224c3ddb89
Most allocation functions (if not all) return a void* pointing to the allocated memory. In C++, we need to add an explicit cast when assigning the result to a pointer to another type (which is the case more often than not). The content of this patch is taken from Pedro's branch, from commit "(mostly) auto-generated patch to insert casts needed for C++". I validated that the changes make sense and manually reflowed the code to make it respect the coding style. I also found multiple places where I could use XNEW/XNEWVEC/XRESIZEVEC/etc. Thanks a lot to whoever did that automated script to insert casts, doing it completely by hand would have taken a ridiculous amount of time. Only files built on x86 with --enable-targets=all are modified. This means that all other -nat.c files are untouched and will have to be dealt with later by using appropiate compilers. Or maybe we can try to build them with a regular g++ just to know where to add casts, I don't know. I built-tested this with --enable-targets=all and reg-tested. Here's the changelog entry, which was not too bad to make despite the size, thanks to David Malcom's script. I fixed some bits by hand, but there might be some wrong parts left (hopefully not). gdb/ChangeLog: * aarch64-linux-tdep.c (aarch64_stap_parse_special_token): Add cast to allocation result assignment. * ada-exp.y (write_object_renaming): Likewise. (write_ambiguous_var): Likewise. (ada_nget_field_index): Likewise. (write_var_or_type): Likewise. * ada-lang.c (ada_decode_symbol): Likewise. (ada_value_assign): Likewise. (value_pointer): Likewise. (cache_symbol): Likewise. (add_nonlocal_symbols): Likewise. (ada_name_for_lookup): Likewise. (symbol_completion_add): Likewise. (ada_to_fixed_type_1): Likewise. (ada_get_next_arg): Likewise. (defns_collected): Likewise. * ada-lex.l (processId): Likewise. (processString): Likewise. * ada-tasks.c (read_known_tasks_array): Likewise. (read_known_tasks_list): Likewise. * ada-typeprint.c (decoded_type_name): Likewise. * addrmap.c (addrmap_mutable_create_fixed): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_displaced_step_copy_insn): Likewise. (amd64_classify_insn_at): Likewise. (amd64_relocate_instruction): Likewise. * amd64obsd-tdep.c (amd64obsd_sigtramp_p): Likewise. * arch-utils.c (simple_displaced_step_copy_insn): Likewise. (initialize_current_architecture): Likewise. * arm-linux-tdep.c (arm_stap_parse_special_token): Likewise. * arm-symbian-tdep.c (arm_symbian_osabi_sniffer): Likewise. * arm-tdep.c (arm_exidx_new_objfile): Likewise. (arm_push_dummy_call): Likewise. (extend_buffer_earlier): Likewise. (arm_adjust_breakpoint_address): Likewise. (arm_skip_stub): Likewise. * auto-load.c (filename_is_in_pattern): Likewise. (maybe_add_script_file): Likewise. (maybe_add_script_text): Likewise. (auto_load_objfile_script_1): Likewise. * auxv.c (ld_so_xfer_auxv): Likewise. * ax-general.c (new_agent_expr): Likewise. (grow_expr): Likewise. (ax_reg_mask): Likewise. * bcache.c (bcache_full): Likewise. * breakpoint.c (program_breakpoint_here_p): Likewise. * btrace.c (parse_xml_raw): Likewise. * build-id.c (build_id_to_debug_bfd): Likewise. * buildsym.c (end_symtab_with_blockvector): Likewise. * c-exp.y (string_exp): Likewise. (qualified_name): Likewise. (write_destructor_name): Likewise. (operator_stoken): Likewise. (parse_number): Likewise. (scan_macro_expansion): Likewise. (yylex): Likewise. (c_print_token): Likewise. * c-lang.c (c_get_string): Likewise. (emit_numeric_character): Likewise. * charset.c (wchar_iterate): Likewise. * cli/cli-cmds.c (complete_command): Likewise. (make_command): Likewise. * cli/cli-dump.c (restore_section_callback): Likewise. (restore_binary_file): Likewise. * cli/cli-interp.c (cli_interpreter_exec): Likewise. * cli/cli-script.c (execute_control_command): Likewise. * cli/cli-setshow.c (do_set_command): Likewise. * coff-pe-read.c (add_pe_forwarded_sym): Likewise. (read_pe_exported_syms): Likewise. * coffread.c (coff_read_struct_type): Likewise. (coff_read_enum_type): Likewise. * common/btrace-common.c (btrace_data_append): Likewise. * common/buffer.c (buffer_grow): Likewise. * common/filestuff.c (gdb_fopen_cloexec): Likewise. * common/format.c (parse_format_string): Likewise. * common/gdb_vecs.c (delim_string_to_char_ptr_vec_append): Likewise. * common/xml-utils.c (xml_escape_text): Likewise. * compile/compile-object-load.c (copy_sections): Likewise. (compile_object_load): Likewise. * compile/compile-object-run.c (compile_object_run): Likewise. * completer.c (filename_completer): Likewise. * corefile.c (read_memory_typed_address): Likewise. (write_memory_unsigned_integer): Likewise. (write_memory_signed_integer): Likewise. (complete_set_gnutarget): Likewise. * corelow.c (get_core_register_section): Likewise. * cp-name-parser.y (d_grab): Likewise. (allocate_info): Likewise. (cp_new_demangle_parse_info): Likewise. * cp-namespace.c (cp_scan_for_anonymous_namespaces): Likewise. (cp_lookup_symbol_in_namespace): Likewise. (lookup_namespace_scope): Likewise. (find_symbol_in_baseclass): Likewise. (cp_lookup_nested_symbol): Likewise. (cp_lookup_transparent_type_loop): Likewise. * cp-support.c (copy_string_to_obstack): Likewise. (make_symbol_overload_list): Likewise. (make_symbol_overload_list_namespace): Likewise. (make_symbol_overload_list_adl_namespace): Likewise. (first_component_command): Likewise. * cp-valprint.c (cp_print_value): Likewise. * ctf.c (ctf_xfer_partial): Likewise. * d-exp.y (StringExp): Likewise. * d-namespace.c (d_lookup_symbol_in_module): Likewise. (lookup_module_scope): Likewise. (find_symbol_in_baseclass): Likewise. (d_lookup_nested_symbol): Likewise. * dbxread.c (find_stab_function_addr): Likewise. (read_dbx_symtab): Likewise. (dbx_end_psymtab): Likewise. (cp_set_block_scope): Likewise. * dcache.c (dcache_alloc): Likewise. * demangle.c (_initialize_demangler): Likewise. * dicos-tdep.c (dicos_load_module_p): Likewise. * dictionary.c (dict_create_hashed_expandable): Likewise. (dict_create_linear_expandable): Likewise. (expand_hashtable): Likewise. (add_symbol_linear_expandable): Likewise. * dwarf2-frame.c (add_cie): Likewise. (add_fde): Likewise. (dwarf2_build_frame_info): Likewise. * dwarf2expr.c (dwarf_expr_grow_stack): Likewise. (dwarf_expr_fetch_address): Likewise. (add_piece): Likewise. (execute_stack_op): Likewise. * dwarf2loc.c (chain_candidate): Likewise. (dwarf_entry_parameter_to_value): Likewise. (read_pieced_value): Likewise. (write_pieced_value): Likewise. * dwarf2read.c (dwarf2_read_section): Likewise. (add_type_unit): Likewise. (read_comp_units_from_section): Likewise. (fixup_go_packaging): Likewise. (dwarf2_compute_name): Likewise. (dwarf2_physname): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (read_func_scope): Likewise. (read_call_site_scope): Likewise. (dwarf2_attach_fields_to_type): Likewise. (process_structure_scope): Likewise. (mark_common_block_symbol_computed): Likewise. (read_common_block): Likewise. (abbrev_table_read_table): Likewise. (guess_partial_die_structure_name): Likewise. (fixup_partial_die): Likewise. (add_file_name): Likewise. (dwarf2_const_value_data): Likewise. (dwarf2_const_value_attr): Likewise. (build_error_marker_type): Likewise. (guess_full_die_structure_name): Likewise. (anonymous_struct_prefix): Likewise. (typename_concat): Likewise. (dwarf2_canonicalize_name): Likewise. (dwarf2_name): Likewise. (write_constant_as_bytes): Likewise. (dwarf2_fetch_constant_bytes): Likewise. (copy_string): Likewise. (parse_macro_definition): Likewise. * elfread.c (elf_symfile_segments): Likewise. (elf_rel_plt_read): Likewise. (elf_gnu_ifunc_resolve_by_cache): Likewise. (elf_gnu_ifunc_resolve_by_got): Likewise. (elf_read_minimal_symbols): Likewise. (elf_gnu_ifunc_record_cache): Likewise. * event-top.c (top_level_prompt): Likewise. (command_line_handler): Likewise. * exec.c (resize_section_table): Likewise. * expprint.c (print_subexp_standard): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * findcmd.c (parse_find_args): Likewise. * findvar.c (address_from_register): Likewise. * frame.c (get_prev_frame_always): Likewise. * gdb_bfd.c (gdb_bfd_ref): Likewise. (get_section_descriptor): Likewise. * gdb_obstack.c (obconcat): Likewise. (obstack_strdup): Likewise. * gdbtypes.c (lookup_function_type_with_arguments): Likewise. (create_set_type): Likewise. (lookup_unsigned_typename): Likewise. (lookup_signed_typename): Likewise. (resolve_dynamic_union): Likewise. (resolve_dynamic_struct): Likewise. (add_dyn_prop): Likewise. (copy_dynamic_prop_list): Likewise. (arch_flags_type): Likewise. (append_composite_type_field_raw): Likewise. * gdbtypes.h (INIT_FUNC_SPECIFIC): Likewise. * gnu-v3-abi.c (gnuv3_rtti_type): Likewise. * go-exp.y (string_exp): Likewise. * go-lang.c (go_demangle): Likewise. * guile/guile.c (compute_scheme_string): Likewise. * guile/scm-cmd.c (gdbscm_parse_command_name): Likewise. (gdbscm_canonicalize_command_name): Likewise. * guile/scm-ports.c (ioscm_init_stdio_buffers): Likewise. (ioscm_init_memory_port): Likewise. (ioscm_reinit_memory_port): Likewise. * guile/scm-utils.c (gdbscm_gc_xstrdup): Likewise. (gdbscm_gc_dup_argv): Likewise. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (internalize_unwinds): Likewise. (read_unwind_info): Likewise. * i386-cygwin-tdep.c (core_process_module_section): Likewise. (windows_core_xfer_shared_libraries): Likewise. * i386-tdep.c (i386_displaced_step_copy_insn): Likewise. (i386_stap_parse_special_token_triplet): Likewise. (i386_stap_parse_special_token_three_arg_disp): Likewise. * i386obsd-tdep.c (i386obsd_sigtramp_p): Likewise. * inf-child.c (inf_child_fileio_readlink): Likewise. * inf-ptrace.c (inf_ptrace_fetch_register): Likewise. (inf_ptrace_store_register): Likewise. * infrun.c (follow_exec): Likewise. (displaced_step_prepare_throw): Likewise. (save_stop_context): Likewise. (save_infcall_suspend_state): Likewise. * jit.c (jit_read_descriptor): Likewise. (jit_read_code_entry): Likewise. (jit_symtab_line_mapping_add_impl): Likewise. (finalize_symtab): Likewise. (jit_unwind_reg_get_impl): Likewise. * jv-exp.y (QualifiedName): Likewise. * jv-lang.c (get_java_utf8_name): Likewise. (type_from_class): Likewise. (java_demangle_type_signature): Likewise. (java_class_name_from_physname): Likewise. * jv-typeprint.c (java_type_print_base): Likewise. * jv-valprint.c (java_value_print): Likewise. * language.c (add_language): Likewise. * linespec.c (add_sal_to_sals_basic): Likewise. (add_sal_to_sals): Likewise. (decode_objc): Likewise. (find_linespec_symbols): Likewise. * linux-fork.c (fork_save_infrun_state): Likewise. * linux-nat.c (linux_nat_detach): Likewise. (linux_nat_fileio_readlink): Likewise. * linux-record.c (record_linux_sockaddr): Likewise. (record_linux_msghdr): Likewise. (Do): Likewise. * linux-tdep.c (linux_core_info_proc_mappings): Likewise. (linux_collect_regset_section_cb): Likewise. (linux_get_siginfo_data): Likewise. * linux-thread-db.c (try_thread_db_load_from_pdir_1): Likewise. (try_thread_db_load_from_dir): Likewise. (thread_db_load_search): Likewise. (info_auto_load_libthread_db): Likewise. * m32c-tdep.c (m32c_m16c_address_to_pointer): Likewise. (m32c_m16c_pointer_to_address): Likewise. * m68hc11-tdep.c (m68hc11_pseudo_register_write): Likewise. * m68k-tdep.c (m68k_get_longjmp_target): Likewise. * machoread.c (macho_check_dsym): Likewise. * macroexp.c (resize_buffer): Likewise. (gather_arguments): Likewise. (maybe_expand): Likewise. * macrotab.c (new_macro_key): Likewise. (new_source_file): Likewise. (new_macro_definition): Likewise. * mdebugread.c (parse_symbol): Likewise. (parse_type): Likewise. (parse_partial_symbols): Likewise. (psymtab_to_symtab_1): Likewise. * mem-break.c (default_memory_insert_breakpoint): Likewise. * mi/mi-cmd-break.c (mi_argv_to_format): Likewise. * mi/mi-main.c (mi_cmd_data_read_memory): Likewise. (mi_cmd_data_read_memory_bytes): Likewise. (mi_cmd_data_write_memory_bytes): Likewise. (mi_cmd_trace_frame_collected): Likewise. * mi/mi-parse.c (mi_parse_argv): Likewise. (mi_parse): Likewise. * minidebug.c (lzma_open): Likewise. (lzma_pread): Likewise. * mips-tdep.c (mips_read_fp_register_single): Likewise. (mips_print_fp_register): Likewise. * mipsnbsd-tdep.c (mipsnbsd_get_longjmp_target): Likewise. * mipsread.c (read_alphacoff_dynamic_symtab): Likewise. * mt-tdep.c (mt_register_name): Likewise. (mt_registers_info): Likewise. (mt_push_dummy_call): Likewise. * namespace.c (add_using_directive): Likewise. * nat/linux-btrace.c (perf_event_read): Likewise. (linux_enable_bts): Likewise. * nat/linux-osdata.c (linux_common_core_of_thread): Likewise. * nat/linux-ptrace.c (linux_ptrace_test_ret_to_nx): Likewise. * nto-tdep.c (nto_find_and_open_solib): Likewise. (nto_parse_redirection): Likewise. * objc-lang.c (objc_demangle): Likewise. (find_methods): Likewise. * objfiles.c (get_objfile_bfd_data): Likewise. (set_objfile_main_name): Likewise. (allocate_objfile): Likewise. (objfile_relocate): Likewise. (update_section_map): Likewise. * osabi.c (generic_elf_osabi_sniff_abi_tag_sections): Likewise. * p-exp.y (exp): Likewise. (yylex): Likewise. * p-valprint.c (pascal_object_print_value): Likewise. * parse.c (initialize_expout): Likewise. (mark_completion_tag): Likewise. (copy_name): Likewise. (parse_float): Likewise. (type_stack_reserve): Likewise. * ppc-linux-tdep.c (ppc_stap_parse_special_token): Likewise. (ppu2spu_prev_register): Likewise. * ppc-ravenscar-thread.c (supply_register_at_address): Likewise. * printcmd.c (printf_wide_c_string): Likewise. (printf_pointer): Likewise. * probe.c (parse_probes): Likewise. * python/py-cmd.c (gdbpy_parse_command_name): Likewise. (cmdpy_init): Likewise. * python/py-gdb-readline.c (gdbpy_readline_wrapper): Likewise. * python/py-symtab.c (set_sal): Likewise. * python/py-unwind.c (pyuw_sniffer): Likewise. * python/python.c (python_interactive_command): Likewise. (compute_python_string): Likewise. * ravenscar-thread.c (get_running_thread_id): Likewise. * record-full.c (record_full_exec_insn): Likewise. (record_full_core_open_1): Likewise. * regcache.c (regcache_raw_read_signed): Likewise. (regcache_raw_read_unsigned): Likewise. (regcache_cooked_read_signed): Likewise. (regcache_cooked_read_unsigned): Likewise. * remote-fileio.c (remote_fileio_func_open): Likewise. (remote_fileio_func_rename): Likewise. (remote_fileio_func_unlink): Likewise. (remote_fileio_func_stat): Likewise. (remote_fileio_func_system): Likewise. * remote-mips.c (mips_xfer_memory): Likewise. (mips_load_srec): Likewise. (pmon_end_download): Likewise. * remote.c (new_remote_state): Likewise. (map_regcache_remote_table): Likewise. (remote_register_number_and_offset): Likewise. (init_remote_state): Likewise. (get_memory_packet_size): Likewise. (remote_pass_signals): Likewise. (remote_program_signals): Likewise. (remote_start_remote): Likewise. (remote_check_symbols): Likewise. (remote_query_supported): Likewise. (extended_remote_attach): Likewise. (process_g_packet): Likewise. (store_registers_using_G): Likewise. (putpkt_binary): Likewise. (read_frame): Likewise. (compare_sections_command): Likewise. (remote_hostio_pread): Likewise. (remote_hostio_readlink): Likewise. (remote_file_put): Likewise. (remote_file_get): Likewise. (remote_pid_to_exec_file): Likewise. (_initialize_remote): Likewise. * rs6000-aix-tdep.c (rs6000_aix_ld_info_to_xml): Likewise. (rs6000_aix_core_xfer_shared_libraries_aix): Likewise. * rs6000-tdep.c (ppc_displaced_step_copy_insn): Likewise. (bfd_uses_spe_extensions): Likewise. * s390-linux-tdep.c (s390_displaced_step_copy_insn): Likewise. * score-tdep.c (score7_malloc_and_get_memblock): Likewise. * solib-dsbt.c (decode_loadmap): Likewise. (fetch_loadmap): Likewise. (scan_dyntag): Likewise. (enable_break): Likewise. (dsbt_relocate_main_executable): Likewise. * solib-frv.c (fetch_loadmap): Likewise. (enable_break2): Likewise. (frv_relocate_main_executable): Likewise. * solib-spu.c (spu_relocate_main_executable): Likewise. (spu_bfd_open): Likewise. * solib-svr4.c (lm_info_read): Likewise. (read_program_header): Likewise. (find_program_interpreter): Likewise. (scan_dyntag): Likewise. (elf_locate_base): Likewise. (open_symbol_file_object): Likewise. (read_program_headers_from_bfd): Likewise. (svr4_relocate_main_executable): Likewise. * solib-target.c (solib_target_relocate_section_addresses): Likewise. * solib.c (solib_find_1): Likewise. (exec_file_find): Likewise. (solib_find): Likewise. * source.c (openp): Likewise. (print_source_lines_base): Likewise. (forward_search_command): Likewise. * sparc-ravenscar-thread.c (supply_register_at_address): Likewise. * spu-tdep.c (spu2ppu_prev_register): Likewise. (spu_get_overlay_table): Likewise. * stabsread.c (patch_block_stabs): Likewise. (define_symbol): Likewise. (again:): Likewise. (read_member_functions): Likewise. (read_one_struct_field): Likewise. (read_enum_type): Likewise. (common_block_start): Likewise. * stack.c (read_frame_arg): Likewise. (backtrace_command): Likewise. * stap-probe.c (stap_parse_register_operand): Likewise. * symfile.c (syms_from_objfile_1): Likewise. (find_separate_debug_file): Likewise. (load_command): Likewise. (load_progress): Likewise. (load_section_callback): Likewise. (reread_symbols): Likewise. (add_filename_language): Likewise. (allocate_compunit_symtab): Likewise. (read_target_long_array): Likewise. (simple_read_overlay_table): Likewise. * symtab.c (symbol_set_names): Likewise. (resize_symbol_cache): Likewise. (rbreak_command): Likewise. (completion_list_add_name): Likewise. (completion_list_objc_symbol): Likewise. (add_filename_to_list): Likewise. * target-descriptions.c (maint_print_c_tdesc_cmd): Likewise. * target-memory.c (target_write_memory_blocks): Likewise. * target.c (target_read_string): Likewise. (read_whatever_is_readable): Likewise. (target_read_alloc_1): Likewise. (simple_search_memory): Likewise. (target_fileio_read_alloc_1): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * top.c (command_line_input): Likewise. * tracefile-tfile.c (tfile_fetch_registers): Likewise. * tracefile.c (tracefile_fetch_registers): Likewise. * tracepoint.c (add_memrange): Likewise. (init_collection_list): Likewise. (add_aexpr): Likewise. (trace_dump_actions): Likewise. (parse_trace_status): Likewise. (parse_tracepoint_definition): Likewise. (parse_tsv_definition): Likewise. (parse_static_tracepoint_marker_definition): Likewise. * tui/tui-file.c (tui_sfileopen): Likewise. (tui_file_adjust_strbuf): Likewise. * tui/tui-io.c (tui_expand_tabs): Likewise. * tui/tui-source.c (tui_set_source_content): Likewise. * typeprint.c (find_global_typedef): Likewise. * ui-file.c (do_ui_file_xstrdup): Likewise. (ui_file_obsavestring): Likewise. (mem_file_write): Likewise. * utils.c (make_hex_string): Likewise. (get_regcomp_error): Likewise. (puts_filtered_tabular): Likewise. (gdb_realpath_keepfile): Likewise. (ldirname): Likewise. (gdb_bfd_errmsg): Likewise. (substitute_path_component): Likewise. * valops.c (search_struct_method): Likewise. (find_oload_champ_namespace_loop): Likewise. * valprint.c (print_decimal_chars): Likewise. (read_string): Likewise. (generic_emit_char): Likewise. * varobj.c (varobj_delete): Likewise. (varobj_value_get_print_value): Likewise. * vaxobsd-tdep.c (vaxobsd_sigtramp_sniffer): Likewise. * windows-tdep.c (display_one_tib): Likewise. * xcoffread.c (read_xcoff_symtab): Likewise. (process_xcoff_symbol): Likewise. (swap_sym): Likewise. (scan_xcoff_symtab): Likewise. (xcoff_initial_scan): Likewise. * xml-support.c (gdb_xml_end_element): Likewise. (xml_process_xincludes): Likewise. (xml_fetch_content_from_file): Likewise. * xml-syscall.c (xml_list_of_syscalls): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. gdb/gdbserver/ChangeLog: * ax.c (gdb_parse_agent_expr): Add cast to allocation result assignment. (gdb_unparse_agent_expr): Likewise. * hostio.c (require_data): Likewise. (handle_pread): Likewise. * linux-low.c (disable_regset): Likewise. (fetch_register): Likewise. (store_register): Likewise. (get_dynamic): Likewise. (linux_qxfer_libraries_svr4): Likewise. * mem-break.c (delete_fast_tracepoint_jump): Likewise. (set_fast_tracepoint_jump): Likewise. (uninsert_fast_tracepoint_jumps_at): Likewise. (reinsert_fast_tracepoint_jumps_at): Likewise. (validate_inserted_breakpoint): Likewise. (clone_agent_expr): Likewise. * regcache.c (init_register_cache): Likewise. * remote-utils.c (putpkt_binary_1): Likewise. (decode_M_packet): Likewise. (decode_X_packet): Likewise. (look_up_one_symbol): Likewise. (relocate_instruction): Likewise. (monitor_output): Likewise. * server.c (handle_search_memory): Likewise. (handle_qxfer_exec_file): Likewise. (handle_qxfer_libraries): Likewise. (handle_qxfer): Likewise. (handle_query): Likewise. (handle_v_cont): Likewise. (handle_v_run): Likewise. (captured_main): Likewise. * target.c (write_inferior_memory): Likewise. * thread-db.c (try_thread_db_load_from_dir): Likewise. * tracepoint.c (init_trace_buffer): Likewise. (add_tracepoint_action): Likewise. (add_traceframe): Likewise. (add_traceframe_block): Likewise. (cmd_qtdpsrc): Likewise. (cmd_qtdv): Likewise. (cmd_qtstatus): Likewise. (response_source): Likewise. (response_tsv): Likewise. (cmd_qtnotes): Likewise. (gdb_collect): Likewise. (initialize_tracepoint): Likewise.
839 lines
23 KiB
C
839 lines
23 KiB
C
/* Low-level child interface to ptrace.
|
||
|
||
Copyright (C) 1988-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "command.h"
|
||
#include "inferior.h"
|
||
#include "inflow.h"
|
||
#include "terminal.h"
|
||
#include "gdbcore.h"
|
||
#include "regcache.h"
|
||
#include "nat/gdb_ptrace.h"
|
||
#include "gdb_wait.h"
|
||
#include <signal.h>
|
||
|
||
#include "inf-ptrace.h"
|
||
#include "inf-child.h"
|
||
#include "gdbthread.h"
|
||
|
||
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
|
||
/* Target hook for follow_fork. On entry and at return inferior_ptid is
|
||
the ptid of the followed inferior. */
|
||
|
||
static int
|
||
inf_ptrace_follow_fork (struct target_ops *ops, int follow_child,
|
||
int detach_fork)
|
||
{
|
||
if (!follow_child)
|
||
{
|
||
struct thread_info *tp = inferior_thread ();
|
||
pid_t child_pid = ptid_get_pid (tp->pending_follow.value.related_pid);
|
||
|
||
/* Breakpoints have already been detached from the child by
|
||
infrun.c. */
|
||
|
||
if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
inf_ptrace_insert_fork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
inf_ptrace_remove_fork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
#endif /* PT_GET_PROCESS_STATE */
|
||
|
||
|
||
/* Prepare to be traced. */
|
||
|
||
static void
|
||
inf_ptrace_me (void)
|
||
{
|
||
/* "Trace me, Dr. Memory!" */
|
||
ptrace (PT_TRACE_ME, 0, (PTRACE_TYPE_ARG3)0, 0);
|
||
}
|
||
|
||
/* Start a new inferior Unix child process. EXEC_FILE is the file to
|
||
run, ALLARGS is a string containing the arguments to the program.
