a9762ec78a
Switch the license of all .h files to GPLv3. Switch the license of all .cc files to GPLv3.
456 lines
15 KiB
C
456 lines
15 KiB
C
/* Target-dependent code for GNU/Linux i386.
|
||
|
||
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "regcache.h"
|
||
#include "inferior.h"
|
||
#include "osabi.h"
|
||
#include "reggroups.h"
|
||
#include "dwarf2-frame.h"
|
||
#include "gdb_string.h"
|
||
|
||
#include "i386-tdep.h"
|
||
#include "i386-linux-tdep.h"
|
||
#include "glibc-tdep.h"
|
||
#include "solib-svr4.h"
|
||
#include "symtab.h"
|
||
|
||
/* Return the name of register REG. */
|
||
|
||
static const char *
|
||
i386_linux_register_name (int reg)
|
||
{
|
||
/* Deal with the extra "orig_eax" pseudo register. */
|
||
if (reg == I386_LINUX_ORIG_EAX_REGNUM)
|
||
return "orig_eax";
|
||
|
||
return i386_register_name (reg);
|
||
}
|
||
|
||
/* Return non-zero, when the register is in the corresponding register
|
||
group. Put the LINUX_ORIG_EAX register in the system group. */
|
||
static int
|
||
i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
struct reggroup *group)
|
||
{
|
||
if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
|
||
return (group == system_reggroup
|
||
|| group == save_reggroup
|
||
|| group == restore_reggroup);
|
||
return i386_register_reggroup_p (gdbarch, regnum, group);
|
||
}
|
||
|
||
|
||
/* Recognizing signal handler frames. */
|
||
|
||
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
|
||
"realtime" (RT) signals. The RT signals can provide additional
|
||
information to the signal handler if the SA_SIGINFO flag is set
|
||
when establishing a signal handler using `sigaction'. It is not
|
||
unlikely that future versions of GNU/Linux will support SA_SIGINFO
|
||
for normal signals too. */
|
||
|
||
/* When the i386 Linux kernel calls a signal handler and the
|
||
SA_RESTORER flag isn't set, the return address points to a bit of
|
||
code on the stack. This function returns whether the PC appears to
|
||
be within this bit of code.
|
||
|
||
The instruction sequence for normal signals is
|
||
pop %eax
|
||
mov $0x77, %eax
|
||
int $0x80
|
||
or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
|
||
|
||
Checking for the code sequence should be somewhat reliable, because
|
||
the effect is to call the system call sigreturn. This is unlikely
|
||
to occur anywhere other than in a signal trampoline.
|
||
|
||
It kind of sucks that we have to read memory from the process in
|
||
order to identify a signal trampoline, but there doesn't seem to be
|
||
any other way. Therefore we only do the memory reads if no
|
||
function name could be identified, which should be the case since
|
||
the code is on the stack.
|
||
|
||
Detection of signal trampolines for handlers that set the
|
||
SA_RESTORER flag is in general not possible. Unfortunately this is
|
||
what the GNU C Library has been doing for quite some time now.
|
||
However, as of version 2.1.2, the GNU C Library uses signal
|
||
trampolines (named __restore and __restore_rt) that are identical
|
||
to the ones used by the kernel. Therefore, these trampolines are
|
||
supported too. */
|
||
|
||
#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
|
||
#define LINUX_SIGTRAMP_OFFSET0 0
|
||
#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
|
||
#define LINUX_SIGTRAMP_OFFSET1 1
|
||
#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
|
||
#define LINUX_SIGTRAMP_OFFSET2 6
|
||
|
||
static const gdb_byte linux_sigtramp_code[] =
|
||
{
|
||
LINUX_SIGTRAMP_INSN0, /* pop %eax */
|
||
LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
|
||
LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
|
||
};
|
||
|
||
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
|
||
|
||
/* If NEXT_FRAME unwinds into a sigtramp routine, return the address
|
||
of the start of the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigtramp_start (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
gdb_byte buf[LINUX_SIGTRAMP_LEN];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the three instructions. We optimize for finding the PC at
|
||
the start, as will be the case when the trampoline is not the
|
||
first frame on the stack. We assume that in the case where the
|
||
PC is not at the start of the instruction sequence, there will be
|
||
a few trailing readable bytes on the stack. */
|
||
|
||
if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
|
||
return 0;
|
||
|
||
if (buf[0] != LINUX_SIGTRAMP_INSN0)
|
||
{
|
||
int adjust;
|
||
|
||
switch (buf[0])
|
||
{
|
||
case LINUX_SIGTRAMP_INSN1:
|
||
adjust = LINUX_SIGTRAMP_OFFSET1;
|
||
break;
|
||
case LINUX_SIGTRAMP_INSN2:
|
||
adjust = LINUX_SIGTRAMP_OFFSET2;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
pc -= adjust;
|
||
|
||
if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
|
||
return 0;
|
||
}
|
||
|
||
if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* This function does the same for RT signals. Here the instruction
|
||
sequence is
|
||
mov $0xad, %eax
|
||
int $0x80
|
||
or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
