued, the zero word would be
|
|
executed as an instruction an illegal instruction trap was
|
|
generated instead. (0 is not a legal instruction.)
|
|
|
|
The fix for this problem was fairly straightforward. The function
|
|
memory_remove_breakpoint from mem-break.c was copied to this file,
|
|
modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
|
|
In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
|
|
function.
|
|
|
|
The differences between ppc_linux_memory_remove_breakpoint () and
|
|
memory_remove_breakpoint () are minor. All that the former does
|
|
that the latter does not is check to make sure that the breakpoint
|
|
location actually contains a breakpoint (trap instruction) prior
|
|
to attempting to write back the old contents. If it does contain
|
|
a trap instruction, we allow the old contents to be written back.
|
|
Otherwise, we silently do nothing.
|
|
|
|
The big question is whether memory_remove_breakpoint () should be
|
|
changed to have the same functionality. The downside is that more
|
|
traffic is generated for remote targets since we'll have an extra
|
|
fetch of a memory word each time a breakpoint is removed.
|
|
|
|
For the time being, we'll leave this self-modifying-code-friendly
|
|
version in ppc-linux-tdep.c, but it ought to be migrated somewhere
|
|
else in the event that some other platform has similar needs with
|
|
regard to removing breakpoints in some potentially self modifying
|
|
code. */
|
|
static int
|
|
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
CORE_ADDR addr = bp_tgt->reqstd_address;
|
|
const unsigned char *bp;
|
|
int val;
|
|
int bplen;
|
|
gdb_byte old_contents[BREAKPOINT_MAX];
|
|
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
|
bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
|
|
|
|
/* Make sure we see the memory breakpoints. */
|
|
scoped_restore restore_memory
|
|
= make_scoped_restore_show_memory_breakpoints (1);
|
|
val = target_read_memory (addr, old_contents, bplen);
|
|
|
|
/* If our breakpoint is no longer at the address, this means that the
|
|
program modified the code on us, so it is wrong to put back the
|
|
old value. */
|
|
if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
|
|
val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
|
|
than the 32 bit SYSV R4 ABI structure return convention - all
|
|
structures, no matter their size, are put in memory. Vectors,
|
|
which were added later, do get returned in a register though. */
|
|
|
|
static enum return_value_convention
|
|
ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if ((valtype->code () == TYPE_CODE_STRUCT
|
|
|| valtype->code () == TYPE_CODE_UNION)
|
|
&& !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
|
|
&& TYPE_VECTOR (valtype)))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
else
|
|
return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
|
|
readbuf, writebuf);
|
|
}
|
|
|
|
/* PLT stub in an executable. */
|
|
static const struct ppc_insn_pattern powerpc32_plt_stub[] =
|
|
{
|
|
{ 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
|
|
{ 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
|
|
{ 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
|
|
{ 0xffffffff, 0x4e800420, 0 }, /* bctr */
|
|
{ 0, 0, 0 }
|
|
};
|
|
|
|
/* PLT stubs in a shared library or PIE.
|
|
The first variant is used when the PLT entry is within +/-32k of
|
|
the GOT pointer (r30). */
|
|
static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
|
|
{
|
|
{ 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
|
|
{ 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
|
|
{ 0xffffffff, 0x4e800420, 0 }, /* bctr */
|
|
{ 0, 0, 0 }
|
|
};
|
|
|
|
/* The second variant is used when the PLT entry is more than +/-32k
|
|
from the GOT pointer (r30). */
|
|
static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
|
|
{
|
|
{ 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */
|
|
{ 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
|
|
{ 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
|
|
{ 0xffffffff, 0x4e800420, 0 }, /* bctr */
|
|
{ 0, 0, 0 }
|
|
};
|
|
|
|
/* The max number of insns we check using ppc_insns_match_pattern. */
|
|
#define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)
|
|
|
|
/* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
|
|
section. For secure PLT, stub is in .text and we need to check
|
|
instruction patterns. */
|
|
|
|
static int
|
|
powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
|
|
{
|
|
struct bound_minimal_symbol sym;
|
|
|
|
/* Check whether PC is in the dynamic linker. This also checks
|
|
whether it is in the .plt section, used by non-PIC executables. */
|
|
if (svr4_in_dynsym_resolve_code (pc))
|
|
return 1;
|
|
|
|
/* Check if we are in the resolver. */
|
|
sym = lookup_minimal_symbol_by_pc (pc);
|
|
if (sym.minsym != NULL
|
|
&& (strcmp (sym.minsym->linkage_name (), "__glink") == 0
|
|
|| strcmp (sym.minsym->linkage_name (), "__glink_PLTresolve") == 0))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Follow PLT stub to actual routine.
|
|
|
|
When the execution direction is EXEC_REVERSE, scan backward to
|
|
check whether we are in the middle of a PLT stub. Currently,
|
|
we only look-behind at most 4 instructions (the max length of a PLT
|
|
stub sequence. */
|
|
|
|
static CORE_ADDR
|
|
ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
|
{
|
|
unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR target = 0;
|
|
int scan_limit, i;
|
|
|
|
scan_limit = 1;
|
|
/* When reverse-debugging, scan backward to check whether we are
|
|
in the middle of trampoline code. */
|
|
if (execution_direction == EXEC_REVERSE)
|
|
scan_limit = 4; /* At most 4 instructions. */
|
|
|
|
for (i = 0; i < scan_limit; i++)
|
|
{
|
|
if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
|
|
{
|
|
/* Calculate PLT entry address from
|
|
lis r11, xxxx
|
|
lwz r11, xxxx(r11). */
|
|
target = ((ppc_insn_d_field (insnbuf[0]) << 16)
|
|
+ ppc_insn_d_field (insnbuf[1]));
|
|
}
|
|
else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
|
|
&& ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
|
|
insnbuf))
|
|
{
|
|
/* Calculate PLT entry address from
|
|
lwz r11, xxxx(r30). */
|
|
target = (ppc_insn_d_field (insnbuf[0])
|
|
+ get_frame_register_unsigned (frame,
|
|
tdep->ppc_gp0_regnum + 30));
|
|
}
|
|
else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
|
|
insnbuf))
|
|
{
|
|
/* Calculate PLT entry address from
|
|
addis r11, r30, xxxx
|
|
lwz r11, xxxx(r11). */
|
|
target = ((ppc_insn_d_field (insnbuf[0]) << 16)
|
|
+ ppc_insn_d_field (insnbuf[1])
|
|
+ get_frame_register_unsigned (frame,
|
|
tdep->ppc_gp0_regnum + 30));
|
|
}
|
|
else
|
|
{
|
|
/* Scan backward one more instruction if it doesn't match. */
|
|
pc -= 4;
|
|
continue;
|
|
}
|
|
|
|
target = read_memory_unsigned_integer (target, 4, byte_order);
|
|
return target;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wrappers to handle Linux-only registers. */
|
|
|
|
static void
|
|
ppc_linux_supply_gregset (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs, size_t len)
|
|
{
|
|
const struct ppc_reg_offsets *offsets
|
|
= (const struct ppc_reg_offsets *) regset->regmap;
|
|
|
|
ppc_supply_gregset (regset, regcache, regnum, gregs, len);
|
|
|
|
if (ppc_linux_trap_reg_p (regcache->arch ()))
|
|
{
|
|
/* "orig_r3" is stored 2 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
|
|
ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
|
|
offsets->pc_offset + 2 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
|
|
/* "trap" is stored 8 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
|
|
ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
|
|
offsets->pc_offset + 8 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ppc_linux_collect_gregset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs, size_t len)
|
|
{
|
|
const struct ppc_reg_offsets *offsets
|
|
= (const struct ppc_reg_offsets *) regset->regmap;
|
|
|
|
/* Clear areas in the linux gregset not written elsewhere. */
|
|
if (regnum == -1)
|
|
memset (gregs, 0, len);
