binutils-gdb/gas/config/tc-i386.c
H.J. Lu cb19c0328d gas/
2008-06-03  H.J. Lu  <hongjiu.lu@intel.com>

	* config/tc-i386.c (set_sse_check): New.
	(md_pseudo_table): Add "sse_check".

gas/testsuite/

2008-06-03  H.J. Lu  <hongjiu.lu@intel.com>

	* gas/i386/i386.exp: Run sse-check-none and
	x86-64-sse-check-none.

	* gas/i386/sse-check-none.d: New.
	* gas/i386/sse-check-none.s: Likewise.
	* gas/i386/x86-64-sse-check-none.d: Likewise.
2008-06-03 17:31:52 +00:00

10029 lines
264 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-i386.c -- Assemble code for the Intel 80386
Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
/* Intel 80386 machine specific gas.
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
x86_64 support by Jan Hubicka (jh@suse.cz)
VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
Bugs & suggestions are completely welcome. This is free software.
Please help us make it better. */
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
#include "elf/x86-64.h"
#include "opcodes/i386-init.h"
#ifndef REGISTER_WARNINGS
#define REGISTER_WARNINGS 1
#endif
#ifndef INFER_ADDR_PREFIX
#define INFER_ADDR_PREFIX 1
#endif
#ifndef DEFAULT_ARCH
#define DEFAULT_ARCH "i386"
#endif
#ifndef INLINE
#if __GNUC__ >= 2
#define INLINE __inline__
#else
#define INLINE
#endif
#endif
/* Prefixes will be emitted in the order defined below.
WAIT_PREFIX must be the first prefix since FWAIT is really is an
instruction, and so must come before any prefixes.
The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
LOCKREP_PREFIX. */
#define WAIT_PREFIX 0
#define SEG_PREFIX 1
#define ADDR_PREFIX 2
#define DATA_PREFIX 3
#define LOCKREP_PREFIX 4
#define REX_PREFIX 5 /* must come last. */
#define MAX_PREFIXES 6 /* max prefixes per opcode */
/* we define the syntax here (modulo base,index,scale syntax) */
#define REGISTER_PREFIX '%'
#define IMMEDIATE_PREFIX '$'
#define ABSOLUTE_PREFIX '*'
/* these are the instruction mnemonic suffixes in AT&T syntax or
memory operand size in Intel syntax. */
#define WORD_MNEM_SUFFIX 'w'
#define BYTE_MNEM_SUFFIX 'b'
#define SHORT_MNEM_SUFFIX 's'
#define LONG_MNEM_SUFFIX 'l'
#define QWORD_MNEM_SUFFIX 'q'
#define XMMWORD_MNEM_SUFFIX 'x'
#define YMMWORD_MNEM_SUFFIX 'y'
/* Intel Syntax. Use a non-ascii letter since since it never appears
in instructions. */
#define LONG_DOUBLE_MNEM_SUFFIX '\1'
#define END_OF_INSN '\0'
/*
'templates' is for grouping together 'template' structures for opcodes
of the same name. This is only used for storing the insns in the grand
ole hash table of insns.
The templates themselves start at START and range up to (but not including)
END.
*/
typedef struct
{
const template *start;
const template *end;
}
templates;
/* 386 operand encoding bytes: see 386 book for details of this. */
typedef struct
{
unsigned int regmem; /* codes register or memory operand */
unsigned int reg; /* codes register operand (or extended opcode) */
unsigned int mode; /* how to interpret regmem & reg */
}
modrm_byte;
/* x86-64 extension prefix. */
typedef int rex_byte;
/* The SSE5 instructions have a two bit instruction modifier (OC) that
is stored in two separate bytes in the instruction. Pick apart OC
into the 2 separate bits for instruction. */
#define DREX_OC0(x) (((x) & 1) != 0)
#define DREX_OC1(x) (((x) & 2) != 0)
#define DREX_OC0_MASK (1 << 3) /* set OC0 in byte 4 */
#define DREX_OC1_MASK (1 << 2) /* set OC1 in byte 3 */
/* OC mappings */
#define DREX_XMEM_X1_X2_X2 0 /* 4 op insn, dest = src3, src1 = reg/mem */
#define DREX_X1_XMEM_X2_X2 1 /* 4 op insn, dest = src3, src2 = reg/mem */
#define DREX_X1_XMEM_X2_X1 2 /* 4 op insn, dest = src1, src2 = reg/mem */
#define DREX_X1_X2_XMEM_X1 3 /* 4 op insn, dest = src1, src3 = reg/mem */
#define DREX_XMEM_X1_X2 0 /* 3 op insn, src1 = reg/mem */
#define DREX_X1_XMEM_X2 1 /* 3 op insn, src1 = reg/mem */
/* Information needed to create the DREX byte in SSE5 instructions. */
typedef struct
{
unsigned int reg; /* register */
unsigned int rex; /* REX flags */
unsigned int modrm_reg; /* which arg goes in the modrm.reg field */
unsigned int modrm_regmem; /* which arg goes in the modrm.regmem field */
} drex_byte;
/* 386 opcode byte to code indirect addressing. */
typedef struct
{
unsigned base;
unsigned index;
unsigned scale;
}
sib_byte;
enum processor_type
{
PROCESSOR_UNKNOWN,
PROCESSOR_I386,
PROCESSOR_I486,
PROCESSOR_PENTIUM,
PROCESSOR_PENTIUMPRO,
PROCESSOR_PENTIUM4,
PROCESSOR_NOCONA,
PROCESSOR_CORE,
PROCESSOR_CORE2,
PROCESSOR_K6,
PROCESSOR_ATHLON,
PROCESSOR_K8,
PROCESSOR_GENERIC32,
PROCESSOR_GENERIC64,
PROCESSOR_AMDFAM10
};
/* x86 arch names, types and features */
typedef struct
{
const char *name; /* arch name */
enum processor_type type; /* arch type */
i386_cpu_flags flags; /* cpu feature flags */
}
arch_entry;
static void set_code_flag (int);
static void set_16bit_gcc_code_flag (int);
static void set_intel_syntax (int);
static void set_intel_mnemonic (int);
static void set_allow_index_reg (int);
static void set_sse_check (int);
static void set_cpu_arch (int);
#ifdef TE_PE
static void pe_directive_secrel (int);
#endif
static void signed_cons (int);
static char *output_invalid (int c);
static int i386_att_operand (char *);
static int i386_intel_operand (char *, int);
static const reg_entry *parse_register (char *, char **);
static char *parse_insn (char *, char *);
static char *parse_operands (char *, const char *);
static void swap_operands (void);
static void swap_2_operands (int, int);
static void optimize_imm (void);
static void optimize_disp (void);
static int match_template (void);
static int check_string (void);
static int process_suffix (void);
static int check_byte_reg (void);
static int check_long_reg (void);
static int check_qword_reg (void);
static int check_word_reg (void);
static int finalize_imm (void);
static void process_drex (void);
static int process_operands (void);
static const seg_entry *build_modrm_byte (void);
static void output_insn (void);
static void output_imm (fragS *, offsetT);
static void output_disp (fragS *, offsetT);
#ifndef I386COFF
static void s_bss (int);
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
static void handle_large_common (int small ATTRIBUTE_UNUSED);
#endif
static const char *default_arch = DEFAULT_ARCH;
/* VEX prefix. */
typedef struct
{
/* VEX prefix is either 2 byte or 3 byte. */
unsigned char bytes[3];
unsigned int length;
/* Destination or source register specifier. */
const reg_entry *register_specifier;
} vex_prefix;
/* 'md_assemble ()' gathers together information and puts it into a
i386_insn. */
union i386_op
{
expressionS *disps;
expressionS *imms;
const reg_entry *regs;
};
struct _i386_insn
{
/* TM holds the template for the insn were currently assembling. */
template tm;
/* SUFFIX holds the instruction size suffix for byte, word, dword
or qword, if given. */
char suffix;
/* OPERANDS gives the number of given operands. */
unsigned int operands;
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
of given register, displacement, memory operands and immediate
operands. */
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
/* TYPES [i] is the type (see above #defines) which tells us how to
use OP[i] for the corresponding operand. */
i386_operand_type types[MAX_OPERANDS];
/* Displacement expression, immediate expression, or register for each
operand. */
union i386_op op[MAX_OPERANDS];
/* Flags for operands. */
unsigned int flags[MAX_OPERANDS];
#define Operand_PCrel 1
/* Relocation type for operand */
enum bfd_reloc_code_real reloc[MAX_OPERANDS];
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
the base index byte below. */
const reg_entry *base_reg;
const reg_entry *index_reg;
unsigned int log2_scale_factor;
/* SEG gives the seg_entries of this insn. They are zero unless
explicit segment overrides are given. */
const seg_entry *seg[2];
/* PREFIX holds all the given prefix opcodes (usually null).
PREFIXES is the number of prefix opcodes. */
unsigned int prefixes;
unsigned char prefix[MAX_PREFIXES];
/* RM and SIB are the modrm byte and the sib byte where the
addressing modes of this insn are encoded. DREX is the byte
added by the SSE5 instructions. */
modrm_byte rm;
rex_byte rex;
sib_byte sib;
drex_byte drex;
vex_prefix vex;
};
typedef struct _i386_insn i386_insn;
/* List of chars besides those in app.c:symbol_chars that can start an
operand. Used to prevent the scrubber eating vital white-space. */
const char extra_symbol_chars[] = "*%-(["
#ifdef LEX_AT
"@"
#endif
#ifdef LEX_QM
"?"
#endif
;
#if (defined (TE_I386AIX) \
|| ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
&& !defined (TE_GNU) \
&& !defined (TE_LINUX) \
&& !defined (TE_NETWARE) \
&& !defined (TE_FreeBSD) \
&& !defined (TE_NetBSD)))
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful. The option
--divide will remove '/' from this list. */
const char *i386_comment_chars = "#/";
#define SVR4_COMMENT_CHARS 1
#define PREFIX_SEPARATOR '\\'
#else
const char *i386_comment_chars = "#";
#define PREFIX_SEPARATOR '/'
#endif
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output.
Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output.
Also note that comments started like this one will always work if
'/' isn't otherwise defined. */
const char line_comment_chars[] = "#/";
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point
nums. */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant
As in 0f12.456
or 0d1.2345e12. */
const char FLT_CHARS[] = "fFdDxX";
/* Tables for lexical analysis. */
static char mnemonic_chars[256];
static char register_chars[256];
static char operand_chars[256];
static char identifier_chars[256];
static char digit_chars[256];
/* Lexical macros. */
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
#define is_operand_char(x) (operand_chars[(unsigned char) x])
#define is_register_char(x) (register_chars[(unsigned char) x])
#define is_space_char(x) ((x) == ' ')
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
#define is_digit_char(x) (digit_chars[(unsigned char) x])
/* All non-digit non-letter characters that may occur in an operand. */
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
/* md_assemble() always leaves the strings it's passed unaltered. To
effect this we maintain a stack of saved characters that we've smashed
with '\0's (indicating end of strings for various sub-fields of the
assembler instruction). */
static char save_stack[32];
static char *save_stack_p;
#define END_STRING_AND_SAVE(s) \
do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
#define RESTORE_END_STRING(s) \
do { *(s) = *--save_stack_p; } while (0)
/* The instruction we're assembling. */
static i386_insn i;
/* Possible templates for current insn. */
static const templates *current_templates;
/* Per instruction expressionS buffers: max displacements & immediates. */
static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
/* Current operand we are working on. */
static int this_operand;
/* We support four different modes. FLAG_CODE variable is used to distinguish
these. */
enum flag_code {
CODE_32BIT,
CODE_16BIT,
CODE_64BIT };
static enum flag_code flag_code;
static unsigned int object_64bit;
static int use_rela_relocations = 0;
/* The names used to print error messages. */
static const char *flag_code_names[] =
{
"32",
"16",
"64"
};
/* 1 for intel syntax,
0 if att syntax. */
static int intel_syntax = 0;
/* 1 for intel mnemonic,
0 if att mnemonic. */
static int intel_mnemonic = !SYSV386_COMPAT;
/* 1 if support old (<= 2.8.1) versions of gcc. */
static int old_gcc = OLDGCC_COMPAT;
/* 1 if pseudo registers are permitted. */
static int allow_pseudo_reg = 0;
/* 1 if register prefix % not required. */
static int allow_naked_reg = 0;
/* 1 if pseudo index register, eiz/riz, is allowed . */
static int allow_index_reg = 0;
static enum
{
sse_check_none = 0,
sse_check_warning,
sse_check_error
}
sse_check;
/* Register prefix used for error message. */
static const char *register_prefix = "%";
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
leave, push, and pop instructions so that gcc has the same stack
frame as in 32 bit mode. */
static char stackop_size = '\0';
/* Non-zero to optimize code alignment. */
int optimize_align_code = 1;
/* Non-zero to quieten some warnings. */
static int quiet_warnings = 0;
/* CPU name. */
static const char *cpu_arch_name = NULL;
static char *cpu_sub_arch_name = NULL;
/* CPU feature flags. */
static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
/* If we have selected a cpu we are generating instructions for. */
static int cpu_arch_tune_set = 0;
/* Cpu we are generating instructions for. */
static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
/* CPU feature flags of cpu we are generating instructions for. */
static i386_cpu_flags cpu_arch_tune_flags;
/* CPU instruction set architecture used. */
static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
/* CPU feature flags of instruction set architecture used. */
static i386_cpu_flags cpu_arch_isa_flags;
/* If set, conditional jumps are not automatically promoted to handle
larger than a byte offset. */
static unsigned int no_cond_jump_promotion = 0;
/* Encode SSE instructions with VEX prefix. */
static unsigned int sse2avx;
/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
static symbolS *GOT_symbol;
/* The dwarf2 return column, adjusted for 32 or 64 bit. */
unsigned int x86_dwarf2_return_column;
/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
int x86_cie_data_alignment;
/* Interface to relax_segment.
There are 3 major relax states for 386 jump insns because the
different types of jumps add different sizes to frags when we're
figuring out what sort of jump to choose to reach a given label. */
/* Types. */
#define UNCOND_JUMP 0
#define COND_JUMP 1
#define COND_JUMP86 2
/* Sizes. */
#define CODE16 1
#define SMALL 0
#define SMALL16 (SMALL | CODE16)
#define BIG 2
#define BIG16 (BIG | CODE16)
#ifndef INLINE
#ifdef __GNUC__
#define INLINE __inline__
#else
#define INLINE
#endif
#endif
#define ENCODE_RELAX_STATE(type, size) \
((relax_substateT) (((type) << 2) | (size)))
#define TYPE_FROM_RELAX_STATE(s) \
((s) >> 2)
#define DISP_SIZE_FROM_RELAX_STATE(s) \
((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
/* This table is used by relax_frag to promote short jumps to long
ones where necessary. SMALL (short) jumps may be promoted to BIG
(32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
don't allow a short jump in a 32 bit code segment to be promoted to
a 16 bit offset jump because it's slower (requires data size
prefix), and doesn't work, unless the destination is in the bottom
64k of the code segment (The top 16 bits of eip are zeroed). */
const relax_typeS md_relax_table[] =
{
/* The fields are:
1) most positive reach of this state,
2) most negative reach of this state,
3) how many bytes this mode will have in the variable part of the frag
4) which index into the table to try if we can't fit into this one. */
/* UNCOND_JUMP states. */
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
/* dword jmp adds 4 bytes to frag:
0 extra opcode bytes, 4 displacement bytes. */
{0, 0, 4, 0},
/* word jmp adds 2 byte2 to frag:
0 extra opcode bytes, 2 displacement bytes. */
{0, 0, 2, 0},
/* COND_JUMP states. */
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
/* dword conditionals adds 5 bytes to frag:
1 extra opcode byte, 4 displacement bytes. */
{0, 0, 5, 0},
/* word conditionals add 3 bytes to frag:
1 extra opcode byte, 2 displacement bytes. */
{0, 0, 3, 0},
/* COND_JUMP86 states. */
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
/* dword conditionals adds 5 bytes to frag:
1 extra opcode byte, 4 displacement bytes. */
{0, 0, 5, 0},
/* word conditionals add 4 bytes to frag:
1 displacement byte and a 3 byte long branch insn. */
{0, 0, 4, 0}
};
static const arch_entry cpu_arch[] =
{
{ "generic32", PROCESSOR_GENERIC32,
CPU_GENERIC32_FLAGS },
{ "generic64", PROCESSOR_GENERIC64,
CPU_GENERIC64_FLAGS },
{ "i8086", PROCESSOR_UNKNOWN,
CPU_NONE_FLAGS },
{ "i186", PROCESSOR_UNKNOWN,
CPU_I186_FLAGS },
{ "i286", PROCESSOR_UNKNOWN,
CPU_I286_FLAGS },
{ "i386", PROCESSOR_I386,
CPU_I386_FLAGS },
{ "i486", PROCESSOR_I486,
CPU_I486_FLAGS },
{ "i586", PROCESSOR_PENTIUM,
CPU_I586_FLAGS },
{ "i686", PROCESSOR_PENTIUMPRO,
CPU_I686_FLAGS },
{ "pentium", PROCESSOR_PENTIUM,
CPU_I586_FLAGS },
{ "pentiumpro", PROCESSOR_PENTIUMPRO,
CPU_I686_FLAGS },
{ "pentiumii", PROCESSOR_PENTIUMPRO,
CPU_P2_FLAGS },
{ "pentiumiii",PROCESSOR_PENTIUMPRO,
CPU_P3_FLAGS },
{ "pentium4", PROCESSOR_PENTIUM4,
CPU_P4_FLAGS },
{ "prescott", PROCESSOR_NOCONA,
CPU_CORE_FLAGS },
{ "nocona", PROCESSOR_NOCONA,
CPU_NOCONA_FLAGS },
{ "yonah", PROCESSOR_CORE,
CPU_CORE_FLAGS },
{ "core", PROCESSOR_CORE,
CPU_CORE_FLAGS },
{ "merom", PROCESSOR_CORE2,
CPU_CORE2_FLAGS },
{ "core2", PROCESSOR_CORE2,
CPU_CORE2_FLAGS },
{ "k6", PROCESSOR_K6,
CPU_K6_FLAGS },
{ "k6_2", PROCESSOR_K6,
CPU_K6_2_FLAGS },
{ "athlon", PROCESSOR_ATHLON,
CPU_ATHLON_FLAGS },
{ "sledgehammer", PROCESSOR_K8,
CPU_K8_FLAGS },
{ "opteron", PROCESSOR_K8,
CPU_K8_FLAGS },
{ "k8", PROCESSOR_K8,
CPU_K8_FLAGS },
{ "amdfam10", PROCESSOR_AMDFAM10,
CPU_AMDFAM10_FLAGS },
{ ".mmx", PROCESSOR_UNKNOWN,
CPU_MMX_FLAGS },
{ ".sse", PROCESSOR_UNKNOWN,
CPU_SSE_FLAGS },
{ ".sse2", PROCESSOR_UNKNOWN,
CPU_SSE2_FLAGS },
{ ".sse3", PROCESSOR_UNKNOWN,
CPU_SSE3_FLAGS },
{ ".ssse3", PROCESSOR_UNKNOWN,
CPU_SSSE3_FLAGS },
{ ".sse4.1", PROCESSOR_UNKNOWN,
CPU_SSE4_1_FLAGS },
{ ".sse4.2", PROCESSOR_UNKNOWN,
CPU_SSE4_2_FLAGS },
{ ".sse4", PROCESSOR_UNKNOWN,
CPU_SSE4_2_FLAGS },
{ ".avx", PROCESSOR_UNKNOWN,
CPU_AVX_FLAGS },
{ ".vmx", PROCESSOR_UNKNOWN,
CPU_VMX_FLAGS },
{ ".smx", PROCESSOR_UNKNOWN,
CPU_SMX_FLAGS },
{ ".xsave", PROCESSOR_UNKNOWN,
CPU_XSAVE_FLAGS },
{ ".aes", PROCESSOR_UNKNOWN,
CPU_AES_FLAGS },
{ ".pclmul", PROCESSOR_UNKNOWN,
CPU_PCLMUL_FLAGS },
{ ".clmul", PROCESSOR_UNKNOWN,
CPU_PCLMUL_FLAGS },
{ ".fma", PROCESSOR_UNKNOWN,
CPU_FMA_FLAGS },
{ ".movbe", PROCESSOR_UNKNOWN,
CPU_MOVBE_FLAGS },
{ ".ept", PROCESSOR_UNKNOWN,
CPU_EPT_FLAGS },
{ ".3dnow", PROCESSOR_UNKNOWN,
CPU_3DNOW_FLAGS },
{ ".3dnowa", PROCESSOR_UNKNOWN,
CPU_3DNOWA_FLAGS },
{ ".padlock", PROCESSOR_UNKNOWN,
CPU_PADLOCK_FLAGS },
{ ".pacifica", PROCESSOR_UNKNOWN,
CPU_SVME_FLAGS },
{ ".svme", PROCESSOR_UNKNOWN,
CPU_SVME_FLAGS },
{ ".sse4a", PROCESSOR_UNKNOWN,
CPU_SSE4A_FLAGS },
{ ".abm", PROCESSOR_UNKNOWN,
CPU_ABM_FLAGS },
{ ".sse5", PROCESSOR_UNKNOWN,
CPU_SSE5_FLAGS },
};
const pseudo_typeS md_pseudo_table[] =
{
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
{"align", s_align_bytes, 0},
#else
{"align", s_align_ptwo, 0},
#endif
{"arch", set_cpu_arch, 0},
#ifndef I386COFF
{"bss", s_bss, 0},
#endif
{"ffloat", float_cons, 'f'},
{"dfloat", float_cons, 'd'},
{"tfloat", float_cons, 'x'},
{"value", cons, 2},
{"slong", signed_cons, 4},
{"noopt", s_ignore, 0},
{"optim", s_ignore, 0},
{"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
{"code16", set_code_flag, CODE_16BIT},
{"code32", set_code_flag, CODE_32BIT},
{"code64", set_code_flag, CODE_64BIT},
{"intel_syntax", set_intel_syntax, 1},
{"att_syntax", set_intel_syntax, 0},
{"intel_mnemonic", set_intel_mnemonic, 1},
{"att_mnemonic", set_intel_mnemonic, 0},
{"allow_index_reg", set_allow_index_reg, 1},
{"disallow_index_reg", set_allow_index_reg, 0},
{"sse_check", set_sse_check, 0},
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
{"largecomm", handle_large_common, 0},
#else
{"file", (void (*) (int)) dwarf2_directive_file, 0},
{"loc", dwarf2_directive_loc, 0},
{"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
#endif
#ifdef TE_PE
{"secrel32", pe_directive_secrel, 0},
#endif
{0, 0, 0}
};
/* For interface with expression (). */
extern char *input_line_pointer;
/* Hash table for instruction mnemonic lookup. */
static struct hash_control *op_hash;
/* Hash table for register lookup. */
static struct hash_control *reg_hash;
void
i386_align_code (fragS *fragP, int count)
{
/* Various efficient no-op patterns for aligning code labels.
Note: Don't try to assemble the instructions in the comments.
0L and 0w are not legal. */
static const char f32_1[] =
{0x90}; /* nop */
static const char f32_2[] =
{0x66,0x90}; /* xchg %ax,%ax */
static const char f32_3[] =
{0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
static const char f32_4[] =
{0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
static const char f32_5[] =
{0x90, /* nop */
0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
static const char f32_6[] =
{0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
static const char f32_7[] =
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
static const char f32_8[] =
{0x90, /* nop */
0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
static const char f32_9[] =
{0x89,0xf6, /* movl %esi,%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_10[] =
{0x8d,0x76,0x00, /* leal 0(%esi),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_11[] =
{0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_12[] =
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
static const char f32_13[] =
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f32_14[] =
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
static const char f16_3[] =
{0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
static const char f16_4[] =
{0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
static const char f16_5[] =
{0x90, /* nop */
0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
static const char f16_6[] =
{0x89,0xf6, /* mov %si,%si */
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
static const char f16_7[] =
{0x8d,0x74,0x00, /* lea 0(%si),%si */
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
static const char f16_8[] =
{0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
static const char jump_31[] =
{0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
static const char *const f32_patt[] = {
f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
};
static const char *const f16_patt[] = {
f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
};
/* nopl (%[re]ax) */
static const char alt_3[] =
{0x0f,0x1f,0x00};
/* nopl 0(%[re]ax) */
static const char alt_4[] =
{0x0f,0x1f,0x40,0x00};
/* nopl 0(%[re]ax,%[re]ax,1) */
static const char alt_5[] =
{0x0f,0x1f,0x44,0x00,0x00};
/* nopw 0(%[re]ax,%[re]ax,1) */
static const char alt_6[] =
{0x66,0x0f,0x1f,0x44,0x00,0x00};
/* nopl 0L(%[re]ax) */
static const char alt_7[] =
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
/* nopl 0L(%[re]ax,%[re]ax,1) */
static const char alt_8[] =
{0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* nopw 0L(%[re]ax,%[re]ax,1) */
static const char alt_9[] =
{0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
static const char alt_10[] =
{0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* data16
nopw %cs:0L(%[re]ax,%[re]ax,1) */
static const char alt_long_11[] =
{0x66,
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* data16
data16
nopw %cs:0L(%[re]ax,%[re]ax,1) */
static const char alt_long_12[] =
{0x66,
0x66,
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* data16
data16
data16
nopw %cs:0L(%[re]ax,%[re]ax,1) */
static const char alt_long_13[] =
{0x66,
0x66,
0x66,
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* data16
data16
data16
data16
nopw %cs:0L(%[re]ax,%[re]ax,1) */
static const char alt_long_14[] =
{0x66,
0x66,
0x66,
0x66,
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* data16
data16
data16
data16
data16
nopw %cs:0L(%[re]ax,%[re]ax,1) */
static const char alt_long_15[] =
{0x66,
0x66,
0x66,
0x66,
0x66,
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
/* nopl 0(%[re]ax,%[re]ax,1)
nopw 0(%[re]ax,%[re]ax,1) */
static const char alt_short_11[] =
{0x0f,0x1f,0x44,0x00,0x00,
0x66,0x0f,0x1f,0x44,0x00,0x00};
/* nopw 0(%[re]ax,%[re]ax,1)
nopw 0(%[re]ax,%[re]ax,1) */
static const char alt_short_12[] =
{0x66,0x0f,0x1f,0x44,0x00,0x00,
0x66,0x0f,0x1f,0x44,0x00,0x00};
/* nopw 0(%[re]ax,%[re]ax,1)
nopl 0L(%[re]ax) */
static const char alt_short_13[] =
{0x66,0x0f,0x1f,0x44,0x00,0x00,
0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
/* nopl 0L(%[re]ax)
nopl 0L(%[re]ax) */
static const char alt_short_14[] =
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
/* nopl 0L(%[re]ax)
nopl 0L(%[re]ax,%[re]ax,1) */
static const char alt_short_15[] =
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
static const char *const alt_short_patt[] = {
f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
alt_short_14, alt_short_15
};
static const char *const alt_long_patt[] = {
f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
alt_long_14, alt_long_15
};
/* Only align for at least a positive non-zero boundary. */
if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
return;
/* We need to decide which NOP sequence to use for 32bit and
64bit. When -mtune= is used:
1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
PROCESSOR_GENERIC32, f32_patt will be used.
2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
alt_long_patt will be used.
3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
PROCESSOR_AMDFAM10, alt_short_patt will be used.
When -mtune= isn't used, alt_long_patt will be used if
cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
be used.