|
||
ENV is the environment vector to pass. If FROM_TTY is non-zero, be
|
||
chatty about it. */
|
||
|
||
static void
|
||
inf_ptrace_create_inferior (struct target_ops *ops,
|
||
char *exec_file, char *allargs, char **env,
|
||
int from_tty)
|
||
{
|
||
int pid;
|
||
|
||
/* Do not change either targets above or the same target if already present.
|
||
The reason is the target stack is shared across multiple inferiors. */
|
||
int ops_already_pushed = target_is_pushed (ops);
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
|
||
|
||
if (! ops_already_pushed)
|
||
{
|
||
/* Clear possible core file with its process_stratum. */
|
||
push_target (ops);
|
||
make_cleanup_unpush_target (ops);
|
||
}
|
||
|
||
pid = fork_inferior (exec_file, allargs, env, inf_ptrace_me, NULL,
|
||
NULL, NULL, NULL);
|
||
|
||
discard_cleanups (back_to);
|
||
|
||
startup_inferior (START_INFERIOR_TRAPS_EXPECTED);
|
||
|
||
/* On some targets, there must be some explicit actions taken after
|
||
the inferior has been started up. */
|
||
target_post_startup_inferior (pid_to_ptid (pid));
|
||
}
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
|
||
static void
|
||
inf_ptrace_post_startup_inferior (struct target_ops *self, ptid_t pid)
|
||
{
|
||
ptrace_event_t pe;
|
||
|
||
/* Set the initial event mask. */
|
||
memset (&pe, 0, sizeof pe);
|
||
pe.pe_set_event |= PTRACE_FORK;
|
||
if (ptrace (PT_SET_EVENT_MASK, ptid_get_pid (pid),
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Clean up a rotting corpse of an inferior after it died. */
|
||
|
||
static void
|
||
inf_ptrace_mourn_inferior (struct target_ops *ops)
|
||
{
|
||
int status;
|
||
|
||
/* Wait just one more time to collect the inferior's exit status.
|
||
Do not check whether this succeeds though, since we may be
|
||
dealing with a process that we attached to. Such a process will
|
||
only report its exit status to its original parent. */
|
||
waitpid (ptid_get_pid (inferior_ptid), &status, 0);
|
||
|
||
inf_child_mourn_inferior (ops);
|
||
}
|
||
|
||
/* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
|
||
be chatty about it. */
|
||
|
||
static void
|
||
inf_ptrace_attach (struct target_ops *ops, const char *args, int from_tty)
|
||
{
|
||
char *exec_file;
|
||
pid_t pid;
|
||
struct inferior *inf;
|
||
|
||
/* Do not change either targets above or the same target if already present.
|
||
The reason is the target stack is shared across multiple inferiors. */
|
||
int ops_already_pushed = target_is_pushed (ops);
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
|
||
|
||
pid = parse_pid_to_attach (args);
|
||
|
||
if (pid == getpid ()) /* Trying to masturbate? */
|
||
error (_("I refuse to debug myself!"));
|
||
|
||
if (! ops_already_pushed)
|
||
{
|
||
/* target_pid_to_str already uses the target. Also clear possible core
|
||
file with its process_stratum. */
|
||
push_target (ops);
|
||
make_cleanup_unpush_target (ops);
|
||
}
|
||
|
||
if (from_tty)
|
||
{
|
||
exec_file = get_exec_file (0);
|
||
|
||
if (exec_file)
|
||
printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
|
||
target_pid_to_str (pid_to_ptid (pid)));
|
||
else
|
||
printf_unfiltered (_("Attaching to %s\n"),
|
||
target_pid_to_str (pid_to_ptid (pid)));
|
||
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
#ifdef PT_ATTACH
|
||
errno = 0;
|
||
ptrace (PT_ATTACH, pid, (PTRACE_TYPE_ARG3)0, 0);
|
||
if (errno != 0)
|
||
perror_with_name (("ptrace"));
|
||
#else
|
||
error (_("This system does not support attaching to a process"));
|
||
#endif
|
||
|
||
inf = current_inferior ();
|
||
inferior_appeared (inf, pid);
|
||
inf->attach_flag = 1;
|
||
inferior_ptid = pid_to_ptid (pid);
|
||
|
||
/* Always add a main thread. If some target extends the ptrace
|
||
target, it should decorate the ptid later with more info. */
|
||
add_thread_silent (inferior_ptid);
|
||
|
||
discard_cleanups (back_to);
|
||
}
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
|
||
static void
|
||
inf_ptrace_post_attach (struct target_ops *self, int pid)
|
||
{
|
||
ptrace_event_t pe;
|
||
|
||
/* Set the initial event mask. */
|
||
memset (&pe, 0, sizeof pe);
|
||
pe.pe_set_event |= PTRACE_FORK;
|
||
if (ptrace (PT_SET_EVENT_MASK, pid,
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Detach from the inferior, optionally passing it the signal
|
||
specified by ARGS. If FROM_TTY is non-zero, be chatty about it. */
|
||
|
||
static void
|
||
inf_ptrace_detach (struct target_ops *ops, const char *args, int from_tty)
|
||
{
|
||
pid_t pid = ptid_get_pid (inferior_ptid);
|
||
int sig = 0;
|
||
|
||
if (from_tty)
|
||
{
|
||
char *exec_file = get_exec_file (0);
|
||
if (exec_file == 0)
|
||
exec_file = "";
|
||
printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
|
||
target_pid_to_str (pid_to_ptid (pid)));
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
if (args)
|
||
sig = atoi (args);
|
||
|
||
#ifdef PT_DETACH
|
||
/* We'd better not have left any breakpoints in the program or it'll
|
||
die when it hits one. Also note that this may only work if we
|
||
previously attached to the inferior. It *might* work if we
|
||
started the process ourselves. */
|
||
errno = 0;
|
||
ptrace (PT_DETACH, pid, (PTRACE_TYPE_ARG3)1, sig);
|
||
if (errno != 0)
|
||
perror_with_name (("ptrace"));
|
||
#else
|
||
error (_("This system does not support detaching from a process"));
|
||
#endif
|
||
|
||
inferior_ptid = null_ptid;
|
||
detach_inferior (pid);
|
||
|
||
inf_child_maybe_unpush_target (ops);
|
||
}
|
||
|
||
/* Kill the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_kill (struct target_ops *ops)
|
||
{
|
||
pid_t pid = ptid_get_pid (inferior_ptid);
|
||
int status;
|
||
|
||
if (pid == 0)
|
||
return;
|
||
|
||
ptrace (PT_KILL, pid, (PTRACE_TYPE_ARG3)0, 0);
|
||
waitpid (pid, &status, 0);
|
||
|
||
target_mourn_inferior ();
|
||
}
|
||
|
||
/* Interrupt the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_interrupt (struct target_ops *self, ptid_t ptid)
|
||
{
|
||
/* Send a SIGINT to the process group. This acts just like the user
|
||
typed a ^C on the controlling terminal. Note that using a
|
||
negative process number in kill() is a System V-ism. The proper
|
||
BSD interface is killpg(). However, all modern BSDs support the
|
||