|
|
|
|
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
|
|
|
|
if (ppc_linux_trap_reg_p (regcache->arch ()))
|
|
{
|
|
/* "orig_r3" is stored 2 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
|
|
ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
|
|
offsets->pc_offset + 2 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
|
|
/* "trap" is stored 8 slots after "pc". */
|
|
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
|
|
ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
|
|
offsets->pc_offset + 8 * offsets->gpr_size,
|
|
offsets->gpr_size);
|
|
}
|
|
}
|
|
|
|
/* Regset descriptions. */
|
|
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
|
|
{
|
|
/* General-purpose registers. */
|
|
/* .r0_offset = */ 0,
|
|
/* .gpr_size = */ 4,
|
|
/* .xr_size = */ 4,
|
|
/* .pc_offset = */ 128,
|
|
/* .ps_offset = */ 132,
|
|
/* .cr_offset = */ 152,
|
|
/* .lr_offset = */ 144,
|
|
/* .ctr_offset = */ 140,
|
|
/* .xer_offset = */ 148,
|
|
/* .mq_offset = */ 156,
|
|
|
|
/* Floating-point registers. */
|
|
/* .f0_offset = */ 0,
|
|
/* .fpscr_offset = */ 256,
|
|
/* .fpscr_size = */ 8
|
|
};
|
|
|
|
static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
|
|
{
|
|
/* General-purpose registers. */
|
|
/* .r0_offset = */ 0,
|
|
/* .gpr_size = */ 8,
|
|
/* .xr_size = */ 8,
|
|
/* .pc_offset = */ 256,
|
|
/* .ps_offset = */ 264,
|
|
/* .cr_offset = */ 304,
|
|
/* .lr_offset = */ 288,
|
|
/* .ctr_offset = */ 280,
|
|
/* .xer_offset = */ 296,
|
|
/* .mq_offset = */ 312,
|
|
|
|
/* Floating-point registers. */
|
|
/* .f0_offset = */ 0,
|
|
/* .fpscr_offset = */ 256,
|
|
/* .fpscr_size = */ 8
|
|
};
|
|
|
|
static const struct regset ppc32_linux_gregset = {
|
|
&ppc32_linux_reg_offsets,
|
|
ppc_linux_supply_gregset,
|
|
ppc_linux_collect_gregset
|
|
};
|
|
|
|
static const struct regset ppc64_linux_gregset = {
|
|
&ppc64_linux_reg_offsets,
|
|
ppc_linux_supply_gregset,
|
|
ppc_linux_collect_gregset
|
|
};
|
|
|
|
static const struct regset ppc32_linux_fpregset = {
|
|
&ppc32_linux_reg_offsets,
|
|
ppc_supply_fpregset,
|
|
ppc_collect_fpregset
|
|
};
|
|
|
|
static const struct regcache_map_entry ppc32_le_linux_vrregmap[] =
|
|
{
|
|
{ 32, PPC_VR0_REGNUM, 16 },
|
|
{ 1, PPC_VSCR_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12 },
|
|
{ 1, PPC_VRSAVE_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12 },
|
|
{ 0 }
|
|
};
|
|
|
|
static const struct regcache_map_entry ppc32_be_linux_vrregmap[] =
|
|
{
|
|
{ 32, PPC_VR0_REGNUM, 16 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12},
|
|
{ 1, PPC_VSCR_REGNUM, 4 },
|
|
{ 1, PPC_VRSAVE_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12 },
|
|
{ 0 }
|
|
};
|
|
|
|
static const struct regset ppc32_le_linux_vrregset = {
|
|
ppc32_le_linux_vrregmap,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
static const struct regset ppc32_be_linux_vrregset = {
|
|
ppc32_be_linux_vrregmap,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
static const struct regcache_map_entry ppc32_linux_vsxregmap[] =
|
|
{
|
|
{ 32, PPC_VSR0_UPPER_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
static const struct regset ppc32_linux_vsxregset = {
|
|
ppc32_linux_vsxregmap,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Program Priorty Register regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_ppr[] =
|
|
{
|
|
{ 1, PPC_PPR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Program Priorty Register regset. */
|
|
|
|
const struct regset ppc32_linux_pprregset = {
|
|
ppc32_regmap_ppr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Data Stream Control Register regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_dscr[] =
|
|
{
|
|
{ 1, PPC_DSCR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Data Stream Control Register regset. */
|
|
|
|
const struct regset ppc32_linux_dscrregset = {
|
|
ppc32_regmap_dscr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Target Address Register regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_tar[] =
|
|
{
|
|
{ 1, PPC_TAR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Target Address Register regset. */
|
|
|
|
const struct regset ppc32_linux_tarregset = {
|
|
ppc32_regmap_tar,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Event-Based Branching regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_ebb[] =
|
|
{
|
|
{ 1, PPC_EBBRR_REGNUM, 8 },
|
|
{ 1, PPC_EBBHR_REGNUM, 8 },
|
|
{ 1, PPC_BESCR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Event-Based Branching regset. */
|
|
|
|
const struct regset ppc32_linux_ebbregset = {
|
|
ppc32_regmap_ebb,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Performance Monitoring Unit regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_pmu[] =
|
|
{
|
|
{ 1, PPC_SIAR_REGNUM, 8 },
|
|
{ 1, PPC_SDAR_REGNUM, 8 },
|
|
{ 1, PPC_SIER_REGNUM, 8 },
|
|
{ 1, PPC_MMCR2_REGNUM, 8 },
|
|
{ 1, PPC_MMCR0_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Performance Monitoring Unit regset. */
|
|
|
|
const struct regset ppc32_linux_pmuregset = {
|
|
ppc32_regmap_pmu,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Hardware Transactional Memory special-purpose register regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_tm_spr[] =
|
|
{
|
|
{ 1, PPC_TFHAR_REGNUM, 8 },
|
|
{ 1, PPC_TEXASR_REGNUM, 8 },
|
|
{ 1, PPC_TFIAR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory special-purpose register regset. */
|
|
|
|
const struct regset ppc32_linux_tm_sprregset = {
|
|
ppc32_regmap_tm_spr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Regmaps for the Hardware Transactional Memory checkpointed
|
|
general-purpose regsets for 32-bit, 64-bit big-endian, and 64-bit
|
|
little endian targets. The ptrace and core file buffers for 64-bit
|
|
targets use 8-byte fields for the 4-byte registers, and the
|
|
position of the register in the fields depends on the endianness.
|
|
The 32-bit regmap is the same for both endian types because the
|
|
fields are all 4-byte long.
|
|
|
|
The layout of checkpointed GPR regset is the same as a regular
|
|
struct pt_regs, but we skip all registers that are not actually
|
|
checkpointed by the processor (e.g. msr, nip), except when
|
|
generating a core file. The 64-bit regset is 48 * 8 bytes long.
|
|
In some 64-bit kernels, the regset for a 32-bit inferior has the
|
|
same length, but all the registers are squeezed in the first half
|
|
(48 * 4 bytes). The pt_regs struct calls the regular cr ccr, but
|
|
we use ccr for "checkpointed condition register". Note that CR
|
|
(condition register) field 0 is not checkpointed, but the kernel
|
|
returns all 4 bytes. The skipped registers should not be touched
|
|
when writing the regset to the inferior (with
|
|
PTRACE_SETREGSET). */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_cgpr[] =
|
|
{
|
|
{ 32, PPC_CR0_REGNUM, 4 },
|
|
{ 3, REGCACHE_MAP_SKIP, 4 }, /* nip, msr, orig_gpr3. */
|
|
{ 1, PPC_CCTR_REGNUM, 4 },
|
|
{ 1, PPC_CLR_REGNUM, 4 },
|
|
{ 1, PPC_CXER_REGNUM, 4 },
|
|
{ 1, PPC_CCR_REGNUM, 4 },
|
|
{ 9, REGCACHE_MAP_SKIP, 4 }, /* All the rest. */
|
|
{ 0 }
|
|
};
|
|
|
|
static const struct regcache_map_entry ppc64_le_regmap_cgpr[] =
|
|
{
|
|
{ 32, PPC_CR0_REGNUM, 8 },
|
|
{ 3, REGCACHE_MAP_SKIP, 8 },
|
|
{ 1, PPC_CCTR_REGNUM, 8 },
|
|
{ 1, PPC_CLR_REGNUM, 8 },
|
|
{ 1, PPC_CXER_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 4 }, /* CXER padding. */
|
|
{ 1, PPC_CCR_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding. */
|
|
{ 9, REGCACHE_MAP_SKIP, 8},
|
|
{ 0 }
|
|
};
|
|
|
|
static const struct regcache_map_entry ppc64_be_regmap_cgpr[] =
|
|
{
|
|
{ 32, PPC_CR0_REGNUM, 8 },
|
|
{ 3, REGCACHE_MAP_SKIP, 8 },
|
|
{ 1, PPC_CCTR_REGNUM, 8 },
|
|
{ 1, PPC_CLR_REGNUM, 8 },
|
|
{ 1, REGCACHE_MAP_SKIP, 4}, /* CXER padding. */
|
|
{ 1, PPC_CXER_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding. */
|
|
{ 1, PPC_CCR_REGNUM, 4 },
|
|
{ 9, REGCACHE_MAP_SKIP, 8},
|
|
{ 0 }
|
|
};
|
|
|
|
/* Regsets for the Hardware Transactional Memory checkpointed
|
|
general-purpose registers for 32-bit, 64-bit big-endian, and 64-bit
|
|
little endian targets.