When -march= or .arch is used, we can't use anything beyond
cpu_arch_isa_flags. */
if (flag_code == CODE_16BIT)
{
if (count > 8)
{
memcpy (fragP->fr_literal + fragP->fr_fix,
jump_31, count);
/* Adjust jump offset. */
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
}
else
memcpy (fragP->fr_literal + fragP->fr_fix,
f16_patt[count - 1], count);
}
else
{
const char *const *patt = NULL;
if (cpu_arch_isa == PROCESSOR_UNKNOWN)
{
/* PROCESSOR_UNKNOWN means that all ISAs may be used. */
switch (cpu_arch_tune)
{
case PROCESSOR_UNKNOWN:
/* We use cpu_arch_isa_flags to check if we SHOULD
optimize for Cpu686. */
if (cpu_arch_isa_flags.bitfield.cpui686)
patt = alt_long_patt;
else
patt = f32_patt;
break;
case PROCESSOR_PENTIUMPRO:
case PROCESSOR_PENTIUM4:
case PROCESSOR_NOCONA:
case PROCESSOR_CORE:
case PROCESSOR_CORE2:
case PROCESSOR_GENERIC64:
patt = alt_long_patt;
break;
case PROCESSOR_K6:
case PROCESSOR_ATHLON:
case PROCESSOR_K8:
case PROCESSOR_AMDFAM10:
patt = alt_short_patt;
break;
case PROCESSOR_I386:
case PROCESSOR_I486:
case PROCESSOR_PENTIUM:
case PROCESSOR_GENERIC32:
patt = f32_patt;
break;
}
}
else
{
switch (cpu_arch_tune)
{
case PROCESSOR_UNKNOWN:
/* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
PROCESSOR_UNKNOWN. */
abort ();
break;
case PROCESSOR_I386:
case PROCESSOR_I486:
case PROCESSOR_PENTIUM:
case PROCESSOR_K6:
case PROCESSOR_ATHLON:
case PROCESSOR_K8:
case PROCESSOR_AMDFAM10:
case PROCESSOR_GENERIC32:
/* We use cpu_arch_isa_flags to check if we CAN optimize
for Cpu686. */
if (cpu_arch_isa_flags.bitfield.cpui686)
patt = alt_short_patt;
else
patt = f32_patt;
break;
case PROCESSOR_PENTIUMPRO:
case PROCESSOR_PENTIUM4:
case PROCESSOR_NOCONA:
case PROCESSOR_CORE:
case PROCESSOR_CORE2:
if (cpu_arch_isa_flags.bitfield.cpui686)
patt = alt_long_patt;
else
patt = f32_patt;
break;
case PROCESSOR_GENERIC64:
patt = alt_long_patt;
break;
}
}
if (patt == f32_patt)
{
/* If the padding is less than 15 bytes, we use the normal
ones. Otherwise, we use a jump instruction and adjust
its offset. */
if (count < 15)
memcpy (fragP->fr_literal + fragP->fr_fix,
patt[count - 1], count);
else
{
memcpy (fragP->fr_literal + fragP->fr_fix,
jump_31, count);
/* Adjust jump offset. */
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
}
}
else
{
/* Maximum length of an instruction is 15 byte. If the
padding is greater than 15 bytes and we don't use jump,
we have to break it into smaller pieces. */
int padding = count;
while (padding > 15)
{
padding -= 15;
memcpy (fragP->fr_literal + fragP->fr_fix + padding,
patt [14], 15);
}
if (padding)
memcpy (fragP->fr_literal + fragP->fr_fix,
patt [padding - 1], padding);
}
}
fragP->fr_var = count;
}
static INLINE int
operand_type_all_zero (const union i386_operand_type *x)
{
switch (ARRAY_SIZE(x->array))
{
case 3:
if (x->array[2])
return 0;
case 2:
if (x->array[1])
return 0;
case 1:
return !x->array[0];
default:
abort ();
}
}
static INLINE void
operand_type_set (union i386_operand_type *x, unsigned int v)
{
switch (ARRAY_SIZE(x->array))
{
case 3:
x->array[2] = v;
case 2:
x->array[1] = v;
case 1:
x->array[0] = v;
break;
default:
abort ();
}
}
static INLINE int
operand_type_equal (const union i386_operand_type *x,
const union i386_operand_type *y)
{
switch (ARRAY_SIZE(x->array))
{
case 3:
if (x->array[2] != y->array[2])
return 0;
case 2:
if (x->array[1] != y->array[1])
return 0;
case 1:
return x->array[0] == y->array[0];
break;
default:
abort ();
}
}
static INLINE int
cpu_flags_all_zero (const union i386_cpu_flags *x)
{
switch (ARRAY_SIZE(x->array))
{
case 3:
if (x->array[2])
return 0;
case 2:
if (x->array[1])
return 0;
case 1:
return !x->array[0];
default:
abort ();
}
}
static INLINE void
cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
{
switch (ARRAY_SIZE(x->array))
{
case 3:
x->array[2] = v;
case 2:
x->array[1] = v;
case 1:
x->array[0] = v;
break;
default:
abort ();
}
}
static INLINE int
cpu_flags_equal (const union i386_cpu_flags *x,
const union i386_cpu_flags *y)
{
switch (ARRAY_SIZE(x->array))
{
case 3:
if (x->array[2] != y->array[2])
return 0;
case 2:
if (x->array[1] != y->array[1])
return 0;
case 1:
return x->array[0] == y->array[0];
break;
default:
abort ();
}
}
static INLINE int
cpu_flags_check_cpu64 (i386_cpu_flags f)
{
return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
|| (flag_code != CODE_64BIT && f.bitfield.cpu64));
}
static INLINE i386_cpu_flags
cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
{
switch (ARRAY_SIZE (x.array))
{
case 3:
x.array [2] &= y.array [2];
case 2:
x.array [1] &= y.array [1];
case 1:
x.array [0] &= y.array [0];
break;
default:
abort ();
}
return x;
}
static INLINE i386_cpu_flags
cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
{
switch (ARRAY_SIZE (x.array))
{
case 3:
x.array [2] |= y.array [2];
case 2:
x.array [1] |= y.array [1];
case 1:
x.array [0] |= y.array [0];
break;
default:
abort ();
}
return x;
}
#define CPU_FLAGS_ARCH_MATCH 0x1
#define CPU_FLAGS_64BIT_MATCH 0x2
#define CPU_FLAGS_32BIT_MATCH CPU_FLAGS_ARCH_MATCH
#define CPU_FLAGS_PERFECT_MATCH \
(CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
/* Return CPU flags match bits. */
static int
cpu_flags_match (const template *t)
{
i386_cpu_flags x = t->cpu_flags;
int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
x.bitfield.cpu64 = 0;
x.bitfield.cpuno64 = 0;
if (cpu_flags_all_zero (&x))
{
/* This instruction is available on all archs. */
match |= CPU_FLAGS_32BIT_MATCH;
}
else
{
/* This instruction is available only on some archs. */
i386_cpu_flags cpu = cpu_arch_flags;
cpu.bitfield.cpu64 = 0;
cpu.bitfield.cpuno64 = 0;
cpu = cpu_flags_and (x, cpu);
if (!cpu_flags_all_zero (&cpu))
{
/* Check SSE2AVX */
if (!t->opcode_modifier.sse2avx || sse2avx)
match |= CPU_FLAGS_32BIT_MATCH;
}
}
return match;
}
static INLINE i386_operand_type
operand_type_and (i386_operand_type x, i386_operand_type y)
{
switch (ARRAY_SIZE (x.array))
{
case 3:
x.array [2] &= y.array [2];
case 2:
x.array [1] &= y.array [1];
case 1:
x.array [0] &= y.array [0];
break;
default:
abort ();
}
return x;
}
static INLINE i386_operand_type
operand_type_or (i386_operand_type x, i386_operand_type y)
{
switch (ARRAY_SIZE (x.array))
{
case 3:
x.array [2] |= y.array [2];
case 2:
x.array [1] |= y.array [1];
case 1:
x.array [0] |= y.array [0];
break;
default:
abort ();
}
return x;
}
static INLINE i386_operand_type
operand_type_xor (i386_operand_type x, i386_operand_type y)
{
switch (ARRAY_SIZE (x.array))
{
case 3:
x.array [2] ^= y.array [2];
case 2:
x.array [1] ^= y.array [1];
case 1:
x.array [0] ^= y.array [0];
break;
default:
abort ();
}
return x;
}
static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
static const i386_operand_type control = OPERAND_TYPE_CONTROL;
static const i386_operand_type inoutportreg
= OPERAND_TYPE_INOUTPORTREG;
static const i386_operand_type reg16_inoutportreg
= OPERAND_TYPE_REG16_INOUTPORTREG;
static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
static const i386_operand_type anydisp
= OPERAND_TYPE_ANYDISP;
static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
static const i386_operand_type vex_imm4 = OPERAND_TYPE_VEX_IMM4;
enum operand_type
{
reg,
imm,
disp,
anymem
};
static INLINE int
operand_type_check (i386_operand_type t, enum operand_type c)
{
switch (c)
{
case reg:
return (t.bitfield.reg8
|| t.bitfield.reg16
|| t.bitfield.reg32
|| t.bitfield.reg64);
case imm:
return (t.bitfield.imm8
|| t.bitfield.imm8s
|| t.bitfield.imm16
|| t.bitfield.imm32
|| t.bitfield.imm32s
|| t.bitfield.imm64);
case disp:
return (t.bitfield.disp8
|| t.bitfield.disp16
|| t.bitfield.disp32
|| t.bitfield.disp32s
|| t.bitfield.disp64);
case anymem:
return (t.bitfield.disp8
|| t.bitfield.disp16
|| t.bitfield.disp32
|| t.bitfield.disp32s
|| t.bitfield.disp64
|| t.bitfield.baseindex);
default:
abort ();
}
}
/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
operand J for instruction template T. */
static INLINE int
match_reg_size (const template *t, unsigned int j)
{
return !((i.types[j].bitfield.byte
&& !t->operand_types[j].bitfield.byte)
|| (i.types[j].bitfield.word
&& !t->operand_types[j].bitfield.word)
|| (i.types[j].bitfield.dword
&& !t->operand_types[j].bitfield.dword)
|| (i.types[j].bitfield.qword
&& !t->operand_types[j].bitfield.qword));
}
/* Return 1 if there is no conflict in any size on operand J for
instruction template T. */
static INLINE int
match_mem_size (const template *t, unsigned int j)
{
return (match_reg_size (t, j)
&& !((i.types[j].bitfield.unspecified
&& !t->operand_types[j].bitfield.unspecified)
|| (i.types[j].bitfield.fword
&& !t->operand_types[j].bitfield.fword)
|| (i.types[j].bitfield.tbyte
&& !t->operand_types[j].bitfield.tbyte)
|| (i.types[j].bitfield.xmmword
&& !t->operand_types[j].bitfield.xmmword)
|| (i.types[j].bitfield.ymmword
&& !t->operand_types[j].bitfield.ymmword)));
}
/* Return 1 if there is no size conflict on any operands for
instruction template T. */
static INLINE int
operand_size_match (const template *t)
{
unsigned int j;
int match = 1;
/* Don't check jump instructions. */
if (t->opcode_modifier.jump
|| t->opcode_modifier.jumpbyte
|| t->opcode_modifier.jumpdword
|| t->opcode_modifier.jumpintersegment)
return match;
/* Check memory and accumulator operand size. */
for (j = 0; j < i.operands; j++)
{
if (t->operand_types[j].bitfield.anysize)
continue;
if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
{
match = 0;
break;
}
if (i.types[j].bitfield.mem && !match_mem_size (t, j))
{
match = 0;
break;
}
}
if (match
|| (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
return match;
/* Check reverse. */
assert (i.operands == 2);
match = 1;
for (j = 0; j < 2; j++)
{
if (t->operand_types[j].bitfield.acc
&& !match_reg_size (t, j ? 0 : 1))
{
match = 0;
break;
}
if (i.types[j].bitfield.mem
&& !match_mem_size (t, j ? 0 : 1))
{
match = 0;
break;
}
}
return match;
}
static INLINE int
operand_type_match (i386_operand_type overlap,
i386_operand_type given)
{
i386_operand_type temp = overlap;
temp.bitfield.jumpabsolute = 0;
temp.bitfield.unspecified = 0;
temp.bitfield.byte = 0;
temp.bitfield.word = 0;
temp.bitfield.dword = 0;
temp.bitfield.fword = 0;
temp.bitfield.qword = 0;
temp.bitfield.tbyte = 0;
temp.bitfield.xmmword = 0;
temp.bitfield.ymmword = 0;
if (operand_type_all_zero (&temp))
return 0;
return (given.bitfield.baseindex == overlap.bitfield.baseindex
&& given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
}
/* If given types g0 and g1 are registers they must be of the same type
unless the expected operand type register overlap is null.
Note that Acc in a template matches every size of reg. */
static INLINE int
operand_type_register_match (i386_operand_type m0,
i386_operand_type g0,
i386_operand_type t0,
i386_operand_type m1,
i386_operand_type g1,
i386_operand_type t1)
{
if (!operand_type_check (g0, reg))
return 1;
if (!operand_type_check (g1, reg))
return 1;
if (g0.bitfield.reg8 == g1.bitfield.reg8
&& g0.bitfield.reg16 == g1.bitfield.reg16
&& g0.bitfield.reg32 == g1.bitfield.reg32
&& g0.bitfield.reg64 == g1.bitfield.reg64)
return 1;
if (m0.bitfield.acc)
{
t0.bitfield.reg8 = 1;
t0.bitfield.reg16 = 1;
t0.bitfield.reg32 = 1;
t0.bitfield.reg64 = 1;
}
if (m1.bitfield.acc)
{
t1.bitfield.reg8 = 1;
t1.bitfield.reg16 = 1;
t1.bitfield.reg32 = 1;
t1.bitfield.reg64 = 1;
}
return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
&& !(t0.bitfield.reg16 & t1.bitfield.reg16)
&& !(t0.bitfield.reg32 & t1.bitfield.reg32)
&& !(t0.bitfield.reg64 & t1.bitfield.reg64));
}
static INLINE unsigned int
mode_from_disp_size (i386_operand_type t)
{
if (t.bitfield.disp8)
return 1;
else if (t.bitfield.disp16
|| t.bitfield.disp32
|| t.bitfield.disp32s)
return 2;
else
return 0;
}
static INLINE int
fits_in_signed_byte (offsetT num)
{
return (num >= -128) && (num <= 127);
}
static INLINE int
fits_in_unsigned_byte (offsetT num)
{
return (num & 0xff) == num;
}
static INLINE int
fits_in_unsigned_word (offsetT num)
{
return (num & 0xffff) == num;
}
static INLINE int
fits_in_signed_word (offsetT num)
{
return (-32768 <= num) && (num <= 32767);
}
static INLINE int
fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
{
#ifndef BFD64
return 1;
#else
return (!(((offsetT) -1 << 31) & num)
|| (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
#endif
} /* fits_in_signed_long() */
static INLINE int
fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
{
#ifndef BFD64
return 1;
#else
return (num & (((offsetT) 2 << 31) - 1)) == num;
#endif
} /* fits_in_unsigned_long() */
static INLINE int
fits_in_imm4 (offsetT num)
{
return (num & 0xf) == num;
}
static i386_operand_type
smallest_imm_type (offsetT num)
{
i386_operand_type t;
operand_type_set (&t, 0);
t.bitfield.imm64 = 1;
if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
{
/* This code is disabled on the 486 because all the Imm1 forms
in the opcode table are slower on the i486. They're the
versions with the implicitly specified single-position
displacement, which has another syntax if you really want to
use that form. */
t.bitfield.imm1 = 1;
t.bitfield.imm8 = 1;
t.bitfield.imm8s = 1;
t.bitfield.imm16 = 1;
t.bitfield.imm32 = 1;
t.bitfield.imm32s = 1;
}
else if (fits_in_signed_byte (num))
{
t.bitfield.imm8 = 1;
t.bitfield.imm8s = 1;
t.bitfield.imm16 = 1;
t.bitfield.imm32 = 1;
t.bitfield.imm32s = 1;
}
else if (fits_in_unsigned_byte (num))
{
t.bitfield.imm8 = 1;
t.bitfield.imm16 = 1;
t.bitfield.imm32 = 1;
t.bitfield.imm32s = 1;
}
else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
{
t.bitfield.imm16 = 1;
t.bitfield.imm32 = 1;
t.bitfield.imm32s = 1;
}
else if (fits_in_signed_long (num))
{
t.bitfield.imm32 = 1;
t.bitfield.imm32s = 1;
}
else if (fits_in_unsigned_long (num))
t.bitfield.imm32 = 1;
return t;
}
static offsetT
offset_in_range (offsetT val, int size)
{
addressT mask;
switch (size)
{
case 1: mask = ((addressT) 1 << 8) - 1; break;
case 2: mask = ((addressT) 1 << 16) - 1; break;
case 4: mask = ((addressT) 2 << 31) - 1; break;
#ifdef BFD64
case 8: mask = ((addressT) 2 << 63) - 1; break;
#endif
default: abort ();
}
/* If BFD64, sign extend val. */
if (!use_rela_relocations)
if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
{
char buf1[40], buf2[40];
sprint_value (buf1, val);
sprint_value (buf2, val & mask);
as_warn (_("%s shortened to %s"), buf1, buf2);
}
return val & mask;
}
/* Returns 0 if attempting to add a prefix where one from the same
class already exists, 1 if non rep/repne added, 2 if rep/repne
added. */
static int
add_prefix (unsigned int prefix)
{
int ret = 1;
unsigned int q;
if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
&& flag_code == CODE_64BIT)
{
if ((i.prefix[REX_PREFIX] & prefix & REX_W)
|| ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
&& (prefix & (REX_R | REX_X | REX_B))))
ret = 0;
q = REX_PREFIX;
}
else
{
switch (prefix)
{
default:
abort ();
case CS_PREFIX_OPCODE:
case DS_PREFIX_OPCODE:
case ES_PREFIX_OPCODE:
case FS_PREFIX_OPCODE:
case GS_PREFIX_OPCODE:
case SS_PREFIX_OPCODE:
q = SEG_PREFIX;
break;
case REPNE_PREFIX_OPCODE:
case REPE_PREFIX_OPCODE:
ret = 2;
/* fall thru */
case LOCK_PREFIX_OPCODE:
q = LOCKREP_PREFIX;
break;
case FWAIT_OPCODE:
q = WAIT_PREFIX;
break;
case ADDR_PREFIX_OPCODE:
q = ADDR_PREFIX;
break;
case DATA_PREFIX_OPCODE:
q = DATA_PREFIX;
break;
}
if (i.prefix[q] != 0)
ret = 0;
}
if (ret)
{
if (!i.prefix[q])
++i.prefixes;
i.prefix[q] |= prefix;
}
else
as_bad (_("same type of prefix used twice"));
return ret;
}
static void
set_code_flag (int value)
{
flag_code = value;
if (flag_code == CODE_64BIT)
{
cpu_arch_flags.bitfield.cpu64 = 1;
cpu_arch_flags.bitfield.cpuno64 = 0;
}
else
{
cpu_arch_flags.bitfield.cpu64 = 0;
cpu_arch_flags.bitfield.cpuno64 = 1;
}
if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
{
as_bad (_("64bit mode not supported on this CPU."));
}
if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
{
as_bad (_("32bit mode not supported on this CPU."));
}
stackop_size = '\0';
}
static void
set_16bit_gcc_code_flag (int new_code_flag)
{
flag_code = new_code_flag;
if (flag_code != CODE_16BIT)
abort ();
cpu_arch_flags.bitfield.cpu64 = 0;
cpu_arch_flags.bitfield.cpuno64 = 1;
stackop_size = LONG_MNEM_SUFFIX;
}
static void
set_intel_syntax (int syntax_flag)
{
/* Find out if register prefixing is specified. */
int ask_naked_reg = 0;
SKIP_WHITESPACE ();
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
char *string = input_line_pointer;
int e = get_symbol_end ();
if (strcmp (string, "prefix") == 0)
ask_naked_reg = 1;
else if (strcmp (string, "noprefix") == 0)
ask_naked_reg = -1;
else
as_bad (_("bad argument to syntax directive."));
*input_line_pointer = e;
}
demand_empty_rest_of_line ();
intel_syntax = syntax_flag;
if (ask_naked_reg == 0)
allow_naked_reg = (intel_syntax
&& (bfd_get_symbol_leading_char (stdoutput) != '\0'));
else
allow_naked_reg = (ask_naked_reg < 0);
identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
identifier_chars['$'] = intel_syntax ? '$' : 0;
register_prefix = allow_naked_reg ? "" : "%";
}
static void
set_intel_mnemonic (int mnemonic_flag)
{
intel_mnemonic = mnemonic_flag;
}
static void
set_allow_index_reg (int flag)
{
allow_index_reg = flag;
}
static void
set_sse_check (int dummy ATTRIBUTE_UNUSED)
{
SKIP_WHITESPACE ();
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
char *string = input_line_pointer;
int e = get_symbol_end ();
if (strcmp (string, "none") == 0)
sse_check = sse_check_none;
else if (strcmp (string, "warning") == 0)
sse_check = sse_check_warning;
else if (strcmp (string, "error") == 0)
sse_check = sse_check_error;
else
as_bad (_("bad argument to sse_check directive."));
*input_line_pointer = e;
}
else
as_bad (_("missing argument for sse_check directive"));
demand_empty_rest_of_line ();
}
static void
set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
{
SKIP_WHITESPACE ();
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
char *string = input_line_pointer;
int e = get_symbol_end ();
unsigned int i;
i386_cpu_flags flags;
for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
{
if (strcmp (string, cpu_arch[i].name) == 0)
{
if (*string != '.')
{
cpu_arch_name = cpu_arch[i].name;
cpu_sub_arch_name = NULL;
cpu_arch_flags = cpu_arch[i].flags;
if (flag_code == CODE_64BIT)
{
cpu_arch_flags.bitfield.cpu64 = 1;
cpu_arch_flags.bitfield.cpuno64 = 0;
}
else
{
cpu_arch_flags.bitfield.cpu64 = 0;
cpu_arch_flags.bitfield.cpuno64 = 1;
}
cpu_arch_isa = cpu_arch[i].type;
cpu_arch_isa_flags = cpu_arch[i].flags;
if (!cpu_arch_tune_set)
{
cpu_arch_tune = cpu_arch_isa;
cpu_arch_tune_flags = cpu_arch_isa_flags;
}
break;
}
flags = cpu_flags_or (cpu_arch_flags,
cpu_arch[i].flags);
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
{
if (cpu_sub_arch_name)
{
char *name = cpu_sub_arch_name;
cpu_sub_arch_name = concat (name,
cpu_arch[i].name,
(const char *) NULL);
free (name);
}
else
cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
cpu_arch_flags = flags;
}
*input_line_pointer = e;
demand_empty_rest_of_line ();
return;
}
}
if (i >= ARRAY_SIZE (cpu_arch))
as_bad (_("no such architecture: `%s'"), string);
*input_line_pointer = e;
}
else
as_bad (_("missing cpu architecture"));
no_cond_jump_promotion = 0;
if (*input_line_pointer == ','
&& !is_end_of_line[(unsigned char) input_line_pointer[1]])
{
char *string = ++input_line_pointer;
int e = get_symbol_end ();
if (strcmp (string, "nojumps") == 0)
no_cond_jump_promotion = 1;
else if (strcmp (string, "jumps") == 0)
;
else
as_bad (_("no such architecture modifier: `%s'"), string);
*input_line_pointer = e;
}
demand_empty_rest_of_line ();
}
unsigned long
i386_mach ()
{
if (!strcmp (default_arch, "x86_64"))
return bfd_mach_x86_64;
else if (!strcmp (default_arch, "i386"))
return bfd_mach_i386_i386;
else
as_fatal (_("Unknown architecture"));
}
void
md_begin ()
{
const char *hash_err;
/* Initialize op_hash hash table. */
op_hash = hash_new ();
{
const template *optab;
templates *core_optab;
/* Setup for loop. */
optab = i386_optab;
core_optab = (templates *) xmalloc (sizeof (templates));
core_optab->start = optab;
while (1)
{
++optab;
if (optab->name == NULL
|| strcmp (optab->name, (optab - 1)->name) != 0)
{
/* different name --> ship out current template list;
add to hash table; & begin anew. */
core_optab->end = optab;
hash_err = hash_insert (op_hash,
(optab - 1)->name,
(PTR) core_optab);
if (hash_err)
{
as_fatal (_("Internal Error: Can't hash %s: %s"),
(optab - 1)->name,
hash_err);
}
if (optab->name == NULL)
break;
core_optab = (templates *) xmalloc (sizeof (templates));
core_optab->start = optab;
}
}
}
/* Initialize reg_hash hash table. */
reg_hash = hash_new ();
{
const reg_entry *regtab;
unsigned int regtab_size = i386_regtab_size;
for (regtab = i386_regtab; regtab_size--; regtab++)
{
hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
if (hash_err)
as_fatal (_("Internal Error: Can't hash %s: %s"),
regtab->reg_name,
hash_err);
}
}
/* Fill in lexical tables: mnemonic_chars, operand_chars. */
{
int c;
char *p;
for (c = 0; c < 256; c++)
{
if (ISDIGIT (c))
{
digit_chars[c] = c;
mnemonic_chars[c] = c;
register_chars[c] = c;
operand_chars[c] = c;
}
else if (ISLOWER (c))
{
mnemonic_chars[c] = c;
register_chars[c] = c;
operand_chars[c] = c;
}
else if (ISUPPER (c))
{
mnemonic_chars[c] = TOLOWER (c);
register_chars[c] = mnemonic_chars[c];
operand_chars[c] = c;
}
if (ISALPHA (c) || ISDIGIT (c))
identifier_chars[c] = c;
else if (c >= 128)
{
identifier_chars[c] = c;
operand_chars[c] = c;
}
}
#ifdef LEX_AT
identifier_chars['@'] = '@';
#endif
#ifdef LEX_QM
identifier_chars['?'] = '?';
operand_chars['?'] = '?';
#endif
digit_chars['-'] = '-';
mnemonic_chars['_'] = '_';
mnemonic_chars['-'] = '-';
mnemonic_chars['.'] = '.';
identifier_chars['_'] = '_';
identifier_chars['.'] = '.';
for (p = operand_special_chars; *p != '\0'; p++)
operand_chars[(unsigned char) *p] = *p;
}
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (IS_ELF)
{
record_alignment (text_section, 2);
record_alignment (data_section, 2);
record_alignment (bss_section, 2);
}
#endif
if (flag_code == CODE_64BIT)
{
x86_dwarf2_return_column = 16;
x86_cie_data_alignment = -8;
}
else
{
x86_dwarf2_return_column = 8;
x86_cie_data_alignment = -4;
}
}
void
i386_print_statistics (FILE *file)
{
hash_print_statistics (file, "i386 opcode", op_hash);
hash_print_statistics (file, "i386 register", reg_hash);
}
#ifdef DEBUG386
/* Debugging routines for md_assemble. */
static void pte (template *);
static void pt (i386_operand_type);
static void pe (expressionS *);
static void ps (symbolS *);
static void
pi (char *line, i386_insn *x)
{
unsigned int i;
fprintf (stdout, "%s: template ", line);
pte (&x->tm);
fprintf (stdout, " address: base %s index %s scale %x\n",
x->base_reg ? x->base_reg->reg_name : "none",
x->index_reg ? x->index_reg->reg_name : "none",
x->log2_scale_factor);
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
x->rm.mode, x->rm.reg, x->rm.regmem);
fprintf (stdout, " sib: base %x index %x scale %x\n",
x->sib.base, x->sib.index, x->sib.scale);
fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
(x->rex & REX_W) != 0,
(x->rex & REX_R) != 0,
(x->rex & REX_X) != 0,
(x->rex & REX_B) != 0);
fprintf (stdout, " drex: reg %d rex 0x%x\n",
x->drex.reg, x->drex.rex);
for (i = 0; i < x->operands; i++)
{
fprintf (stdout, " #%d: ", i + 1);
pt (x->types[i]);
fprintf (stdout, "\n");
if (x->types[i].bitfield.reg8
|| x->types[i].bitfield.reg16
|| x->types[i].bitfield.reg32
|| x->types[i].bitfield.reg64
|| x->types[i].bitfield.regmmx
|| x->types[i].bitfield.regxmm
|| x->types[i].bitfield.regymm
|| x->types[i].bitfield.sreg2
|| x->types[i].bitfield.sreg3
|| x->types[i].bitfield.control
|| x->types[i].bitfield.debug
|| x->types[i].bitfield.test)
fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
if (operand_type_check (x->types[i], imm))
pe (x->op[i].imms);
if (operand_type_check (x->types[i], disp))
pe (x->op[i].disps);
}
}
static void
pte (template *t)
{
unsigned int i;
fprintf (stdout, " %d operands ", t->operands);
fprintf (stdout, "opcode %x ", t->base_opcode);
if (t->extension_opcode != None)
fprintf (stdout, "ext %x ", t->extension_opcode);
if (t->opcode_modifier.d)
fprintf (stdout, "D");
if (t->opcode_modifier.w)
fprintf (stdout, "W");
fprintf (stdout, "\n");
for (i = 0; i < t->operands; i++)
{
fprintf (stdout, " #%d type ", i + 1);
pt (t->operand_types[i]);
fprintf (stdout, "\n");
}
}
static void
pe (expressionS *e)
{
fprintf (stdout, " operation %d\n", e->X_op);
fprintf (stdout, " add_number %ld (%lx)\n",
(long) e->X_add_number, (long) e->X_add_number);
if (e->X_add_symbol)
{
fprintf (stdout, " add_symbol ");
ps (e->X_add_symbol);
fprintf (stdout, "\n");
}
if (e->X_op_symbol)
{
fprintf (stdout, " op_symbol ");
ps (e->X_op_symbol);
fprintf (stdout, "\n");
}
}
static void
ps (symbolS *s)
{
fprintf (stdout, "%s type %s%s",
S_GET_NAME (s),
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
segment_name (S_GET_SEGMENT (s)));
}
static struct type_name
{
i386_operand_type mask;
const char *name;
}
const type_names[] =
{
{ OPERAND_TYPE_REG8, "r8" },
{ OPERAND_TYPE_REG16, "r16" },
{ OPERAND_TYPE_REG32, "r32" },
{ OPERAND_TYPE_REG64, "r64" },
{ OPERAND_TYPE_IMM8, "i8" },
{ OPERAND_TYPE_IMM8, "i8s" },
{ OPERAND_TYPE_IMM16, "i16" },
{ OPERAND_TYPE_IMM32, "i32" },
{ OPERAND_TYPE_IMM32S, "i32s" },
{ OPERAND_TYPE_IMM64, "i64" },
{ OPERAND_TYPE_IMM1, "i1" },
{ OPERAND_TYPE_BASEINDEX, "BaseIndex" },
{ OPERAND_TYPE_DISP8, "d8" },
{ OPERAND_TYPE_DISP16, "d16" },
{ OPERAND_TYPE_DISP32, "d32" },
{ OPERAND_TYPE_DISP32S, "d32s" },
{ OPERAND_TYPE_DISP64, "d64" },
{ OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
{ OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
{ OPERAND_TYPE_CONTROL, "control reg" },
{ OPERAND_TYPE_TEST, "test reg" },
{ OPERAND_TYPE_DEBUG, "debug reg" },
{ OPERAND_TYPE_FLOATREG, "FReg" },
{ OPERAND_TYPE_FLOATACC, "FAcc" },
{ OPERAND_TYPE_SREG2, "SReg2" },
{ OPERAND_TYPE_SREG3, "SReg3" },
{ OPERAND_TYPE_ACC, "Acc" },
{ OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
{ OPERAND_TYPE_REGMMX, "rMMX" },
{ OPERAND_TYPE_REGXMM, "rXMM" },
{ OPERAND_TYPE_ESSEG, "es" },
{ OPERAND_TYPE_VEX_IMM4, "VEX i4" },
};
static void
pt (i386_operand_type t)
{
unsigned int j;
i386_operand_type a;
for (j = 0; j < ARRAY_SIZE (type_names); j++)
{
a = operand_type_and (t, type_names[j].mask);
if (!UINTS_ALL_ZERO (a))
fprintf (stdout, "%s, ", type_names[j].name);
}
fflush (stdout);
}
#endif /* DEBUG386 */
static bfd_reloc_code_real_type
reloc (unsigned int size,
int pcrel,
int sign,
bfd_reloc_code_real_type other)
{
if (other != NO_RELOC)
{
reloc_howto_type *reloc;
if (size == 8)
switch (other)
{
case BFD_RELOC_X86_64_GOT32:
return BFD_RELOC_X86_64_GOT64;
break;
case BFD_RELOC_X86_64_PLTOFF64:
return BFD_RELOC_X86_64_PLTOFF64;
break;
case BFD_RELOC_X86_64_GOTPC32:
other = BFD_RELOC_X86_64_GOTPC64;
break;
case BFD_RELOC_X86_64_GOTPCREL:
other = BFD_RELOC_X86_64_GOTPCREL64;
break;
case BFD_RELOC_X86_64_TPOFF32:
other = BFD_RELOC_X86_64_TPOFF64;
break;
case BFD_RELOC_X86_64_DTPOFF32:
other = BFD_RELOC_X86_64_DTPOFF64;
break;
default:
break;
}
/* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
if (size == 4 && flag_code != CODE_64BIT)
sign = -1;
reloc = bfd_reloc_type_lookup (stdoutput, other);
if (!reloc)
as_bad (_("unknown relocation (%u)"), other);
else if (size != bfd_get_reloc_size (reloc))
as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
bfd_get_reloc_size (reloc),
size);
else if (pcrel && !reloc->pc_relative)
as_bad (_("non-pc-relative relocation for pc-relative field"));
else if ((reloc->complain_on_overflow == complain_overflow_signed
&& !sign)
|| (reloc->complain_on_overflow == complain_overflow_unsigned
&& sign > 0))
as_bad (_("relocated field and relocation type differ in signedness"));
else
return other;
return NO_RELOC;
}
if (pcrel)
{
if (!sign)
as_bad (_("there are no unsigned pc-relative relocations"));
switch (size)
{
case 1: return BFD_RELOC_8_PCREL;
case 2: return BFD_RELOC_16_PCREL;
case 4: return BFD_RELOC_32_PCREL;
case 8: return BFD_RELOC_64_PCREL;
}
as_bad (_("cannot do %u byte pc-relative relocation"), size);
}
else
{
if (sign > 0)
switch (size)
{
case 4: return BFD_RELOC_X86_64_32S;
}
else
switch (size)
{
case 1: return BFD_RELOC_8;
case 2: return BFD_RELOC_16;
case 4: return BFD_RELOC_32;
case 8: return BFD_RELOC_64;
}
as_bad (_("cannot do %s %u byte relocation"),
sign > 0 ? "signed" : "unsigned", size);
}
abort ();
return BFD_RELOC_NONE;
}
/* Here we decide which fixups can be adjusted to make them relative to
the beginning of the section instead of the symbol. Basically we need
to make sure that the dynamic relocations are done correctly, so in
some cases we force the original symbol to be used. */
int
tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (!IS_ELF)
return 1;
/* Don't adjust pc-relative references to merge sections in 64-bit
mode. */
if (use_rela_relocations
&& (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
&& fixP->fx_pcrel)
return 0;
/* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
and changed later by validate_fix. */
if (GOT_symbol && fixP->fx_subsy == GOT_symbol
&& fixP->fx_r_type == BFD_RELOC_32_PCREL)
return 0;
/* adjust_reloc_syms doesn't know about the GOT. */
if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GD
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
|| fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
|| fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
#endif
return 1;
}
static int
intel_float_operand (const char *mnemonic)
{
/* Note that the value returned is meaningful only for opcodes with (memory)
operands, hence the code here is free to improperly handle opcodes that
have no operands (for better performance and smaller code). */
if (mnemonic[0] != 'f')
return 0; /* non-math */
switch (mnemonic[1])
{
/* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
the fs segment override prefix not currently handled because no
call path can make opcodes without operands get here */
case 'i':
return 2 /* integer op */;
case 'l':
if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
return 3; /* fldcw/fldenv */
break;
case 'n':
if (mnemonic[2] != 'o' /* fnop */)
return 3; /* non-waiting control op */
break;
case 'r':
if (mnemonic[2] == 's')
return 3; /* frstor/frstpm */
break;
case 's':
if (mnemonic[2] == 'a')
return 3; /* fsave */
if (mnemonic[2] == 't')
{
switch (mnemonic[3])
{
case 'c': /* fstcw */
case 'd': /* fstdw */
case 'e': /* fstenv */
case 's': /* fsts[gw] */
return 3;
}
}
break;
case 'x':
if (mnemonic[2] == 'r' || mnemonic[2] == 's')
return 0; /* fxsave/fxrstor are not really math ops */
break;
}
return 1;
}
/* Build the VEX prefix. */
static void
build_vex_prefix (void)
{
unsigned int register_specifier;
unsigned int implied_prefix;
unsigned int vector_length;
/* Check register specifier. */
if (i.vex.register_specifier)
{
register_specifier = i.vex.register_specifier->reg_num;
if ((i.vex.register_specifier->reg_flags & RegRex))
register_specifier += 8;
register_specifier = ~register_specifier & 0xf;
}
else
register_specifier = 0xf;
vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
switch ((i.tm.base_opcode >> 8) & 0xff)
{
case 0:
implied_prefix = 0;
break;
case DATA_PREFIX_OPCODE:
implied_prefix = 1;
break;
case REPE_PREFIX_OPCODE:
implied_prefix = 2;
break;
case REPNE_PREFIX_OPCODE:
implied_prefix = 3;
break;
default:
abort ();
}
/* Use 2-byte VEX prefix if possible. */
if (i.tm.opcode_modifier.vex0f
&& (i.rex & (REX_W | REX_X | REX_B)) == 0)
{
/* 2-byte VEX prefix. */
unsigned int r;
i.vex.length = 2;
i.vex.bytes[0] = 0xc5;
/* Check the REX.R bit. */
r = (i.rex & REX_R) ? 0 : 1;
i.vex.bytes[1] = (r << 7
| register_specifier << 3
| vector_length << 2
| implied_prefix);
}
else
{
/* 3-byte VEX prefix. */
unsigned int m, w;
if (i.tm.opcode_modifier.vex0f)
m = 0x1;
else if (i.tm.opcode_modifier.vex0f38)
m = 0x2;
else if (i.tm.opcode_modifier.vex0f3a)
m = 0x3;
else
abort ();
i.vex.length = 3;
i.vex.bytes[0] = 0xc4;
/* The high 3 bits of the second VEX byte are 1's compliment
of RXB bits from REX. */
i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
/* Check the REX.W bit. */
w = (i.rex & REX_W) ? 1 : 0;
if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
{
if (w)
abort ();
if (i.tm.opcode_modifier.vexw1)
w = 1;
}
i.vex.bytes[2] = (w << 7
| register_specifier << 3
| vector_length << 2
| implied_prefix);
}
}
static void
process_immext (void)
{
expressionS *exp;
if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
{
/* SSE3 Instructions have the fixed operands with an opcode
suffix which is coded in the same place as an 8-bit immediate
field would be. Here we check those operands and remove them
afterwards. */
unsigned int x;
for (x = 0; x < i.operands; x++)
if (i.op[x].regs->reg_num != x)
as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
register_prefix, i.op[x].regs->reg_name, x + 1,
i.tm.name);
i.operands = 0;
}
/* These AMD 3DNow! and SSE2 instructions have an opcode suffix
which is coded in the same place as an 8-bit immediate field
would be. Here we fake an 8-bit immediate operand from the
opcode suffix stored in tm.extension_opcode.