|
||
|
||
The effect is to call the system call rt_sigreturn. */
|
||
|
||
#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
|
||
#define LINUX_RT_SIGTRAMP_OFFSET0 0
|
||
#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
|
||
#define LINUX_RT_SIGTRAMP_OFFSET1 5
|
||
|
||
static const gdb_byte linux_rt_sigtramp_code[] =
|
||
{
|
||
LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
|
||
LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
|
||
};
|
||
|
||
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
|
||
|
||
/* If NEXT_FRAME unwinds into an RT sigtramp routine, return the
|
||
address of the start of the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_rt_sigtramp_start (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the two instructions. We optimize for finding the PC at
|
||
the start, as will be the case when the trampoline is not the
|
||
first frame on the stack. We assume that in the case where the
|
||
PC is not at the start of the instruction sequence, there will be
|
||
a few trailing readable bytes on the stack. */
|
||
|
||
if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
|
||
return 0;
|
||
|
||
if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
|
||
{
|
||
if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
|
||
return 0;
|
||
|
||
pc -= LINUX_RT_SIGTRAMP_OFFSET1;
|
||
|
||
if (!safe_frame_unwind_memory (next_frame, pc, buf,
|
||
LINUX_RT_SIGTRAMP_LEN))
|
||
return 0;
|
||
}
|
||
|
||
if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return whether the frame preceding NEXT_FRAME corresponds to a
|
||
GNU/Linux sigtramp routine. */
|
||
|
||
static int
|
||
i386_linux_sigtramp_p (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
|
||
/* If we have NAME, we can optimize the search. The trampolines are
|
||
named __restore and __restore_rt. However, they aren't dynamically
|
||
exported from the shared C library, so the trampoline may appear to
|
||
be part of the preceding function. This should always be sigaction,
|
||
__sigaction, or __libc_sigaction (all aliases to the same function). */
|
||
if (name == NULL || strstr (name, "sigaction") != NULL)
|
||
return (i386_linux_sigtramp_start (next_frame) != 0
|
||
|| i386_linux_rt_sigtramp_start (next_frame) != 0);
|
||
|
||
return (strcmp ("__restore", name) == 0
|
||
|| strcmp ("__restore_rt", name) == 0);
|
||
}
|
||
|
||
/* Return one if the unwound PC from NEXT_FRAME is in a signal trampoline
|
||
which may have DWARF-2 CFI. */
|
||
|
||
static int
|
||
i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
|
||
struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
|
||
/* If a vsyscall DSO is in use, the signal trampolines may have these
|
||
names. */
|
||
if (name && (strcmp (name, "__kernel_sigreturn") == 0
|
||
|| strcmp (name, "__kernel_rt_sigreturn") == 0))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
|
||
#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
|
||
|
||
/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
|
||
routine, return the address of the associated sigcontext structure. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigcontext_addr (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc;
|
||
CORE_ADDR sp;
|
||
gdb_byte buf[4];
|
||
|
||
frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
|
||
sp = extract_unsigned_integer (buf, 4);
|
||
|
||
pc = i386_linux_sigtramp_start (next_frame);
|
||
if (pc)
|
||
{
|
||
/* The sigcontext structure lives on the stack, right after
|
||
the signum argument. We determine the address of the
|
||
sigcontext structure by looking at the frame's stack
|
||
pointer. Keep in mind that the first instruction of the
|
||
sigtramp code is "pop %eax". If the PC is after this
|
||
instruction, adjust the returned value accordingly. */
|
||
if (pc == frame_pc_unwind (next_frame))
|
||
return sp + 4;
|
||
return sp;
|
||
}
|
||
|
||
pc = i386_linux_rt_sigtramp_start (next_frame);
|
||
if (pc)
|
||
{
|
||
CORE_ADDR ucontext_addr;
|
||
|
||
/* The sigcontext structure is part of the user context. A
|
||
pointer to the user context is passed as the third argument
|
||
to the signal handler. */
|
||
read_memory (sp + 8, buf, 4);
|
||
ucontext_addr = extract_unsigned_integer (buf, 4);
|
||
return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
|
||
}
|
||
|
||
error (_("Couldn't recognize signal trampoline."));
|
||
return 0;
|
||
}
|
||
|
||
/* Set the program counter for process PTID to PC. */
|
||
|
||
static void
|
||
i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
||
{
|
||
regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
|
||
|
||
/* We must be careful with modifying the program counter. If we
|
||
just interrupted a system call, the kernel might try to restart
|
||
it when we resume the inferior. On restarting the system call,
|
||
the kernel will try backing up the program counter even though it
|
||
no longer points at the system call. This typically results in a
|
||
SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
|
||
"orig_eax" pseudo-register.