|
|
|
|
Some 64-bit kernels generate a checkpointed gpr note section with
|
|
48*8 bytes for a 32-bit thread, of which only 48*4 are actually
|
|
used, so we set the variable size flag in the corresponding regset
|
|
to accept this case. */
|
|
|
|
static const struct regset ppc32_linux_cgprregset = {
|
|
ppc32_regmap_cgpr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset,
|
|
REGSET_VARIABLE_SIZE
|
|
};
|
|
|
|
static const struct regset ppc64_be_linux_cgprregset = {
|
|
ppc64_be_regmap_cgpr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
static const struct regset ppc64_le_linux_cgprregset = {
|
|
ppc64_le_regmap_cgpr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed floating-point regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_cfpr[] =
|
|
{
|
|
{ 32, PPC_CF0_REGNUM, 8 },
|
|
{ 1, PPC_CFPSCR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed floating-point regset. */
|
|
|
|
const struct regset ppc32_linux_cfprregset = {
|
|
ppc32_regmap_cfpr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Regmaps for the Hardware Transactional Memory checkpointed vector
|
|
regsets, for big and little endian targets. The position of the
|
|
4-byte VSCR in its 16-byte field depends on the endianness. */
|
|
|
|
static const struct regcache_map_entry ppc32_le_regmap_cvmx[] =
|
|
{
|
|
{ 32, PPC_CVR0_REGNUM, 16 },
|
|
{ 1, PPC_CVSCR_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12 },
|
|
{ 1, PPC_CVRSAVE_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12 },
|
|
{ 0 }
|
|
};
|
|
|
|
static const struct regcache_map_entry ppc32_be_regmap_cvmx[] =
|
|
{
|
|
{ 32, PPC_CVR0_REGNUM, 16 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12 },
|
|
{ 1, PPC_CVSCR_REGNUM, 4 },
|
|
{ 1, PPC_CVRSAVE_REGNUM, 4 },
|
|
{ 1, REGCACHE_MAP_SKIP, 12},
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed vector regsets, for little
|
|
and big endian targets. */
|
|
|
|
static const struct regset ppc32_le_linux_cvmxregset = {
|
|
ppc32_le_regmap_cvmx,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
static const struct regset ppc32_be_linux_cvmxregset = {
|
|
ppc32_be_regmap_cvmx,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed vector-scalar regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_cvsx[] =
|
|
{
|
|
{ 32, PPC_CVSR0_UPPER_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed vector-scalar regset. */
|
|
|
|
const struct regset ppc32_linux_cvsxregset = {
|
|
ppc32_regmap_cvsx,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed Program Priority Register
|
|
regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_cppr[] =
|
|
{
|
|
{ 1, PPC_CPPR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed Program Priority Register
|
|
regset. */
|
|
|
|
const struct regset ppc32_linux_cpprregset = {
|
|
ppc32_regmap_cppr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed Data Stream Control
|
|
Register regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_cdscr[] =
|
|
{
|
|
{ 1, PPC_CDSCR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed Data Stream Control
|
|
Register regset. */
|
|
|
|
const struct regset ppc32_linux_cdscrregset = {
|
|
ppc32_regmap_cdscr,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed Target Address Register
|
|
regmap. */
|
|
|
|
static const struct regcache_map_entry ppc32_regmap_ctar[] =
|
|
{
|
|
{ 1, PPC_CTAR_REGNUM, 8 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* Hardware Transactional Memory checkpointed Target Address Register
|
|
regset. */
|
|
|
|
const struct regset ppc32_linux_ctarregset = {
|
|
ppc32_regmap_ctar,
|
|
regcache_supply_regset,
|
|
regcache_collect_regset
|
|
};
|
|
|
|
const struct regset *
|
|
ppc_linux_gregset (int wordsize)
|
|
{
|
|
return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
|
|
}
|
|
|
|
const struct regset *
|
|
ppc_linux_fpregset (void)
|
|
{
|
|
return &ppc32_linux_fpregset;
|
|
}
|
|
|
|
const struct regset *
|
|
ppc_linux_vrregset (struct gdbarch *gdbarch)
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
return &ppc32_be_linux_vrregset;
|
|
else
|
|
return &ppc32_le_linux_vrregset;
|
|
}
|
|
|
|
const struct regset *
|
|
ppc_linux_vsxregset (void)
|
|
{
|
|
return &ppc32_linux_vsxregset;
|
|
}
|
|
|
|
const struct regset *
|
|
ppc_linux_cgprregset (struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (tdep->wordsize == 4)
|
|
{
|
|
return &ppc32_linux_cgprregset;
|
|
}
|
|
else
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
return &ppc64_be_linux_cgprregset;
|
|
else
|
|
return &ppc64_le_linux_cgprregset;
|
|
}
|
|
}
|
|
|
|
const struct regset *
|
|
ppc_linux_cvmxregset (struct gdbarch *gdbarch)
|
|
{
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
return &ppc32_be_linux_cvmxregset;
|
|
else
|
|
return &ppc32_le_linux_cvmxregset;
|
|
}
|
|
|
|
/* Collect function used to generate the core note for the
|
|
checkpointed GPR regset. Here, we don't want to skip the
|
|
"checkpointed" NIP and MSR, so that the note section we generate is
|
|
similar to the one generated by the kernel. To avoid having to
|
|
define additional registers in GDB which are not actually
|
|
checkpointed in the architecture, we copy TFHAR to the checkpointed
|
|
NIP slot, which is what the kernel does, and copy the regular MSR
|
|
to the checkpointed MSR slot, which will have a similar value in
|
|
most cases. */
|
|
|
|
static void
|
|
ppc_linux_collect_core_cpgrregset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *buf, size_t len)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
|
|
|
|
/* We collect the checkpointed GPRs already defined in the regular
|
|
regmap, then overlay TFHAR/MSR on the checkpointed NIP/MSR
|
|
slots. */
|
|
cgprregset->collect_regset (cgprregset, regcache, regnum, buf, len);
|
|
|
|
/* Check that we are collecting all the registers, which should be
|
|
the case when generating a core file. */
|
|
if (regnum != -1)
|
|
return;
|
|
|
|
/* PT_NIP and PT_MSR are 32 and 33 for powerpc. Don't redefine
|
|
these symbols since this file can run on clients in other
|
|
architectures where they can already be defined to other
|
|
values. */
|
|
int pt_offset = 32;
|
|
|
|
/* Check that our buffer is long enough to hold two slots at
|
|
pt_offset * wordsize, one for NIP and one for MSR. */
|
|
gdb_assert ((pt_offset + 2) * tdep->wordsize <= len);
|
|
|
|
/* TFHAR is 8 bytes wide, but the NIP slot for a 32-bit thread is
|
|
4-bytes long. We use raw_collect_integer which handles
|
|
differences in the sizes for the source and destination buffers
|
|
for both endian modes. */
|
|
(regcache->raw_collect_integer
|
|
(PPC_TFHAR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
|
|
tdep->wordsize, false));
|
|
|
|
pt_offset = 33;
|
|
|
|
(regcache->raw_collect_integer
|
|
(PPC_MSR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
|
|
tdep->wordsize, false));
|
|
}
|
|
|
|
/* Iterate over supported core file register note sections. */
|
|
|
|
static void
|
|
ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
|
iterate_over_regset_sections_cb *cb,
|
|
void *cb_data,
|
|
const struct regcache *regcache)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int have_altivec = tdep->ppc_vr0_regnum != -1;
|
|
int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
|
|
int have_ppr = tdep->ppc_ppr_regnum != -1;
|
|