SSE5 and AVX instructions also use this encoding, for some of
3 argument instructions. */
assert (i.imm_operands == 0
&& (i.operands <= 2
|| (i.tm.cpu_flags.bitfield.cpusse5
&& i.operands <= 3)
|| (i.tm.opcode_modifier.vex
&& i.operands <= 4)));
exp = &im_expressions[i.imm_operands++];
i.op[i.operands].imms = exp;
i.types[i.operands] = imm8;
i.operands++;
exp->X_op = O_constant;
exp->X_add_number = i.tm.extension_opcode;
i.tm.extension_opcode = None;
}
/* This is the guts of the machine-dependent assembler. LINE points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to. */
void
md_assemble (char *line)
{
unsigned int j;
char mnemonic[MAX_MNEM_SIZE];
/* Initialize globals. */
memset (&i, '\0', sizeof (i));
for (j = 0; j < MAX_OPERANDS; j++)
i.reloc[j] = NO_RELOC;
memset (disp_expressions, '\0', sizeof (disp_expressions));
memset (im_expressions, '\0', sizeof (im_expressions));
save_stack_p = save_stack;
/* First parse an instruction mnemonic & call i386_operand for the operands.
We assume that the scrubber has arranged it so that line[0] is the valid
start of a (possibly prefixed) mnemonic. */
line = parse_insn (line, mnemonic);
if (line == NULL)
return;
line = parse_operands (line, mnemonic);
if (line == NULL)
return;
/* Now we've parsed the mnemonic into a set of templates, and have the
operands at hand. */
/* All intel opcodes have reversed operands except for "bound" and
"enter". We also don't reverse intersegment "jmp" and "call"
instructions with 2 immediate operands so that the immediate segment
precedes the offset, as it does when in AT&T mode. */
if (intel_syntax
&& i.operands > 1
&& (strcmp (mnemonic, "bound") != 0)
&& (strcmp (mnemonic, "invlpga") != 0)
&& !(operand_type_check (i.types[0], imm)
&& operand_type_check (i.types[1], imm)))
swap_operands ();
/* The order of the immediates should be reversed
for 2 immediates extrq and insertq instructions */
if (i.imm_operands == 2
&& (strcmp (mnemonic, "extrq") == 0
|| strcmp (mnemonic, "insertq") == 0))
swap_2_operands (0, 1);
if (i.imm_operands)
optimize_imm ();
/* Don't optimize displacement for movabs since it only takes 64bit
displacement. */
if (i.disp_operands
&& (flag_code != CODE_64BIT
|| strcmp (mnemonic, "movabs") != 0))
optimize_disp ();
/* Next, we find a template that matches the given insn,
making sure the overlap of the given operands types is consistent
with the template operand types. */
if (!match_template ())
return;
if (sse_check != sse_check_none
&& !i.tm.opcode_modifier.noavx
&& (i.tm.cpu_flags.bitfield.cpusse
|| i.tm.cpu_flags.bitfield.cpusse2
|| i.tm.cpu_flags.bitfield.cpusse3
|| i.tm.cpu_flags.bitfield.cpussse3
|| i.tm.cpu_flags.bitfield.cpusse4_1
|| i.tm.cpu_flags.bitfield.cpusse4_2))
{
(sse_check == sse_check_warning
? as_warn
: as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
}
/* Zap movzx and movsx suffix. The suffix has been set from
"word ptr" or "byte ptr" on the source operand in Intel syntax
or extracted from mnemonic in AT&T syntax. But we'll use
the destination register to choose the suffix for encoding. */
if ((i.tm.base_opcode & ~9) == 0x0fb6)
{
/* In Intel syntax, there must be a suffix. In AT&T syntax, if
there is no suffix, the default will be byte extension. */
if (i.reg_operands != 2
&& !i.suffix
&& intel_syntax)
as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
i.suffix = 0;
}
if (i.tm.opcode_modifier.fwait)
if (!add_prefix (FWAIT_OPCODE))
return;
/* Check string instruction segment overrides. */
if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
{
if (!check_string ())
return;
}
if (!process_suffix ())
return;
/* Make still unresolved immediate matches conform to size of immediate
given in i.suffix. */
if (!finalize_imm ())
return;
if (i.types[0].bitfield.imm1)
i.imm_operands = 0; /* kludge for shift insns. */
for (j = 0; j < 3; j++)
if (i.types[j].bitfield.inoutportreg
|| i.types[j].bitfield.shiftcount
|| i.types[j].bitfield.acc
|| i.types[j].bitfield.floatacc)
i.reg_operands--;
/* ImmExt should be processed after SSE2AVX. */
if (!i.tm.opcode_modifier.sse2avx
&& i.tm.opcode_modifier.immext)
process_immext ();
/* For insns with operands there are more diddles to do to the opcode. */
if (i.operands)
{
if (!process_operands ())
return;
}
else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
{
/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
as_warn (_("translating to `%sp'"), i.tm.name);
}
if (i.tm.opcode_modifier.vex)
build_vex_prefix ();
/* Handle conversion of 'int $3' --> special int3 insn. */
if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
{
i.tm.base_opcode = INT3_OPCODE;
i.imm_operands = 0;
}
if ((i.tm.opcode_modifier.jump
|| i.tm.opcode_modifier.jumpbyte
|| i.tm.opcode_modifier.jumpdword)
&& i.op[0].disps->X_op == O_constant)
{
/* Convert "jmp constant" (and "call constant") to a jump (call) to
the absolute address given by the constant. Since ix86 jumps and
calls are pc relative, we need to generate a reloc. */
i.op[0].disps->X_add_symbol = &abs_symbol;
i.op[0].disps->X_op = O_symbol;
}
if (i.tm.opcode_modifier.rex64)
i.rex |= REX_W;
/* For 8 bit registers we need an empty rex prefix. Also if the
instruction already has a prefix, we need to convert old
registers to new ones. */
if ((i.types[0].bitfield.reg8
&& (i.op[0].regs->reg_flags & RegRex64) != 0)
|| (i.types[1].bitfield.reg8
&& (i.op[1].regs->reg_flags & RegRex64) != 0)
|| ((i.types[0].bitfield.reg8
|| i.types[1].bitfield.reg8)
&& i.rex != 0))
{
int x;
i.rex |= REX_OPCODE;
for (x = 0; x < 2; x++)
{
/* Look for 8 bit operand that uses old registers. */
if (i.types[x].bitfield.reg8
&& (i.op[x].regs->reg_flags & RegRex64) == 0)
{
/* In case it is "hi" register, give up. */
if (i.op[x].regs->reg_num > 3)
as_bad (_("can't encode register '%s%s' in an "
"instruction requiring REX prefix."),
register_prefix, i.op[x].regs->reg_name);
/* Otherwise it is equivalent to the extended register.
Since the encoding doesn't change this is merely
cosmetic cleanup for debug output. */
i.op[x].regs = i.op[x].regs + 8;
}
}
}
/* If the instruction has the DREX attribute (aka SSE5), don't emit a
REX prefix. */
if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
{
i.drex.rex = i.rex;
i.rex = 0;
}
else if (i.rex != 0)
add_prefix (REX_OPCODE | i.rex);
/* We are ready to output the insn. */
output_insn ();
}
static char *
parse_insn (char *line, char *mnemonic)
{
char *l = line;
char *token_start = l;
char *mnem_p;
int supported;
const template *t;
/* Non-zero if we found a prefix only acceptable with string insns. */
const char *expecting_string_instruction = NULL;
while (1)
{
mnem_p = mnemonic;
while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
{
mnem_p++;
if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
{
as_bad (_("no such instruction: `%s'"), token_start);
return NULL;
}
l++;
}
if (!is_space_char (*l)
&& *l != END_OF_INSN
&& (intel_syntax
|| (*l != PREFIX_SEPARATOR
&& *l != ',')))
{
as_bad (_("invalid character %s in mnemonic"),
output_invalid (*l));
return NULL;
}
if (token_start == l)
{
if (!intel_syntax && *l == PREFIX_SEPARATOR)
as_bad (_("expecting prefix; got nothing"));
else
as_bad (_("expecting mnemonic; got nothing"));
return NULL;
}
/* Look up instruction (or prefix) via hash table. */
current_templates = hash_find (op_hash, mnemonic);
if (*l != END_OF_INSN
&& (!is_space_char (*l) || l[1] != END_OF_INSN)
&& current_templates
&& current_templates->start->opcode_modifier.isprefix)
{
if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
{
as_bad ((flag_code != CODE_64BIT
? _("`%s' is only supported in 64-bit mode")
: _("`%s' is not supported in 64-bit mode")),
current_templates->start->name);
return NULL;
}
/* If we are in 16-bit mode, do not allow addr16 or data16.
Similarly, in 32-bit mode, do not allow addr32 or data32. */
if ((current_templates->start->opcode_modifier.size16
|| current_templates->start->opcode_modifier.size32)
&& flag_code != CODE_64BIT
&& (current_templates->start->opcode_modifier.size32
^ (flag_code == CODE_16BIT)))
{
as_bad (_("redundant %s prefix"),
current_templates->start->name);
return NULL;
}
/* Add prefix, checking for repeated prefixes. */
switch (add_prefix (current_templates->start->base_opcode))
{
case 0:
return NULL;
case 2:
expecting_string_instruction = current_templates->start->name;
break;
}
/* Skip past PREFIX_SEPARATOR and reset token_start. */
token_start = ++l;
}
else
break;
}
if (!current_templates)
{
/* See if we can get a match by trimming off a suffix. */
switch (mnem_p[-1])
{
case WORD_MNEM_SUFFIX:
if (intel_syntax && (intel_float_operand (mnemonic) & 2))
i.suffix = SHORT_MNEM_SUFFIX;
else
case BYTE_MNEM_SUFFIX:
case QWORD_MNEM_SUFFIX:
i.suffix = mnem_p[-1];
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
break;
case SHORT_MNEM_SUFFIX:
case LONG_MNEM_SUFFIX:
if (!intel_syntax)
{
i.suffix = mnem_p[-1];
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
}
break;
/* Intel Syntax. */
case 'd':
if (intel_syntax)
{
if (intel_float_operand (mnemonic) == 1)
i.suffix = SHORT_MNEM_SUFFIX;
else
i.suffix = LONG_MNEM_SUFFIX;
mnem_p[-1] = '\0';
current_templates = hash_find (op_hash, mnemonic);
}
break;
}
if (!current_templates)
{
as_bad (_("no such instruction: `%s'"), token_start);
return NULL;
}
}
if (current_templates->start->opcode_modifier.jump
|| current_templates->start->opcode_modifier.jumpbyte)
{
/* Check for a branch hint. We allow ",pt" and ",pn" for
predict taken and predict not taken respectively.
I'm not sure that branch hints actually do anything on loop
and jcxz insns (JumpByte) for current Pentium4 chips. They
may work in the future and it doesn't hurt to accept them
now. */
if (l[0] == ',' && l[1] == 'p')
{
if (l[2] == 't')
{
if (!add_prefix (DS_PREFIX_OPCODE))
return NULL;
l += 3;
}
else if (l[2] == 'n')
{
if (!add_prefix (CS_PREFIX_OPCODE))
return NULL;
l += 3;
}
}
}
/* Any other comma loses. */
if (*l == ',')
{
as_bad (_("invalid character %s in mnemonic"),
output_invalid (*l));
return NULL;
}
/* Check if instruction is supported on specified architecture. */
supported = 0;
for (t = current_templates->start; t < current_templates->end; ++t)
{
supported |= cpu_flags_match (t);
if (supported == CPU_FLAGS_PERFECT_MATCH)
goto skip;
}
if (!(supported & CPU_FLAGS_64BIT_MATCH))
{
as_bad (flag_code == CODE_64BIT
? _("`%s' is not supported in 64-bit mode")
: _("`%s' is only supported in 64-bit mode"),
current_templates->start->name);
return NULL;
}
if (supported != CPU_FLAGS_PERFECT_MATCH)
{
as_bad (_("`%s' is not supported on `%s%s'"),
current_templates->start->name, cpu_arch_name,
cpu_sub_arch_name ? cpu_sub_arch_name : "");
return NULL;
}
skip:
if (!cpu_arch_flags.bitfield.cpui386
&& (flag_code != CODE_16BIT))
{
as_warn (_("use .code16 to ensure correct addressing mode"));
}
/* Check for rep/repne without a string instruction. */
if (expecting_string_instruction)
{
static templates override;
for (t = current_templates->start; t < current_templates->end; ++t)
if (t->opcode_modifier.isstring)
break;
if (t >= current_templates->end)
{
as_bad (_("expecting string instruction after `%s'"),
expecting_string_instruction);
return NULL;
}
for (override.start = t; t < current_templates->end; ++t)
if (!t->opcode_modifier.isstring)
break;
override.end = t;
current_templates = &override;
}
return l;
}
static char *
parse_operands (char *l, const char *mnemonic)
{
char *token_start;
/* 1 if operand is pending after ','. */
unsigned int expecting_operand = 0;
/* Non-zero if operand parens not balanced. */
unsigned int paren_not_balanced;
while (*l != END_OF_INSN)
{
/* Skip optional white space before operand. */
if (is_space_char (*l))
++l;
if (!is_operand_char (*l) && *l != END_OF_INSN)
{
as_bad (_("invalid character %s before operand %d"),
output_invalid (*l),
i.operands + 1);
return NULL;
}
token_start = l; /* after white space */
paren_not_balanced = 0;
while (paren_not_balanced || *l != ',')
{
if (*l == END_OF_INSN)
{
if (paren_not_balanced)
{
if (!intel_syntax)
as_bad (_("unbalanced parenthesis in operand %d."),
i.operands + 1);
else
as_bad (_("unbalanced brackets in operand %d."),
i.operands + 1);
return NULL;
}
else
break; /* we are done */
}
else if (!is_operand_char (*l) && !is_space_char (*l))
{
as_bad (_("invalid character %s in operand %d"),
output_invalid (*l),
i.operands + 1);
return NULL;
}
if (!intel_syntax)
{
if (*l == '(')
++paren_not_balanced;
if (*l == ')')
--paren_not_balanced;
}
else
{
if (*l == '[')
++paren_not_balanced;
if (*l == ']')
--paren_not_balanced;
}
l++;
}
if (l != token_start)
{ /* Yes, we've read in another operand. */
unsigned int operand_ok;
this_operand = i.operands++;
i.types[this_operand].bitfield.unspecified = 1;
if (i.operands > MAX_OPERANDS)
{
as_bad (_("spurious operands; (%d operands/instruction max)"),
MAX_OPERANDS);
return NULL;
}
/* Now parse operand adding info to 'i' as we go along. */
END_STRING_AND_SAVE (l);
if (intel_syntax)
operand_ok =
i386_intel_operand (token_start,
intel_float_operand (mnemonic));
else
operand_ok = i386_att_operand (token_start);
RESTORE_END_STRING (l);
if (!operand_ok)
return NULL;
}
else
{
if (expecting_operand)
{
expecting_operand_after_comma:
as_bad (_("expecting operand after ','; got nothing"));
return NULL;
}
if (*l == ',')
{
as_bad (_("expecting operand before ','; got nothing"));
return NULL;
}
}
/* Now *l must be either ',' or END_OF_INSN. */
if (*l == ',')
{
if (*++l == END_OF_INSN)
{
/* Just skip it, if it's \n complain. */
goto expecting_operand_after_comma;
}
expecting_operand = 1;
}
}
return l;
}
static void
swap_2_operands (int xchg1, int xchg2)
{
union i386_op temp_op;
i386_operand_type temp_type;
enum bfd_reloc_code_real temp_reloc;
temp_type = i.types[xchg2];
i.types[xchg2] = i.types[xchg1];
i.types[xchg1] = temp_type;
temp_op = i.op[xchg2];
i.op[xchg2] = i.op[xchg1];
i.op[xchg1] = temp_op;
temp_reloc = i.reloc[xchg2];
i.reloc[xchg2] = i.reloc[xchg1];
i.reloc[xchg1] = temp_reloc;
}
static void
swap_operands (void)
{
switch (i.operands)
{
case 5:
case 4:
swap_2_operands (1, i.operands - 2);
case 3:
case 2:
swap_2_operands (0, i.operands - 1);
break;
default:
abort ();
}
if (i.mem_operands == 2)
{
const seg_entry *temp_seg;
temp_seg = i.seg[0];
i.seg[0] = i.seg[1];
i.seg[1] = temp_seg;
}
}
/* Try to ensure constant immediates are represented in the smallest
opcode possible. */
static void
optimize_imm (void)
{
char guess_suffix = 0;
int op;
if (i.suffix)
guess_suffix = i.suffix;
else if (i.reg_operands)
{
/* Figure out a suffix from the last register operand specified.
We can't do this properly yet, ie. excluding InOutPortReg,
but the following works for instructions with immediates.
In any case, we can't set i.suffix yet. */
for (op = i.operands; --op >= 0;)
if (i.types[op].bitfield.reg8)
{
guess_suffix = BYTE_MNEM_SUFFIX;
break;
}
else if (i.types[op].bitfield.reg16)
{
guess_suffix = WORD_MNEM_SUFFIX;
break;
}
else if (i.types[op].bitfield.reg32)
{
guess_suffix = LONG_MNEM_SUFFIX;
break;
}
else if (i.types[op].bitfield.reg64)
{
guess_suffix = QWORD_MNEM_SUFFIX;
break;
}
}
else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
guess_suffix = WORD_MNEM_SUFFIX;
for (op = i.operands; --op >= 0;)
if (operand_type_check (i.types[op], imm))
{
switch (i.op[op].imms->X_op)
{
case O_constant:
/* If a suffix is given, this operand may be shortened. */
switch (guess_suffix)
{
case LONG_MNEM_SUFFIX:
i.types[op].bitfield.imm32 = 1;
i.types[op].bitfield.imm64 = 1;
break;
case WORD_MNEM_SUFFIX:
i.types[op].bitfield.imm16 = 1;
i.types[op].bitfield.imm32 = 1;
i.types[op].bitfield.imm32s = 1;
i.types[op].bitfield.imm64 = 1;
break;
case BYTE_MNEM_SUFFIX:
i.types[op].bitfield.imm8 = 1;
i.types[op].bitfield.imm8s = 1;
i.types[op].bitfield.imm16 = 1;
i.types[op].bitfield.imm32 = 1;
i.types[op].bitfield.imm32s = 1;
i.types[op].bitfield.imm64 = 1;
break;
}
/* If this operand is at most 16 bits, convert it
to a signed 16 bit number before trying to see
whether it will fit in an even smaller size.
This allows a 16-bit operand such as $0xffe0 to
be recognised as within Imm8S range. */
if ((i.types[op].bitfield.imm16)
&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
{
i.op[op].imms->X_add_number =
(((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
}
if ((i.types[op].bitfield.imm32)
&& ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
== 0))
{
i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
^ ((offsetT) 1 << 31))
- ((offsetT) 1 << 31));
}
i.types[op]
= operand_type_or (i.types[op],
smallest_imm_type (i.op[op].imms->X_add_number));
/* We must avoid matching of Imm32 templates when 64bit
only immediate is available. */
if (guess_suffix == QWORD_MNEM_SUFFIX)
i.types[op].bitfield.imm32 = 0;
break;
case O_absent:
case O_register:
abort ();
/* Symbols and expressions. */
default:
/* Convert symbolic operand to proper sizes for matching, but don't
prevent matching a set of insns that only supports sizes other
than those matching the insn suffix. */
{
i386_operand_type mask, allowed;
const template *t;
operand_type_set (&mask, 0);
operand_type_set (&allowed, 0);
for (t = current_templates->start;
t < current_templates->end;
++t)
allowed = operand_type_or (allowed,
t->operand_types[op]);
switch (guess_suffix)
{
case QWORD_MNEM_SUFFIX:
mask.bitfield.imm64 = 1;
mask.bitfield.imm32s = 1;
break;
case LONG_MNEM_SUFFIX:
mask.bitfield.imm32 = 1;
break;
case WORD_MNEM_SUFFIX:
mask.bitfield.imm16 = 1;
break;
case BYTE_MNEM_SUFFIX:
mask.bitfield.imm8 = 1;
break;
default:
break;
}
allowed = operand_type_and (mask, allowed);
if (!operand_type_all_zero (&allowed))
i.types[op] = operand_type_and (i.types[op], mask);
}
break;
}
}
}
/* Try to use the smallest displacement type too. */
static void
optimize_disp (void)
{
int op;
for (op = i.operands; --op >= 0;)
if (operand_type_check (i.types[op], disp))
{
if (i.op[op].disps->X_op == O_constant)
{
offsetT disp = i.op[op].disps->X_add_number;
if (i.types[op].bitfield.disp16
&& (disp & ~(offsetT) 0xffff) == 0)
{
/* If this operand is at most 16 bits, convert
to a signed 16 bit number and don't use 64bit
displacement. */
disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
i.types[op].bitfield.disp64 = 0;
}
if (i.types[op].bitfield.disp32
&& (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
{
/* If this operand is at most 32 bits, convert
to a signed 32 bit number and don't use 64bit
displacement. */
disp &= (((offsetT) 2 << 31) - 1);
disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
i.types[op].bitfield.disp64 = 0;
}
if (!disp && i.types[op].bitfield.baseindex)
{
i.types[op].bitfield.disp8 = 0;
i.types[op].bitfield.disp16 = 0;
i.types[op].bitfield.disp32 = 0;
i.types[op].bitfield.disp32s = 0;
i.types[op].bitfield.disp64 = 0;
i.op[op].disps = 0;
i.disp_operands--;
}
else if (flag_code == CODE_64BIT)
{
if (fits_in_signed_long (disp))
{
i.types[op].bitfield.disp64 = 0;
i.types[op].bitfield.disp32s = 1;
}
if (fits_in_unsigned_long (disp))
i.types[op].bitfield.disp32 = 1;
}
if ((i.types[op].bitfield.disp32
|| i.types[op].bitfield.disp32s
|| i.types[op].bitfield.disp16)
&& fits_in_signed_byte (disp))
i.types[op].bitfield.disp8 = 1;
}
else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
|| i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
{
fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
i.op[op].disps, 0, i.reloc[op]);
i.types[op].bitfield.disp8 = 0;
i.types[op].bitfield.disp16 = 0;
i.types[op].bitfield.disp32 = 0;
i.types[op].bitfield.disp32s = 0;
i.types[op].bitfield.disp64 = 0;
}
else
/* We only support 64bit displacement on constants. */
i.types[op].bitfield.disp64 = 0;
}
}
/* Check if operands are valid for the instrucrtion. Update VEX
operand types. */
static int
VEX_check_operands (const template *t)
{
if (!t->opcode_modifier.vex)
return 0;
/* Only check VEX_Imm4, which must be the first operand. */
if (t->operand_types[0].bitfield.vex_imm4)
{
if (i.op[0].imms->X_op != O_constant
|| !fits_in_imm4 (i.op[0].imms->X_add_number))
return 1;
/* Turn off Imm8 so that update_imm won't complain. */
i.types[0] = vex_imm4;
}
return 0;
}
static int
match_template (void)
{
/* Points to template once we've found it. */
const template *t;
i386_operand_type overlap0, overlap1, overlap2, overlap3;
i386_operand_type overlap4;
unsigned int found_reverse_match;
i386_opcode_modifier suffix_check;
i386_operand_type operand_types [MAX_OPERANDS];
int addr_prefix_disp;
unsigned int j;
unsigned int found_cpu_match;
unsigned int check_register;
#if MAX_OPERANDS != 5
# error "MAX_OPERANDS must be 5."
#endif
found_reverse_match = 0;
addr_prefix_disp = -1;
memset (&suffix_check, 0, sizeof (suffix_check));
if (i.suffix == BYTE_MNEM_SUFFIX)
suffix_check.no_bsuf = 1;
else if (i.suffix == WORD_MNEM_SUFFIX)
suffix_check.no_wsuf = 1;
else if (i.suffix == SHORT_MNEM_SUFFIX)
suffix_check.no_ssuf = 1;
else if (i.suffix == LONG_MNEM_SUFFIX)
suffix_check.no_lsuf = 1;
else if (i.suffix == QWORD_MNEM_SUFFIX)
suffix_check.no_qsuf = 1;
else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
suffix_check.no_ldsuf = 1;
for (t = current_templates->start; t < current_templates->end; t++)
{
addr_prefix_disp = -1;
/* Must have right number of operands. */
if (i.operands != t->operands)
continue;
/* Check processor support. */
found_cpu_match = (cpu_flags_match (t)
== CPU_FLAGS_PERFECT_MATCH);
if (!found_cpu_match)
continue;
/* Check old gcc support. */
if (!old_gcc && t->opcode_modifier.oldgcc)
continue;
/* Check AT&T mnemonic. */
if (intel_mnemonic && t->opcode_modifier.attmnemonic)
continue;
/* Check AT&T syntax Intel syntax. */
if ((intel_syntax && t->opcode_modifier.attsyntax)
|| (!intel_syntax && t->opcode_modifier.intelsyntax))
continue;
/* Check the suffix, except for some instructions in intel mode. */
if ((!intel_syntax || !t->opcode_modifier.ignoresize)
&& ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
|| (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
|| (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
|| (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
|| (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
|| (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
continue;
if (!operand_size_match (t))
continue;
for (j = 0; j < MAX_OPERANDS; j++)
operand_types[j] = t->operand_types[j];
/* In general, don't allow 64-bit operands in 32-bit mode. */
if (i.suffix == QWORD_MNEM_SUFFIX
&& flag_code != CODE_64BIT
&& (intel_syntax
? (!t->opcode_modifier.ignoresize
&& !intel_float_operand (t->name))
: intel_float_operand (t->name) != 2)
&& ((!operand_types[0].bitfield.regmmx
&& !operand_types[0].bitfield.regxmm
&& !operand_types[0].bitfield.regymm)
|| (!operand_types[t->operands > 1].bitfield.regmmx
&& !!operand_types[t->operands > 1].bitfield.regxmm
&& !!operand_types[t->operands > 1].bitfield.regymm))
&& (t->base_opcode != 0x0fc7
|| t->extension_opcode != 1 /* cmpxchg8b */))
continue;
/* In general, don't allow 32-bit operands on pre-386. */
else if (i.suffix == LONG_MNEM_SUFFIX
&& !cpu_arch_flags.bitfield.cpui386
&& (intel_syntax
? (!t->opcode_modifier.ignoresize
&& !intel_float_operand (t->name))
: intel_float_operand (t->name) != 2)
&& ((!operand_types[0].bitfield.regmmx
&& !operand_types[0].bitfield.regxmm)
|| (!operand_types[t->operands > 1].bitfield.regmmx
&& !!operand_types[t->operands > 1].bitfield.regxmm)))
continue;
/* Do not verify operands when there are none. */
else
{
if (!t->operands)
/* We've found a match; break out of loop. */
break;
}
/* Address size prefix will turn Disp64/Disp32/Disp16 operand
into Disp32/Disp16/Disp32 operand. */
if (i.prefix[ADDR_PREFIX] != 0)
{
/* There should be only one Disp operand. */
switch (flag_code)
{
case CODE_16BIT:
for (j = 0; j < MAX_OPERANDS; j++)
{
if (operand_types[j].bitfield.disp16)
{
addr_prefix_disp = j;
operand_types[j].bitfield.disp32 = 1;
operand_types[j].bitfield.disp16 = 0;
break;
}
}
break;
case CODE_32BIT:
for (j = 0; j < MAX_OPERANDS; j++)
{
if (operand_types[j].bitfield.disp32)
{
addr_prefix_disp = j;
operand_types[j].bitfield.disp32 = 0;
operand_types[j].bitfield.disp16 = 1;
break;
}
}
break;
case CODE_64BIT:
for (j = 0; j < MAX_OPERANDS; j++)
{
if (operand_types[j].bitfield.disp64)
{
addr_prefix_disp = j;
operand_types[j].bitfield.disp64 = 0;
operand_types[j].bitfield.disp32 = 1;
break;
}
}
break;
}
}
/* We check register size only if size of operands can be
encoded the canonical way. */
check_register = t->opcode_modifier.w;
overlap0 = operand_type_and (i.types[0], operand_types[0]);
switch (t->operands)
{
case 1:
if (!operand_type_match (overlap0, i.types[0]))
continue;
break;
case 2:
/* xchg %eax, %eax is a special case. It is an aliase for nop
only in 32bit mode and we can use opcode 0x90. In 64bit
mode, we can't use 0x90 for xchg %eax, %eax since it should
zero-extend %eax to %rax. */
if (flag_code == CODE_64BIT
&& t->base_opcode == 0x90
&& operand_type_equal (&i.types [0], &acc32)
&& operand_type_equal (&i.types [1], &acc32))
continue;
case 3:
case 4:
case 5:
overlap1 = operand_type_and (i.types[1], operand_types[1]);
if (!operand_type_match (overlap0, i.types[0])
|| !operand_type_match (overlap1, i.types[1])
|| (check_register
&& !operand_type_register_match (overlap0, i.types[0],
operand_types[0],
overlap1, i.types[1],
operand_types[1])))
{
/* Check if other direction is valid ... */
if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
continue;
/* Try reversing direction of operands. */
overlap0 = operand_type_and (i.types[0], operand_types[1]);
overlap1 = operand_type_and (i.types[1], operand_types[0]);
if (!operand_type_match (overlap0, i.types[0])
|| !operand_type_match (overlap1, i.types[1])
|| (check_register
&& !operand_type_register_match (overlap0,
i.types[0],
operand_types[1],
overlap1,
i.types[1],
operand_types[0])))
{
/* Does not match either direction. */
continue;
}
/* found_reverse_match holds which of D or FloatDR
we've found. */
if (t->opcode_modifier.d)
found_reverse_match = Opcode_D;
else if (t->opcode_modifier.floatd)
found_reverse_match = Opcode_FloatD;
else
found_reverse_match = 0;
if (t->opcode_modifier.floatr)
found_reverse_match |= Opcode_FloatR;
}
else
{
/* Found a forward 2 operand match here. */
switch (t->operands)
{
case 5:
overlap4 = operand_type_and (i.types[4],
operand_types[4]);
case 4:
overlap3 = operand_type_and (i.types[3],
operand_types[3]);
case 3:
overlap2 = operand_type_and (i.types[2],
operand_types[2]);
break;
}
switch (t->operands)
{
case 5:
if (!operand_type_match (overlap4, i.types[4])
|| !operand_type_register_match (overlap3,
i.types[3],
operand_types[3],
overlap4,
i.types[4],
operand_types[4]))
continue;
case 4:
if (!operand_type_match (overlap3, i.types[3])
|| (check_register
&& !operand_type_register_match (overlap2,
i.types[2],
operand_types[2],
overlap3,
i.types[3],
operand_types[3])))
continue;
case 3:
/* Here we make use of the fact that there are no
reverse match 3 operand instructions, and all 3
operand instructions only need to be checked for
register consistency between operands 2 and 3. */
if (!operand_type_match (overlap2, i.types[2])
|| (check_register
&& !operand_type_register_match (overlap1,
i.types[1],
operand_types[1],
overlap2,
i.types[2],
operand_types[2])))
continue;
break;
}
}
/* Found either forward/reverse 2, 3 or 4 operand match here:
slip through to break. */
}
if (!found_cpu_match)
{
found_reverse_match = 0;
continue;
}
/* Check if VEX operands are valid. */
if (VEX_check_operands (t))
continue;
/* We've found a match; break out of loop. */
break;
}
if (t == current_templates->end)
{
/* We found no match. */
if (intel_syntax)
as_bad (_("ambiguous operand size or operands invalid for `%s'"),
current_templates->start->name);
else
as_bad (_("suffix or operands invalid for `%s'"),
current_templates->start->name);
return 0;
}
if (!quiet_warnings)
{
if (!intel_syntax
&& (i.types[0].bitfield.jumpabsolute
!= operand_types[0].bitfield.jumpabsolute))
{
as_warn (_("indirect %s without `*'"), t->name);
}
if (t->opcode_modifier.isprefix
&& t->opcode_modifier.ignoresize)
{
/* Warn them that a data or address size prefix doesn't
affect assembly of the next line of code. */
as_warn (_("stand-alone `%s' prefix"), t->name);
}
}
/* Copy the template we found. */
i.tm = *t;
if (addr_prefix_disp != -1)
i.tm.operand_types[addr_prefix_disp]
= operand_types[addr_prefix_disp];
if (found_reverse_match)
{
/* If we found a reverse match we must alter the opcode
direction bit. found_reverse_match holds bits to change
(different for int & float insns). */
i.tm.base_opcode ^= found_reverse_match;
i.tm.operand_types[0] = operand_types[1];
i.tm.operand_types[1] = operand_types[0];
}
return 1;
}
static int
check_string (void)
{
int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
if (i.tm.operand_types[mem_op].bitfield.esseg)
{
if (i.seg[0] != NULL && i.seg[0] != &es)
{
as_bad (_("`%s' operand %d must use `%%es' segment"),
i.tm.name,
mem_op + 1);
return 0;
}
/* There's only ever one segment override allowed per instruction.