System V interface too. */
|
||
kill (-inferior_process_group (), SIGINT);
|
||
}
|
||
|
||
/* Return which PID to pass to ptrace in order to observe/control the
|
||
tracee identified by PTID. */
|
||
|
||
static pid_t
|
||
get_ptrace_pid (ptid_t ptid)
|
||
{
|
||
pid_t pid;
|
||
|
||
/* If we have an LWPID to work with, use it. Otherwise, we're
|
||
dealing with a non-threaded program/target. */
|
||
pid = ptid_get_lwp (ptid);
|
||
if (pid == 0)
|
||
pid = ptid_get_pid (ptid);
|
||
return pid;
|
||
}
|
||
|
||
/* Resume execution of thread PTID, or all threads if PTID is -1. If
|
||
STEP is nonzero, single-step it. If SIGNAL is nonzero, give it
|
||
that signal. */
|
||
|
||
static void
|
||
inf_ptrace_resume (struct target_ops *ops,
|
||
ptid_t ptid, int step, enum gdb_signal signal)
|
||
{
|
||
pid_t pid;
|
||
int request;
|
||
|
||
if (ptid_equal (minus_one_ptid, ptid))
|
||
/* Resume all threads. Traditionally ptrace() only supports
|
||
single-threaded processes, so simply resume the inferior. */
|
||
pid = ptid_get_pid (inferior_ptid);
|
||
else
|
||
pid = get_ptrace_pid (ptid);
|
||
|
||
if (catch_syscall_enabled () > 0)
|
||
request = PT_SYSCALL;
|
||
else
|
||
request = PT_CONTINUE;
|
||
|
||
if (step)
|
||
{
|
||
/* If this system does not support PT_STEP, a higher level
|
||
function will have called single_step() to transmute the step
|
||
request into a continue request (by setting breakpoints on
|
||
all possible successor instructions), so we don't have to
|
||
worry about that here. */
|
||
request = PT_STEP;
|
||
}
|
||
|
||
/* An address of (PTRACE_TYPE_ARG3)1 tells ptrace to continue from
|
||
where it was. If GDB wanted it to start some other way, we have
|
||
already written a new program counter value to the child. */
|
||
errno = 0;
|
||
ptrace (request, pid, (PTRACE_TYPE_ARG3)1, gdb_signal_to_host (signal));
|
||
if (errno != 0)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
/* Wait for the child specified by PTID to do something. Return the
|
||
process ID of the child, or MINUS_ONE_PTID in case of error; store
|
||
the status in *OURSTATUS. */
|
||
|
||
static ptid_t
|
||
inf_ptrace_wait (struct target_ops *ops,
|
||
ptid_t ptid, struct target_waitstatus *ourstatus, int options)
|
||
{
|
||
pid_t pid;
|
||
int status, save_errno;
|
||
|
||
do
|
||
{
|
||
set_sigint_trap ();
|
||
|
||
do
|
||
{
|
||
pid = waitpid (ptid_get_pid (ptid), &status, 0);
|
||
save_errno = errno;
|
||
}
|
||
while (pid == -1 && errno == EINTR);
|
||
|
||
clear_sigint_trap ();
|
||
|
||
if (pid == -1)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
_("Child process unexpectedly missing: %s.\n"),
|
||
safe_strerror (save_errno));
|
||
|
||
/* Claim it exited with unknown signal. */
|
||
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
||
ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
|
||
return inferior_ptid;
|
||
}
|
||
|
||
/* Ignore terminated detached child processes. */
|
||
if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
|
||
pid = -1;
|
||
}
|
||
while (pid == -1);
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
if (WIFSTOPPED (status))
|
||
{
|
||
ptrace_state_t pe;
|
||
pid_t fpid;
|
||
|
||
if (ptrace (PT_GET_PROCESS_STATE, pid,
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
|
||
switch (pe.pe_report_event)
|
||
{
|
||
case PTRACE_FORK:
|
||
ourstatus->kind = TARGET_WAITKIND_FORKED;
|
||
ourstatus->value.related_pid = pid_to_ptid (pe.pe_other_pid);
|
||
|
||
/* Make sure the other end of the fork is stopped too. */
|
||
fpid = waitpid (pe.pe_other_pid, &status, 0);
|
||
if (fpid == -1)
|
||
perror_with_name (("waitpid"));
|
||
|
||
if (ptrace (PT_GET_PROCESS_STATE, fpid,
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
|
||
gdb_assert (pe.pe_report_event == PTRACE_FORK);
|
||
gdb_assert (pe.pe_other_pid == pid);
|
||
if (fpid == ptid_get_pid (inferior_ptid))
|
||
{
|
||
ourstatus->value.related_pid = pid_to_ptid (pe.pe_other_pid);
|
||
return pid_to_ptid (fpid);
|
||
}
|
||
|
||
return pid_to_ptid (pid);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
store_waitstatus (ourstatus, status);
|
||
return pid_to_ptid (pid);
|
||
}
|
||
|
||
/* Implement the to_xfer_partial target_ops method. */
|
||
|
||
static enum target_xfer_status
|
||
inf_ptrace_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
pid_t pid = ptid_get_pid (inferior_ptid);
|
||
|
||
switch (object)
|
||
{
|
||
case TARGET_OBJECT_MEMORY:
|
||
#ifdef PT_IO
|
||
/* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO
|
||
request that promises to be much more efficient in reading
|
||
and writing data in the traced process's address space. */
|
||
{
|
||
struct ptrace_io_desc piod;
|
||
|
||
/* NOTE: We assume that there are no distinct address spaces
|
||
for instruction and data. However, on OpenBSD 3.9 and
|
||
later, PIOD_WRITE_D doesn't allow changing memory that's
|
||
mapped read-only. Since most code segments will be
|
||
read-only, using PIOD_WRITE_D will prevent us from
|
||
inserting breakpoints, so we use PIOD_WRITE_I instead. */
|
||
piod.piod_op = writebuf ? PIOD_WRITE_I : PIOD_READ_D;
|
||
piod.piod_addr = writebuf ? (void *) writebuf : readbuf;
|
||
piod.piod_offs = (void *) (long) offset;
|
||
piod.piod_len = len;
|
||
|
||
errno = 0;
|
||
if (ptrace (PT_IO, pid, (caddr_t)&piod, 0) == 0)
|
||
{
|
||
/* Return the actual number of bytes read or written. */
|
||
*xfered_len = piod.piod_len;
|
||
return (piod.piod_len == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
|
||
}
|
||
/* If the PT_IO request is somehow not supported, fallback on
|
||
using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
|
||
to indicate failure. */
|
||
if (errno != EINVAL)
|
||
return TARGET_XFER_EOF;
|
||
}
|
||
#endif
|
||
{
|
||
union
|
||
{
|
||
PTRACE_TYPE_RET word;
|
||
gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
|
||
} buffer;
|
||
ULONGEST rounded_offset;
|
||
ULONGEST partial_len;
|
||
|
||
/* Round the start offset down to the next long word
|
||
boundary. */
|
||
rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
|
||
|
||
/* Since ptrace will transfer a single word starting at that
|
||
rounded_offset the partial_len needs to be adjusted down to
|
||
that (remember this function only does a single transfer).