int have_dscr = tdep->ppc_dscr_regnum != -1;
|
|
int have_tar = tdep->ppc_tar_regnum != -1;
|
|
|
|
if (tdep->wordsize == 4)
|
|
cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
|
|
else
|
|
cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data);
|
|
|
|
cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data);
|
|
|
|
if (have_altivec)
|
|
{
|
|
const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
|
|
cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET,
|
|
vrregset, "ppc Altivec", cb_data);
|
|
}
|
|
|
|
if (have_vsx)
|
|
cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET,
|
|
&ppc32_linux_vsxregset, "POWER7 VSX", cb_data);
|
|
|
|
if (have_ppr)
|
|
cb (".reg-ppc-ppr", PPC_LINUX_SIZEOF_PPRREGSET,
|
|
PPC_LINUX_SIZEOF_PPRREGSET,
|
|
&ppc32_linux_pprregset, "Priority Program Register", cb_data);
|
|
|
|
if (have_dscr)
|
|
cb (".reg-ppc-dscr", PPC_LINUX_SIZEOF_DSCRREGSET,
|
|
PPC_LINUX_SIZEOF_DSCRREGSET,
|
|
&ppc32_linux_dscrregset, "Data Stream Control Register",
|
|
cb_data);
|
|
|
|
if (have_tar)
|
|
cb (".reg-ppc-tar", PPC_LINUX_SIZEOF_TARREGSET,
|
|
PPC_LINUX_SIZEOF_TARREGSET,
|
|
&ppc32_linux_tarregset, "Target Address Register", cb_data);
|
|
|
|
/* EBB registers are unavailable when ptrace returns ENODATA. Check
|
|
availability when generating a core file (regcache != NULL). */
|
|
if (tdep->have_ebb)
|
|
if (regcache == NULL
|
|
|| REG_VALID == regcache->get_register_status (PPC_BESCR_REGNUM))
|
|
cb (".reg-ppc-ebb", PPC_LINUX_SIZEOF_EBBREGSET,
|
|
PPC_LINUX_SIZEOF_EBBREGSET,
|
|
&ppc32_linux_ebbregset, "Event-based Branching Registers",
|
|
cb_data);
|
|
|
|
if (tdep->ppc_mmcr0_regnum != -1)
|
|
cb (".reg-ppc-pmu", PPC_LINUX_SIZEOF_PMUREGSET,
|
|
PPC_LINUX_SIZEOF_PMUREGSET,
|
|
&ppc32_linux_pmuregset, "Performance Monitor Registers",
|
|
cb_data);
|
|
|
|
if (tdep->have_htm_spr)
|
|
cb (".reg-ppc-tm-spr", PPC_LINUX_SIZEOF_TM_SPRREGSET,
|
|
PPC_LINUX_SIZEOF_TM_SPRREGSET,
|
|
&ppc32_linux_tm_sprregset,
|
|
"Hardware Transactional Memory Special Purpose Registers",
|
|
cb_data);
|
|
|
|
/* Checkpointed registers can be unavailable, don't call back if
|
|
we are generating a core file. */
|
|
|
|
if (tdep->have_htm_core)
|
|
{
|
|
/* Only generate the checkpointed GPR core note if we also have
|
|
access to the HTM SPRs, because we need TFHAR to fill the
|
|
"checkpointed" NIP slot. We can read a core file without it
|
|
since GDB is not aware of this NIP as a visible register. */
|
|
if (regcache == NULL ||
|
|
(REG_VALID == regcache->get_register_status (PPC_CR0_REGNUM)
|
|
&& tdep->have_htm_spr))
|
|
{
|
|
int cgpr_size = (tdep->wordsize == 4?
|
|
PPC32_LINUX_SIZEOF_CGPRREGSET
|
|
: PPC64_LINUX_SIZEOF_CGPRREGSET);
|
|
|
|
const struct regset *cgprregset =
|
|
ppc_linux_cgprregset (gdbarch);
|
|
|
|
if (regcache != NULL)
|
|
{
|
|
struct regset core_cgprregset = *cgprregset;
|
|
|
|
core_cgprregset.collect_regset
|
|
= ppc_linux_collect_core_cpgrregset;
|
|
|
|
cb (".reg-ppc-tm-cgpr",
|
|
cgpr_size, cgpr_size,
|
|
&core_cgprregset,
|
|
"Checkpointed General Purpose Registers", cb_data);
|
|
}
|
|
else
|
|
{
|
|
cb (".reg-ppc-tm-cgpr",
|
|
cgpr_size, cgpr_size,
|
|
cgprregset,
|
|
"Checkpointed General Purpose Registers", cb_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tdep->have_htm_fpu)
|
|
{
|
|
if (regcache == NULL ||
|
|
REG_VALID == regcache->get_register_status (PPC_CF0_REGNUM))
|
|
cb (".reg-ppc-tm-cfpr", PPC_LINUX_SIZEOF_CFPRREGSET,
|
|
PPC_LINUX_SIZEOF_CFPRREGSET,
|
|
&ppc32_linux_cfprregset,
|
|
"Checkpointed Floating Point Registers", cb_data);
|
|
}
|
|
|
|
if (tdep->have_htm_altivec)
|
|
{
|
|
if (regcache == NULL ||
|
|
REG_VALID == regcache->get_register_status (PPC_CVR0_REGNUM))
|
|
{
|
|
const struct regset *cvmxregset =
|
|
ppc_linux_cvmxregset (gdbarch);
|
|
|
|
cb (".reg-ppc-tm-cvmx", PPC_LINUX_SIZEOF_CVMXREGSET,
|
|
PPC_LINUX_SIZEOF_CVMXREGSET,
|
|
cvmxregset,
|
|
"Checkpointed Altivec (VMX) Registers", cb_data);
|
|
}
|
|
}
|
|
|
|
if (tdep->have_htm_vsx)
|
|
{
|
|
if (regcache == NULL ||
|
|
(REG_VALID
|
|
== regcache->get_register_status (PPC_CVSR0_UPPER_REGNUM)))
|
|
cb (".reg-ppc-tm-cvsx", PPC_LINUX_SIZEOF_CVSXREGSET,
|
|
PPC_LINUX_SIZEOF_CVSXREGSET,
|
|
&ppc32_linux_cvsxregset,
|
|
"Checkpointed VSX Registers", cb_data);
|
|
}
|
|
|
|
if (tdep->ppc_cppr_regnum != -1)
|
|
{
|
|
if (regcache == NULL ||
|
|
REG_VALID == regcache->get_register_status (PPC_CPPR_REGNUM))
|
|
cb (".reg-ppc-tm-cppr", PPC_LINUX_SIZEOF_CPPRREGSET,
|
|
PPC_LINUX_SIZEOF_CPPRREGSET,
|
|
&ppc32_linux_cpprregset,
|
|
"Checkpointed Priority Program Register", cb_data);
|
|
}
|
|
|
|
if (tdep->ppc_cdscr_regnum != -1)
|
|
{
|
|
if (regcache == NULL ||
|
|
REG_VALID == regcache->get_register_status (PPC_CDSCR_REGNUM))
|
|
cb (".reg-ppc-tm-cdscr", PPC_LINUX_SIZEOF_CDSCRREGSET,
|
|
PPC_LINUX_SIZEOF_CDSCRREGSET,
|
|
&ppc32_linux_cdscrregset,
|
|
"Checkpointed Data Stream Control Register", cb_data);
|
|
}
|
|
|
|
if (tdep->ppc_ctar_regnum)
|
|
{
|
|
if ( regcache == NULL ||
|
|
REG_VALID == regcache->get_register_status (PPC_CTAR_REGNUM))
|
|
cb (".reg-ppc-tm-ctar", PPC_LINUX_SIZEOF_CTARREGSET,
|
|
PPC_LINUX_SIZEOF_CTARREGSET,
|
|
&ppc32_linux_ctarregset,
|
|
"Checkpointed Target Address Register", cb_data);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func, LONGEST offset,
|
|
int bias)
|
|
{
|
|
CORE_ADDR base;
|
|
CORE_ADDR regs;
|
|
CORE_ADDR gpregs;
|
|
CORE_ADDR fpregs;
|
|
int i;
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
base = get_frame_register_unsigned (this_frame,
|
|
gdbarch_sp_regnum (gdbarch));
|
|
if (bias > 0 && get_frame_pc (this_frame) != func)
|
|
/* See below, some signal trampolines increment the stack as their
|
|
first instruction, need to compensate for that. */
|
|
base -= bias;
|
|
|
|
/* Find the address of the register buffer pointer. */
|
|
regs = base + offset;
|
|
/* Use that to find the address of the corresponding register
|
|
buffers. */
|
|
gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
|
|
fpregs = gpregs + 48 * tdep->wordsize;
|
|
|
|
/* General purpose. */
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
int regnum = i + tdep->ppc_gp0_regnum;
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regnum, gpregs + i * tdep->wordsize);
|
|
}
|
|
trad_frame_set_reg_addr (this_cache,
|
|
gdbarch_pc_regnum (gdbarch),
|
|
gpregs + 32 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
|
|
gpregs + 35 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
|
|
gpregs + 36 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
|
|
gpregs + 37 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
|
|
gpregs + 38 * tdep->wordsize);
|
|
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
{
|
|
trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
|
|
gpregs + 34 * tdep->wordsize);
|
|
trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
|
|
gpregs + 40 * tdep->wordsize);
|
|
}
|
|
|
|
if (ppc_floating_point_unit_p (gdbarch))
|
|
{
|
|
/* Floating point registers. */
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
int regnum = i + gdbarch_fp0_regnum (gdbarch);
|
|
trad_frame_set_reg_addr (this_cache, regnum,
|
|
fpregs + i * tdep->wordsize);
|
|
}
|
|
trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
|
|
fpregs + 32 * tdep->wordsize);
|
|
}
|
|
trad_frame_set_id (this_cache, frame_id_build (base, func));