This instruction possibly has a legal segment override on the
second operand, so copy the segment to where non-string
instructions store it, allowing common code. */
i.seg[0] = i.seg[1];
}
else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
{
if (i.seg[1] != NULL && i.seg[1] != &es)
{
as_bad (_("`%s' operand %d must use `%%es' segment"),
i.tm.name,
mem_op + 2);
return 0;
}
}
return 1;
}
static int
process_suffix (void)
{
/* If matched instruction specifies an explicit instruction mnemonic
suffix, use it. */
if (i.tm.opcode_modifier.size16)
i.suffix = WORD_MNEM_SUFFIX;
else if (i.tm.opcode_modifier.size32)
i.suffix = LONG_MNEM_SUFFIX;
else if (i.tm.opcode_modifier.size64)
i.suffix = QWORD_MNEM_SUFFIX;
else if (i.reg_operands)
{
/* If there's no instruction mnemonic suffix we try to invent one
based on register operands. */
if (!i.suffix)
{
/* We take i.suffix from the last register operand specified,
Destination register type is more significant than source
register type. crc32 in SSE4.2 prefers source register
type. */
if (i.tm.base_opcode == 0xf20f38f1)
{
if (i.types[0].bitfield.reg16)
i.suffix = WORD_MNEM_SUFFIX;
else if (i.types[0].bitfield.reg32)
i.suffix = LONG_MNEM_SUFFIX;
else if (i.types[0].bitfield.reg64)
i.suffix = QWORD_MNEM_SUFFIX;
}
else if (i.tm.base_opcode == 0xf20f38f0)
{
if (i.types[0].bitfield.reg8)
i.suffix = BYTE_MNEM_SUFFIX;
}
if (!i.suffix)
{
int op;
if (i.tm.base_opcode == 0xf20f38f1
|| i.tm.base_opcode == 0xf20f38f0)
{
/* We have to know the operand size for crc32. */
as_bad (_("ambiguous memory operand size for `%s`"),
i.tm.name);
return 0;
}
for (op = i.operands; --op >= 0;)
if (!i.tm.operand_types[op].bitfield.inoutportreg)
{
if (i.types[op].bitfield.reg8)
{
i.suffix = BYTE_MNEM_SUFFIX;
break;
}
else if (i.types[op].bitfield.reg16)
{
i.suffix = WORD_MNEM_SUFFIX;
break;
}
else if (i.types[op].bitfield.reg32)
{
i.suffix = LONG_MNEM_SUFFIX;
break;
}
else if (i.types[op].bitfield.reg64)
{
i.suffix = QWORD_MNEM_SUFFIX;
break;
}
}
}
}
else if (i.suffix == BYTE_MNEM_SUFFIX)
{
if (!check_byte_reg ())
return 0;
}
else if (i.suffix == LONG_MNEM_SUFFIX)
{
if (!check_long_reg ())
return 0;
}
else if (i.suffix == QWORD_MNEM_SUFFIX)
{
if (intel_syntax
&& i.tm.opcode_modifier.ignoresize
&& i.tm.opcode_modifier.no_qsuf)
i.suffix = 0;
else if (!check_qword_reg ())
return 0;
}
else if (i.suffix == WORD_MNEM_SUFFIX)
{
if (!check_word_reg ())
return 0;
}
else if (i.suffix == XMMWORD_MNEM_SUFFIX
|| i.suffix == YMMWORD_MNEM_SUFFIX)
{
/* Skip if the instruction has x/y suffix. match_template
should check if it is a valid suffix. */
}
else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
/* Do nothing if the instruction is going to ignore the prefix. */
;
else
abort ();
}
else if (i.tm.opcode_modifier.defaultsize
&& !i.suffix
/* exclude fldenv/frstor/fsave/fstenv */
&& i.tm.opcode_modifier.no_ssuf)
{
i.suffix = stackop_size;
}
else if (intel_syntax
&& !i.suffix
&& (i.tm.operand_types[0].bitfield.jumpabsolute
|| i.tm.opcode_modifier.jumpbyte
|| i.tm.opcode_modifier.jumpintersegment
|| (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
&& i.tm.extension_opcode <= 3)))
{
switch (flag_code)
{
case CODE_64BIT:
if (!i.tm.opcode_modifier.no_qsuf)
{
i.suffix = QWORD_MNEM_SUFFIX;
break;
}
case CODE_32BIT:
if (!i.tm.opcode_modifier.no_lsuf)
i.suffix = LONG_MNEM_SUFFIX;
break;
case CODE_16BIT:
if (!i.tm.opcode_modifier.no_wsuf)
i.suffix = WORD_MNEM_SUFFIX;
break;
}
}
if (!i.suffix)
{
if (!intel_syntax)
{
if (i.tm.opcode_modifier.w)
{
as_bad (_("no instruction mnemonic suffix given and "
"no register operands; can't size instruction"));
return 0;
}
}
else
{
unsigned int suffixes;
suffixes = !i.tm.opcode_modifier.no_bsuf;
if (!i.tm.opcode_modifier.no_wsuf)
suffixes |= 1 << 1;
if (!i.tm.opcode_modifier.no_lsuf)
suffixes |= 1 << 2;
if (!i.tm.opcode_modifier.no_ldsuf)
suffixes |= 1 << 3;
if (!i.tm.opcode_modifier.no_ssuf)
suffixes |= 1 << 4;
if (!i.tm.opcode_modifier.no_qsuf)
suffixes |= 1 << 5;
/* There are more than suffix matches. */
if (i.tm.opcode_modifier.w
|| ((suffixes & (suffixes - 1))
&& !i.tm.opcode_modifier.defaultsize
&& !i.tm.opcode_modifier.ignoresize))
{
as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
return 0;
}
}
}
/* Change the opcode based on the operand size given by i.suffix;
We don't need to change things for byte insns. */
if (i.suffix
&& i.suffix != BYTE_MNEM_SUFFIX
&& i.suffix != XMMWORD_MNEM_SUFFIX
&& i.suffix != YMMWORD_MNEM_SUFFIX)
{
/* It's not a byte, select word/dword operation. */
if (i.tm.opcode_modifier.w)
{
if (i.tm.opcode_modifier.shortform)
i.tm.base_opcode |= 8;
else
i.tm.base_opcode |= 1;
}
/* Now select between word & dword operations via the operand
size prefix, except for instructions that will ignore this
prefix anyway. */
if (i.tm.opcode_modifier.addrprefixop0)
{
/* The address size override prefix changes the size of the
first operand. */
if ((flag_code == CODE_32BIT
&& i.op->regs[0].reg_type.bitfield.reg16)
|| (flag_code != CODE_32BIT
&& i.op->regs[0].reg_type.bitfield.reg32))
if (!add_prefix (ADDR_PREFIX_OPCODE))
return 0;
}
else if (i.suffix != QWORD_MNEM_SUFFIX
&& i.suffix != LONG_DOUBLE_MNEM_SUFFIX
&& !i.tm.opcode_modifier.ignoresize
&& !i.tm.opcode_modifier.floatmf
&& ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
|| (flag_code == CODE_64BIT
&& i.tm.opcode_modifier.jumpbyte)))
{
unsigned int prefix = DATA_PREFIX_OPCODE;
if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
prefix = ADDR_PREFIX_OPCODE;
if (!add_prefix (prefix))
return 0;
}
/* Set mode64 for an operand. */
if (i.suffix == QWORD_MNEM_SUFFIX
&& flag_code == CODE_64BIT
&& !i.tm.opcode_modifier.norex64)
{
/* Special case for xchg %rax,%rax. It is NOP and doesn't
need rex64. cmpxchg8b is also a special case. */
if (! (i.operands == 2
&& i.tm.base_opcode == 0x90
&& i.tm.extension_opcode == None
&& operand_type_equal (&i.types [0], &acc64)
&& operand_type_equal (&i.types [1], &acc64))
&& ! (i.operands == 1
&& i.tm.base_opcode == 0xfc7
&& i.tm.extension_opcode == 1
&& !operand_type_check (i.types [0], reg)
&& operand_type_check (i.types [0], anymem)))
i.rex |= REX_W;
}
/* Size floating point instruction. */
if (i.suffix == LONG_MNEM_SUFFIX)
if (i.tm.opcode_modifier.floatmf)
i.tm.base_opcode ^= 4;
}
return 1;
}
static int
check_byte_reg (void)
{
int op;
for (op = i.operands; --op >= 0;)
{
/* If this is an eight bit register, it's OK. If it's the 16 or
32 bit version of an eight bit register, we will just use the
low portion, and that's OK too. */
if (i.types[op].bitfield.reg8)
continue;
/* Don't generate this warning if not needed. */
if (intel_syntax && i.tm.opcode_modifier.byteokintel)
continue;
/* crc32 doesn't generate this warning. */
if (i.tm.base_opcode == 0xf20f38f0)
continue;
if ((i.types[op].bitfield.reg16
|| i.types[op].bitfield.reg32
|| i.types[op].bitfield.reg64)
&& i.op[op].regs->reg_num < 4)
{
/* Prohibit these changes in the 64bit mode, since the
lowering is more complicated. */
if (flag_code == CODE_64BIT
&& !i.tm.operand_types[op].bitfield.inoutportreg)
{
as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
register_prefix, i.op[op].regs->reg_name,
i.suffix);
return 0;
}
#if REGISTER_WARNINGS
if (!quiet_warnings
&& !i.tm.operand_types[op].bitfield.inoutportreg)
as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
register_prefix,
(i.op[op].regs + (i.types[op].bitfield.reg16
? REGNAM_AL - REGNAM_AX
: REGNAM_AL - REGNAM_EAX))->reg_name,
register_prefix,
i.op[op].regs->reg_name,
i.suffix);
#endif
continue;
}
/* Any other register is bad. */
if (i.types[op].bitfield.reg16
|| i.types[op].bitfield.reg32
|| i.types[op].bitfield.reg64
|| i.types[op].bitfield.regmmx
|| i.types[op].bitfield.regxmm
|| i.types[op].bitfield.regymm
|| i.types[op].bitfield.sreg2
|| i.types[op].bitfield.sreg3
|| i.types[op].bitfield.control
|| i.types[op].bitfield.debug
|| i.types[op].bitfield.test
|| i.types[op].bitfield.floatreg
|| i.types[op].bitfield.floatacc)
{
as_bad (_("`%s%s' not allowed with `%s%c'"),
register_prefix,
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return 0;
}
}
return 1;
}
static int
check_long_reg (void)
{
int op;
for (op = i.operands; --op >= 0;)
/* Reject eight bit registers, except where the template requires
them. (eg. movzb) */
if (i.types[op].bitfield.reg8
&& (i.tm.operand_types[op].bitfield.reg16
|| i.tm.operand_types[op].bitfield.reg32
|| i.tm.operand_types[op].bitfield.acc))
{
as_bad (_("`%s%s' not allowed with `%s%c'"),
register_prefix,
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return 0;
}
/* Warn if the e prefix on a general reg is missing. */
else if ((!quiet_warnings || flag_code == CODE_64BIT)
&& i.types[op].bitfield.reg16
&& (i.tm.operand_types[op].bitfield.reg32
|| i.tm.operand_types[op].bitfield.acc))
{
/* Prohibit these changes in the 64bit mode, since the
lowering is more complicated. */
if (flag_code == CODE_64BIT)
{
as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
register_prefix, i.op[op].regs->reg_name,
i.suffix);
return 0;
}
#if REGISTER_WARNINGS
else
as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
register_prefix,
(i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
register_prefix,
i.op[op].regs->reg_name,
i.suffix);
#endif
}
/* Warn if the r prefix on a general reg is missing. */
else if (i.types[op].bitfield.reg64
&& (i.tm.operand_types[op].bitfield.reg32
|| i.tm.operand_types[op].bitfield.acc))
{
if (intel_syntax
&& i.tm.opcode_modifier.toqword
&& !i.types[0].bitfield.regxmm)
{
/* Convert to QWORD. We want REX byte. */
i.suffix = QWORD_MNEM_SUFFIX;
}
else
{
as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
register_prefix, i.op[op].regs->reg_name,
i.suffix);
return 0;
}
}
return 1;
}
static int
check_qword_reg (void)
{
int op;
for (op = i.operands; --op >= 0; )
/* Reject eight bit registers, except where the template requires
them. (eg. movzb) */
if (i.types[op].bitfield.reg8
&& (i.tm.operand_types[op].bitfield.reg16
|| i.tm.operand_types[op].bitfield.reg32
|| i.tm.operand_types[op].bitfield.acc))
{
as_bad (_("`%s%s' not allowed with `%s%c'"),
register_prefix,
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return 0;
}
/* Warn if the e prefix on a general reg is missing. */
else if ((i.types[op].bitfield.reg16
|| i.types[op].bitfield.reg32)
&& (i.tm.operand_types[op].bitfield.reg32
|| i.tm.operand_types[op].bitfield.acc))
{
/* Prohibit these changes in the 64bit mode, since the
lowering is more complicated. */
if (intel_syntax
&& i.tm.opcode_modifier.todword
&& !i.types[0].bitfield.regxmm)
{
/* Convert to DWORD. We don't want REX byte. */
i.suffix = LONG_MNEM_SUFFIX;
}
else
{
as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
register_prefix, i.op[op].regs->reg_name,
i.suffix);
return 0;
}
}
return 1;
}
static int
check_word_reg (void)
{
int op;
for (op = i.operands; --op >= 0;)
/* Reject eight bit registers, except where the template requires
them. (eg. movzb) */
if (i.types[op].bitfield.reg8
&& (i.tm.operand_types[op].bitfield.reg16
|| i.tm.operand_types[op].bitfield.reg32
|| i.tm.operand_types[op].bitfield.acc))
{
as_bad (_("`%s%s' not allowed with `%s%c'"),
register_prefix,
i.op[op].regs->reg_name,
i.tm.name,
i.suffix);
return 0;
}
/* Warn if the e prefix on a general reg is present. */
else if ((!quiet_warnings || flag_code == CODE_64BIT)
&& i.types[op].bitfield.reg32
&& (i.tm.operand_types[op].bitfield.reg16
|| i.tm.operand_types[op].bitfield.acc))
{
/* Prohibit these changes in the 64bit mode, since the
lowering is more complicated. */
if (flag_code == CODE_64BIT)
{
as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
register_prefix, i.op[op].regs->reg_name,
i.suffix);
return 0;
}
else
#if REGISTER_WARNINGS
as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
register_prefix,
(i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
register_prefix,
i.op[op].regs->reg_name,
i.suffix);
#endif
}
return 1;
}
static int
update_imm (unsigned int j)
{
i386_operand_type overlap;
overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
if ((overlap.bitfield.imm8
|| overlap.bitfield.imm8s
|| overlap.bitfield.imm16
|| overlap.bitfield.imm32
|| overlap.bitfield.imm32s
|| overlap.bitfield.imm64)
&& !operand_type_equal (&overlap, &imm8)
&& !operand_type_equal (&overlap, &imm8s)
&& !operand_type_equal (&overlap, &imm16)
&& !operand_type_equal (&overlap, &imm32)
&& !operand_type_equal (&overlap, &imm32s)
&& !operand_type_equal (&overlap, &imm64))
{
if (i.suffix)
{
i386_operand_type temp;
operand_type_set (&temp, 0);
if (i.suffix == BYTE_MNEM_SUFFIX)
{
temp.bitfield.imm8 = overlap.bitfield.imm8;
temp.bitfield.imm8s = overlap.bitfield.imm8s;
}
else if (i.suffix == WORD_MNEM_SUFFIX)
temp.bitfield.imm16 = overlap.bitfield.imm16;
else if (i.suffix == QWORD_MNEM_SUFFIX)
{
temp.bitfield.imm64 = overlap.bitfield.imm64;
temp.bitfield.imm32s = overlap.bitfield.imm32s;
}
else
temp.bitfield.imm32 = overlap.bitfield.imm32;
overlap = temp;
}
else if (operand_type_equal (&overlap, &imm16_32_32s)
|| operand_type_equal (&overlap, &imm16_32)
|| operand_type_equal (&overlap, &imm16_32s))
{
if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
overlap = imm16;
else
overlap = imm32s;
}
if (!operand_type_equal (&overlap, &imm8)
&& !operand_type_equal (&overlap, &imm8s)
&& !operand_type_equal (&overlap, &imm16)
&& !operand_type_equal (&overlap, &imm32)
&& !operand_type_equal (&overlap, &imm32s)
&& !operand_type_equal (&overlap, &imm64))
{
as_bad (_("no instruction mnemonic suffix given; "
"can't determine immediate size"));
return 0;
}
}
i.types[j] = overlap;
return 1;
}
static int
finalize_imm (void)
{
unsigned int j;
for (j = 0; j < 2; j++)
if (update_imm (j) == 0)
return 0;
i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
assert (operand_type_check (i.types[2], imm) == 0);
return 1;
}
static void
process_drex (void)
{
i.drex.modrm_reg = 0;
i.drex.modrm_regmem = 0;
/* SSE5 4 operand instructions must have the destination the same as
one of the inputs. Figure out the destination register and cache
it away in the drex field, and remember which fields to use for
the modrm byte. */
if (i.tm.opcode_modifier.drex
&& i.tm.opcode_modifier.drexv
&& i.operands == 4)
{
i.tm.extension_opcode = None;
/* Case 1: 4 operand insn, dest = src1, src3 = register. */
if (i.types[0].bitfield.regxmm != 0
&& i.types[1].bitfield.regxmm != 0
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0
&& i.op[0].regs->reg_num == i.op[3].regs->reg_num
&& i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* Clear the arguments that are stored in drex. */
operand_type_set (&i.types[0], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* There are two different ways to encode a 4 operand
instruction with all registers that uses OC1 set to
0 or 1. Favor setting OC1 to 0 since this mimics the
actions of other SSE5 assemblers. Use modrm encoding 2
for register/register. Include the high order bit that
is normally stored in the REX byte in the register
field. */
i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
i.drex.modrm_reg = 2;
i.drex.modrm_regmem = 1;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 2: 4 operand insn, dest = src1, src3 = memory. */
else if (i.types[0].bitfield.regxmm != 0
&& i.types[1].bitfield.regxmm != 0
&& (i.types[2].bitfield.regxmm
|| operand_type_check (i.types[2], anymem))
&& i.types[3].bitfield.regxmm != 0
&& i.op[0].regs->reg_num == i.op[3].regs->reg_num
&& i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* clear the arguments that are stored in drex */
operand_type_set (&i.types[0], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* Specify the modrm encoding for memory addressing. Include
the high order bit that is normally stored in the REX byte
in the register field. */
i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
i.drex.modrm_reg = 1;
i.drex.modrm_regmem = 2;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 3: 4 operand insn, dest = src1, src2 = memory. */
else if (i.types[0].bitfield.regxmm != 0
&& operand_type_check (i.types[1], anymem) != 0
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0
&& i.op[0].regs->reg_num == i.op[3].regs->reg_num
&& i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* Clear the arguments that are stored in drex. */
operand_type_set (&i.types[0], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* Specify the modrm encoding for memory addressing. Include
the high order bit that is normally stored in the REX byte
in the register field. */
i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
i.drex.modrm_reg = 2;
i.drex.modrm_regmem = 1;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 4: 4 operand insn, dest = src3, src2 = register. */
else if (i.types[0].bitfield.regxmm != 0
&& i.types[1].bitfield.regxmm != 0
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0
&& i.op[2].regs->reg_num == i.op[3].regs->reg_num
&& i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* clear the arguments that are stored in drex */
operand_type_set (&i.types[2], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* There are two different ways to encode a 4 operand
instruction with all registers that uses OC1 set to
0 or 1. Favor setting OC1 to 0 since this mimics the
actions of other SSE5 assemblers. Use modrm encoding
2 for register/register. Include the high order bit that
is normally stored in the REX byte in the register
field. */
i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
i.drex.modrm_reg = 1;
i.drex.modrm_regmem = 0;
/* Remember the register, including the upper bits */
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 5: 4 operand insn, dest = src3, src2 = memory. */
else if (i.types[0].bitfield.regxmm != 0
&& (i.types[1].bitfield.regxmm
|| operand_type_check (i.types[1], anymem))
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0
&& i.op[2].regs->reg_num == i.op[3].regs->reg_num
&& i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* Clear the arguments that are stored in drex. */
operand_type_set (&i.types[2], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* Specify the modrm encoding and remember the register
including the bits normally stored in the REX byte. */
i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
i.drex.modrm_reg = 0;
i.drex.modrm_regmem = 1;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 6: 4 operand insn, dest = src3, src1 = memory. */
else if (operand_type_check (i.types[0], anymem) != 0
&& i.types[1].bitfield.regxmm != 0
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0
&& i.op[2].regs->reg_num == i.op[3].regs->reg_num
&& i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* clear the arguments that are stored in drex */
operand_type_set (&i.types[2], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* Specify the modrm encoding and remember the register
including the bits normally stored in the REX byte. */
i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
i.drex.modrm_reg = 1;
i.drex.modrm_regmem = 0;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
else
as_bad (_("Incorrect operands for the '%s' instruction"),
i.tm.name);
}
/* SSE5 instructions with the DREX byte where the only memory operand
is in the 2nd argument, and the first and last xmm register must
match, and is encoded in the DREX byte. */
else if (i.tm.opcode_modifier.drex
&& !i.tm.opcode_modifier.drexv
&& i.operands == 4)
{
/* Case 1: 4 operand insn, dest = src1, src3 = reg/mem. */
if (i.types[0].bitfield.regxmm != 0
&& (i.types[1].bitfield.regxmm
|| operand_type_check(i.types[1], anymem))
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0
&& i.op[0].regs->reg_num == i.op[3].regs->reg_num
&& i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
{
/* clear the arguments that are stored in drex */
operand_type_set (&i.types[0], 0);
operand_type_set (&i.types[3], 0);
i.reg_operands -= 2;
/* Specify the modrm encoding and remember the register
including the high bit normally stored in the REX
byte. */
i.drex.modrm_reg = 2;
i.drex.modrm_regmem = 1;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
else
as_bad (_("Incorrect operands for the '%s' instruction"),
i.tm.name);
}
/* SSE5 3 operand instructions that the result is a register, being
either operand can be a memory operand, using OC0 to note which
one is the memory. */
else if (i.tm.opcode_modifier.drex
&& i.tm.opcode_modifier.drexv
&& i.operands == 3)
{
i.tm.extension_opcode = None;
/* Case 1: 3 operand insn, src1 = register. */
if (i.types[0].bitfield.regxmm != 0
&& i.types[1].bitfield.regxmm != 0
&& i.types[2].bitfield.regxmm != 0)
{
/* Clear the arguments that are stored in drex. */
operand_type_set (&i.types[2], 0);
i.reg_operands--;
/* Specify the modrm encoding and remember the register
including the high bit normally stored in the REX byte. */
i.tm.extension_opcode = DREX_XMEM_X1_X2;
i.drex.modrm_reg = 1;
i.drex.modrm_regmem = 0;
i.drex.reg = (i.op[2].regs->reg_num
+ ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 2: 3 operand insn, src1 = memory. */
else if (operand_type_check (i.types[0], anymem) != 0
&& i.types[1].bitfield.regxmm != 0
&& i.types[2].bitfield.regxmm != 0)
{
/* Clear the arguments that are stored in drex. */
operand_type_set (&i.types[2], 0);
i.reg_operands--;
/* Specify the modrm encoding and remember the register
including the high bit normally stored in the REX
byte. */
i.tm.extension_opcode = DREX_XMEM_X1_X2;
i.drex.modrm_reg = 1;
i.drex.modrm_regmem = 0;
i.drex.reg = (i.op[2].regs->reg_num
+ ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 3: 3 operand insn, src2 = memory. */
else if (i.types[0].bitfield.regxmm != 0
&& operand_type_check (i.types[1], anymem) != 0
&& i.types[2].bitfield.regxmm != 0)
{
/* Clear the arguments that are stored in drex. */
operand_type_set (&i.types[2], 0);
i.reg_operands--;
/* Specify the modrm encoding and remember the register
including the high bit normally stored in the REX byte. */
i.tm.extension_opcode = DREX_X1_XMEM_X2;
i.drex.modrm_reg = 0;
i.drex.modrm_regmem = 1;
i.drex.reg = (i.op[2].regs->reg_num
+ ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
}
else
as_bad (_("Incorrect operands for the '%s' instruction"),
i.tm.name);
}
/* SSE5 4 operand instructions that are the comparison instructions
where the first operand is the immediate value of the comparison
to be done. */
else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
{
/* Case 1: 4 operand insn, src1 = reg/memory. */
if (operand_type_check (i.types[0], imm) != 0
&& (i.types[1].bitfield.regxmm
|| operand_type_check (i.types[1], anymem))
&& i.types[2].bitfield.regxmm != 0
&& i.types[3].bitfield.regxmm != 0)
{
/* clear the arguments that are stored in drex */
operand_type_set (&i.types[3], 0);
i.reg_operands--;
/* Specify the modrm encoding and remember the register
including the high bit normally stored in the REX byte. */
i.drex.modrm_reg = 2;
i.drex.modrm_regmem = 1;
i.drex.reg = (i.op[3].regs->reg_num
+ ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
}
/* Case 2: 3 operand insn with ImmExt that places the
opcode_extension as an immediate argument. This is used for
all of the varients of comparison that supplies the appropriate
value as part of the instruction. */
else if ((i.types[0].bitfield.regxmm
|| operand_type_check (i.types[0], anymem))
&& i.types[1].bitfield.regxmm != 0
&& i.types[2].bitfield.regxmm != 0
&& operand_type_check (i.types[3], imm) != 0)
{
/* clear the arguments that are stored in drex */
operand_type_set (&i.types[2], 0);
i.reg_operands--;
/* Specify the modrm encoding and remember the register
including the high bit normally stored in the REX byte. */
i.drex.modrm_reg = 1;
i.drex.modrm_regmem = 0;
i.drex.reg = (i.op[2].regs->reg_num
+ ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
}
else
as_bad (_("Incorrect operands for the '%s' instruction"),
i.tm.name);
}
else if (i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv
|| i.tm.opcode_modifier.drexc)
as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
}
static int
bad_implicit_operand (int xmm)
{
const char *reg = xmm ? "xmm0" : "ymm0";
if (intel_syntax)
as_bad (_("the last operand of `%s' must be `%s%s'"),
i.tm.name, register_prefix, reg);
else
as_bad (_("the first operand of `%s' must be `%s%s'"),
i.tm.name, register_prefix, reg);
return 0;
}
static int
process_operands (void)
{
/* Default segment register this instruction will use for memory
accesses. 0 means unknown. This is only for optimizing out
unnecessary segment overrides. */
const seg_entry *default_seg = 0;
/* Handle all of the DREX munging that SSE5 needs. */
if (i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv
|| i.tm.opcode_modifier.drexc)
process_drex ();
if (i.tm.opcode_modifier.sse2avx
&& (i.tm.opcode_modifier.vexnds
|| i.tm.opcode_modifier.vexndd))
{
unsigned int dup = i.operands;
unsigned int dest = dup - 1;
unsigned int j;
/* The destination must be an xmm register. */
assert (i.reg_operands
&& MAX_OPERANDS > dup
&& operand_type_equal (&i.types[dest], &regxmm));
if (i.tm.opcode_modifier.firstxmm0)
{
/* The first operand is implicit and must be xmm0. */
assert (operand_type_equal (&i.types[0], &regxmm));
if (i.op[0].regs->reg_num != 0)
return bad_implicit_operand (1);
if (i.tm.opcode_modifier.vex3sources)
{
/* Keep xmm0 for instructions with VEX prefix and 3
sources. */
goto duplicate;
}
else
{
/* We remove the first xmm0 and keep the number of
operands unchanged, which in fact duplicates the
destination. */
for (j = 1; j < i.operands; j++)
{
i.op[j - 1] = i.op[j];
i.types[j - 1] = i.types[j];
i.tm.operand_types[j - 1] = i.tm.operand_types[j];
}
}
}
else if (i.tm.opcode_modifier.implicit1stxmm0)
{
assert ((MAX_OPERANDS - 1) > dup
&& i.tm.opcode_modifier.vex3sources);
/* Add the implicit xmm0 for instructions with VEX prefix
and 3 sources. */
for (j = i.operands; j > 0; j--)
{
i.op[j] = i.op[j - 1];
i.types[j] = i.types[j - 1];
i.tm.operand_types[j] = i.tm.operand_types[j - 1];
}
i.op[0].regs
= (const reg_entry *) hash_find (reg_hash, "xmm0");
i.types[0] = regxmm;
i.tm.operand_types[0] = regxmm;
i.operands += 2;
i.reg_operands += 2;
i.tm.operands += 2;
dup++;
dest++;
i.op[dup] = i.op[dest];
i.types[dup] = i.types[dest];
i.tm.operand_types[dup] = i.tm.operand_types[dest];
}
else
{
duplicate:
i.operands++;
i.reg_operands++;
i.tm.operands++;
i.op[dup] = i.op[dest];
i.types[dup] = i.types[dest];
i.tm.operand_types[dup] = i.tm.operand_types[dest];
}
if (i.tm.opcode_modifier.immext)
process_immext ();
}
else if (i.tm.opcode_modifier.firstxmm0)
{
unsigned int j;
/* The first operand is implicit and must be xmm0/ymm0. */
assert (i.reg_operands
&& (operand_type_equal (&i.types[0], &regxmm)
|| operand_type_equal (&i.types[0], &regymm)));
if (i.op[0].regs->reg_num != 0)
return bad_implicit_operand (i.types[0].bitfield.regxmm);
for (j = 1; j < i.operands; j++)
{
i.op[j - 1] = i.op[j];
i.types[j - 1] = i.types[j];
/* We need to adjust fields in i.tm since they are used by
build_modrm_byte. */
i.tm.operand_types [j - 1] = i.tm.operand_types [j];
}
i.operands--;
i.reg_operands--;
i.tm.operands--;
}
else if (i.tm.opcode_modifier.regkludge)
{
/* The imul $imm, %reg instruction is converted into
imul $imm, %reg, %reg, and the clr %reg instruction
is converted into xor %reg, %reg. */
unsigned int first_reg_op;
if (operand_type_check (i.types[0], reg))
first_reg_op = 0;
else
first_reg_op = 1;
/* Pretend we saw the extra register operand. */
assert (i.reg_operands == 1
&& i.op[first_reg_op + 1].regs == 0);
i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
i.types[first_reg_op + 1] = i.types[first_reg_op];
i.operands++;
i.reg_operands++;
}
if (i.tm.opcode_modifier.shortform)
{
if (i.types[0].bitfield.sreg2
|| i.types[0].bitfield.sreg3)
{
if (i.tm.base_opcode == POP_SEG_SHORT
&& i.op[0].regs->reg_num == 1)
{
as_bad (_("you can't `pop %%cs'"));
return 0;
}
i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
if ((i.op[0].regs->reg_flags & RegRex) != 0)
i.rex |= REX_B;
}
else
{
/* The register or float register operand is in operand
0 or 1. */
unsigned int op;
if (i.types[0].bitfield.floatreg
|| operand_type_check (i.types[0], reg))
op = 0;
else
op = 1;
/* Register goes in low 3 bits of opcode. */
i.tm.base_opcode |= i.op[op].regs->reg_num;
if ((i.op[op].regs->reg_flags & RegRex) != 0)
i.rex |= REX_B;
if (!quiet_warnings && i.tm.opcode_modifier.ugh)
{
/* Warn about some common errors, but press on regardless.