|
||
Should the required length be even less, adjust it down
|
||
again. */
|
||
partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
|
||
if (partial_len > len)
|
||
partial_len = len;
|
||
|
||
if (writebuf)
|
||
{
|
||
/* If OFFSET:PARTIAL_LEN is smaller than
|
||
ROUNDED_OFFSET:WORDSIZE then a read/modify write will
|
||
be needed. Read in the entire word. */
|
||
if (rounded_offset < offset
|
||
|| (offset + partial_len
|
||
< rounded_offset + sizeof (PTRACE_TYPE_RET)))
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer.word = ptrace (PT_READ_I, pid,
|
||
(PTRACE_TYPE_ARG3)(uintptr_t)
|
||
rounded_offset, 0);
|
||
|
||
/* Copy data to be written over corresponding part of
|
||
buffer. */
|
||
memcpy (buffer.byte + (offset - rounded_offset),
|
||
writebuf, partial_len);
|
||
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, pid,
|
||
(PTRACE_TYPE_ARG3)(uintptr_t)rounded_offset,
|
||
buffer.word);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WRITE_I, pid,
|
||
(PTRACE_TYPE_ARG3)(uintptr_t)rounded_offset,
|
||
buffer.word);
|
||
if (errno)
|
||
return TARGET_XFER_EOF;
|
||
}
|
||
}
|
||
|
||
if (readbuf)
|
||
{
|
||
errno = 0;
|
||
buffer.word = ptrace (PT_READ_I, pid,
|
||
(PTRACE_TYPE_ARG3)(uintptr_t)rounded_offset,
|
||
0);
|
||
if (errno)
|
||
return TARGET_XFER_EOF;
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (readbuf, buffer.byte + (offset - rounded_offset),
|
||
partial_len);
|
||
}
|
||
|
||
*xfered_len = partial_len;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
|
||
case TARGET_OBJECT_UNWIND_TABLE:
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_AUXV:
|
||
#if defined (PT_IO) && defined (PIOD_READ_AUXV)
|
||
/* OpenBSD 4.5 has a new PIOD_READ_AUXV operation for the PT_IO
|
||
request that allows us to read the auxilliary vector. Other
|
||
BSD's may follow if they feel the need to support PIE. */
|
||
{
|
||
struct ptrace_io_desc piod;
|
||
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
piod.piod_op = PIOD_READ_AUXV;
|
||
piod.piod_addr = readbuf;
|
||
piod.piod_offs = (void *) (long) offset;
|
||
piod.piod_len = len;
|
||
|
||
errno = 0;
|
||
if (ptrace (PT_IO, pid, (caddr_t)&piod, 0) == 0)
|
||
{
|
||
/* Return the actual number of bytes read or written. */
|
||
*xfered_len = piod.piod_len;
|
||
return (piod.piod_len == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
|
||
}
|
||
}
|
||
#endif
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_WCOOKIE:
|
||
return TARGET_XFER_E_IO;
|
||
|
||
default:
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if the thread specified by PTID is alive. */
|
||
|
||
static int
|
||
inf_ptrace_thread_alive (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
/* ??? Is kill the right way to do this? */
|
||
return (kill (ptid_get_pid (ptid), 0) != -1);
|
||
}
|
||
|
||
/* Print status information about what we're accessing. */
|
||
|
||
static void
|
||
inf_ptrace_files_info (struct target_ops *ignore)
|
||
{
|
||
struct inferior *inf = current_inferior ();
|
||
|
||
printf_filtered (_("\tUsing the running image of %s %s.\n"),
|
||
inf->attach_flag ? "attached" : "child",
|
||
target_pid_to_str (inferior_ptid));
|
||
}
|
||
|
||
static char *
|
||
inf_ptrace_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
#if defined (PT_IO) && defined (PIOD_READ_AUXV)
|
||
|
||
/* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
|
||
Return 0 if *READPTR is already at the end of the buffer.
|
||
Return -1 if there is insufficient buffer for a whole entry.
|
||
Return 1 if an entry was read into *TYPEP and *VALP. */
|
||
|
||
static int
|
||
inf_ptrace_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
|
||
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
||
{
|
||
struct type *int_type = builtin_type (target_gdbarch ())->builtin_int;
|
||
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
|
||
const int sizeof_auxv_type = TYPE_LENGTH (int_type);
|
||
const int sizeof_auxv_val = TYPE_LENGTH (ptr_type);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
||
gdb_byte *ptr = *readptr;
|
||
|
||
if (endptr == ptr)
|
||
return 0;
|
||
|
||
if (endptr - ptr < 2 * sizeof_auxv_val)
|
||
return -1;
|
||
|
||
*typep = extract_unsigned_integer (ptr, sizeof_auxv_type, byte_order);
|
||
ptr += sizeof_auxv_val; /* Alignment. */
|
||
*valp = extract_unsigned_integer (ptr, sizeof_auxv_val, byte_order);
|
||
ptr += sizeof_auxv_val;
|
||
|
||
*readptr = ptr;
|
||
return 1;
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Create a prototype ptrace target. The client can override it with
|
||
local methods. */
|
||
|
||
struct target_ops *
|
||
inf_ptrace_target (void)
|
||
{
|
||
struct target_ops *t = inf_child_target ();
|
||
|
||
t->to_attach = inf_ptrace_attach;
|
||
t->to_detach = inf_ptrace_detach;
|
||
t->to_resume = inf_ptrace_resume;
|
||
t->to_wait = inf_ptrace_wait;
|
||
t->to_files_info = inf_ptrace_files_info;
|
||
t->to_kill = inf_ptrace_kill;
|
||
t->to_create_inferior = inf_ptrace_create_inferior;
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
t->to_follow_fork = inf_ptrace_follow_fork;
|
||
t->to_insert_fork_catchpoint = inf_ptrace_insert_fork_catchpoint;
|
||
t->to_remove_fork_catchpoint = inf_ptrace_remove_fork_catchpoint;
|
||
t->to_post_startup_inferior = inf_ptrace_post_startup_inferior;
|
||
t->to_post_attach = inf_ptrace_post_attach;
|
||
#endif
|
||
t->to_mourn_inferior = inf_ptrace_mourn_inferior;
|
||
t->to_thread_alive = inf_ptrace_thread_alive;
|
||
t->to_pid_to_str = inf_ptrace_pid_to_str;
|
||
t->to_interrupt = inf_ptrace_interrupt;
|
||
t->to_xfer_partial = inf_ptrace_xfer_partial;
|
||
#if defined (PT_IO) && defined (PIOD_READ_AUXV)
|
||
t->to_auxv_parse = inf_ptrace_auxv_parse;
|
||
#endif
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Pointer to a function that returns the offset within the user area
|
||
where a particular register is stored. */
|
||
static CORE_ADDR (*inf_ptrace_register_u_offset)(struct gdbarch *, int, int);
|
||
|
||
/* Fetch register REGNUM from the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_fetch_register (struct regcache *regcache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
CORE_ADDR addr;
|
||
size_t size;
|
||
PTRACE_TYPE_RET *buf;
|
||
int pid, i;
|
||
|
||
/* This isn't really an address, but ptrace thinks of it as one. */
|
||
addr = inf_ptrace_register_u_offset (gdbarch, regnum, 0);
|
||
if (addr == (CORE_ADDR)-1
|
||
|| gdbarch_cannot_fetch_register (gdbarch, regnum))
|
||
{
|
||
regcache_raw_supply (regcache, regnum, NULL);
|
||
return;
|
||
}
|
||
|
||
/* Cater for systems like GNU/Linux, that implement threads as
|
||
separate processes. */
|
||
pid = ptid_get_lwp (inferior_ptid);
|
||
if (pid == 0)
|
||
pid = ptid_get_pid (inferior_ptid);
|
||
|
||
size = register_size (gdbarch, regnum);
|
||
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
||
buf = (long int *) alloca (size);
|
||
|
||
/* Read the register contents from the inferior a chunk at a time. */
|
||
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
||
{
|
||
errno = 0;
|
||
buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)(uintptr_t)addr, 0);
|
||
if (errno != 0)
|
||
error (_("Couldn't read register %s (#%d): %s."),
|
||
gdbarch_register_name (gdbarch, regnum),
|
||
regnum, safe_strerror (errno));
|
||
|
||
addr += sizeof (PTRACE_TYPE_RET);
|
||
}
|
||
regcache_raw_supply (regcache, regnum, buf);
|
||
}
|
||
|
||
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
|
||
for all registers. */
|
||
|
||
static void
|
||
inf_ptrace_fetch_registers (struct target_ops *ops,
|
||
struct regcache *regcache, int regnum)
|
||
{
|
||
if (regnum == -1)
|
||
for (regnum = 0;
|
||
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
||
regnum++)
|
||
inf_ptrace_fetch_register (regcache, regnum);
|
||
else
|
||
inf_ptrace_fetch_register (regcache, regnum);
|
||
}
|
||
|
||
/* Store register REGNUM into the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_store_register (const struct regcache *regcache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
CORE_ADDR addr;
|
||
size_t size;
|
||
PTRACE_TYPE_RET *buf;
|
||
int pid, i;
|
||
|
||
/* This isn't really an address, but ptrace thinks of it as one. */
|
||
addr = inf_ptrace_register_u_offset (gdbarch, regnum, 1);
|
||
if (addr == (CORE_ADDR)-1
|
||
|| gdbarch_cannot_store_register (gdbarch, regnum))
|
||
return;
|
||
|
||
/* Cater for systems like GNU/Linux, that implement threads as
|
||
separate processes. */
|
||
pid = ptid_get_lwp (inferior_ptid);
|
||
if (pid == 0)
|
||
pid = ptid_get_pid (inferior_ptid);
|
||
|
||
size = register_size (gdbarch, regnum);
|
||
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
||
buf = (long int *) alloca (size);
|
||
|
||
/* Write the register contents into the inferior a chunk at a time. */
|
||
regcache_raw_collect (regcache, regnum, buf);
|
||
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)(uintptr_t)addr, buf[i]);
|
||
if (errno != 0)
|
||
error (_("Couldn't write register %s (#%d): %s."),
|
||
gdbarch_register_name (gdbarch, regnum),
|
||
regnum, safe_strerror (errno));
|
||
|
||
addr += sizeof (PTRACE_TYPE_RET);
|
||
}
|
||
}
|
||
|
||
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
|
||
this for all registers. */
|
||
|
||
static void
|
||
inf_ptrace_store_registers (struct target_ops *ops,
|
||
struct regcache *regcache, int regnum)
|
||
{
|
||
if (regnum == -1)
|
||
for (regnum = 0;
|
||
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
||
regnum++)
|
||
inf_ptrace_store_register (regcache, regnum);
|
||
else
|
||
inf_ptrace_store_register (regcache, regnum);
|
||
}
|
||
|
||
/* Create a "traditional" ptrace target. REGISTER_U_OFFSET should be
|
||
a function returning the offset within the user area where a
|
||
particular register is stored. */
|
||
|
||
struct target_ops *
|
||
inf_ptrace_trad_target (CORE_ADDR (*register_u_offset)
|
||
(struct gdbarch *, int, int))
|
||
{
|
||
struct target_ops *t = inf_ptrace_target();
|
||
|
||
gdb_assert (register_u_offset);
|
||
inf_ptrace_register_u_offset = register_u_offset;
|
||
t->to_fetch_registers = inf_ptrace_fetch_registers;
|
||
t->to_store_registers = inf_ptrace_store_registers;
|
||
|
||
return t;
|
||
}
|