|
|
}
|
|
|
|
static void
|
|
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0xd0 /* Offset to ucontext_t. */
|
|
+ 0x30 /* Offset to .reg. */,
|
|
0);
|
|
}
|
|
|
|
static void
|
|
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0x80 /* Offset to ucontext_t. */
|
|
+ 0xe0 /* Offset to .reg. */,
|
|
128);
|
|
}
|
|
|
|
static void
|
|
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0x40 /* Offset to ucontext_t. */
|
|
+ 0x1c /* Offset to .reg. */,
|
|
0);
|
|
}
|
|
|
|
static void
|
|
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
|
|
0x80 /* Offset to struct sigcontext. */
|
|
+ 0x38 /* Offset to .reg. */,
|
|
128);
|
|
}
|
|
|
|
static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
|
|
{ 0x44000002, ULONGEST_MAX }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc32_linux_sigaction_cache_init
|
|
};
|
|
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
|
|
{ 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
|
|
{ 0x44000002, ULONGEST_MAX }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc64_linux_sigaction_cache_init
|
|
};
|
|
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x38000077, ULONGEST_MAX }, /* li r0,119 */
|
|
{ 0x44000002, ULONGEST_MAX }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc32_linux_sighandler_cache_init
|
|
};
|
|
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
|
|
{ 0x38000077, ULONGEST_MAX }, /* li r0,119 */
|
|
{ 0x44000002, ULONGEST_MAX }, /* sc */
|
|
{ TRAMP_SENTINEL_INSN },
|
|
},
|
|
ppc64_linux_sighandler_cache_init
|
|
};
|
|
|
|
/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
|
|
int
|
|
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
|
|
{
|
|
/* If we do not have a target description with registers, then
|
|
the special registers will not be included in the register set. */
|
|
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
|
return 0;
|
|
|
|
/* If we do, then it is safe to check the size. */
|
|
return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
|
|
&& register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
|
|
}
|
|
|
|
/* Return the current system call's number present in the
|
|
r0 register. When the function fails, it returns -1. */
|
|
static LONGEST
|
|
ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
|
|
thread_info *thread)
|
|
{
|
|
struct regcache *regcache = get_thread_regcache (thread);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* Make sure we're in a 32- or 64-bit machine */
|
|
gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
|
|
|
|
/* The content of a register */
|
|
gdb::byte_vector buf (tdep->wordsize);
|
|
|
|
/* Getting the system call number from the register.
|
|
When dealing with PowerPC architecture, this information
|
|
is stored at 0th register. */
|
|
regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ());
|
|
|
|
return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
|
|
}
|
|
|
|
/* PPC process record-replay */
|
|
|
|
static struct linux_record_tdep ppc_linux_record_tdep;
|
|
static struct linux_record_tdep ppc64_linux_record_tdep;
|
|
|
|
/* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
|
|
syscall ids into a canonical set of syscall ids used by process
|
|
record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
|
|
Return -1 if this system call is not supported by process record.
|
|
Otherwise, return the syscall number for process record of given
|
|
SYSCALL. */
|
|
|
|
static enum gdb_syscall
|
|
ppc_canonicalize_syscall (int syscall)
|
|
{
|
|
int result = -1;
|
|
|
|
if (syscall <= 165)
|
|
result = syscall;
|
|
else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */
|
|
result = syscall + 1;
|
|
else if (syscall >= 192 && syscall <= 197) /* mmap2 */
|
|
result = syscall;
|
|
else if (syscall == 208) /* tkill */
|
|
result = gdb_sys_tkill;
|
|
else if (syscall >= 207 && syscall <= 220) /* gettid */
|
|
result = syscall + 224 - 207;
|
|
else if (syscall >= 234 && syscall <= 239) /* exit_group */
|
|
result = syscall + 252 - 234;
|
|
else if (syscall >= 240 && syscall <= 248) /* timer_create */
|
|
result = syscall += 259 - 240;
|
|
else if (syscall >= 250 && syscall <= 251) /* tgkill */
|
|
result = syscall + 270 - 250;
|
|
else if (syscall == 336)
|
|
result = gdb_sys_recv;
|
|
else if (syscall == 337)
|
|
result = gdb_sys_recvfrom;
|
|
else if (syscall == 342)
|
|
result = gdb_sys_recvmsg;
|
|
|
|
return (enum gdb_syscall) result;
|
|
}
|
|
|
|
/* Record registers which might be clobbered during system call.
|
|
Return 0 if successful. */
|
|
|
|
static int
|
|
ppc_linux_syscall_record (struct regcache *regcache)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
ULONGEST scnum;
|
|
enum gdb_syscall syscall_gdb;
|
|
int ret;
|
|
|
|
regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
|
|
syscall_gdb = ppc_canonicalize_syscall (scnum);
|
|
|
|
if (syscall_gdb < 0)
|
|
{
|
|
printf_unfiltered (_("Process record and replay target doesn't "
|
|
"support syscall number %d\n"), (int) scnum);
|
|
return 0;
|
|
}
|
|
|
|
if (syscall_gdb == gdb_sys_sigreturn
|
|
|| syscall_gdb == gdb_sys_rt_sigreturn)
|
|
{
|
|
int i, j;
|
|
int regsets[] = { tdep->ppc_gp0_regnum,
|
|
tdep->ppc_fp0_regnum,
|
|
tdep->ppc_vr0_regnum,
|
|
tdep->ppc_vsr0_upper_regnum };
|
|
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
if (regsets[j] == -1)
|
|
continue;
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (tdep->wordsize == 8)
|
|
ret = record_linux_system_call (syscall_gdb, regcache,
|
|
&ppc64_linux_record_tdep);
|
|
else
|
|
ret = record_linux_system_call (syscall_gdb, regcache,
|
|
&ppc_linux_record_tdep);
|
|
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* Record registers clobbered during syscall. */
|
|
for (int i = 3; i <= 12; i++)
|
|
{
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
|
|
return -1;
|
|
}
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Record registers which might be clobbered during signal handling.
|
|
Return 0 if successful. */
|
|
|
|
static int
|
|
ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
enum gdb_signal signal)
|
|
{
|
|
/* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
|
|
handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
|
|
arch/powerpc/include/asm/ptrace.h
|
|
for details. */
|
|
const int SIGNAL_FRAMESIZE = 128;
|
|
const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
|
|
ULONGEST sp;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int i;
|
|
|
|
for (i = 3; i <= 12; i++)
|
|
{
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
|
|
return -1;
|
|
}
|
|
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
|
|
return -1;
|
|
if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
|
|
return -1;
|
|
|
|
/* Record the change in the stack.
|
|
frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */
|
|
regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
|
|
sp -= SIGNAL_FRAMESIZE;
|
|
sp -= sizeof_rt_sigframe;
|
|
|
|
if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
|
|
return -1;
|
|
|
|
if (record_full_arch_list_add_end ())
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
|
|
|
|
/* Set special TRAP register to -1 to prevent the kernel from
|
|
messing with the PC we just installed, if we happen to be
|
|
within an interrupted system call that the kernel wants to
|
|
restart.