The first case can be generated by gcc (<= 2.8.1). */
if (i.operands == 2)
{
/* Reversed arguments on faddp, fsubp, etc. */
as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
register_prefix, i.op[1].regs->reg_name,
register_prefix, i.op[0].regs->reg_name);
}
else
{
/* Extraneous `l' suffix on fp insn. */
as_warn (_("translating to `%s %s%s'"), i.tm.name,
register_prefix, i.op[0].regs->reg_name);
}
}
}
}
else if (i.tm.opcode_modifier.modrm)
{
/* The opcode is completed (modulo i.tm.extension_opcode which
must be put into the modrm byte). Now, we make the modrm and
index base bytes based on all the info we've collected. */
default_seg = build_modrm_byte ();
}
else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
{
default_seg = &ds;
}
else if (i.tm.opcode_modifier.isstring)
{
/* For the string instructions that allow a segment override
on one of their operands, the default segment is ds. */
default_seg = &ds;
}
if (i.tm.base_opcode == 0x8d /* lea */
&& i.seg[0]
&& !quiet_warnings)
as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
/* If a segment was explicitly specified, and the specified segment
is not the default, use an opcode prefix to select it. If we
never figured out what the default segment is, then default_seg
will be zero at this point, and the specified segment prefix will
always be used. */
if ((i.seg[0]) && (i.seg[0] != default_seg))
{
if (!add_prefix (i.seg[0]->seg_prefix))
return 0;
}
return 1;
}
static const seg_entry *
build_modrm_byte (void)
{
const seg_entry *default_seg = 0;
unsigned int source, dest;
int vex_3_sources;
/* The first operand of instructions with VEX prefix and 3 sources
must be VEX_Imm4. */
vex_3_sources = i.tm.opcode_modifier.vex3sources;
if (vex_3_sources)
{
unsigned int nds, reg;
if (i.tm.opcode_modifier.veximmext
&& i.tm.opcode_modifier.immext)
{
dest = i.operands - 2;
assert (dest == 3);
}
else
dest = i.operands - 1;
nds = dest - 1;
/* There are 2 kinds of instructions:
1. 5 operands: one immediate operand and 4 register
operands or 3 register operands plus 1 memory operand.
It must have VexNDS and VexW0 or VexW1. The destination
must be either XMM or YMM register.
2. 4 operands: 4 register operands or 3 register operands
plus 1 memory operand. It must have VexNDS and VexImmExt. */
if (!((i.reg_operands == 4
|| (i.reg_operands == 3 && i.mem_operands == 1))
&& i.tm.opcode_modifier.vexnds
&& (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
|| operand_type_equal (&i.tm.operand_types[dest], &regymm))
&& ((dest == 4
&& i.imm_operands == 1
&& i.types[0].bitfield.vex_imm4
&& (i.tm.opcode_modifier.vexw0
|| i.tm.opcode_modifier.vexw1))
|| (dest == 3
&& (i.imm_operands == 0
|| (i.imm_operands == 1
&& i.tm.opcode_modifier.immext))
&& i.tm.opcode_modifier.veximmext))))
abort ();
if (i.imm_operands == 0)
{
/* When there is no immediate operand, generate an 8bit
immediate operand to encode the first operand. */
expressionS *exp = &im_expressions[i.imm_operands++];
i.op[i.operands].imms = exp;
i.types[i.operands] = imm8;
i.operands++;
/* If VexW1 is set, the first operand is the source and
the second operand is encoded in the immediate operand. */
if (i.tm.opcode_modifier.vexw1)
{
source = 0;
reg = 1;
}
else
{
source = 1;
reg = 0;
}
/* FMA swaps REG and NDS. */
if (i.tm.cpu_flags.bitfield.cpufma)
{
unsigned int tmp;
tmp = reg;
reg = nds;
nds = tmp;
}
assert (operand_type_equal (&i.tm.operand_types[reg], &regxmm)
|| operand_type_equal (&i.tm.operand_types[reg],
&regymm));
exp->X_op = O_constant;
exp->X_add_number
= ((i.op[reg].regs->reg_num
+ ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
}
else
{
unsigned int imm;
if (i.tm.opcode_modifier.vexw0)
{
/* If VexW0 is set, the third operand is the source and
the second operand is encoded in the immediate
operand. */
source = 2;
reg = 1;
}
else
{
/* VexW1 is set, the second operand is the source and
the third operand is encoded in the immediate
operand. */
source = 1;
reg = 2;
}
if (i.tm.opcode_modifier.immext)
{
/* When ImmExt is set, the immdiate byte is the last
operand. */
imm = i.operands - 1;
source--;
reg--;
}
else
{
imm = 0;
/* Turn on Imm8 so that output_imm will generate it. */
i.types[imm].bitfield.imm8 = 1;
}
assert (operand_type_equal (&i.tm.operand_types[reg], &regxmm)
|| operand_type_equal (&i.tm.operand_types[reg],
&regymm));
i.op[imm].imms->X_add_number
|= ((i.op[reg].regs->reg_num
+ ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
}
assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
|| operand_type_equal (&i.tm.operand_types[nds], &regymm));
i.vex.register_specifier = i.op[nds].regs;
}
else
source = dest = 0;
/* SSE5 4 operand instructions are encoded in such a way that one of
the inputs must match the destination register. Process_drex hides
the 3rd argument in the drex field, so that by the time we get
here, it looks to GAS as if this is a 2 operand instruction. */
if ((i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv
|| i.tm.opcode_modifier.drexc)
&& i.reg_operands == 2)
{
const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
i.rm.reg = reg->reg_num;
i.rm.regmem = regmem->reg_num;
i.rm.mode = 3;
if ((reg->reg_flags & RegRex) != 0)
i.rex |= REX_R;
if ((regmem->reg_flags & RegRex) != 0)
i.rex |= REX_B;
}
/* i.reg_operands MUST be the number of real register operands;
implicit registers do not count. If there are 3 register
operands, it must be a instruction with VexNDS. For a
instruction with VexNDD, the destination register is encoded
in VEX prefix. If there are 4 register operands, it must be
a instruction with VEX prefix and 3 sources. */
else if (i.mem_operands == 0
&& ((i.reg_operands == 2
&& !i.tm.opcode_modifier.vexndd)
|| (i.reg_operands == 3
&& i.tm.opcode_modifier.vexnds)
|| (i.reg_operands == 4 && vex_3_sources)))
{
switch (i.operands)
{
case 2:
source = 0;
break;
case 3:
/* When there are 3 operands, one of them may be immediate,
which may be the first or the last operand. Otherwise,
the first operand must be shift count register (cl) or it
is an instruction with VexNDS. */
assert (i.imm_operands == 1
|| (i.imm_operands == 0
&& (i.tm.opcode_modifier.vexnds
|| i.types[0].bitfield.shiftcount)));
if (operand_type_check (i.types[0], imm)
|| i.types[0].bitfield.shiftcount)
source = 1;
else
source = 0;
break;
case 4:
/* When there are 4 operands, the first two must be 8bit
immediate operands. The source operand will be the 3rd
one.
For instructions with VexNDS, if the first operand
an imm8, the source operand is the 2nd one. If the last
operand is imm8, the source operand is the first one. */
assert ((i.imm_operands == 2
&& i.types[0].bitfield.imm8
&& i.types[1].bitfield.imm8)
|| (i.tm.opcode_modifier.vexnds
&& i.imm_operands == 1
&& (i.types[0].bitfield.imm8
|| i.types[i.operands - 1].bitfield.imm8)));
if (i.tm.opcode_modifier.vexnds)
{
if (i.types[0].bitfield.imm8)
source = 1;
else
source = 0;
}
else
source = 2;
break;
case 5:
break;
default:
abort ();
}
if (!vex_3_sources)
{
dest = source + 1;
if (i.tm.opcode_modifier.vexnds)
{
/* For instructions with VexNDS, the register-only
source operand must be XMM or YMM register. It is
encoded in VEX prefix. */
if ((dest + 1) >= i.operands
|| (!operand_type_equal (&i.tm.operand_types[dest],
&regxmm)
&& !operand_type_equal (&i.tm.operand_types[dest],
&regymm)))
abort ();
i.vex.register_specifier = i.op[dest].regs;
dest++;
}
}
i.rm.mode = 3;
/* One of the register operands will be encoded in the i.tm.reg
field, the other in the combined i.tm.mode and i.tm.regmem
fields. If no form of this instruction supports a memory
destination operand, then we assume the source operand may
sometimes be a memory operand and so we need to store the
destination in the i.rm.reg field. */
if (!i.tm.operand_types[dest].bitfield.regmem
&& operand_type_check (i.tm.operand_types[dest], anymem) == 0)
{
i.rm.reg = i.op[dest].regs->reg_num;
i.rm.regmem = i.op[source].regs->reg_num;
if ((i.op[dest].regs->reg_flags & RegRex) != 0)
i.rex |= REX_R;
if ((i.op[source].regs->reg_flags & RegRex) != 0)
i.rex |= REX_B;
}
else
{
i.rm.reg = i.op[source].regs->reg_num;
i.rm.regmem = i.op[dest].regs->reg_num;
if ((i.op[dest].regs->reg_flags & RegRex) != 0)
i.rex |= REX_B;
if ((i.op[source].regs->reg_flags & RegRex) != 0)
i.rex |= REX_R;
}
if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
{
if (!i.types[0].bitfield.control
&& !i.types[1].bitfield.control)
abort ();
i.rex &= ~(REX_R | REX_B);
add_prefix (LOCK_PREFIX_OPCODE);
}
}
else
{ /* If it's not 2 reg operands... */
unsigned int mem;
if (i.mem_operands)
{
unsigned int fake_zero_displacement = 0;
unsigned int op;
/* This has been precalculated for SSE5 instructions
that have a DREX field earlier in process_drex. */
if (i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv
|| i.tm.opcode_modifier.drexc)
op = i.drex.modrm_regmem;
else
{
for (op = 0; op < i.operands; op++)
if (operand_type_check (i.types[op], anymem))
break;
assert (op < i.operands);
}
default_seg = &ds;
if (i.base_reg == 0)
{
i.rm.mode = 0;
if (!i.disp_operands)
fake_zero_displacement = 1;
if (i.index_reg == 0)
{
/* Operand is just <disp> */
if (flag_code == CODE_64BIT)
{
/* 64bit mode overwrites the 32bit absolute
addressing by RIP relative addressing and
absolute addressing is encoded by one of the
redundant SIB forms. */
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
i.sib.base = NO_BASE_REGISTER;
i.sib.index = NO_INDEX_REGISTER;
i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
? disp32s : disp32);
}
else if ((flag_code == CODE_16BIT)
^ (i.prefix[ADDR_PREFIX] != 0))
{
i.rm.regmem = NO_BASE_REGISTER_16;
i.types[op] = disp16;
}
else
{
i.rm.regmem = NO_BASE_REGISTER;
i.types[op] = disp32;
}
}
else /* !i.base_reg && i.index_reg */
{
if (i.index_reg->reg_num == RegEiz
|| i.index_reg->reg_num == RegRiz)
i.sib.index = NO_INDEX_REGISTER;
else
i.sib.index = i.index_reg->reg_num;
i.sib.base = NO_BASE_REGISTER;
i.sib.scale = i.log2_scale_factor;
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
i.types[op].bitfield.disp8 = 0;
i.types[op].bitfield.disp16 = 0;
i.types[op].bitfield.disp64 = 0;
if (flag_code != CODE_64BIT)
{
/* Must be 32 bit */
i.types[op].bitfield.disp32 = 1;
i.types[op].bitfield.disp32s = 0;
}
else
{
i.types[op].bitfield.disp32 = 0;
i.types[op].bitfield.disp32s = 1;
}
if ((i.index_reg->reg_flags & RegRex) != 0)
i.rex |= REX_X;
}
}
/* RIP addressing for 64bit mode. */
else if (i.base_reg->reg_num == RegRip ||
i.base_reg->reg_num == RegEip)
{
i.rm.regmem = NO_BASE_REGISTER;
i.types[op].bitfield.disp8 = 0;
i.types[op].bitfield.disp16 = 0;
i.types[op].bitfield.disp32 = 0;
i.types[op].bitfield.disp32s = 1;
i.types[op].bitfield.disp64 = 0;
i.flags[op] |= Operand_PCrel;
if (! i.disp_operands)
fake_zero_displacement = 1;
}
else if (i.base_reg->reg_type.bitfield.reg16)
{
switch (i.base_reg->reg_num)
{
case 3: /* (%bx) */
if (i.index_reg == 0)
i.rm.regmem = 7;
else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
i.rm.regmem = i.index_reg->reg_num - 6;
break;
case 5: /* (%bp) */
default_seg = &ss;
if (i.index_reg == 0)
{
i.rm.regmem = 6;
if (operand_type_check (i.types[op], disp) == 0)
{
/* fake (%bp) into 0(%bp) */
i.types[op].bitfield.disp8 = 1;
fake_zero_displacement = 1;
}
}
else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
i.rm.regmem = i.index_reg->reg_num - 6 + 2;
break;
default: /* (%si) -> 4 or (%di) -> 5 */
i.rm.regmem = i.base_reg->reg_num - 6 + 4;
}
i.rm.mode = mode_from_disp_size (i.types[op]);
}
else /* i.base_reg and 32/64 bit mode */
{
if (flag_code == CODE_64BIT
&& operand_type_check (i.types[op], disp))
{
i386_operand_type temp;
operand_type_set (&temp, 0);
temp.bitfield.disp8 = i.types[op].bitfield.disp8;
i.types[op] = temp;
if (i.prefix[ADDR_PREFIX] == 0)
i.types[op].bitfield.disp32s = 1;
else
i.types[op].bitfield.disp32 = 1;
}
i.rm.regmem = i.base_reg->reg_num;
if ((i.base_reg->reg_flags & RegRex) != 0)
i.rex |= REX_B;
i.sib.base = i.base_reg->reg_num;
/* x86-64 ignores REX prefix bit here to avoid decoder
complications. */
if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
{
default_seg = &ss;
if (i.disp_operands == 0)
{
fake_zero_displacement = 1;
i.types[op].bitfield.disp8 = 1;
}
}
else if (i.base_reg->reg_num == ESP_REG_NUM)
{
default_seg = &ss;
}
i.sib.scale = i.log2_scale_factor;
if (i.index_reg == 0)
{
/* <disp>(%esp) becomes two byte modrm with no index
register. We've already stored the code for esp
in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
Any base register besides %esp will not use the
extra modrm byte. */
i.sib.index = NO_INDEX_REGISTER;
}
else
{
if (i.index_reg->reg_num == RegEiz
|| i.index_reg->reg_num == RegRiz)
i.sib.index = NO_INDEX_REGISTER;
else
i.sib.index = i.index_reg->reg_num;
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
if ((i.index_reg->reg_flags & RegRex) != 0)
i.rex |= REX_X;
}
if (i.disp_operands
&& (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
|| i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
i.rm.mode = 0;
else
i.rm.mode = mode_from_disp_size (i.types[op]);
}
if (fake_zero_displacement)
{
/* Fakes a zero displacement assuming that i.types[op]
holds the correct displacement size. */
expressionS *exp;
assert (i.op[op].disps == 0);
exp = &disp_expressions[i.disp_operands++];
i.op[op].disps = exp;
exp->X_op = O_constant;
exp->X_add_number = 0;
exp->X_add_symbol = (symbolS *) 0;
exp->X_op_symbol = (symbolS *) 0;
}
mem = op;
}
else
mem = ~0;
/* Fill in i.rm.reg or i.rm.regmem field with register operand
(if any) based on i.tm.extension_opcode. Again, we must be
careful to make sure that segment/control/debug/test/MMX
registers are coded into the i.rm.reg field. */
if (i.reg_operands)
{
unsigned int op;
/* This has been precalculated for SSE5 instructions
that have a DREX field earlier in process_drex. */
if (i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv
|| i.tm.opcode_modifier.drexc)
{
op = i.drex.modrm_reg;
i.rm.reg = i.op[op].regs->reg_num;
if ((i.op[op].regs->reg_flags & RegRex) != 0)
i.rex |= REX_R;
}
else
{
unsigned int vex_reg = ~0;
for (op = 0; op < i.operands; op++)
if (i.types[op].bitfield.reg8
|| i.types[op].bitfield.reg16
|| i.types[op].bitfield.reg32
|| i.types[op].bitfield.reg64
|| i.types[op].bitfield.regmmx
|| i.types[op].bitfield.regxmm
|| i.types[op].bitfield.regymm
|| i.types[op].bitfield.sreg2
|| i.types[op].bitfield.sreg3
|| i.types[op].bitfield.control
|| i.types[op].bitfield.debug
|| i.types[op].bitfield.test)
break;
if (vex_3_sources)
op = dest;
else if (i.tm.opcode_modifier.vexnds)
{
/* For instructions with VexNDS, the register-only
source operand is encoded in VEX prefix. */
assert (mem != (unsigned int) ~0);
if (op > mem)
{
vex_reg = op++;
assert (op < i.operands);
}
else
{
vex_reg = op + 1;
assert (vex_reg < i.operands);
}
}
else if (i.tm.opcode_modifier.vexndd)
{
/* For instructions with VexNDD, there should be
no memory operand and the register destination
is encoded in VEX prefix. */
assert (i.mem_operands == 0
&& (op + 2) == i.operands);
vex_reg = op + 1;
}
else
assert (op < i.operands);
if (vex_reg != (unsigned int) ~0)
{
assert (i.reg_operands == 2);
if (!operand_type_equal (&i.tm.operand_types[vex_reg],
& regxmm)
&& !operand_type_equal (&i.tm.operand_types[vex_reg],
&regymm))
abort ();
i.vex.register_specifier = i.op[vex_reg].regs;
}
/* If there is an extension opcode to put here, the
register number must be put into the regmem field. */
if (i.tm.extension_opcode != None)
{
i.rm.regmem = i.op[op].regs->reg_num;
if ((i.op[op].regs->reg_flags & RegRex) != 0)
i.rex |= REX_B;
}
else
{
i.rm.reg = i.op[op].regs->reg_num;
if ((i.op[op].regs->reg_flags & RegRex) != 0)
i.rex |= REX_R;
}
}
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
must set it to 3 to indicate this is a register operand
in the regmem field. */
if (!i.mem_operands)
i.rm.mode = 3;
}
/* Fill in i.rm.reg field with extension opcode (if any). */
if (i.tm.extension_opcode != None
&& !(i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv
|| i.tm.opcode_modifier.drexc))
i.rm.reg = i.tm.extension_opcode;
}
return default_seg;
}
static void
output_branch (void)
{
char *p;
int code16;
int prefix;
relax_substateT subtype;
symbolS *sym;
offsetT off;
code16 = 0;
if (flag_code == CODE_16BIT)
code16 = CODE16;
prefix = 0;
if (i.prefix[DATA_PREFIX] != 0)
{
prefix = 1;
i.prefixes -= 1;
code16 ^= CODE16;
}
/* Pentium4 branch hints. */
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
{
prefix++;
i.prefixes--;
}
if (i.prefix[REX_PREFIX] != 0)
{
prefix++;
i.prefixes--;
}
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
/* It's always a symbol; End frag & setup for relax.
Make sure there is enough room in this frag for the largest
instruction we may generate in md_convert_frag. This is 2
bytes for the opcode and room for the prefix and largest
displacement. */
frag_grow (prefix + 2 + 4);
/* Prefix and 1 opcode byte go in fr_fix. */
p = frag_more (prefix + 1);
if (i.prefix[DATA_PREFIX] != 0)
*p++ = DATA_PREFIX_OPCODE;
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
*p++ = i.prefix[SEG_PREFIX];
if (i.prefix[REX_PREFIX] != 0)
*p++ = i.prefix[REX_PREFIX];
*p = i.tm.base_opcode;
if ((unsigned char) *p == JUMP_PC_RELATIVE)
subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
else if (cpu_arch_flags.bitfield.cpui386)
subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
else
subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
subtype |= code16;
sym = i.op[0].disps->X_add_symbol;
off = i.op[0].disps->X_add_number;
if (i.op[0].disps->X_op != O_constant
&& i.op[0].disps->X_op != O_symbol)
{
/* Handle complex expressions. */
sym = make_expr_symbol (i.op[0].disps);
off = 0;
}
/* 1 possible extra opcode + 4 byte displacement go in var part.
Pass reloc in fr_var. */
frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
}
static void
output_jump (void)
{
char *p;
int size;
fixS *fixP;
if (i.tm.opcode_modifier.jumpbyte)
{
/* This is a loop or jecxz type instruction. */
size = 1;
if (i.prefix[ADDR_PREFIX] != 0)
{
FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
i.prefixes -= 1;
}
/* Pentium4 branch hints. */
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
{
FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
i.prefixes--;
}
}
else
{
int code16;
code16 = 0;
if (flag_code == CODE_16BIT)
code16 = CODE16;
if (i.prefix[DATA_PREFIX] != 0)
{
FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
i.prefixes -= 1;
code16 ^= CODE16;
}
size = 4;
if (code16)
size = 2;
}
if (i.prefix[REX_PREFIX] != 0)
{
FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
i.prefixes -= 1;
}
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
p = frag_more (1 + size);
*p++ = i.tm.base_opcode;
fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
/* All jumps handled here are signed, but don't use a signed limit
check for 32 and 16 bit jumps as we want to allow wrap around at
4G and 64k respectively. */
if (size == 1)
fixP->fx_signed = 1;
}
static void
output_interseg_jump (void)
{
char *p;
int size;
int prefix;
int code16;
code16 = 0;
if (flag_code == CODE_16BIT)
code16 = CODE16;
prefix = 0;
if (i.prefix[DATA_PREFIX] != 0)
{
prefix = 1;
i.prefixes -= 1;
code16 ^= CODE16;
}
if (i.prefix[REX_PREFIX] != 0)
{
prefix++;
i.prefixes -= 1;
}
size = 4;
if (code16)
size = 2;
if (i.prefixes != 0 && !intel_syntax)
as_warn (_("skipping prefixes on this instruction"));
/* 1 opcode; 2 segment; offset */
p = frag_more (prefix + 1 + 2 + size);
if (i.prefix[DATA_PREFIX] != 0)
*p++ = DATA_PREFIX_OPCODE;
if (i.prefix[REX_PREFIX] != 0)
*p++ = i.prefix[REX_PREFIX];
*p++ = i.tm.base_opcode;
if (i.op[1].imms->X_op == O_constant)
{
offsetT n = i.op[1].imms->X_add_number;
if (size == 2
&& !fits_in_unsigned_word (n)
&& !fits_in_signed_word (n))
{
as_bad (_("16-bit jump out of range"));
return;
}
md_number_to_chars (p, n, size);
}
else
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
if (i.op[0].imms->X_op != O_constant)
as_bad (_("can't handle non absolute segment in `%s'"),
i.tm.name);
md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
}
static void
output_insn (void)
{
fragS *insn_start_frag;
offsetT insn_start_off;
/* Tie dwarf2 debug info to the address at the start of the insn.
We can't do this after the insn has been output as the current
frag may have been closed off. eg. by frag_var. */
dwarf2_emit_insn (0);
insn_start_frag = frag_now;
insn_start_off = frag_now_fix ();
/* Output jumps. */
if (i.tm.opcode_modifier.jump)
output_branch ();
else if (i.tm.opcode_modifier.jumpbyte
|| i.tm.opcode_modifier.jumpdword)
output_jump ();
else if (i.tm.opcode_modifier.jumpintersegment)
output_interseg_jump ();
else
{
/* Output normal instructions here. */
char *p;
unsigned char *q;
unsigned int j;
unsigned int prefix;
/* Since the VEX prefix contains the implicit prefix, we don't
need the explicit prefix. */
if (!i.tm.opcode_modifier.vex)
{
switch (i.tm.opcode_length)
{
case 3:
if (i.tm.base_opcode & 0xff000000)
{
prefix = (i.tm.base_opcode >> 24) & 0xff;
goto check_prefix;
}
break;
case 2:
if ((i.tm.base_opcode & 0xff0000) != 0)
{
prefix = (i.tm.base_opcode >> 16) & 0xff;
if (i.tm.cpu_flags.bitfield.cpupadlock)
{
check_prefix:
if (prefix != REPE_PREFIX_OPCODE
|| (i.prefix[LOCKREP_PREFIX]
!= REPE_PREFIX_OPCODE))
add_prefix (prefix);
}
else
add_prefix (prefix);
}
break;
case 1:
break;
default:
abort ();
}
/* The prefix bytes. */
for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
if (*q)
FRAG_APPEND_1_CHAR (*q);
}
if (i.tm.opcode_modifier.vex)
{
for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
if (*q)
switch (j)
{
case REX_PREFIX:
/* REX byte is encoded in VEX prefix. */
break;
case SEG_PREFIX:
case ADDR_PREFIX:
FRAG_APPEND_1_CHAR (*q);
break;
default:
/* There should be no other prefixes for instructions
with VEX prefix. */
abort ();
}
/* Now the VEX prefix. */
p = frag_more (i.vex.length);
for (j = 0; j < i.vex.length; j++)
p[j] = i.vex.bytes[j];
}
/* Now the opcode; be careful about word order here! */
if (i.tm.opcode_length == 1)
{
FRAG_APPEND_1_CHAR (i.tm.base_opcode);
}
else
{
switch (i.tm.opcode_length)
{
case 3:
p = frag_more (3);
*p++ = (i.tm.base_opcode >> 16) & 0xff;
break;
case 2:
p = frag_more (2);
break;
default:
abort ();
break;
}
/* Put out high byte first: can't use md_number_to_chars! */
*p++ = (i.tm.base_opcode >> 8) & 0xff;
*p = i.tm.base_opcode & 0xff;
/* On SSE5, encode the OC1 bit in the DREX field if this
encoding has multiple formats. */
if (i.tm.opcode_modifier.drex
&& i.tm.opcode_modifier.drexv
&& DREX_OC1 (i.tm.extension_opcode))
*p |= DREX_OC1_MASK;
}
/* Now the modrm byte and sib byte (if present). */
if (i.tm.opcode_modifier.modrm)
{
FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
| i.rm.reg << 3
| i.rm.mode << 6));
/* If i.rm.regmem == ESP (4)
&& i.rm.mode != (Register mode)
&& not 16 bit
==> need second modrm byte. */
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
&& i.rm.mode != 3
&& !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
FRAG_APPEND_1_CHAR ((i.sib.base << 0
| i.sib.index << 3
| i.sib.scale << 6));
}
/* Write the DREX byte if needed. */
if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
{
p = frag_more (1);
*p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
/* Encode the OC0 bit if this encoding has multiple
formats. */
if ((i.tm.opcode_modifier.drex
|| i.tm.opcode_modifier.drexv)
&& DREX_OC0 (i.tm.extension_opcode))
*p |= DREX_OC0_MASK;
}
if (i.disp_operands)
output_disp (insn_start_frag, insn_start_off);
if (i.imm_operands)
output_imm (insn_start_frag, insn_start_off);
}
#ifdef DEBUG386
if (flag_debug)
{
pi ("" /*line*/, &i);
}
#endif /* DEBUG386 */
}
/* Return the size of the displacement operand N. */
static int
disp_size (unsigned int n)
{
int size = 4;
if (i.types[n].bitfield.disp64)
size = 8;
else if (i.types[n].bitfield.disp8)
size = 1;
else if (i.types[n].bitfield.disp16)
size = 2;
return size;
}
/* Return the size of the immediate operand N. */
static int
imm_size (unsigned int n)
{
int size = 4;
if (i.types[n].bitfield.imm64)
size = 8;
else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
size = 1;
else if (i.types[n].bitfield.imm16)
size = 2;
return size;
}
static void
output_disp (fragS *insn_start_frag, offsetT insn_start_off)
{
char *p;
unsigned int n;
for (n = 0; n < i.operands; n++)
{
if (operand_type_check (i.types[n], disp))
{
if (i.op[n].disps->X_op == O_constant)
{
int size = disp_size (n);
offsetT val;
val = offset_in_range (i.op[n].disps->X_add_number,
size);
p = frag_more (size);
md_number_to_chars (p, val, size);
}
else
{
enum bfd_reloc_code_real reloc_type;
int size = disp_size (n);
int sign = i.types[n].bitfield.disp32s;
int pcrel = (i.flags[n] & Operand_PCrel) != 0;
/* We can't have 8 bit displacement here. */
assert (!i.types[n].bitfield.disp8);
/* The PC relative address is computed relative
to the instruction boundary, so in case immediate
fields follows, we need to adjust the value. */
if (pcrel && i.imm_operands)
{
unsigned int n1;
int sz = 0;
for (n1 = 0; n1 < i.operands; n1++)
if (operand_type_check (i.types[n1], imm))
{
/* Only one immediate is allowed for PC
relative address. */
assert (sz == 0);
sz = imm_size (n1);
i.op[n].disps->X_add_number -= sz;
}
/* We should find the immediate. */
assert (sz != 0);
}
p = frag_more (size);
reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
if (GOT_symbol
&& GOT_symbol == i.op[n].disps->X_add_symbol
&& (((reloc_type == BFD_RELOC_32
|| reloc_type == BFD_RELOC_X86_64_32S
|| (reloc_type == BFD_RELOC_64
&& object_64bit))
&& (i.op[n].disps->X_op == O_symbol
|| (i.op[n].disps->X_op == O_add
&& ((symbol_get_value_expression
(i.op[n].disps->X_op_symbol)->X_op)
== O_subtract))))
|| reloc_type == BFD_RELOC_32_PCREL))
{
offsetT add;
if (insn_start_frag == frag_now)
add = (p - frag_now->fr_literal) - insn_start_off;
else
{
fragS *fr;
add = insn_start_frag->fr_fix - insn_start_off;
for (fr = insn_start_frag->fr_next;
fr && fr != frag_now; fr = fr->fr_next)
add += fr->fr_fix;
add += p - frag_now->fr_literal;
}
if (!object_64bit)
{
reloc_type = BFD_RELOC_386_GOTPC;
i.op[n].imms->X_add_number += add;
}
else if (reloc_type == BFD_RELOC_64)
reloc_type = BFD_RELOC_X86_64_GOTPC64;
else
/* Don't do the adjustment for x86-64, as there
the pcrel addressing is relative to the _next_
insn, and that is taken care of in other code. */
reloc_type = BFD_RELOC_X86_64_GOTPC32;
}
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[n].disps, pcrel, reloc_type);
}
}
}
}
static void
output_imm (fragS *insn_start_frag, offsetT insn_start_off)
{
char *p;
unsigned int n;
for (n = 0; n < i.operands; n++)
{
if (operand_type_check (i.types[n], imm))
{
if (i.op[n].imms->X_op == O_constant)
{
int size = imm_size (n);
offsetT val;
val = offset_in_range (i.op[n].imms->X_add_number,
size);
p = frag_more (size);
md_number_to_chars (p, val, size);
}
else
{
/* Not absolute_section.