|
||
|
||
Note that "orig_eax" is saved when setting up a dummy call frame.
|
||
This means that it is properly restored when that frame is
|
||
popped, and that the interrupted system call will be restarted
|
||
when we resume the inferior on return from a function call from
|
||
within GDB. In all other cases the system call will not be
|
||
restarted. */
|
||
regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
|
||
}
|
||
|
||
|
||
/* The register sets used in GNU/Linux ELF core-dumps are identical to
|
||
the register sets in `struct user' that are used for a.out
|
||
core-dumps. These are also used by ptrace(2). The corresponding
|
||
types are `elf_gregset_t' for the general-purpose registers (with
|
||
`elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
|
||
for the floating-point registers.
|
||
|
||
Those types used to be available under the names `gregset_t' and
|
||
`fpregset_t' too, and GDB used those names in the past. But those
|
||
names are now used for the register sets used in the `mcontext_t'
|
||
type, which have a different size and layout. */
|
||
|
||
/* Mapping between the general-purpose registers in `struct user'
|
||
format and GDB's register cache layout. */
|
||
|
||
/* From <sys/reg.h>. */
|
||
static int i386_linux_gregset_reg_offset[] =
|
||
{
|
||
6 * 4, /* %eax */
|
||
1 * 4, /* %ecx */
|
||
2 * 4, /* %edx */
|
||
0 * 4, /* %ebx */
|
||
15 * 4, /* %esp */
|
||
5 * 4, /* %ebp */
|
||
3 * 4, /* %esi */
|
||
4 * 4, /* %edi */
|
||
12 * 4, /* %eip */
|
||
14 * 4, /* %eflags */
|
||
13 * 4, /* %cs */
|
||
16 * 4, /* %ss */
|
||
7 * 4, /* %ds */
|
||
8 * 4, /* %es */
|
||
9 * 4, /* %fs */
|
||
10 * 4, /* %gs */
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1,
|
||
11 * 4 /* "orig_eax" */
|
||
};
|
||
|
||
/* Mapping between the general-purpose registers in `struct
|
||
sigcontext' format and GDB's register cache layout. */
|
||
|
||
/* From <asm/sigcontext.h>. */
|
||
static int i386_linux_sc_reg_offset[] =
|
||
{
|
||
11 * 4, /* %eax */
|
||
10 * 4, /* %ecx */
|
||
9 * 4, /* %edx */
|
||
8 * 4, /* %ebx */
|
||
7 * 4, /* %esp */
|
||
6 * 4, /* %ebp */
|
||
5 * 4, /* %esi */
|
||
4 * 4, /* %edi */
|
||
14 * 4, /* %eip */
|
||
16 * 4, /* %eflags */
|
||
15 * 4, /* %cs */
|
||
18 * 4, /* %ss */
|
||
3 * 4, /* %ds */
|
||
2 * 4, /* %es */
|
||
1 * 4, /* %fs */
|
||
0 * 4 /* %gs */
|
||
};
|
||
|
||
static void
|
||
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* GNU/Linux uses ELF. */
|
||
i386_elf_init_abi (info, gdbarch);
|
||
|
||
/* Since we have the extra "orig_eax" register on GNU/Linux, we have
|
||
to adjust a few things. */
|
||
|
||
set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
|
||
set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, i386_linux_register_name);
|
||
set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
|
||
|
||
tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
|
||
tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
|
||
tdep->sizeof_gregset = 17 * 4;
|
||
|
||
tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
|
||
|
||
tdep->sigtramp_p = i386_linux_sigtramp_p;
|
||
tdep->sigcontext_addr = i386_linux_sigcontext_addr;
|
||
tdep->sc_reg_offset = i386_linux_sc_reg_offset;
|
||
tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
|
||
|
||
/* GNU/Linux uses SVR4-style shared libraries. */
|
||
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
||
set_solib_svr4_fetch_link_map_offsets
|
||
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
||
|
||
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
|
||
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
||
|
||
dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
|
||
|
||
/* Enable TLS support. */
|
||
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
svr4_fetch_objfile_link_map);
|
||
}
|
||
|
||
/* Provide a prototype to silence -Wmissing-prototypes. */
|
||
extern void _initialize_i386_linux_tdep (void);
|
||
|
||
void
|
||
_initialize_i386_linux_tdep (void)
|
||
{
|
||
gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
|
||
i386_linux_init_abi);
|
||
}
|