|
|
|
|
Note that after we return from the dummy call, the TRAP and
|
|
ORIG_R3 registers will be automatically restored, and the
|
|
kernel continues to restart the system call at this point. */
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
|
|
}
|
|
|
|
static const struct target_desc *
|
|
ppc_linux_core_read_description (struct gdbarch *gdbarch,
|
|
struct target_ops *target,
|
|
bfd *abfd)
|
|
{
|
|
struct ppc_linux_features features = ppc_linux_no_features;
|
|
asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
|
|
asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
|
|
asection *section = bfd_get_section_by_name (abfd, ".reg");
|
|
asection *ppr = bfd_get_section_by_name (abfd, ".reg-ppc-ppr");
|
|
asection *dscr = bfd_get_section_by_name (abfd, ".reg-ppc-dscr");
|
|
asection *tar = bfd_get_section_by_name (abfd, ".reg-ppc-tar");
|
|
asection *pmu = bfd_get_section_by_name (abfd, ".reg-ppc-pmu");
|
|
asection *htmspr = bfd_get_section_by_name (abfd, ".reg-ppc-tm-spr");
|
|
|
|
if (! section)
|
|
return NULL;
|
|
|
|
switch (bfd_section_size (section))
|
|
{
|
|
case 48 * 4:
|
|
features.wordsize = 4;
|
|
break;
|
|
case 48 * 8:
|
|
features.wordsize = 8;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
if (altivec)
|
|
features.altivec = true;
|
|
|
|
if (vsx)
|
|
features.vsx = true;
|
|
|
|
CORE_ADDR hwcap = linux_get_hwcap (target);
|
|
|
|
features.isa205 = ppc_linux_has_isa205 (hwcap);
|
|
|
|
if (ppr && dscr)
|
|
{
|
|
features.ppr_dscr = true;
|
|
|
|
/* We don't require the EBB note section to be present in the
|
|
core file to select isa207 because these registers could have
|
|
been unavailable when the core file was created. They will
|
|
be in the tdep but will show as unavailable. */
|
|
if (tar && pmu)
|
|
{
|
|
features.isa207 = true;
|
|
if (htmspr)
|
|
features.htm = true;
|
|
}
|
|
}
|
|
|
|
return ppc_linux_match_description (features);
|
|
}
|
|
|
|
|
|
/* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
|
|
gdbarch.h. This implementation is used for the ELFv2 ABI only. */
|
|
|
|
static void
|
|
ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
|
|
{
|
|
elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
|
|
|
|
/* If the symbol is marked as having a local entry point, set a target
|
|
flag in the msymbol. We currently only support local entry point
|
|
offsets of 8 bytes, which is the only entry point offset ever used
|
|
by current compilers. If/when other offsets are ever used, we will
|
|
have to use additional target flag bits to store them. */
|
|
switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
|
|
{
|
|
default:
|
|
break;
|
|
case 8:
|
|
MSYMBOL_TARGET_FLAG_1 (msym) = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Implementation of `gdbarch_skip_entrypoint', as defined in
|
|
gdbarch.h. This implementation is used for the ELFv2 ABI only. */
|
|
|
|
static CORE_ADDR
|
|
ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
struct bound_minimal_symbol fun;
|
|
int local_entry_offset = 0;
|
|
|
|
fun = lookup_minimal_symbol_by_pc (pc);
|
|
if (fun.minsym == NULL)
|
|
return pc;
|
|
|
|
/* See ppc_elfv2_elf_make_msymbol_special for how local entry point
|
|
offset values are encoded. */
|
|
if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
|
|
local_entry_offset = 8;
|
|
|
|
if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
|
|
&& pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
|
|
return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Implementation of `gdbarch_stap_is_single_operand', as defined in
|
|
gdbarch.h. */
|
|
|
|
static int
|
|
ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
|
|
{
|
|
return (*s == 'i' /* Literal number. */
|
|
|| (isdigit (*s) && s[1] == '('
|
|
&& isdigit (s[2])) /* Displacement. */
|
|
|| (*s == '(' && isdigit (s[1])) /* Register indirection. */
|
|
|| isdigit (*s)); /* Register value. */
|
|
}
|
|
|
|
/* Implementation of `gdbarch_stap_parse_special_token', as defined in
|
|
gdbarch.h. */
|
|
|
|
static int
|
|
ppc_stap_parse_special_token (struct gdbarch *gdbarch,
|
|
struct stap_parse_info *p)
|
|
{
|
|
if (isdigit (*p->arg))
|
|
{
|
|
/* This temporary pointer is needed because we have to do a lookahead.
|
|
We could be dealing with a register displacement, and in such case
|
|
we would not need to do anything. */
|
|
const char *s = p->arg;
|
|
char *regname;
|
|
int len;
|
|
struct stoken str;
|
|
|
|
while (isdigit (*s))
|
|
++s;
|
|
|
|
if (*s == '(')
|
|
{
|
|
/* It is a register displacement indeed. Returning 0 means we are
|
|
deferring the treatment of this case to the generic parser. */
|
|
return 0;
|
|
}
|
|
|
|
len = s - p->arg;
|
|
regname = (char *) alloca (len + 2);
|
|
regname[0] = 'r';
|
|
|
|
strncpy (regname + 1, p->arg, len);
|
|
++len;
|
|
regname[len] = '\0';
|
|
|
|
if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
|
|
error (_("Invalid register name `%s' on expression `%s'."),
|
|
regname, p->saved_arg);
|
|
|
|
write_exp_elt_opcode (&p->pstate, OP_REGISTER);
|
|
str.ptr = regname;
|
|
str.length = len;
|
|
write_exp_string (&p->pstate, str);
|
|
write_exp_elt_opcode (&p->pstate, OP_REGISTER);
|
|
|
|
p->arg = s;
|
|
}
|
|
else
|
|
{
|
|
/* All the other tokens should be handled correctly by the generic
|
|
parser. */
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize linux_record_tdep if not initialized yet.
|
|
WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
|
|
Sizes of data structures are initialized accordingly. */
|
|
|
|
static void
|
|
ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
|
|
int wordsize)
|
|
{
|
|
/* Simply return if it had been initialized. */
|
|
if (record_tdep->size_pointer != 0)
|
|
return;
|
|
|
|
/* These values are the size of the type that will be used in a system
|
|
call. They are obtained from Linux Kernel source. */
|
|
|
|
if (wordsize == 8)
|
|
{
|
|
record_tdep->size_pointer = 8;
|
|
record_tdep->size__old_kernel_stat = 32;
|
|
record_tdep->size_tms = 32;
|
|
record_tdep->size_loff_t = 8;
|
|
record_tdep->size_flock = 32;
|
|
record_tdep->size_oldold_utsname = 45;
|
|
record_tdep->size_ustat = 32;
|
|
record_tdep->size_old_sigaction = 32;
|
|
record_tdep->size_old_sigset_t = 8;
|
|
record_tdep->size_rlimit = 16;
|
|
record_tdep->size_rusage = 144;
|
|
record_tdep->size_timeval = 16;
|
|
record_tdep->size_timezone = 8;
|
|
record_tdep->size_old_gid_t = 4;
|
|
record_tdep->size_old_uid_t = 4;
|
|
record_tdep->size_fd_set = 128;
|
|
record_tdep->size_old_dirent = 280;
|
|
record_tdep->size_statfs = 120;
|
|
record_tdep->size_statfs64 = 120;
|
|
record_tdep->size_sockaddr = 16;
|
|
record_tdep->size_int = 4;
|
|
record_tdep->size_long = 8;
|
|
record_tdep->size_ulong = 8;
|
|
record_tdep->size_msghdr = 56;
|
|
record_tdep->size_itimerval = 32;
|
|
record_tdep->size_stat = 144;
|
|
record_tdep->size_old_utsname = 325;
|
|
record_tdep->size_sysinfo = 112;
|
|
record_tdep->size_msqid_ds = 120;
|
|
record_tdep->size_shmid_ds = 112;
|
|
record_tdep->size_new_utsname = 390;
|
|
record_tdep->size_timex = 208;
|
|
record_tdep->size_mem_dqinfo = 24;
|
|
record_tdep->size_if_dqblk = 72;
|
|
record_tdep->size_fs_quota_stat = 80;
|
|
record_tdep->size_timespec = 16;
|
|