Need a 32-bit fixup (don't support 8bit
non-absolute imms). Try to support other
sizes ... */
enum bfd_reloc_code_real reloc_type;
int size = imm_size (n);
int sign;
if (i.types[n].bitfield.imm32s
&& (i.suffix == QWORD_MNEM_SUFFIX
|| (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
sign = 1;
else
sign = 0;
p = frag_more (size);
reloc_type = reloc (size, 0, sign, i.reloc[n]);
/* This is tough to explain. We end up with this one if we
* have operands that look like
* "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
* obtain the absolute address of the GOT, and it is strongly
* preferable from a performance point of view to avoid using
* a runtime relocation for this. The actual sequence of
* instructions often look something like:
*
* call .L66
* .L66:
* popl %ebx
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
*
* The call and pop essentially return the absolute address
* of the label .L66 and store it in %ebx. The linker itself
* will ultimately change the first operand of the addl so
* that %ebx points to the GOT, but to keep things simple, the
* .o file must have this operand set so that it generates not
* the absolute address of .L66, but the absolute address of
* itself. This allows the linker itself simply treat a GOTPC
* relocation as asking for a pcrel offset to the GOT to be
* added in, and the addend of the relocation is stored in the
* operand field for the instruction itself.
*
* Our job here is to fix the operand so that it would add
* the correct offset so that %ebx would point to itself. The
* thing that is tricky is that .-.L66 will point to the
* beginning of the instruction, so we need to further modify
* the operand so that it will point to itself. There are
* other cases where you have something like:
*
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
*
* and here no correction would be required. Internally in
* the assembler we treat operands of this form as not being
* pcrel since the '.' is explicitly mentioned, and I wonder
* whether it would simplify matters to do it this way. Who
* knows. In earlier versions of the PIC patches, the
* pcrel_adjust field was used to store the correction, but
* since the expression is not pcrel, I felt it would be
* confusing to do it this way. */
if ((reloc_type == BFD_RELOC_32
|| reloc_type == BFD_RELOC_X86_64_32S
|| reloc_type == BFD_RELOC_64)
&& GOT_symbol
&& GOT_symbol == i.op[n].imms->X_add_symbol
&& (i.op[n].imms->X_op == O_symbol
|| (i.op[n].imms->X_op == O_add
&& ((symbol_get_value_expression
(i.op[n].imms->X_op_symbol)->X_op)
== O_subtract))))
{
offsetT add;
if (insn_start_frag == frag_now)
add = (p - frag_now->fr_literal) - insn_start_off;
else
{
fragS *fr;
add = insn_start_frag->fr_fix - insn_start_off;
for (fr = insn_start_frag->fr_next;
fr && fr != frag_now; fr = fr->fr_next)
add += fr->fr_fix;
add += p - frag_now->fr_literal;
}
if (!object_64bit)
reloc_type = BFD_RELOC_386_GOTPC;
else if (size == 4)
reloc_type = BFD_RELOC_X86_64_GOTPC32;
else if (size == 8)
reloc_type = BFD_RELOC_X86_64_GOTPC64;
i.op[n].imms->X_add_number += add;
}
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
i.op[n].imms, 0, reloc_type);
}
}
}
}
/* x86_cons_fix_new is called via the expression parsing code when a
reloc is needed. We use this hook to get the correct .got reloc. */
static enum bfd_reloc_code_real got_reloc = NO_RELOC;
static int cons_sign = -1;
void
x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
expressionS *exp)
{
enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
got_reloc = NO_RELOC;
#ifdef TE_PE
if (exp->X_op == O_secrel)
{
exp->X_op = O_symbol;
r = BFD_RELOC_32_SECREL;
}
#endif
fix_new_exp (frag, off, len, exp, 0, r);
}
#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
# define lex_got(reloc, adjust, types) NULL
#else
/* Parse operands of the form
<symbol>@GOTOFF+<nnn>
and similar .plt or .got references.
If we find one, set up the correct relocation in RELOC and copy the
input string, minus the `@GOTOFF' into a malloc'd buffer for
parsing by the calling routine. Return this buffer, and if ADJUST
is non-null set it to the length of the string we removed from the
input line. Otherwise return NULL. */
static char *
lex_got (enum bfd_reloc_code_real *reloc,
int *adjust,
i386_operand_type *types)
{
/* Some of the relocations depend on the size of what field is to
be relocated. But in our callers i386_immediate and i386_displacement
we don't yet know the operand size (this will be set by insn
matching). Hence we record the word32 relocation here,
and adjust the reloc according to the real size in reloc(). */
static const struct {
const char *str;
const enum bfd_reloc_code_real rel[2];
const i386_operand_type types64;
} gotrel[] = {
{ "PLTOFF", { 0,
BFD_RELOC_X86_64_PLTOFF64 },
OPERAND_TYPE_IMM64 },
{ "PLT", { BFD_RELOC_386_PLT32,
BFD_RELOC_X86_64_PLT32 },
OPERAND_TYPE_IMM32_32S_DISP32 },
{ "GOTPLT", { 0,
BFD_RELOC_X86_64_GOTPLT64 },
OPERAND_TYPE_IMM64_DISP64 },
{ "GOTOFF", { BFD_RELOC_386_GOTOFF,
BFD_RELOC_X86_64_GOTOFF64 },
OPERAND_TYPE_IMM64_DISP64 },
{ "GOTPCREL", { 0,
BFD_RELOC_X86_64_GOTPCREL },
OPERAND_TYPE_IMM32_32S_DISP32 },
{ "TLSGD", { BFD_RELOC_386_TLS_GD,
BFD_RELOC_X86_64_TLSGD },
OPERAND_TYPE_IMM32_32S_DISP32 },
{ "TLSLDM", { BFD_RELOC_386_TLS_LDM,
0 },
OPERAND_TYPE_NONE },
{ "TLSLD", { 0,
BFD_RELOC_X86_64_TLSLD },
OPERAND_TYPE_IMM32_32S_DISP32 },
{ "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
BFD_RELOC_X86_64_GOTTPOFF },
OPERAND_TYPE_IMM32_32S_DISP32 },
{ "TPOFF", { BFD_RELOC_386_TLS_LE_32,
BFD_RELOC_X86_64_TPOFF32 },
OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
{ "NTPOFF", { BFD_RELOC_386_TLS_LE,
0 },
OPERAND_TYPE_NONE },
{ "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
BFD_RELOC_X86_64_DTPOFF32 },
OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
{ "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
0 },
OPERAND_TYPE_NONE },
{ "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
0 },
OPERAND_TYPE_NONE },
{ "GOT", { BFD_RELOC_386_GOT32,
BFD_RELOC_X86_64_GOT32 },
OPERAND_TYPE_IMM32_32S_64_DISP32 },
{ "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
BFD_RELOC_X86_64_GOTPC32_TLSDESC },
OPERAND_TYPE_IMM32_32S_DISP32 },
{ "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
BFD_RELOC_X86_64_TLSDESC_CALL },
OPERAND_TYPE_IMM32_32S_DISP32 },
};
char *cp;
unsigned int j;
if (!IS_ELF)
return NULL;
for (cp = input_line_pointer; *cp != '@'; cp++)
if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
return NULL;
for (j = 0; j < ARRAY_SIZE (gotrel); j++)
{
int len;
len = strlen (gotrel[j].str);
if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
{
if (gotrel[j].rel[object_64bit] != 0)
{
int first, second;
char *tmpbuf, *past_reloc;
*reloc = gotrel[j].rel[object_64bit];
if (adjust)
*adjust = len;
if (types)
{
if (flag_code != CODE_64BIT)
{
types->bitfield.imm32 = 1;
types->bitfield.disp32 = 1;
}
else
*types = gotrel[j].types64;
}
if (GOT_symbol == NULL)
GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
/* The length of the first part of our input line. */
first = cp - input_line_pointer;
/* The second part goes from after the reloc token until
(and including) an end_of_line char or comma. */
past_reloc = cp + 1 + len;
cp = past_reloc;
while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
++cp;
second = cp + 1 - past_reloc;
/* Allocate and copy string. The trailing NUL shouldn't
be necessary, but be safe. */
tmpbuf = xmalloc (first + second + 2);
memcpy (tmpbuf, input_line_pointer, first);
if (second != 0 && *past_reloc != ' ')
/* Replace the relocation token with ' ', so that
errors like foo@GOTOFF1 will be detected. */
tmpbuf[first++] = ' ';
memcpy (tmpbuf + first, past_reloc, second);
tmpbuf[first + second] = '\0';
return tmpbuf;
}
as_bad (_("@%s reloc is not supported with %d-bit output format"),
gotrel[j].str, 1 << (5 + object_64bit));
return NULL;
}
}
/* Might be a symbol version string. Don't as_bad here. */
return NULL;
}
void
x86_cons (expressionS *exp, int size)
{
if (size == 4 || (object_64bit && size == 8))
{
/* Handle @GOTOFF and the like in an expression. */
char *save;
char *gotfree_input_line;
int adjust;
save = input_line_pointer;
gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
if (gotfree_input_line)
input_line_pointer = gotfree_input_line;
expression (exp);
if (gotfree_input_line)
{
/* expression () has merrily parsed up to the end of line,
or a comma - in the wrong buffer. Transfer how far
input_line_pointer has moved to the right buffer. */
input_line_pointer = (save
+ (input_line_pointer - gotfree_input_line)
+ adjust);
free (gotfree_input_line);
if (exp->X_op == O_constant
|| exp->X_op == O_absent
|| exp->X_op == O_illegal
|| exp->X_op == O_register
|| exp->X_op == O_big)
{
char c = *input_line_pointer;
*input_line_pointer = 0;
as_bad (_("missing or invalid expression `%s'"), save);
*input_line_pointer = c;
}
}
}
else
expression (exp);
}
#endif
static void signed_cons (int size)
{
if (flag_code == CODE_64BIT)
cons_sign = 1;
cons (size);
cons_sign = -1;
}
#ifdef TE_PE
static void
pe_directive_secrel (dummy)
int dummy ATTRIBUTE_UNUSED;
{
expressionS exp;
do
{
expression (&exp);
if (exp.X_op == O_symbol)
exp.X_op = O_secrel;
emit_expr (&exp, 4);
}
while (*input_line_pointer++ == ',');
input_line_pointer--;
demand_empty_rest_of_line ();
}
#endif
static int
i386_immediate (char *imm_start)
{
char *save_input_line_pointer;
char *gotfree_input_line;
segT exp_seg = 0;
expressionS *exp;
i386_operand_type types;
operand_type_set (&types, ~0);
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
{
as_bad (_("at most %d immediate operands are allowed"),
MAX_IMMEDIATE_OPERANDS);
return 0;
}
exp = &im_expressions[i.imm_operands++];
i.op[this_operand].imms = exp;
if (is_space_char (*imm_start))
++imm_start;
save_input_line_pointer = input_line_pointer;
input_line_pointer = imm_start;
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
if (gotfree_input_line)
input_line_pointer = gotfree_input_line;
exp_seg = expression (exp);
SKIP_WHITESPACE ();
if (*input_line_pointer)
as_bad (_("junk `%s' after expression"), input_line_pointer);
input_line_pointer = save_input_line_pointer;
if (gotfree_input_line)
free (gotfree_input_line);
if (exp->X_op == O_absent
|| exp->X_op == O_illegal
|| exp->X_op == O_big
|| (gotfree_input_line
&& (exp->X_op == O_constant
|| exp->X_op == O_register)))
{
as_bad (_("missing or invalid immediate expression `%s'"),
imm_start);
return 0;
}
else if (exp->X_op == O_constant)
{
/* Size it properly later. */
i.types[this_operand].bitfield.imm64 = 1;
/* If BFD64, sign extend val. */
if (!use_rela_relocations
&& (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
exp->X_add_number
= (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
}
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
&& exp_seg != absolute_section
&& exp_seg != text_section
&& exp_seg != data_section
&& exp_seg != bss_section
&& exp_seg != undefined_section
&& !bfd_is_com_section (exp_seg))
{
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
return 0;
}
#endif
else if (!intel_syntax && exp->X_op == O_register)
{
as_bad (_("illegal immediate register operand %s"), imm_start);
return 0;
}
else
{
/* This is an address. The size of the address will be
determined later, depending on destination register,
suffix, or the default for the section. */
i.types[this_operand].bitfield.imm8 = 1;
i.types[this_operand].bitfield.imm16 = 1;
i.types[this_operand].bitfield.imm32 = 1;
i.types[this_operand].bitfield.imm32s = 1;
i.types[this_operand].bitfield.imm64 = 1;
i.types[this_operand] = operand_type_and (i.types[this_operand],
types);
}
return 1;
}
static char *
i386_scale (char *scale)
{
offsetT val;
char *save = input_line_pointer;
input_line_pointer = scale;
val = get_absolute_expression ();
switch (val)
{
case 1:
i.log2_scale_factor = 0;
break;
case 2:
i.log2_scale_factor = 1;
break;
case 4:
i.log2_scale_factor = 2;
break;
case 8:
i.log2_scale_factor = 3;
break;
default:
{
char sep = *input_line_pointer;
*input_line_pointer = '\0';
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
scale);
*input_line_pointer = sep;
input_line_pointer = save;
return NULL;
}
}
if (i.log2_scale_factor != 0 && i.index_reg == 0)
{
as_warn (_("scale factor of %d without an index register"),
1 << i.log2_scale_factor);
i.log2_scale_factor = 0;
}
scale = input_line_pointer;
input_line_pointer = save;
return scale;
}
static int
i386_displacement (char *disp_start, char *disp_end)
{
expressionS *exp;
segT exp_seg = 0;
char *save_input_line_pointer;
char *gotfree_input_line;
int override;
i386_operand_type bigdisp, types = anydisp;
int ret;
if (i.disp_operands == MAX_MEMORY_OPERANDS)
{
as_bad (_("at most %d displacement operands are allowed"),
MAX_MEMORY_OPERANDS);
return 0;
}
operand_type_set (&bigdisp, 0);
if ((i.types[this_operand].bitfield.jumpabsolute)
|| (!current_templates->start->opcode_modifier.jump
&& !current_templates->start->opcode_modifier.jumpdword))
{
bigdisp.bitfield.disp32 = 1;
override = (i.prefix[ADDR_PREFIX] != 0);
if (flag_code == CODE_64BIT)
{
if (!override)
{
bigdisp.bitfield.disp32s = 1;
bigdisp.bitfield.disp64 = 1;
}
}
else if ((flag_code == CODE_16BIT) ^ override)
{
bigdisp.bitfield.disp32 = 0;
bigdisp.bitfield.disp16 = 1;
}
}
else
{
/* For PC-relative branches, the width of the displacement
is dependent upon data size, not address size. */
override = (i.prefix[DATA_PREFIX] != 0);
if (flag_code == CODE_64BIT)
{
if (override || i.suffix == WORD_MNEM_SUFFIX)
bigdisp.bitfield.disp16 = 1;
else
{
bigdisp.bitfield.disp32 = 1;
bigdisp.bitfield.disp32s = 1;
}
}
else
{
if (!override)
override = (i.suffix == (flag_code != CODE_16BIT
? WORD_MNEM_SUFFIX
: LONG_MNEM_SUFFIX));
bigdisp.bitfield.disp32 = 1;
if ((flag_code == CODE_16BIT) ^ override)
{
bigdisp.bitfield.disp32 = 0;
bigdisp.bitfield.disp16 = 1;
}
}
}
i.types[this_operand] = operand_type_or (i.types[this_operand],
bigdisp);
exp = &disp_expressions[i.disp_operands];
i.op[this_operand].disps = exp;
i.disp_operands++;
save_input_line_pointer = input_line_pointer;
input_line_pointer = disp_start;
END_STRING_AND_SAVE (disp_end);
#ifndef GCC_ASM_O_HACK
#define GCC_ASM_O_HACK 0
#endif
#if GCC_ASM_O_HACK
END_STRING_AND_SAVE (disp_end + 1);
if (i.types[this_operand].bitfield.baseIndex
&& displacement_string_end[-1] == '+')
{
/* This hack is to avoid a warning when using the "o"
constraint within gcc asm statements.
For instance:
#define _set_tssldt_desc(n,addr,limit,type) \
__asm__ __volatile__ ( \
"movw %w2,%0\n\t" \
"movw %w1,2+%0\n\t" \
"rorl $16,%1\n\t" \
"movb %b1,4+%0\n\t" \
"movb %4,5+%0\n\t" \
"movb $0,6+%0\n\t" \
"movb %h1,7+%0\n\t" \
"rorl $16,%1" \
: "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
This works great except that the output assembler ends
up looking a bit weird if it turns out that there is
no offset. You end up producing code that looks like:
#APP
movw $235,(%eax)
movw %dx,2+(%eax)
rorl $16,%edx
movb %dl,4+(%eax)
movb $137,5+(%eax)
movb $0,6+(%eax)
movb %dh,7+(%eax)
rorl $16,%edx
#NO_APP
So here we provide the missing zero. */
*displacement_string_end = '0';
}
#endif
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
if (gotfree_input_line)
input_line_pointer = gotfree_input_line;
exp_seg = expression (exp);
SKIP_WHITESPACE ();
if (*input_line_pointer)
as_bad (_("junk `%s' after expression"), input_line_pointer);
#if GCC_ASM_O_HACK
RESTORE_END_STRING (disp_end + 1);
#endif
input_line_pointer = save_input_line_pointer;
if (gotfree_input_line)
free (gotfree_input_line);
ret = 1;
/* We do this to make sure that the section symbol is in
the symbol table. We will ultimately change the relocation
to be relative to the beginning of the section. */
if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
{
if (exp->X_op != O_symbol)
goto inv_disp;
if (S_IS_LOCAL (exp->X_add_symbol)
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
exp->X_op = O_subtract;
exp->X_op_symbol = GOT_symbol;
if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
i.reloc[this_operand] = BFD_RELOC_32_PCREL;
else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
i.reloc[this_operand] = BFD_RELOC_64;
else
i.reloc[this_operand] = BFD_RELOC_32;
}
else if (exp->X_op == O_absent
|| exp->X_op == O_illegal
|| exp->X_op == O_big
|| (gotfree_input_line
&& (exp->X_op == O_constant
|| exp->X_op == O_register)))
{
inv_disp:
as_bad (_("missing or invalid displacement expression `%s'"),
disp_start);
ret = 0;
}
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
else if (exp->X_op != O_constant
&& OUTPUT_FLAVOR == bfd_target_aout_flavour
&& exp_seg != absolute_section
&& exp_seg != text_section
&& exp_seg != data_section
&& exp_seg != bss_section
&& exp_seg != undefined_section
&& !bfd_is_com_section (exp_seg))
{
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
ret = 0;
}
#endif
RESTORE_END_STRING (disp_end);
/* Check if this is a displacement only operand. */
bigdisp = i.types[this_operand];
bigdisp.bitfield.disp8 = 0;
bigdisp.bitfield.disp16 = 0;
bigdisp.bitfield.disp32 = 0;
bigdisp.bitfield.disp32s = 0;
bigdisp.bitfield.disp64 = 0;
if (operand_type_all_zero (&bigdisp))
i.types[this_operand] = operand_type_and (i.types[this_operand],
types);
return ret;
}
/* Make sure the memory operand we've been dealt is valid.
Return 1 on success, 0 on a failure. */
static int
i386_index_check (const char *operand_string)
{
int ok;
#if INFER_ADDR_PREFIX
int fudged = 0;
tryprefix:
#endif
ok = 1;
if (flag_code == CODE_64BIT)
{
if ((i.base_reg
&& ((i.prefix[ADDR_PREFIX] == 0
&& !i.base_reg->reg_type.bitfield.reg64)
|| (i.prefix[ADDR_PREFIX]
&& !i.base_reg->reg_type.bitfield.reg32))
&& (i.index_reg
|| i.base_reg->reg_num !=
(i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
|| (i.index_reg
&& (!i.index_reg->reg_type.bitfield.baseindex
|| (i.prefix[ADDR_PREFIX] == 0
&& i.index_reg->reg_num != RegRiz
&& !i.index_reg->reg_type.bitfield.reg64
)
|| (i.prefix[ADDR_PREFIX]
&& i.index_reg->reg_num != RegEiz
&& !i.index_reg->reg_type.bitfield.reg32))))
ok = 0;
}
else
{
if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
{
/* 16bit checks. */
if ((i.base_reg
&& (!i.base_reg->reg_type.bitfield.reg16
|| !i.base_reg->reg_type.bitfield.baseindex))
|| (i.index_reg
&& (!i.index_reg->reg_type.bitfield.reg16
|| !i.index_reg->reg_type.bitfield.baseindex
|| !(i.base_reg
&& i.base_reg->reg_num < 6
&& i.index_reg->reg_num >= 6
&& i.log2_scale_factor == 0))))
ok = 0;
}
else
{
/* 32bit checks. */
if ((i.base_reg
&& !i.base_reg->reg_type.bitfield.reg32)
|| (i.index_reg
&& ((!i.index_reg->reg_type.bitfield.reg32
&& i.index_reg->reg_num != RegEiz)
|| !i.index_reg->reg_type.bitfield.baseindex)))
ok = 0;
}
}
if (!ok)
{
#if INFER_ADDR_PREFIX
if (i.prefix[ADDR_PREFIX] == 0)
{
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
i.prefixes += 1;
/* Change the size of any displacement too. At most one of
Disp16 or Disp32 is set.
FIXME. There doesn't seem to be any real need for separate
Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
Removing them would probably clean up the code quite a lot. */
if (flag_code != CODE_64BIT
&& (i.types[this_operand].bitfield.disp16
|| i.types[this_operand].bitfield.disp32))
i.types[this_operand]
= operand_type_xor (i.types[this_operand], disp16_32);
fudged = 1;
goto tryprefix;
}
if (fudged)
as_bad (_("`%s' is not a valid base/index expression"),
operand_string);
else
#endif
as_bad (_("`%s' is not a valid %s bit base/index expression"),
operand_string,
flag_code_names[flag_code]);
}
return ok;
}
/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
on error. */
static int
i386_att_operand (char *operand_string)
{
const reg_entry *r;
char *end_op;
char *op_string = operand_string;
if (is_space_char (*op_string))
++op_string;
/* We check for an absolute prefix (differentiating,
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
if (*op_string == ABSOLUTE_PREFIX)
{
++op_string;
if (is_space_char (*op_string))
++op_string;
i.types[this_operand].bitfield.jumpabsolute = 1;
}
/* Check if operand is a register. */
if ((r = parse_register (op_string, &end_op)) != NULL)
{
i386_operand_type temp;
/* Check for a segment override by searching for ':' after a
segment register. */
op_string = end_op;
if (is_space_char (*op_string))
++op_string;
if (*op_string == ':'
&& (r->reg_type.bitfield.sreg2
|| r->reg_type.bitfield.sreg3))
{
switch (r->reg_num)
{
case 0:
i.seg[i.mem_operands] = &es;
break;
case 1:
i.seg[i.mem_operands] = &cs;
break;
case 2:
i.seg[i.mem_operands] = &ss;
break;
case 3:
i.seg[i.mem_operands] = &ds;
break;
case 4:
i.seg[i.mem_operands] = &fs;
break;
case 5:
i.seg[i.mem_operands] = &gs;
break;
}
/* Skip the ':' and whitespace. */
++op_string;
if (is_space_char (*op_string))
++op_string;
if (!is_digit_char (*op_string)
&& !is_identifier_char (*op_string)
&& *op_string != '('
&& *op_string != ABSOLUTE_PREFIX)
{
as_bad (_("bad memory operand `%s'"), op_string);
return 0;
}
/* Handle case of %es:*foo. */
if (*op_string == ABSOLUTE_PREFIX)
{
++op_string;
if (is_space_char (*op_string))
++op_string;
i.types[this_operand].bitfield.jumpabsolute = 1;
}
goto do_memory_reference;
}
if (*op_string)
{
as_bad (_("junk `%s' after register"), op_string);
return 0;
}
temp = r->reg_type;
temp.bitfield.baseindex = 0;
i.types[this_operand] = operand_type_or (i.types[this_operand],
temp);
i.types[this_operand].bitfield.unspecified = 0;
i.op[this_operand].regs = r;
i.reg_operands++;
}
else if (*op_string == REGISTER_PREFIX)
{
as_bad (_("bad register name `%s'"), op_string);
return 0;
}
else if (*op_string == IMMEDIATE_PREFIX)
{
++op_string;
if (i.types[this_operand].bitfield.jumpabsolute)
{
as_bad (_("immediate operand illegal with absolute jump"));
return 0;
}
if (!i386_immediate (op_string))
return 0;
}
else if (is_digit_char (*op_string)
|| is_identifier_char (*op_string)
|| *op_string == '(')
{
/* This is a memory reference of some sort. */
char *base_string;
/* Start and end of displacement string expression (if found). */
char *displacement_string_start;
char *displacement_string_end;
do_memory_reference:
if ((i.mem_operands == 1
&& !current_templates->start->opcode_modifier.isstring)
|| i.mem_operands == 2)
{
as_bad (_("too many memory references for `%s'"),
current_templates->start->name);
return 0;
}
/* Check for base index form. We detect the base index form by
looking for an ')' at the end of the operand, searching
for the '(' matching it, and finding a REGISTER_PREFIX or ','
after the '('. */
base_string = op_string + strlen (op_string);
--base_string;
if (is_space_char (*base_string))
--base_string;
/* If we only have a displacement, set-up for it to be parsed later. */
displacement_string_start = op_string;
displacement_string_end = base_string + 1;
if (*base_string == ')')
{
char *temp_string;
unsigned int parens_balanced = 1;
/* We've already checked that the number of left & right ()'s are
equal, so this loop will not be infinite. */
do
{
base_string--;
if (*base_string == ')')
parens_balanced++;
if (*base_string == '(')
parens_balanced--;
}
while (parens_balanced);
temp_string = base_string;
/* Skip past '(' and whitespace. */
++base_string;
if (is_space_char (*base_string))
++base_string;
if (*base_string == ','
|| ((i.base_reg = parse_register (base_string, &end_op))
!= NULL))
{
displacement_string_end = temp_string;
i.types[this_operand].bitfield.baseindex = 1;
if (i.base_reg)
{
base_string = end_op;
if (is_space_char (*base_string))
++base_string;
}
/* There may be an index reg or scale factor here. */
if (*base_string == ',')
{
++base_string;
if (is_space_char (*base_string))
++base_string;
if ((i.index_reg = parse_register (base_string, &end_op))
!= NULL)
{
base_string = end_op;
if (is_space_char (*base_string))
++base_string;
if (*base_string == ',')
{
++base_string;
if (is_space_char (*base_string))
++base_string;
}
else if (*base_string != ')')
{
as_bad (_("expecting `,' or `)' "
"after index register in `%s'"),
operand_string);
return 0;
}
}
else if (*base_string == REGISTER_PREFIX)
{
as_bad (_("bad register name `%s'"), base_string);
return 0;
}
/* Check for scale factor. */
if (*base_string != ')')
{
char *end_scale = i386_scale (base_string);
if (!end_scale)
return 0;
base_string = end_scale;
if (is_space_char (*base_string))
++base_string;
if (*base_string != ')')
{
as_bad (_("expecting `)' "
"after scale factor in `%s'"),
operand_string);
return 0;
}
}
else if (!i.index_reg)
{
as_bad (_("expecting index register or scale factor "
"after `,'; got '%c'"),
*base_string);
return 0;
}
}
else if (*base_string != ')')
{
as_bad (_("expecting `,' or `)' "
"after base register in `%s'"),
operand_string);
return 0;
}
}
else if (*base_string == REGISTER_PREFIX)
{
as_bad (_("bad register name `%s'"), base_string);
return 0;
}
}
/* If there's an expression beginning the operand, parse it,
assuming displacement_string_start and
displacement_string_end are meaningful. */
if (displacement_string_start != displacement_string_end)
{
if (!i386_displacement (displacement_string_start,
displacement_string_end))
return 0;
}
/* Special case for (%dx) while doing input/output op. */
if (i.base_reg
&& operand_type_equal (&i.base_reg->reg_type,
&reg16_inoutportreg)
&& i.index_reg == 0
&& i.log2_scale_factor == 0
&& i.seg[i.mem_operands] == 0
&& !operand_type_check (i.types[this_operand], disp))
{
i.types[this_operand] = inoutportreg;
return 1;
}
if (i386_index_check (operand_string) == 0)
return 0;
i.types[this_operand].bitfield.mem = 1;
i.mem_operands++;
}
else
{
/* It's not a memory operand; argh! */
as_bad (_("invalid char %s beginning operand %d `%s'"),
output_invalid (*op_string),
this_operand + 1,
op_string);
return 0;
}
return 1; /* Normal return. */
}
/* md_estimate_size_before_relax()
Called just before relax() for rs_machine_dependent frags. The x86
assembler uses these frags to handle variable size jump
instructions.
Any symbol that is now undefined will not become defined.
Return the correct fr_subtype in the frag.
Return the initial "guess for variable size of frag" to caller.
The guess is actually the growth beyond the fixed part. Whatever
we do to grow the fixed or variable part contributes to our
returned value. */
int
md_estimate_size_before_relax (fragP, segment)
fragS *fragP;
segT segment;
{
/* We've already got fragP->fr_subtype right; all we have to do is
check for un-relaxable symbols. On an ELF system, we can't relax
an externally visible symbol, because it may be overridden by a
shared library. */
if (S_GET_SEGMENT (fragP->fr_symbol) != segment
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|| (IS_ELF
&& (S_IS_EXTERNAL (fragP->fr_symbol)
|| S_IS_WEAK (fragP->fr_symbol)))
#endif
)
{
/* Symbol is undefined in this segment, or we need to keep a
reloc so that weak symbols can be overridden. */
int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
enum bfd_reloc_code_real reloc_type;
unsigned char *opcode;
int old_fr_fix;
if (fragP->fr_var != NO_RELOC)
reloc_type = fragP->fr_var;
else if (size == 2)
reloc_type = BFD_RELOC_16_PCREL;
else
reloc_type = BFD_RELOC_32_PCREL;
old_fr_fix = fragP->fr_fix;
opcode = (unsigned char *) fragP->fr_opcode;
switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
{
case UNCOND_JUMP:
/* Make jmp (0xeb) a (d)word displacement jump. */
opcode[0] = 0xe9;
fragP->fr_fix += size;
fix_new (fragP, old_fr_fix, size,
fragP->fr_symbol,
fragP->fr_offset, 1,
reloc_type);
break;
case COND_JUMP86:
if (size == 2
&& (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
{
/* Negate the condition, and branch past an
unconditional jump. */
opcode[0] ^= 1;
opcode[1] = 3;
/* Insert an unconditional jump. */
opcode[2] = 0xe9;
/* We added two extra opcode bytes, and have a two byte
offset. */
fragP->fr_fix += 2 + 2;
fix_new (fragP, old_fr_fix + 2, 2,
fragP->fr_symbol,
fragP->fr_offset, 1,
reloc_type);
break;
}
/* Fall through. */
case COND_JUMP:
if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
{
fixS *fixP;
fragP->fr_fix += 1;
fixP = fix_new (fragP, old_fr_fix, 1,
fragP->fr_symbol,
fragP->fr_offset, 1,
BFD_RELOC_8_PCREL);
fixP->fx_signed = 1;
break;
}
/* This changes the byte-displacement jump 0x7N
to the (d)word-displacement jump 0x0f,0x8N. */
opcode[1] = opcode[0] + 0x10;
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
/* We've added an opcode byte. */
fragP->fr_fix += 1 + size;
fix_new (fragP, old_fr_fix + 1, size,
fragP->fr_symbol,
fragP->fr_offset, 1,
reloc_type);
break;
default:
BAD_CASE (fragP->fr_subtype);
break;
}
frag_wane (fragP);
return fragP->fr_fix - old_fr_fix;
}
/* Guess size depending on current relax state. Initially the relax
state will correspond to a short jump and we return 1, because
the variable part of the frag (the branch offset) is one byte
long. However, we can relax a section more than once and in that
case we must either set fr_subtype back to the unrelaxed state,
or return the value for the appropriate branch. */
return md_relax_table[fragP->fr_subtype].rlx_length;
}
/* Called after relax() is finished.
In: Address of frag.
fr_type == rs_machine_dependent.
fr_subtype is what the address relaxed to.
Out: Any fixSs and constants are set up.
Caller will turn frag into a ".space 0". */
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd ATTRIBUTE_UNUSED;
segT sec ATTRIBUTE_UNUSED;
fragS *fragP;
{
unsigned char *opcode;
unsigned char *where_to_put_displacement = NULL;
offsetT target_address;
offsetT opcode_address;
unsigned int extension = 0;
offsetT displacement_from_opcode_start;
opcode = (unsigned char *) fragP->fr_opcode;
/* Address we want to reach in file space. */
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
/* Address opcode resides at in file space. */
opcode_address = fragP->fr_address + fragP->fr_fix;
/* Displacement from opcode start to fill into instruction. */
displacement_from_opcode_start = target_address - opcode_address;
if ((fragP->fr_subtype & BIG) == 0)
{
/* Don't have to change opcode. */
extension = 1; /* 1 opcode + 1 displacement */
where_to_put_displacement = &opcode[1];
}
else
{
if (no_cond_jump_promotion
&& TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
as_warn_where (fragP->fr_file, fragP->fr_line,
_("long jump required"));
switch (fragP->fr_subtype)
{
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
extension = 4; /* 1 opcode + 4 displacement */
opcode[0] = 0xe9;
where_to_put_displacement = &opcode[1];
break;
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
extension = 2; /* 1 opcode + 2 displacement */
opcode[0] = 0xe9;
where_to_put_displacement = &opcode[1];
break;
case ENCODE_RELAX_STATE (COND_JUMP, BIG):
case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
extension = 5; /* 2 opcode + 4 displacement */
opcode[1] = opcode[0] + 0x10;
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
where_to_put_displacement = &opcode[2];
break;
case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
extension = 3; /* 2 opcode + 2 displacement */
opcode[1] = opcode[0] + 0x10;
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
where_to_put_displacement = &opcode[2];
break;
case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
extension = 4;
opcode[0] ^= 1;
opcode[1] = 3;
opcode[2] = 0xe9;
where_to_put_displacement = &opcode[3];
break;
default:
BAD_CASE (fragP->fr_subtype);
break;
}
}
/* If size if less then four we are sure that the operand fits,
but if it's 4, then it could be that the displacement is larger
then -/+ 2GB. */
if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
&& object_64bit
&& ((addressT) (displacement_from_opcode_start - extension
+ ((addressT) 1 << 31))
> (((addressT) 2 << 31) - 1)))
{
as_bad_where (fragP->fr_file, fragP->fr_line,
_("jump target out of range"));
/* Make us emit 0. */
displacement_from_opcode_start = extension;
}
/* Now put displacement after opcode. */
md_number_to_chars ((char *) where_to_put_displacement,
(valueT) (displacement_from_opcode_start - extension),
DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
fragP->fr_fix += extension;
}
/* Apply a fixup (fixS) to segment data, once it has been determined
by our caller that we have all the info we need to fix it up.
On the 386, immediates, displacements, and data pointers are all in
the same (little-endian) format, so we don't need to care about which
we are handling. */
void
md_apply_fix (fixP, valP, seg)
/* The fix we're to put in. */
fixS *fixP;
/* Pointer to the value of the bits. */
valueT *valP;
/* Segment fix is from. */
segT seg ATTRIBUTE_UNUSED;
{
char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
valueT value = *valP;
#if !defined (TE_Mach)
if (fixP->fx_pcrel)
{
switch (fixP->fx_r_type)
{
default:
break;
case BFD_RELOC_64:
fixP->fx_r_type = BFD_RELOC_64_PCREL;
break;
case BFD_RELOC_32:
case BFD_RELOC_X86_64_32S:
fixP->fx_r_type = BFD_RELOC_32_PCREL;
break;
case BFD_RELOC_16:
fixP->fx_r_type = BFD_RELOC_16_PCREL;
break;
case BFD_RELOC_8:
fixP->fx_r_type = BFD_RELOC_8_PCREL;
break;
}
}
if (fixP->fx_addsy != NULL
&& (fixP->fx_r_type == BFD_RELOC_32_PCREL
|| fixP->fx_r_type == BFD_RELOC_64_PCREL
|| fixP->fx_r_type == BFD_RELOC_16_PCREL
|| fixP->fx_r_type == BFD_RELOC_8_PCREL)
&& !use_rela_relocations)
{
/* This is a hack. There should be a better way to handle this.
This covers for the fact that bfd_install_relocation will
subtract the current location (for partial_inplace, PC relative
relocations); see more below. */
#ifndef OBJ_AOUT
if (IS_ELF
#ifdef TE_PE
|| OUTPUT_FLAVOR == bfd_target_coff_flavour
#endif
)
value += fixP->fx_where + fixP->fx_frag->fr_address;
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (IS_ELF)
{
segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
if ((sym_seg == seg
|| (symbol_section_p (fixP->fx_addsy)
&& sym_seg != absolute_section))
&& !generic_force_reloc (fixP))
{
/* Yes, we add the values in twice. This is because
bfd_install_relocation subtracts them out again. I think
bfd_install_relocation is broken, but I don't dare change
it. FIXME. */
value += fixP->fx_where + fixP->fx_frag->fr_address;
}
}
#endif
#if defined (OBJ_COFF) && defined (TE_PE)
/* For some reason, the PE format does not store a
section address offset for a PC relative symbol. */
if (S_GET_SEGMENT (fixP->fx_addsy) != seg
|| S_IS_WEAK (fixP->fx_addsy))
value += md_pcrel_from (fixP);
#endif
}
/* Fix a few things - the dynamic linker expects certain values here,
and we must not disappoint it. */
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (IS_ELF && fixP->fx_addsy)
switch (fixP->fx_r_type)
{
case BFD_RELOC_386_PLT32:
case BFD_RELOC_X86_64_PLT32:
/* Make the jump instruction point to the address of the operand. At
runtime we merely add the offset to the actual PLT entry. */
value = -4;
break;
case BFD_RELOC_386_TLS_GD:
case BFD_RELOC_386_TLS_LDM:
case BFD_RELOC_386_TLS_IE_32:
case BFD_RELOC_386_TLS_IE:
case BFD_RELOC_386_TLS_GOTIE:
case BFD_RELOC_386_TLS_GOTDESC:
case BFD_RELOC_X86_64_TLSGD:
case BFD_RELOC_X86_64_TLSLD:
case BFD_RELOC_X86_64_GOTTPOFF:
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
value = 0; /* Fully resolved at runtime. No addend. */
/* Fallthrough */
case BFD_RELOC_386_TLS_LE:
case BFD_RELOC_386_TLS_LDO_32:
case BFD_RELOC_386_TLS_LE_32:
case BFD_RELOC_X86_64_DTPOFF32:
case BFD_RELOC_X86_64_DTPOFF64:
case BFD_RELOC_X86_64_TPOFF32:
case BFD_RELOC_X86_64_TPOFF64:
S_SET_THREAD_LOCAL (fixP->fx_addsy);
break;
case BFD_RELOC_386_TLS_DESC_CALL:
case BFD_RELOC_X86_64_TLSDESC_CALL:
value = 0; /* Fully resolved at runtime. No addend. */
S_SET_THREAD_LOCAL (fixP->fx_addsy);
fixP->fx_done = 0;
return;
case BFD_RELOC_386_GOT32:
case BFD_RELOC_X86_64_GOT32:
value = 0; /* Fully resolved at runtime. No addend. */
break;
case BFD_RELOC_VTABLE_INHERIT:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
return;
default:
break;
}
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
*valP = value;
#endif /* !defined (TE_Mach) */
/* Are we finished with this relocation now? */
if (fixP->fx_addsy == NULL)
fixP->fx_done = 1;
else if (use_rela_relocations)
{
fixP->fx_no_overflow = 1;
/* Remember value for tc_gen_reloc. */
fixP->fx_addnumber = value;
value = 0;
}
md_number_to_chars (p, value, fixP->fx_size);
}
char *
md_atof (int type, char *litP, int *sizeP)
{
/* This outputs the LITTLENUMs in REVERSE order;
in accord with the bigendian 386. */
return ieee_md_atof (type, litP, sizeP, FALSE);
}
static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
static char *
output_invalid (int c)
{
if (ISPRINT (c))
snprintf (output_invalid_buf, sizeof (output_invalid_buf),
"'%c'", c);
else
snprintf (output_invalid_buf, sizeof (output_invalid_buf),
"(0x%x)", (unsigned char) c);
return output_invalid_buf;
}
/* REG_STRING starts *before* REGISTER_PREFIX. */
static const reg_entry *
parse_real_register (char *reg_string, char **end_op)
{
char *s = reg_string;
char *p;
char reg_name_given[MAX_REG_NAME_SIZE + 1];
const reg_entry *r;
/* Skip possible REGISTER_PREFIX and possible whitespace. */
if (*s == REGISTER_PREFIX)
++s;
if (is_space_char (*s))
++s;
p = reg_name_given;
while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
{
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
return (const reg_entry *) NULL;
s++;
}
/* For naked regs, make sure that we are not dealing with an identifier.
This prevents confusing an identifier like `eax_var' with register
`eax'. */
if (allow_naked_reg && identifier_chars[(unsigned char) *s])
return (const reg_entry *) NULL;
*end_op = s;
r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
/* Handle floating point regs, allowing spaces in the (i) part. */
if (r == i386_regtab /* %st is first entry of table */)
{
if (is_space_char (*s))
++s;
if (*s == '(')
{
++s;
if (is_space_char (*s))
++s;
if (*s >= '0' && *s <= '7')
{
int fpr = *s - '0';
++s;
if (is_space_char (*s))
++s;
if (*s == ')')
{
*end_op = s + 1;
r = hash_find (reg_hash, "st(0)");
know (r);
return r + fpr;
}
}
/* We have "%st(" then garbage. */
return (const reg_entry *) NULL;
}
}
if (r == NULL || allow_pseudo_reg)
return r;
if (operand_type_all_zero (&r->reg_type))
return (const reg_entry *) NULL;
if ((r->reg_type.bitfield.reg32
|| r->reg_type.bitfield.sreg3
|| r->reg_type.bitfield.control
|| r->reg_type.bitfield.debug
|| r->reg_type.bitfield.test)
&& !cpu_arch_flags.bitfield.cpui386)
return (const reg_entry *) NULL;
if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
return (const reg_entry *) NULL;
if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
return (const reg_entry *) NULL;
if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
return (const reg_entry *) NULL;
/* Don't allow fake index register unless allow_index_reg isn't 0. */
if (!allow_index_reg
&& (r->reg_num == RegEiz || r->reg_num == RegRiz))
return (const reg_entry *) NULL;
if (((r->reg_flags & (RegRex64 | RegRex))
|| r->reg_type.bitfield.reg64)
&& (!cpu_arch_flags.bitfield.cpulm
|| !operand_type_equal (&r->reg_type, &control))
&& flag_code != CODE_64BIT)
return (const reg_entry *) NULL;
if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
return (const reg_entry *) NULL;
return r;
}
/* REG_STRING starts *before* REGISTER_PREFIX. */
static const reg_entry *
parse_register (char *reg_string, char **end_op)
{
const reg_entry *r;
if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
r = parse_real_register (reg_string, end_op);
else
r = NULL;
if (!r)
{
char *save = input_line_pointer;
char c;
symbolS *symbolP;
input_line_pointer = reg_string;
c = get_symbol_end ();
symbolP = symbol_find (reg_string);
if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
{
const expressionS *e = symbol_get_value_expression (symbolP);
know (e->X_op == O_register);
know (e->X_add_number >= 0
&& (valueT) e->X_add_number < i386_regtab_size);
r = i386_regtab + e->X_add_number;
*end_op = input_line_pointer;
}
*input_line_pointer = c;
input_line_pointer = save;
}
return r;
}
int
i386_parse_name (char *name, expressionS *e, char *nextcharP)
{
const reg_entry *r;
char *end = input_line_pointer;
*end = *nextcharP;
r = parse_register (name, &input_line_pointer);
if (r && end <= input_line_pointer)
{
*nextcharP = *input_line_pointer;
*input_line_pointer = 0;
e->X_op = O_register;
e->X_add_number = r - i386_regtab;
return 1;
}
input_line_pointer = end;
*end = 0;
return 0;
}
void
md_operand (expressionS *e)
{
if (*input_line_pointer == REGISTER_PREFIX)
{
char *end;
const reg_entry *r = parse_real_register (input_line_pointer, &end);
if (r)
{
e->X_op = O_register;
e->X_add_number = r - i386_regtab;
input_line_pointer = end;
}
}
}
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
const char *md_shortopts = "kVQ:sqn";
#else
const char *md_shortopts = "qn";
#endif
#define OPTION_32 (OPTION_MD_BASE + 0)
#define OPTION_64 (OPTION_MD_BASE + 1)
#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
#define OPTION_MARCH (OPTION_MD_BASE + 3)
#define OPTION_MTUNE (OPTION_MD_BASE + 4)
#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
struct option md_longopts[] =
{
{"32", no_argument, NULL, OPTION_32},
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
{"64", no_argument, NULL, OPTION_64},
#endif
{"divide", no_argument, NULL, OPTION_DIVIDE},
{"march", required_argument, NULL, OPTION_MARCH},
{"mtune", required_argument, NULL, OPTION_MTUNE},
{"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
{"msyntax", required_argument, NULL, OPTION_MSYNTAX},
{"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
{"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
{"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
{"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
{"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (int c, char *arg)
{
unsigned int i;
char *arch, *next;
switch (c)
{
case 'n':
optimize_align_code = 0;
break;
case 'q':
quiet_warnings = 1;
break;
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
should be emitted or not. FIXME: Not implemented. */
case 'Q':
break;
/* -V: SVR4 argument to print version ID. */
case 'V':
print_version_id ();
break;
/* -k: Ignore for FreeBSD compatibility. */
case 'k':
break;
case 's':
/* -s: On i386 Solaris, this tells the native assembler to use
.stab instead of .stab.excl. We always use .stab anyhow. */
break;
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
case OPTION_64:
{
const char **list, **l;
list = bfd_target_list ();
for (l = list; *l != NULL; l++)
if (CONST_STRNEQ (*l, "elf64-x86-64")
|| strcmp (*l, "coff-x86-64") == 0
|| strcmp (*l, "pe-x86-64") == 0
|| strcmp (*l, "pei-x86-64") == 0)
{
default_arch = "x86_64";
break;
}
if (*l == NULL)
as_fatal (_("No compiled in support for x86_64"));
free (list);
}
break;
#endif
case OPTION_32:
default_arch = "i386";
break;
case OPTION_DIVIDE:
#ifdef SVR4_COMMENT_CHARS
{
char *n, *t;
const char *s;
n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
t = n;
for (s = i386_comment_chars; *s != '\0'; s++)
if (*s != '/')
*t++ = *s;
*t = '\0';
i386_comment_chars = n;
}
#endif
break;
case OPTION_MARCH:
arch = xstrdup (arg);
do
{
if (*arch == '.')
as_fatal (_("Invalid -march= option: `%s'"), arg);
next = strchr (arch, '+');
if (next)
*next++ = '\0';
for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
{
if (strcmp (arch, cpu_arch [i].name) == 0)
{
/* Processor. */
cpu_arch_name = cpu_arch[i].name;
cpu_sub_arch_name = NULL;
cpu_arch_flags = cpu_arch[i].flags;
cpu_arch_isa = cpu_arch[i].type;
cpu_arch_isa_flags = cpu_arch[i].flags;
if (!cpu_arch_tune_set)
{
cpu_arch_tune = cpu_arch_isa;
cpu_arch_tune_flags = cpu_arch_isa_flags;
}
break;
}
else if (*cpu_arch [i].name == '.'
&& strcmp (arch, cpu_arch [i].name + 1) == 0)
{
/* ISA entension. */
i386_cpu_flags flags;
flags = cpu_flags_or (cpu_arch_flags,
cpu_arch[i].flags);
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
{
if (cpu_sub_arch_name)
{
char *name = cpu_sub_arch_name;
cpu_sub_arch_name = concat (name,
cpu_arch[i].name,
(const char *) NULL);
free (name);
}
else
cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
cpu_arch_flags = flags;
}
break;
}
}
if (i >= ARRAY_SIZE (cpu_arch))
as_fatal (_("Invalid -march= option: `%s'"), arg);
arch = next;
}
while (next != NULL );
break;
case OPTION_MTUNE:
if (*arg == '.')
as_fatal (_("Invalid -mtune= option: `%s'"), arg);
for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
{
if (strcmp (arg, cpu_arch [i].name) == 0)
{
cpu_arch_tune_set = 1;
cpu_arch_tune = cpu_arch [i].type;
cpu_arch_tune_flags = cpu_arch[i].flags;
break;
}
}
if (i >= ARRAY_SIZE (cpu_arch))
as_fatal (_("Invalid -mtune= option: `%s'"), arg);
break;
case OPTION_MMNEMONIC:
if (strcasecmp (arg, "att") == 0)
intel_mnemonic = 0;
else if (strcasecmp (arg, "intel") == 0)
intel_mnemonic = 1;
else
as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
break;
case OPTION_MSYNTAX:
if (strcasecmp (arg, "att") == 0)
intel_syntax = 0;
else if (strcasecmp (arg, "intel") == 0)
intel_syntax = 1;
else
as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
break;
case OPTION_MINDEX_REG:
allow_index_reg = 1;
break;
case OPTION_MNAKED_REG:
allow_naked_reg = 1;
break;
case OPTION_MOLD_GCC:
old_gcc = 1;
break;
case OPTION_MSSE2AVX:
sse2avx = 1;
break;
case OPTION_MSSE_CHECK:
if (strcasecmp (arg, "error") == 0)
sse_check = sse_check_error;
else if (strcasecmp (arg, "warning") == 0)
sse_check = sse_check_warning;
else if (strcasecmp (arg, "none") == 0)
sse_check = sse_check_none;
else
as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
fprintf (stream, _("\
-Q ignored\n\
-V print assembler version number\n\
-k ignored\n"));
#endif
fprintf (stream, _("\
-n Do not optimize code alignment\n\
-q quieten some warnings\n"));
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
fprintf (stream, _("\
-s ignored\n"));
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
fprintf (stream, _("\
--32/--64 generate 32bit/64bit code\n"));
#endif
#ifdef SVR4_COMMENT_CHARS
fprintf (stream, _("\
--divide do not treat `/' as a comment character\n"));
#else
fprintf (stream, _("\
--divide ignored\n"));
#endif
fprintf (stream, _("\
-march=CPU[,+EXTENSION...]\n\
generate code for CPU and EXTENSION, CPU is one of:\n\
i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
core, core2, k6, k6_2, athlon, k8, amdfam10,\n\
generic32, generic64\n\
EXTENSION is combination of:\n\
mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, sse4,\n\
avx, vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
3dnow, 3dnowa, sse4a, sse5, svme, abm, padlock\n"));
fprintf (stream, _("\
-mtune=CPU optimize for CPU, CPU is one of:\n\
i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
core, core2, k6, k6_2, athlon, k8, amdfam10,\n\
generic32, generic64\n"));
fprintf (stream, _("\
-msse2avx encode SSE instructions with VEX prefix\n"));
fprintf (stream, _("\
-msse-check=[none|error|warning]\n\
check SSE instructions\n"));
fprintf (stream, _("\
-mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
fprintf (stream, _("\
-msyntax=[att|intel] use AT&T/Intel syntax\n"));
fprintf (stream, _("\
-mindex-reg support pseudo index registers\n"));
fprintf (stream, _("\
-mnaked-reg don't require `%%' prefix for registers\n"));
fprintf (stream, _("\
-mold-gcc support old (<= 2.8.1) versions of gcc\n"));
}
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
/* Pick the target format to use. */
const char *
i386_target_format (void)
{
if (!strcmp (default_arch, "x86_64"))
{
set_code_flag (CODE_64BIT);
if (cpu_flags_all_zero (&cpu_arch_isa_flags))
{
cpu_arch_isa_flags.bitfield.cpui186 = 1;
cpu_arch_isa_flags.bitfield.cpui286 = 1;
cpu_arch_isa_flags.bitfield.cpui386 = 1;
cpu_arch_isa_flags.bitfield.cpui486 = 1;
cpu_arch_isa_flags.bitfield.cpui586 = 1;
cpu_arch_isa_flags.bitfield.cpui686 = 1;
cpu_arch_isa_flags.bitfield.cpup4 = 1;
cpu_arch_isa_flags.bitfield.cpummx= 1;
cpu_arch_isa_flags.bitfield.cpusse = 1;
cpu_arch_isa_flags.bitfield.cpusse2 = 1;
}
if (cpu_flags_all_zero (&cpu_arch_tune_flags))
{
cpu_arch_tune_flags.bitfield.cpui186 = 1;
cpu_arch_tune_flags.bitfield.cpui286 = 1;
cpu_arch_tune_flags.bitfield.cpui386 = 1;
cpu_arch_tune_flags.bitfield.cpui486 = 1;
cpu_arch_tune_flags.bitfield.cpui586 = 1;
cpu_arch_tune_flags.bitfield.cpui686 = 1;
cpu_arch_tune_flags.bitfield.cpup4 = 1;
cpu_arch_tune_flags.bitfield.cpummx= 1;
cpu_arch_tune_flags.bitfield.cpusse = 1;
cpu_arch_tune_flags.bitfield.cpusse2 = 1;
}
}
else if (!strcmp (default_arch, "i386"))
{
set_code_flag (CODE_32BIT);
if (cpu_flags_all_zero (&cpu_arch_isa_flags))
{
cpu_arch_isa_flags.bitfield.cpui186 = 1;
cpu_arch_isa_flags.bitfield.cpui286 = 1;
cpu_arch_isa_flags.bitfield.cpui386 = 1;
}
if (cpu_flags_all_zero (&cpu_arch_tune_flags))
{
cpu_arch_tune_flags.bitfield.cpui186 = 1;
cpu_arch_tune_flags.bitfield.cpui286 = 1;
cpu_arch_tune_flags.bitfield.cpui386 = 1;
}
}
else
as_fatal (_("Unknown architecture"));
switch (OUTPUT_FLAVOR)
{
#ifdef TE_PEP
case bfd_target_coff_flavour:
return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
break;
#endif
#ifdef OBJ_MAYBE_AOUT
case bfd_target_aout_flavour:
return AOUT_TARGET_FORMAT;
#endif
#ifdef OBJ_MAYBE_COFF
case bfd_target_coff_flavour:
return "coff-i386";
#endif
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
case bfd_target_elf_flavour:
{
if (flag_code == CODE_64BIT)
{
object_64bit = 1;
use_rela_relocations = 1;
}
return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
}
#endif
default:
abort ();
return NULL;
}
}
#endif /* OBJ_MAYBE_ more than one */
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
void
i386_elf_emit_arch_note (void)
{
if (IS_ELF && cpu_arch_name != NULL)
{
char *p;
asection *seg = now_seg;
subsegT subseg = now_subseg;
Elf_Internal_Note i_note;
Elf_External_Note e_note;
asection *note_secp;
int len;
/* Create the .note section. */
note_secp = subseg_new (".note", 0);
bfd_set_section_flags (stdoutput,
note_secp,
SEC_HAS_CONTENTS | SEC_READONLY);
/* Process the arch string. */
len = strlen (cpu_arch_name);
i_note.namesz = len + 1;
i_note.descsz = 0;
i_note.type = NT_ARCH;
p = frag_more (sizeof (e_note.namesz));
md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
p = frag_more (sizeof (e_note.descsz));
md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
p = frag_more (sizeof (e_note.type));
md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
p = frag_more (len + 1);
strcpy (p, cpu_arch_name);
frag_align (2, 0, 0);
subseg_set (seg, subseg);
}
}
#endif
symbolS *
md_undefined_symbol (name)
char *name;
{
if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
&& name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
&& name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
&& strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
{
if (!GOT_symbol)
{
if (symbol_find (name))
as_bad (_("GOT already in symbol table"));
GOT_symbol = symbol_new (name, undefined_section,
(valueT) 0, &zero_address_frag);
};
return GOT_symbol;
}
return 0;
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment ATTRIBUTE_UNUSED;
valueT size;
{
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
{
/* For a.out, force the section size to be aligned. If we don't do
this, BFD will align it for us, but it will not write out the
final bytes of the section. This may be a bug in BFD, but it is
easier to fix it here since that is how the other a.out targets
work. */
int align;
align = bfd_get_section_alignment (stdoutput, segment);
size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
}
#endif
return size;
}
/* On the i386, PC-relative offsets are relative to the start of the
next instruction. That is, the address of the offset, plus its
size, since the offset is always the last part of the insn. */
long
md_pcrel_from (fixS *fixP)
{
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
#ifndef I386COFF
static void
s_bss (int ignore ATTRIBUTE_UNUSED)
{
int temp;
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
if (IS_ELF)
obj_elf_section_change_hook ();
#endif
temp = get_absolute_expression ();
subseg_set (bss_section, (subsegT) temp);
demand_empty_rest_of_line ();
}
#endif
void
i386_validate_fix (fixS *fixp)
{
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
{
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
{
if (!object_64bit)
abort ();
fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
}
else
{
if (!object_64bit)
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
else
fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
}
fixp->fx_subsy = 0;
}
}
arelent *
tc_gen_reloc (section, fixp)
asection *section ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *rel;
bfd_reloc_code_real_type code;
switch (fixp->fx_r_type)
{
case BFD_RELOC_X86_64_PLT32:
case BFD_RELOC_X86_64_GOT32:
case BFD_RELOC_X86_64_GOTPCREL:
case BFD_RELOC_386_PLT32:
case BFD_RELOC_386_GOT32:
case BFD_RELOC_386_GOTOFF:
case BFD_RELOC_386_GOTPC:
case BFD_RELOC_386_TLS_GD:
case BFD_RELOC_386_TLS_LDM:
case BFD_RELOC_386_TLS_LDO_32:
case BFD_RELOC_386_TLS_IE_32:
case BFD_RELOC_386_TLS_IE:
case BFD_RELOC_386_TLS_GOTIE:
case BFD_RELOC_386_TLS_LE_32:
case BFD_RELOC_386_TLS_LE:
case BFD_RELOC_386_TLS_GOTDESC:
case BFD_RELOC_386_TLS_DESC_CALL:
case BFD_RELOC_X86_64_TLSGD:
case BFD_RELOC_X86_64_TLSLD:
case BFD_RELOC_X86_64_DTPOFF32:
case BFD_RELOC_X86_64_DTPOFF64:
case BFD_RELOC_X86_64_GOTTPOFF:
case BFD_RELOC_X86_64_TPOFF32:
case BFD_RELOC_X86_64_TPOFF64:
case BFD_RELOC_X86_64_GOTOFF64:
case BFD_RELOC_X86_64_GOTPC32:
case BFD_RELOC_X86_64_GOT64:
case BFD_RELOC_X86_64_GOTPCREL64:
case BFD_RELOC_X86_64_GOTPC64:
case BFD_RELOC_X86_64_GOTPLT64:
case BFD_RELOC_X86_64_PLTOFF64:
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
case BFD_RELOC_X86_64_TLSDESC_CALL:
case BFD_RELOC_RVA:
case BFD_RELOC_VTABLE_ENTRY:
case BFD_RELOC_VTABLE_INHERIT:
#ifdef TE_PE
case BFD_RELOC_32_SECREL:
#endif
code = fixp->fx_r_type;
break;
case BFD_RELOC_X86_64_32S:
if (!fixp->fx_pcrel)
{
/* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
code = fixp->fx_r_type;
break;
}
default:
if (fixp->fx_pcrel)
{
switch (fixp->fx_size)
{
default:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("can not do %d byte pc-relative relocation"),
fixp->fx_size);
code = BFD_RELOC_32_PCREL;
break;
case 1: code = BFD_RELOC_8_PCREL; break;
case 2: code = BFD_RELOC_16_PCREL; break;
case 4: code = BFD_RELOC_32_PCREL; break;
#ifdef BFD64
case 8: code = BFD_RELOC_64_PCREL; break;
#endif
}
}
else
{
switch (fixp->fx_size)
{
default:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("can not do %d byte relocation"),
fixp->fx_size);
code = BFD_RELOC_32;
break;
case 1: code = BFD_RELOC_8; break;
case 2: code = BFD_RELOC_16; break;
case 4: code = BFD_RELOC_32; break;
#ifdef BFD64
case 8: code = BFD_RELOC_64; break;
#endif
}
}
break;
}
if ((code == BFD_RELOC_32
|| code == BFD_RELOC_32_PCREL
|| code == BFD_RELOC_X86_64_32S)
&& GOT_symbol
&& fixp->fx_addsy == GOT_symbol)
{
if (!object_64bit)
code = BFD_RELOC_386_GOTPC;
else
code = BFD_RELOC_X86_64_GOTPC32;
}
if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
&& GOT_symbol
&& fixp->fx_addsy == GOT_symbol)
{
code = BFD_RELOC_X86_64_GOTPC64;
}
rel = (arelent *) xmalloc (sizeof (arelent));
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (!use_rela_relocations)
{
/* HACK: Since i386 ELF uses Rel instead of Rela, encode the
vtable entry to be used in the relocation's section offset. */
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
rel->address = fixp->fx_offset;
rel->addend = 0;
}
/* Use the rela in 64bit mode. */
else
{
if (!fixp->fx_pcrel)
rel->addend = fixp->fx_offset;
else
switch (code)
{
case BFD_RELOC_X86_64_PLT32:
case BFD_RELOC_X86_64_GOT32:
case BFD_RELOC_X86_64_GOTPCREL:
case BFD_RELOC_X86_64_TLSGD:
case BFD_RELOC_X86_64_TLSLD:
case BFD_RELOC_X86_64_GOTTPOFF:
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
case BFD_RELOC_X86_64_TLSDESC_CALL:
rel->addend = fixp->fx_offset - fixp->fx_size;
break;
default:
rel->addend = (section->vma
- fixp->fx_size
+ fixp->fx_addnumber
+ md_pcrel_from (fixp));
break;
}
}
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
if (rel->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent relocation type %s"),
bfd_get_reloc_code_name (code));
/* Set howto to a garbage value so that we can keep going. */
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
assert (rel->howto != NULL);
}
return rel;
}
/* Parse operands using Intel syntax. This implements a recursive descent
parser based on the BNF grammar published in Appendix B of the MASM 6.1
Programmer's Guide.
FIXME: We do not recognize the full operand grammar defined in the MASM
documentation. In particular, all the structure/union and
high-level macro operands are missing.
Uppercase words are terminals, lower case words are non-terminals.
Objects surrounded by double brackets '[[' ']]' are optional. Vertical
bars '|' denote choices. Most grammar productions are implemented in
functions called 'intel_<production>'.