record_tdep->size_pollfd = 8;
|
|
record_tdep->size_NFS_FHSIZE = 32;
|
|
record_tdep->size_knfsd_fh = 132;
|
|
record_tdep->size_TASK_COMM_LEN = 16;
|
|
record_tdep->size_sigaction = 32;
|
|
record_tdep->size_sigset_t = 8;
|
|
record_tdep->size_siginfo_t = 128;
|
|
record_tdep->size_cap_user_data_t = 8;
|
|
record_tdep->size_stack_t = 24;
|
|
record_tdep->size_off_t = 8;
|
|
record_tdep->size_stat64 = 104;
|
|
record_tdep->size_gid_t = 4;
|
|
record_tdep->size_uid_t = 4;
|
|
record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
|
|
record_tdep->size_flock64 = 32;
|
|
record_tdep->size_io_event = 32;
|
|
record_tdep->size_iocb = 64;
|
|
record_tdep->size_epoll_event = 16;
|
|
record_tdep->size_itimerspec = 32;
|
|
record_tdep->size_mq_attr = 64;
|
|
record_tdep->size_termios = 44;
|
|
record_tdep->size_pid_t = 4;
|
|
record_tdep->size_winsize = 8;
|
|
record_tdep->size_serial_struct = 72;
|
|
record_tdep->size_serial_icounter_struct = 80;
|
|
record_tdep->size_size_t = 8;
|
|
record_tdep->size_iovec = 16;
|
|
record_tdep->size_time_t = 8;
|
|
}
|
|
else if (wordsize == 4)
|
|
{
|
|
record_tdep->size_pointer = 4;
|
|
record_tdep->size__old_kernel_stat = 32;
|
|
record_tdep->size_tms = 16;
|
|
record_tdep->size_loff_t = 8;
|
|
record_tdep->size_flock = 16;
|
|
record_tdep->size_oldold_utsname = 45;
|
|
record_tdep->size_ustat = 20;
|
|
record_tdep->size_old_sigaction = 16;
|
|
record_tdep->size_old_sigset_t = 4;
|
|
record_tdep->size_rlimit = 8;
|
|
record_tdep->size_rusage = 72;
|
|
record_tdep->size_timeval = 8;
|
|
record_tdep->size_timezone = 8;
|
|
record_tdep->size_old_gid_t = 4;
|
|
record_tdep->size_old_uid_t = 4;
|
|
record_tdep->size_fd_set = 128;
|
|
record_tdep->size_old_dirent = 268;
|
|
record_tdep->size_statfs = 64;
|
|
record_tdep->size_statfs64 = 88;
|
|
record_tdep->size_sockaddr = 16;
|
|
record_tdep->size_int = 4;
|
|
record_tdep->size_long = 4;
|
|
record_tdep->size_ulong = 4;
|
|
record_tdep->size_msghdr = 28;
|
|
record_tdep->size_itimerval = 16;
|
|
record_tdep->size_stat = 88;
|
|
record_tdep->size_old_utsname = 325;
|
|
record_tdep->size_sysinfo = 64;
|
|
record_tdep->size_msqid_ds = 68;
|
|
record_tdep->size_shmid_ds = 60;
|
|
record_tdep->size_new_utsname = 390;
|
|
record_tdep->size_timex = 128;
|
|
record_tdep->size_mem_dqinfo = 24;
|
|
record_tdep->size_if_dqblk = 72;
|
|
record_tdep->size_fs_quota_stat = 80;
|
|
record_tdep->size_timespec = 8;
|
|
record_tdep->size_pollfd = 8;
|
|
record_tdep->size_NFS_FHSIZE = 32;
|
|
record_tdep->size_knfsd_fh = 132;
|
|
record_tdep->size_TASK_COMM_LEN = 16;
|
|
record_tdep->size_sigaction = 20;
|
|
record_tdep->size_sigset_t = 8;
|
|
record_tdep->size_siginfo_t = 128;
|
|
record_tdep->size_cap_user_data_t = 4;
|
|
record_tdep->size_stack_t = 12;
|
|
record_tdep->size_off_t = 4;
|
|
record_tdep->size_stat64 = 104;
|
|
record_tdep->size_gid_t = 4;
|
|
record_tdep->size_uid_t = 4;
|
|
record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */
|
|
record_tdep->size_flock64 = 32;
|
|
record_tdep->size_io_event = 32;
|
|
record_tdep->size_iocb = 64;
|
|
record_tdep->size_epoll_event = 16;
|
|
record_tdep->size_itimerspec = 16;
|
|
record_tdep->size_mq_attr = 32;
|
|
record_tdep->size_termios = 44;
|
|
record_tdep->size_pid_t = 4;
|
|
record_tdep->size_winsize = 8;
|
|
record_tdep->size_serial_struct = 60;
|
|
record_tdep->size_serial_icounter_struct = 80;
|
|
record_tdep->size_size_t = 4;
|
|
record_tdep->size_iovec = 8;
|
|
record_tdep->size_time_t = 4;
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, _("unexpected wordsize"));
|
|
|
|
/* These values are the second argument of system call "sys_fcntl"
|
|
and "sys_fcntl64". They are obtained from Linux Kernel source. */
|
|
record_tdep->fcntl_F_GETLK = 5;
|
|
record_tdep->fcntl_F_GETLK64 = 12;
|
|
record_tdep->fcntl_F_SETLK64 = 13;
|
|
record_tdep->fcntl_F_SETLKW64 = 14;
|
|
|
|
record_tdep->arg1 = PPC_R0_REGNUM + 3;
|
|
record_tdep->arg2 = PPC_R0_REGNUM + 4;
|
|
record_tdep->arg3 = PPC_R0_REGNUM + 5;
|
|
record_tdep->arg4 = PPC_R0_REGNUM + 6;
|
|
record_tdep->arg5 = PPC_R0_REGNUM + 7;
|
|
record_tdep->arg6 = PPC_R0_REGNUM + 8;
|
|
|
|
/* These values are the second argument of system call "sys_ioctl".
|
|
They are obtained from Linux Kernel source.
|
|
See arch/powerpc/include/uapi/asm/ioctls.h. */
|
|
record_tdep->ioctl_TCGETS = 0x403c7413;
|
|
record_tdep->ioctl_TCSETS = 0x803c7414;
|
|
record_tdep->ioctl_TCSETSW = 0x803c7415;
|
|
record_tdep->ioctl_TCSETSF = 0x803c7416;
|
|
record_tdep->ioctl_TCGETA = 0x40147417;
|
|
record_tdep->ioctl_TCSETA = 0x80147418;
|
|
record_tdep->ioctl_TCSETAW = 0x80147419;
|
|
record_tdep->ioctl_TCSETAF = 0x8014741c;
|
|
record_tdep->ioctl_TCSBRK = 0x2000741d;
|
|
record_tdep->ioctl_TCXONC = 0x2000741e;
|
|
record_tdep->ioctl_TCFLSH = 0x2000741f;
|
|
record_tdep->ioctl_TIOCEXCL = 0x540c;
|
|
record_tdep->ioctl_TIOCNXCL = 0x540d;
|
|
record_tdep->ioctl_TIOCSCTTY = 0x540e;
|
|
record_tdep->ioctl_TIOCGPGRP = 0x40047477;
|
|
record_tdep->ioctl_TIOCSPGRP = 0x80047476;
|
|
record_tdep->ioctl_TIOCOUTQ = 0x40047473;
|
|
record_tdep->ioctl_TIOCSTI = 0x5412;
|
|
record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
|
|
record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
|
|
record_tdep->ioctl_TIOCMGET = 0x5415;
|
|
record_tdep->ioctl_TIOCMBIS = 0x5416;
|
|
record_tdep->ioctl_TIOCMBIC = 0x5417;
|
|
record_tdep->ioctl_TIOCMSET = 0x5418;
|
|
record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
|
|
record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
|
|
record_tdep->ioctl_FIONREAD = 0x4004667f;
|
|
record_tdep->ioctl_TIOCINQ = 0x4004667f;
|
|
record_tdep->ioctl_TIOCLINUX = 0x541c;
|
|
record_tdep->ioctl_TIOCCONS = 0x541d;
|
|
record_tdep->ioctl_TIOCGSERIAL = 0x541e;
|
|
record_tdep->ioctl_TIOCSSERIAL = 0x541f;
|
|
record_tdep->ioctl_TIOCPKT = 0x5420;
|
|
record_tdep->ioctl_FIONBIO = 0x8004667e;
|
|
record_tdep->ioctl_TIOCNOTTY = 0x5422;
|
|
record_tdep->ioctl_TIOCSETD = 0x5423;
|
|
record_tdep->ioctl_TIOCGETD = 0x5424;
|
|
record_tdep->ioctl_TCSBRKP = 0x5425;
|
|
record_tdep->ioctl_TIOCSBRK = 0x5427;
|
|
record_tdep->ioctl_TIOCCBRK = 0x5428;
|
|
record_tdep->ioctl_TIOCGSID = 0x5429;
|
|
record_tdep->ioctl_TIOCGPTN = 0x40045430;
|
|
record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
|
|
record_tdep->ioctl_FIONCLEX = 0x20006602;
|
|
record_tdep->ioctl_FIOCLEX = 0x20006601;
|
|
record_tdep->ioctl_FIOASYNC = 0x8004667d;
|
|
record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
|
|
record_tdep->ioctl_TIOCSERGWILD = 0x5454;
|
|
record_tdep->ioctl_TIOCSERSWILD = 0x5455;
|
|
record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
|
|
record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
|
|
record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
|
|
record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
|
|
record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
|
|
record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
|
|
record_tdep->ioctl_TIOCMIWAIT = 0x545c;
|
|
record_tdep->ioctl_TIOCGICOUNT = 0x545d;
|
|
record_tdep->ioctl_FIOQSIZE = 0x40086680;
|
|
}
|
|
|
|
/* Return a floating-point format for a floating-point variable of
|
|
length LEN in bits. If non-NULL, NAME is the name of its type.
|
|
If no suitable type is found, return NULL. */
|
|
|
|
static const struct floatformat **
|
|
ppc_floatformat_for_type (struct gdbarch *gdbarch,
|
|
const char *name, int len)
|
|
{
|
|
if (len == 128 && name)
|
|
{
|
|
if (strcmp (name, "__float128") == 0
|
|
|| strcmp (name, "_Float128") == 0
|
|
|| strcmp (name, "_Float64x") == 0
|
|
|| strcmp (name, "complex _Float128") == 0
|
|
|| strcmp (name, "complex _Float64x") == 0)
|
|
return floatformats_ia64_quad;
|
|
|
|
if (strcmp (name, "__ibm128") == 0)
|
|
return floatformats_ibm_long_double;
|
|
}
|
|
|
|
return default_floatformat_for_type (gdbarch, name, len);
|
|
}
|
|
|
|
static void
|
|
ppc_linux_init_abi (struct gdbarch_info info,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct tdesc_arch_data *tdesc_data = info.tdesc_data;
|
|
static const char *const stap_integer_prefixes[] = { "i", NULL };
|
|
static const char *const stap_register_indirection_prefixes[] = { "(",
|
|
NULL };
|
|
static const char *const stap_register_indirection_suffixes[] = { ")",
|
|
NULL };
|
|
|
|
linux_init_abi (info, gdbarch);
|
|
|
|
/* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
|
|
128-bit, they can be either IBM long double or IEEE quad long double.
|
|
The 64-bit long double case will be detected automatically using
|
|
the size specified in debug info. We use a .gnu.attribute flag
|
|
to distinguish between the IBM long double and IEEE quad cases. */
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
|
if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
|
else
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
|
|
|
|
/* Support for floating-point data type variants. */
|
|
set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);
|
|
|
|
/* Handle inferior calls during interrupted system calls. */
|
|
set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
|
|
|
|
/* Get the syscall number from the arch's register. */
|
|
set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
|
|
|
|
/* SystemTap functions. */
|
|
set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
|
|
set_gdbarch_stap_register_indirection_prefixes (gdbarch,
|
|
stap_register_indirection_prefixes);
|
|
set_gdbarch_stap_register_indirection_suffixes (gdbarch,
|
|
stap_register_indirection_suffixes);
|
|
set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
|
|
set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
|
|
set_gdbarch_stap_parse_special_token (gdbarch,
|
|
ppc_stap_parse_special_token);
|
|
|
|
if (tdep->wordsize == 4)
|
|
{
|
|
/* Until November 2001, gcc did not comply with the 32 bit SysV
|
|
R4 ABI requirement that structures less than or equal to 8
|
|
bytes should be returned in registers. Instead GCC was using
|
|
the AIX/PowerOpen ABI - everything returned in memory
|
|
(well ignoring vectors that is). When this was corrected, it
|
|
wasn't fixed for GNU/Linux native platform. Use the
|
|
PowerOpen struct convention. */
|
|
set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
|
|
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
|
ppc_linux_memory_remove_breakpoint);
|
|
|
|
/* Shared library handling. */
|
|
set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
|
/* Setting the correct XML syscall filename. */
|
|
set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);
|
|
|
|
/* Trampolines. */
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&ppc32_linux_sigaction_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&ppc32_linux_sighandler_tramp_frame);
|
|
|
|
/* BFD target for core files. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
|
|
else
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
|
|
|
|
if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
|
|
{
|
|
powerpc_so_ops = svr4_so_ops;
|
|
/* Override dynamic resolve function. */
|
|
powerpc_so_ops.in_dynsym_resolve_code =
|
|
powerpc_linux_in_dynsym_resolve_code;
|
|
}
|
|
set_solib_ops (gdbarch, &powerpc_so_ops);
|
|
|
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
|
}
|
|
|
|
if (tdep->wordsize == 8)
|
|
{
|
|
if (tdep->elf_abi == POWERPC_ELF_V1)
|
|
{
|
|
/* Handle PPC GNU/Linux 64-bit function pointers (which are really
|
|
function descriptors). */
|
|
set_gdbarch_convert_from_func_ptr_addr
|
|
(gdbarch, ppc64_convert_from_func_ptr_addr);
|
|
|
|
set_gdbarch_elf_make_msymbol_special
|
|
(gdbarch, ppc64_elf_make_msymbol_special);
|
|
}
|
|
else
|
|
{
|
|
set_gdbarch_elf_make_msymbol_special
|
|
(gdbarch, ppc_elfv2_elf_make_msymbol_special);
|
|
|
|
set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
|
|
}
|
|
|
|
/* Shared library handling. */
|
|
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
|
|
|
/* Setting the correct XML syscall filename. */
|
|
set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);
|
|
|
|
/* Trampolines. */
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&ppc64_linux_sigaction_tramp_frame);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
&ppc64_linux_sighandler_tramp_frame);
|
|
|
|
/* BFD target for core files. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
|
|
else
|
|
set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
|
|
}
|
|
|
|
set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
|
|
set_gdbarch_iterate_over_regset_sections (gdbarch,
|
|
ppc_linux_iterate_over_regset_sections);
|
|
|
|
/* Enable TLS support. */
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
|
svr4_fetch_objfile_link_map);
|
|
|
|
if (tdesc_data)
|
|
{
|
|
const struct tdesc_feature *feature;
|
|
|
|
/* If we have target-described registers, then we can safely
|
|
reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
|
|
(whether they are described or not). */
|
|
gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
|
|
set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
|
|
|
|
/* If they are present, then assign them to the reserved number. */
|
|
feature = tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.power.linux");
|
|
if (feature != NULL)
|
|
{
|
|
tdesc_numbered_register (feature, tdesc_data,
|
|
PPC_ORIG_R3_REGNUM, "orig_r3");
|
|
tdesc_numbered_register (feature, tdesc_data,
|
|
PPC_TRAP_REGNUM, "trap");
|
|
}
|
|
}
|
|
|
|
set_gdbarch_displaced_step_location (gdbarch,
|
|
linux_displaced_step_location);
|
|
|
|
/* Support reverse debugging. */
|
|
set_gdbarch_process_record (gdbarch, ppc_process_record);
|
|
set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
|
|
tdep->ppc_syscall_record = ppc_linux_syscall_record;
|
|
|
|
ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
|
|
ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
|
|
}
|
|
|
|
void _initialize_ppc_linux_tdep ();
|
|
void
|
|
_initialize_ppc_linux_tdep ()
|
|
{
|
|
/* Register for all sub-families of the POWER/PowerPC: 32-bit and
|
|
64-bit PowerPC, and the older rs6k. */
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
|
|
ppc_linux_init_abi);
|
|
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
|
|
ppc_linux_init_abi);
|
|
gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
|
|
ppc_linux_init_abi);
|
|
|
|
/* Initialize the Linux target descriptions. */
|
|
initialize_tdesc_powerpc_32l ();
|
|
initialize_tdesc_powerpc_altivec32l ();
|
|
initialize_tdesc_powerpc_vsx32l ();
|
|
initialize_tdesc_powerpc_isa205_32l ();
|
|
initialize_tdesc_powerpc_isa205_altivec32l ();
|
|
initialize_tdesc_powerpc_isa205_vsx32l ();
|
|
initialize_tdesc_powerpc_isa205_ppr_dscr_vsx32l ();
|
|
initialize_tdesc_powerpc_isa207_vsx32l ();
|
|
initialize_tdesc_powerpc_isa207_htm_vsx32l ();
|
|
initialize_tdesc_powerpc_64l ();
|
|
initialize_tdesc_powerpc_altivec64l ();
|
|
initialize_tdesc_powerpc_vsx64l ();
|
|
initialize_tdesc_powerpc_isa205_64l ();
|
|
initialize_tdesc_powerpc_isa205_altivec64l ();
|
|
initialize_tdesc_powerpc_isa205_vsx64l ();
|
|
initialize_tdesc_powerpc_isa205_ppr_dscr_vsx64l ();
|
|
initialize_tdesc_powerpc_isa207_vsx64l ();
|
|
initialize_tdesc_powerpc_isa207_htm_vsx64l ();
|
|
initialize_tdesc_powerpc_e500l ();
|
|
}
|