Initial production is 'expr'.
addOp + | -
alpha [a-zA-Z]
binOp & | AND | \| | OR | ^ | XOR
byteRegister AL | AH | BL | BH | CL | CH | DL | DH
constant digits [[ radixOverride ]]
dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD | YMMWORD
digits decdigit
| digits decdigit
| digits hexdigit
decdigit [0-9]
e04 e04 addOp e05
| e05
e05 e05 binOp e06
| e06
e06 e06 mulOp e09
| e09
e09 OFFSET e10
| SHORT e10
| + e10
| - e10
| ~ e10
| NOT e10
| e09 PTR e10
| e09 : e10
| e10
e10 e10 [ expr ]
| e11
e11 ( expr )
| [ expr ]
| constant
| dataType
| id
| $
| register
=> expr expr cmpOp e04
| e04
gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
| BP | EBP | SP | ESP | DI | EDI | SI | ESI
hexdigit a | b | c | d | e | f
| A | B | C | D | E | F
id alpha
| id alpha
| id decdigit
mulOp * | / | % | MOD | << | SHL | >> | SHR
quote " | '
register specialRegister
| gpRegister
| byteRegister
segmentRegister CS | DS | ES | FS | GS | SS
specialRegister CR0 | CR2 | CR3 | CR4
| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
| TR3 | TR4 | TR5 | TR6 | TR7
We simplify the grammar in obvious places (e.g., register parsing is
done by calling parse_register) and eliminate immediate left recursion
to implement a recursive-descent parser.
expr e04 expr'
expr' cmpOp e04 expr'
| Empty
e04 e05 e04'
e04' addOp e05 e04'
| Empty
e05 e06 e05'
e05' binOp e06 e05'
| Empty
e06 e09 e06'
e06' mulOp e09 e06'
| Empty
e09 OFFSET e10 e09'
| SHORT e10'
| + e10'
| - e10'
| ~ e10'
| NOT e10'
| e10 e09'
e09' PTR e10 e09'
| : e10 e09'
| Empty
e10 e11 e10'
e10' [ expr ] e10'
| Empty
e11 ( expr )
| [ expr ]
| BYTE
| WORD
| DWORD
| FWORD
| QWORD
| TBYTE
| OWORD
| XMMWORD
| YMMWORD
| .
| $
| register
| id
| constant */
/* Parsing structure for the intel syntax parser. Used to implement the
semantic actions for the operand grammar. */
struct intel_parser_s
{
char *op_string; /* The string being parsed. */
int got_a_float; /* Whether the operand is a float. */
int op_modifier; /* Operand modifier. */
int is_mem; /* 1 if operand is memory reference. */
int in_offset; /* >=1 if parsing operand of offset. */
int in_bracket; /* >=1 if parsing operand in brackets. */
const reg_entry *reg; /* Last register reference found. */
char *disp; /* Displacement string being built. */
char *next_operand; /* Resume point when splitting operands. */
};
static struct intel_parser_s intel_parser;
/* Token structure for parsing intel syntax. */
struct intel_token
{
int code; /* Token code. */
const reg_entry *reg; /* Register entry for register tokens. */
char *str; /* String representation. */
};
static struct intel_token cur_token, prev_token;
/* Token codes for the intel parser. Since T_SHORT is already used
by COFF, undefine it first to prevent a warning. */
#define T_NIL -1
#define T_CONST 1
#define T_REG 2
#define T_BYTE 3
#define T_WORD 4
#define T_DWORD 5
#define T_FWORD 6
#define T_QWORD 7
#define T_TBYTE 8
#define T_XMMWORD 9
#undef T_SHORT
#define T_SHORT 10
#define T_OFFSET 11
#define T_PTR 12
#define T_ID 13
#define T_SHL 14
#define T_SHR 15
#define T_YMMWORD 16
/* Prototypes for intel parser functions. */
static int intel_match_token (int);
static void intel_putback_token (void);
static void intel_get_token (void);
static int intel_expr (void);
static int intel_e04 (void);
static int intel_e05 (void);
static int intel_e06 (void);
static int intel_e09 (void);
static int intel_e10 (void);
static int intel_e11 (void);
static int
i386_intel_operand (char *operand_string, int got_a_float)
{
int ret;
char *p;
p = intel_parser.op_string = xstrdup (operand_string);
intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
for (;;)
{
/* Initialize token holders. */
cur_token.code = prev_token.code = T_NIL;
cur_token.reg = prev_token.reg = NULL;
cur_token.str = prev_token.str = NULL;
/* Initialize parser structure. */
intel_parser.got_a_float = got_a_float;
intel_parser.op_modifier = 0;
intel_parser.is_mem = 0;
intel_parser.in_offset = 0;
intel_parser.in_bracket = 0;
intel_parser.reg = NULL;
intel_parser.disp[0] = '\0';
intel_parser.next_operand = NULL;
/* Read the first token and start the parser. */
intel_get_token ();
ret = intel_expr ();
if (!ret)
break;
if (cur_token.code != T_NIL)
{
as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
current_templates->start->name, cur_token.str);
ret = 0;
}
/* If we found a memory reference, hand it over to i386_displacement
to fill in the rest of the operand fields. */
else if (intel_parser.is_mem)
{
if ((i.mem_operands == 1
&& !current_templates->start->opcode_modifier.isstring)
|| i.mem_operands == 2)
{
as_bad (_("too many memory references for '%s'"),
current_templates->start->name);
ret = 0;
}
else
{
char *s = intel_parser.disp;
i.types[this_operand].bitfield.mem = 1;
i.mem_operands++;
if (!quiet_warnings && intel_parser.is_mem < 0)
/* See the comments in intel_bracket_expr. */
as_warn (_("Treating `%s' as memory reference"), operand_string);
/* Add the displacement expression. */
if (*s != '\0')
ret = i386_displacement (s, s + strlen (s));
if (ret)
{
/* Swap base and index in 16-bit memory operands like
[si+bx]. Since i386_index_check is also used in AT&T
mode we have to do that here. */
if (i.base_reg
&& i.index_reg
&& i.base_reg->reg_type.bitfield.reg16
&& i.index_reg->reg_type.bitfield.reg16
&& i.base_reg->reg_num >= 6
&& i.index_reg->reg_num < 6)
{
const reg_entry *base = i.index_reg;
i.index_reg = i.base_reg;
i.base_reg = base;
}
ret = i386_index_check (operand_string);
}
}
}
/* Constant and OFFSET expressions are handled by i386_immediate. */
else if ((intel_parser.op_modifier & (1 << T_OFFSET))
|| intel_parser.reg == NULL)
{
if (i.mem_operands < 2 && i.seg[i.mem_operands])
{
if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
as_warn (_("Segment override ignored"));
i.seg[i.mem_operands] = NULL;
}
ret = i386_immediate (intel_parser.disp);
}
if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
ret = 0;
if (!ret || !intel_parser.next_operand)
break;
intel_parser.op_string = intel_parser.next_operand;
this_operand = i.operands++;
i.types[this_operand].bitfield.unspecified = 1;
}
free (p);
free (intel_parser.disp);
return ret;
}
#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
/* expr e04 expr'
expr' cmpOp e04 expr'
| Empty */
static int
intel_expr (void)
{
/* XXX Implement the comparison operators. */
return intel_e04 ();
}
/* e04 e05 e04'
e04' addOp e05 e04'
| Empty */
static int
intel_e04 (void)
{
int nregs = -1;
for (;;)
{
if (!intel_e05())
return 0;
if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
if (cur_token.code == '+')
nregs = -1;
else if (cur_token.code == '-')
nregs = NUM_ADDRESS_REGS;
else
return 1;
strcat (intel_parser.disp, cur_token.str);
intel_match_token (cur_token.code);
}
}
/* e05 e06 e05'
e05' binOp e06 e05'
| Empty */
static int
intel_e05 (void)
{
int nregs = ~NUM_ADDRESS_REGS;
for (;;)
{
if (!intel_e06())
return 0;
if (cur_token.code == '&'
|| cur_token.code == '|'
|| cur_token.code == '^')
{
char str[2];
str[0] = cur_token.code;
str[1] = 0;
strcat (intel_parser.disp, str);
}
else
break;
intel_match_token (cur_token.code);
if (nregs < 0)
nregs = ~nregs;
}
if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
return 1;
}
/* e06 e09 e06'
e06' mulOp e09 e06'
| Empty */
static int
intel_e06 (void)
{
int nregs = ~NUM_ADDRESS_REGS;
for (;;)
{
if (!intel_e09())
return 0;
if (cur_token.code == '*'
|| cur_token.code == '/'
|| cur_token.code == '%')
{
char str[2];
str[0] = cur_token.code;
str[1] = 0;
strcat (intel_parser.disp, str);
}
else if (cur_token.code == T_SHL)
strcat (intel_parser.disp, "<<");
else if (cur_token.code == T_SHR)
strcat (intel_parser.disp, ">>");
else
break;
intel_match_token (cur_token.code);
if (nregs < 0)
nregs = ~nregs;
}
if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
return 1;
}
/* e09 OFFSET e09
| SHORT e09
| + e09
| - e09
| ~ e09
| NOT e09
| e10 e09'
e09' PTR e10 e09'
| : e10 e09'
| Empty */
static int
intel_e09 (void)
{
int nregs = ~NUM_ADDRESS_REGS;
int in_offset = 0;
for (;;)
{
/* Don't consume constants here. */
if (cur_token.code == '+' || cur_token.code == '-')
{
/* Need to look one token ahead - if the next token
is a constant, the current token is its sign. */
int next_code;
intel_match_token (cur_token.code);
next_code = cur_token.code;
intel_putback_token ();
if (next_code == T_CONST)
break;
}
/* e09 OFFSET e09 */
if (cur_token.code == T_OFFSET)
{
if (!in_offset++)
++intel_parser.in_offset;
}
/* e09 SHORT e09 */
else if (cur_token.code == T_SHORT)
intel_parser.op_modifier |= 1 << T_SHORT;
/* e09 + e09 */
else if (cur_token.code == '+')
strcat (intel_parser.disp, "+");
/* e09 - e09
| ~ e09
| NOT e09 */
else if (cur_token.code == '-' || cur_token.code == '~')
{
char str[2];
if (nregs < 0)
nregs = ~nregs;
str[0] = cur_token.code;
str[1] = 0;
strcat (intel_parser.disp, str);
}
/* e09 e10 e09' */
else
break;
intel_match_token (cur_token.code);
}
for (;;)
{
if (!intel_e10 ())
return 0;
/* e09' PTR e10 e09' */
if (cur_token.code == T_PTR)
{
char suffix;
if (prev_token.code == T_BYTE)
{
suffix = BYTE_MNEM_SUFFIX;
i.types[this_operand].bitfield.byte = 1;
}
else if (prev_token.code == T_WORD)
{
if ((current_templates->start->name[0] == 'l'
&& current_templates->start->name[2] == 's'
&& current_templates->start->name[3] == 0)
|| current_templates->start->base_opcode == 0x62 /* bound */)
suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
else if (intel_parser.got_a_float == 2) /* "fi..." */
suffix = SHORT_MNEM_SUFFIX;
else
suffix = WORD_MNEM_SUFFIX;
i.types[this_operand].bitfield.word = 1;
}
else if (prev_token.code == T_DWORD)
{
if ((current_templates->start->name[0] == 'l'
&& current_templates->start->name[2] == 's'
&& current_templates->start->name[3] == 0)
|| current_templates->start->base_opcode == 0x62 /* bound */)
suffix = WORD_MNEM_SUFFIX;
else if (flag_code == CODE_16BIT
&& (current_templates->start->opcode_modifier.jump
|| current_templates->start->opcode_modifier.jumpdword))
suffix = LONG_DOUBLE_MNEM_SUFFIX;
else if (intel_parser.got_a_float == 1) /* "f..." */
suffix = SHORT_MNEM_SUFFIX;
else
suffix = LONG_MNEM_SUFFIX;
i.types[this_operand].bitfield.dword = 1;
}
else if (prev_token.code == T_FWORD)
{
if (current_templates->start->name[0] == 'l'
&& current_templates->start->name[2] == 's'
&& current_templates->start->name[3] == 0)
suffix = LONG_MNEM_SUFFIX;
else if (!intel_parser.got_a_float)
{
if (flag_code == CODE_16BIT)
add_prefix (DATA_PREFIX_OPCODE);
suffix = LONG_DOUBLE_MNEM_SUFFIX;
}
else
suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
i.types[this_operand].bitfield.fword = 1;
}
else if (prev_token.code == T_QWORD)
{
if (current_templates->start->base_opcode == 0x62 /* bound */
|| intel_parser.got_a_float == 1) /* "f..." */
suffix = LONG_MNEM_SUFFIX;
else
suffix = QWORD_MNEM_SUFFIX;
i.types[this_operand].bitfield.qword = 1;
}
else if (prev_token.code == T_TBYTE)
{
if (intel_parser.got_a_float == 1)
suffix = LONG_DOUBLE_MNEM_SUFFIX;
else
suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
}
else if (prev_token.code == T_XMMWORD)
{
suffix = XMMWORD_MNEM_SUFFIX;
i.types[this_operand].bitfield.xmmword = 1;
}
else if (prev_token.code == T_YMMWORD)
{
suffix = YMMWORD_MNEM_SUFFIX;
i.types[this_operand].bitfield.ymmword = 1;
}
else
{
as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
return 0;
}
i.types[this_operand].bitfield.unspecified = 0;
/* Operands for jump/call using 'ptr' notation denote absolute
addresses. */
if (current_templates->start->opcode_modifier.jump
|| current_templates->start->opcode_modifier.jumpdword)
i.types[this_operand].bitfield.jumpabsolute = 1;
if (current_templates->start->base_opcode == 0x8d /* lea */)
;
else if (!i.suffix)
i.suffix = suffix;
else if (i.suffix != suffix)
{
as_bad (_("Conflicting operand modifiers"));
return 0;
}
}
/* e09' : e10 e09' */
else if (cur_token.code == ':')
{
if (prev_token.code != T_REG)
{
/* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
segment/group identifier (which we don't have), using comma
as the operand separator there is even less consistent, since
there all branches only have a single operand. */
if (this_operand != 0
|| intel_parser.in_offset
|| intel_parser.in_bracket
|| (!current_templates->start->opcode_modifier.jump
&& !current_templates->start->opcode_modifier.jumpdword
&& !current_templates->start->opcode_modifier.jumpintersegment
&& !current_templates->start->operand_types[0].bitfield.jumpabsolute))
return intel_match_token (T_NIL);
/* Remember the start of the 2nd operand and terminate 1st
operand here.
XXX This isn't right, yet (when SSSS:OOOO is right operand of
another expression), but it gets at least the simplest case
(a plain number or symbol on the left side) right. */
intel_parser.next_operand = intel_parser.op_string;
*--intel_parser.op_string = '\0';
return intel_match_token (':');
}
}
/* e09' Empty */
else
break;
intel_match_token (cur_token.code);
}
if (in_offset)
{
--intel_parser.in_offset;
if (nregs < 0)
nregs = ~nregs;
if (NUM_ADDRESS_REGS > nregs)
{
as_bad (_("Invalid operand to `OFFSET'"));
return 0;
}
intel_parser.op_modifier |= 1 << T_OFFSET;
}
if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
return 1;
}
static int
intel_bracket_expr (void)
{
int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
const char *start = intel_parser.op_string;
int len;
if (i.op[this_operand].regs)
return intel_match_token (T_NIL);
intel_match_token ('[');
/* Mark as a memory operand only if it's not already known to be an
offset expression. If it's an offset expression, we need to keep
the brace in. */
if (!intel_parser.in_offset)
{
++intel_parser.in_bracket;
/* Operands for jump/call inside brackets denote absolute addresses. */
if (current_templates->start->opcode_modifier.jump
|| current_templates->start->opcode_modifier.jumpdword)
i.types[this_operand].bitfield.jumpabsolute = 1;
/* Unfortunately gas always diverged from MASM in a respect that can't
be easily fixed without risking to break code sequences likely to be
encountered (the testsuite even check for this): MASM doesn't consider
an expression inside brackets unconditionally as a memory reference.
When that is e.g. a constant, an offset expression, or the sum of the
two, this is still taken as a constant load. gas, however, always
treated these as memory references. As a compromise, we'll try to make
offset expressions inside brackets work the MASM way (since that's
less likely to be found in real world code), but make constants alone
continue to work the traditional gas way. In either case, issue a
warning. */
intel_parser.op_modifier &= ~was_offset;
}
else
strcat (intel_parser.disp, "[");
/* Add a '+' to the displacement string if necessary. */
if (*intel_parser.disp != '\0'
&& *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
strcat (intel_parser.disp, "+");
if (intel_expr ()
&& (len = intel_parser.op_string - start - 1,
intel_match_token (']')))
{
/* Preserve brackets when the operand is an offset expression. */
if (intel_parser.in_offset)
strcat (intel_parser.disp, "]");
else
{
--intel_parser.in_bracket;
if (i.base_reg || i.index_reg)
intel_parser.is_mem = 1;
if (!intel_parser.is_mem)
{
if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
/* Defer the warning until all of the operand was parsed. */
intel_parser.is_mem = -1;
else if (!quiet_warnings)
as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
len, start, len, start);
}
}
intel_parser.op_modifier |= was_offset;
return 1;
}
return 0;
}
/* e10 e11 e10'
e10' [ expr ] e10'
| Empty */
static int
intel_e10 (void)
{
if (!intel_e11 ())
return 0;
while (cur_token.code == '[')
{
if (!intel_bracket_expr ())
return 0;
}
return 1;
}
/* e11 ( expr )
| [ expr ]
| BYTE
| WORD
| DWORD
| FWORD
| QWORD
| TBYTE
| OWORD
| XMMWORD
| YMMWORD
| $
| .
| register
| id
| constant */
static int
intel_e11 (void)
{
switch (cur_token.code)
{
/* e11 ( expr ) */
case '(':
intel_match_token ('(');
strcat (intel_parser.disp, "(");
if (intel_expr () && intel_match_token (')'))
{
strcat (intel_parser.disp, ")");
return 1;
}
return 0;
/* e11 [ expr ] */
case '[':
return intel_bracket_expr ();
/* e11 $
| . */
case '.':
strcat (intel_parser.disp, cur_token.str);
intel_match_token (cur_token.code);
/* Mark as a memory operand only if it's not already known to be an
offset expression. */
if (!intel_parser.in_offset)
intel_parser.is_mem = 1;
return 1;
/* e11 register */
case T_REG:
{
const reg_entry *reg = intel_parser.reg = cur_token.reg;
intel_match_token (T_REG);
/* Check for segment change. */
if (cur_token.code == ':')
{
if (!reg->reg_type.bitfield.sreg2
&& !reg->reg_type.bitfield.sreg3)
{
as_bad (_("`%s' is not a valid segment register"),
reg->reg_name);
return 0;
}
else if (i.mem_operands >= 2)
as_warn (_("Segment override ignored"));
else if (i.seg[i.mem_operands])
as_warn (_("Extra segment override ignored"));
else
{
if (!intel_parser.in_offset)
intel_parser.is_mem = 1;
switch (reg->reg_num)
{
case 0:
i.seg[i.mem_operands] = &es;
break;
case 1:
i.seg[i.mem_operands] = &cs;
break;
case 2:
i.seg[i.mem_operands] = &ss;
break;
case 3:
i.seg[i.mem_operands] = &ds;
break;
case 4:
i.seg[i.mem_operands] = &fs;
break;
case 5:
i.seg[i.mem_operands] = &gs;
break;
}
}
}
else if (reg->reg_type.bitfield.sreg3 && reg->reg_num == RegFlat)
{
as_bad (_("cannot use `FLAT' here"));
return 0;
}
/* Not a segment register. Check for register scaling. */
else if (cur_token.code == '*')
{
if (!intel_parser.in_bracket)
{
as_bad (_("Register scaling only allowed in memory operands"));
return 0;
}
if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
else if (i.index_reg)
reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
/* What follows must be a valid scale. */
intel_match_token ('*');
i.index_reg = reg;
i.types[this_operand].bitfield.baseindex = 1;
/* Set the scale after setting the register (otherwise,
i386_scale will complain) */
if (cur_token.code == '+' || cur_token.code == '-')
{
char *str, sign = cur_token.code;
intel_match_token (cur_token.code);
if (cur_token.code != T_CONST)
{
as_bad (_("Syntax error: Expecting a constant, got `%s'"),
cur_token.str);
return 0;
}
str = (char *) xmalloc (strlen (cur_token.str) + 2);
strcpy (str + 1, cur_token.str);
*str = sign;
if (!i386_scale (str))
return 0;
free (str);
}
else if (!i386_scale (cur_token.str))
return 0;
intel_match_token (cur_token.code);
}
/* No scaling. If this is a memory operand, the register is either a
base register (first occurrence) or an index register (second
occurrence). */
else if (intel_parser.in_bracket)
{
if (!i.base_reg)
i.base_reg = reg;
else if (!i.index_reg)
i.index_reg = reg;
else
{
as_bad (_("Too many register references in memory operand"));
return 0;
}
i.types[this_operand].bitfield.baseindex = 1;
}
/* It's neither base nor index. */
else if (!intel_parser.in_offset && !intel_parser.is_mem)
{
i386_operand_type temp = reg->reg_type;
temp.bitfield.baseindex = 0;
i.types[this_operand] = operand_type_or (i.types[this_operand],
temp);
i.types[this_operand].bitfield.unspecified = 0;
i.op[this_operand].regs = reg;
i.reg_operands++;
}
else
{
as_bad (_("Invalid use of register"));
return 0;
}
/* Since registers are not part of the displacement string (except
when we're parsing offset operands), we may need to remove any
preceding '+' from the displacement string. */
if (*intel_parser.disp != '\0'
&& !intel_parser.in_offset)
{
char *s = intel_parser.disp;
s += strlen (s) - 1;
if (*s == '+')
*s = '\0';
}
return 1;
}
/* e11 BYTE
| WORD
| DWORD
| FWORD
| QWORD
| TBYTE
| OWORD
| XMMWORD
| YMMWORD */
case T_BYTE:
case T_WORD:
case T_DWORD:
case T_FWORD:
case T_QWORD:
case T_TBYTE:
case T_XMMWORD:
case T_YMMWORD:
intel_match_token (cur_token.code);
if (cur_token.code == T_PTR)
return 1;
/* It must have been an identifier. */
intel_putback_token ();
cur_token.code = T_ID;
/* FALLTHRU */
/* e11 id
| constant */
case T_ID:
if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
{
symbolS *symbolP;
/* The identifier represents a memory reference only if it's not
preceded by an offset modifier and if it's not an equate. */
symbolP = symbol_find(cur_token.str);
if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
intel_parser.is_mem = 1;
}
/* FALLTHRU */
case T_CONST:
case '-':
case '+':
{
char *save_str, sign = 0;
/* Allow constants that start with `+' or `-'. */
if (cur_token.code == '-' || cur_token.code == '+')
{
sign = cur_token.code;
intel_match_token (cur_token.code);
if (cur_token.code != T_CONST)
{
as_bad (_("Syntax error: Expecting a constant, got `%s'"),
cur_token.str);
return 0;
}
}
save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
strcpy (save_str + !!sign, cur_token.str);
if (sign)
*save_str = sign;
/* Get the next token to check for register scaling. */
intel_match_token (cur_token.code);
/* Check if this constant is a scaling factor for an
index register. */
if (cur_token.code == '*')
{
if (intel_match_token ('*') && cur_token.code == T_REG)
{
const reg_entry *reg = cur_token.reg;
if (!intel_parser.in_bracket)
{
as_bad (_("Register scaling only allowed "
"in memory operands"));
return 0;
}
/* Disallow things like [1*si].
sp and esp are invalid as index. */
if (reg->reg_type.bitfield.reg16)
reg = i386_regtab + REGNAM_AX + 4;
else if (i.index_reg)
reg = i386_regtab + REGNAM_EAX + 4;
/* The constant is followed by `* reg', so it must be
a valid scale. */
i.index_reg = reg;
i.types[this_operand].bitfield.baseindex = 1;
/* Set the scale after setting the register (otherwise,
i386_scale will complain) */
if (!i386_scale (save_str))
return 0;
intel_match_token (T_REG);
/* Since registers are not part of the displacement
string, we may need to remove any preceding '+' from
the displacement string. */
if (*intel_parser.disp != '\0')
{
char *s = intel_parser.disp;
s += strlen (s) - 1;
if (*s == '+')
*s = '\0';
}
free (save_str);
return 1;
}
/* The constant was not used for register scaling. Since we have
already consumed the token following `*' we now need to put it
back in the stream. */
intel_putback_token ();
}
/* Add the constant to the displacement string. */
strcat (intel_parser.disp, save_str);
free (save_str);
return 1;
}
}
as_bad (_("Unrecognized token '%s'"), cur_token.str);
return 0;
}
/* Match the given token against cur_token. If they match, read the next
token from the operand string. */
static int
intel_match_token (int code)
{
if (cur_token.code == code)
{
intel_get_token ();
return 1;
}
else
{
as_bad (_("Unexpected token `%s'"), cur_token.str);
return 0;
}
}
/* Read a new token from intel_parser.op_string and store it in cur_token. */
static void
intel_get_token (void)
{
char *end_op;
const reg_entry *reg;
struct intel_token new_token;
new_token.code = T_NIL;
new_token.reg = NULL;
new_token.str = NULL;
/* Free the memory allocated to the previous token and move
cur_token to prev_token. */
if (prev_token.str)
free (prev_token.str);
prev_token = cur_token;
/* Skip whitespace. */
while (is_space_char (*intel_parser.op_string))
intel_parser.op_string++;
/* Return an empty token if we find nothing else on the line. */
if (*intel_parser.op_string == '\0')
{
cur_token = new_token;
return;
}
/* The new token cannot be larger than the remainder of the operand
string. */
new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
new_token.str[0] = '\0';
if (strchr ("0123456789", *intel_parser.op_string))
{
char *p = new_token.str;
char *q = intel_parser.op_string;
new_token.code = T_CONST;
/* Allow any kind of identifier char to encompass floating point and
hexadecimal numbers. */
while (is_identifier_char (*q))
*p++ = *q++;
*p = '\0';
/* Recognize special symbol names [0-9][bf]. */
if (strlen (intel_parser.op_string) == 2
&& (intel_parser.op_string[1] == 'b'
|| intel_parser.op_string[1] == 'f'))
new_token.code = T_ID;
}
else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
{
size_t len = end_op - intel_parser.op_string;
new_token.code = T_REG;
new_token.reg = reg;
memcpy (new_token.str, intel_parser.op_string, len);
new_token.str[len] = '\0';
}
else if (is_identifier_char (*intel_parser.op_string))
{
char *p = new_token.str;
char *q = intel_parser.op_string;
/* A '.' or '$' followed by an identifier char is an identifier.
Otherwise, it's operator '.' followed by an expression. */
if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
{
new_token.code = '.';
new_token.str[0] = '.';
new_token.str[1] = '\0';
}
else
{
while (is_identifier_char (*q) || *q == '@')
*p++ = *q++;
*p = '\0';
if (strcasecmp (new_token.str, "NOT") == 0)
new_token.code = '~';
else if (strcasecmp (new_token.str, "MOD") == 0)
new_token.code = '%';
else if (strcasecmp (new_token.str, "AND") == 0)
new_token.code = '&';
else if (strcasecmp (new_token.str, "OR") == 0)
new_token.code = '|';
else if (strcasecmp (new_token.str, "XOR") == 0)
new_token.code = '^';
else if (strcasecmp (new_token.str, "SHL") == 0)
new_token.code = T_SHL;
else if (strcasecmp (new_token.str, "SHR") == 0)
new_token.code = T_SHR;
else if (strcasecmp (new_token.str, "BYTE") == 0)
new_token.code = T_BYTE;
else if (strcasecmp (new_token.str, "WORD") == 0)
new_token.code = T_WORD;
else if (strcasecmp (new_token.str, "DWORD") == 0)
new_token.code = T_DWORD;
else if (strcasecmp (new_token.str, "FWORD") == 0)
new_token.code = T_FWORD;
else if (strcasecmp (new_token.str, "QWORD") == 0)
new_token.code = T_QWORD;
else if (strcasecmp (new_token.str, "TBYTE") == 0
/* XXX remove (gcc still uses it) */
|| strcasecmp (new_token.str, "XWORD") == 0)
new_token.code = T_TBYTE;
else if (strcasecmp (new_token.str, "XMMWORD") == 0
|| strcasecmp (new_token.str, "OWORD") == 0)
new_token.code = T_XMMWORD;
else if (strcasecmp (new_token.str, "YMMWORD") == 0)
new_token.code = T_YMMWORD;
else if (strcasecmp (new_token.str, "PTR") == 0)
new_token.code = T_PTR;
else if (strcasecmp (new_token.str, "SHORT") == 0)
new_token.code = T_SHORT;
else if (strcasecmp (new_token.str, "OFFSET") == 0)
{
new_token.code = T_OFFSET;
/* ??? This is not mentioned in the MASM grammar but gcc
makes use of it with -mintel-syntax. OFFSET may be
followed by FLAT: */
if (strncasecmp (q, " FLAT:", 6) == 0)
strcat (new_token.str, " FLAT:");
}
else
new_token.code = T_ID;
}
}
else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
{
new_token.code = *intel_parser.op_string;
new_token.str[0] = *intel_parser.op_string;
new_token.str[1] = '\0';
}
else if (strchr ("<>", *intel_parser.op_string)
&& *intel_parser.op_string == *(intel_parser.op_string + 1))
{
new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
new_token.str[0] = *intel_parser.op_string;
new_token.str[1] = *intel_parser.op_string;
new_token.str[2] = '\0';
}
else
as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
intel_parser.op_string += strlen (new_token.str);
cur_token = new_token;
}
/* Put cur_token back into the token stream and make cur_token point to
prev_token. */
static void
intel_putback_token (void)
{
if (cur_token.code != T_NIL)
{
intel_parser.op_string -= strlen (cur_token.str);
free (cur_token.str);
}
cur_token = prev_token;
/* Forget prev_token. */
prev_token.code = T_NIL;
prev_token.reg = NULL;
prev_token.str = NULL;
}
void
tc_x86_parse_to_dw2regnum (expressionS *exp)
{
int saved_naked_reg;
char saved_register_dot;
saved_naked_reg = allow_naked_reg;
allow_naked_reg = 1;
saved_register_dot = register_chars['.'];
register_chars['.'] = '.';
allow_pseudo_reg = 1;
expression_and_evaluate (exp);
allow_pseudo_reg = 0;
register_chars['.'] = saved_register_dot;
allow_naked_reg = saved_naked_reg;
if (exp->X_op == O_register && exp->X_add_number >= 0)
{
if ((addressT) exp->X_add_number < i386_regtab_size)
{
exp->X_op = O_constant;
exp->X_add_number = i386_regtab[exp->X_add_number]
.dw2_regnum[flag_code >> 1];
}
else
exp->X_op = O_illegal;
}
}
void
tc_x86_frame_initial_instructions (void)
{
static unsigned int sp_regno[2];
if (!sp_regno[flag_code >> 1])
{
char *saved_input = input_line_pointer;
char sp[][4] = {"esp", "rsp"};
expressionS exp;
input_line_pointer = sp[flag_code >> 1];
tc_x86_parse_to_dw2regnum (&exp);
assert (exp.X_op == O_constant);
sp_regno[flag_code >> 1] = exp.X_add_number;
input_line_pointer = saved_input;
}
cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
}
int
i386_elf_section_type (const char *str, size_t len)
{
if (flag_code == CODE_64BIT
&& len == sizeof ("unwind") - 1
&& strncmp (str, "unwind", 6) == 0)
return SHT_X86_64_UNWIND;
return -1;
}
#ifdef TE_PE
void
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
{
expressionS expr;
expr.X_op = O_secrel;
expr.X_add_symbol = symbol;
expr.X_add_number = 0;
emit_expr (&expr, size);
}
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
int
x86_64_section_letter (int letter, char **ptr_msg)
{
if (flag_code == CODE_64BIT)
{
if (letter == 'l')
return SHF_X86_64_LARGE;
*ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
}
else
*ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
return -1;
}
int
x86_64_section_word (char *str, size_t len)
{
if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
return SHF_X86_64_LARGE;
return -1;
}
static void
handle_large_common (int small ATTRIBUTE_UNUSED)
{
if (flag_code != CODE_64BIT)
{
s_comm_internal (0, elf_common_parse);
as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
}
else
{
static segT lbss_section;
asection *saved_com_section_ptr = elf_com_section_ptr;
asection *saved_bss_section = bss_section;
if (lbss_section == NULL)
{
flagword applicable;
segT seg = now_seg;
subsegT subseg = now_subseg;
/* The .lbss section is for local .largecomm symbols. */
lbss_section = subseg_new (".lbss", 0);
applicable = bfd_applicable_section_flags (stdoutput);
bfd_set_section_flags (stdoutput, lbss_section,
applicable & SEC_ALLOC);
seg_info (lbss_section)->bss = 1;
subseg_set (seg, subseg);
}
elf_com_section_ptr = &_bfd_elf_large_com_section;
bss_section = lbss_section;
s_comm_internal (0, elf_common_parse);
elf_com_section_ptr = saved_com_section_ptr;
bss_section = saved_bss_section;
}
}
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */