ae5a43e0c9
* Makefile.in (gdbtypes_h, gdbtypes.o, utils.o): Update. * defs.h (hashtab_obstack_allocate, dummy_obstack_deallocate): Add prototypes. * dwarf2read.c (read_subroutine_type): Use TYPE_ZALLOC. (hashtab_obstack_allocate, dummy_obstack_deallocate): Moved to... * utils.c (hashtab_obstack_allocate, dummy_obstack_deallocate): ...here. * gdbtypes.c: Include "hashtab.h". (build_gdbtypes): Remove extra prototype. (struct type_pair, type_pair_hash, type_pair_eq) (create_copied_types_hash, copy_type_recursive): New. * gdbtypes.h: Include "hashtab.h". (TYPE_ZALLOC): New. (create_copied_types_hash, copy_type_recursive): New prototypes. * objfiles.c (free_objfile): Call preserve_values. * symfile.c (reread_symbols): Likewise. (clear_symtab_users): Remove calls to clear_value_history and clear_internalvars. * value.c (clear_value_history, clear_internalvars): Removed. (preserve_one_value, preserve_values): New functions. * value.h (clear_value_history, clear_internalvars): Removed. (preserve_values): New prototype. * tracepoint.c (_initialize_tracepoint): Do not initialize convenience variables here. gdb/doc/ * gdb.texinfo (Files): Remove obsolete bits from the description of "symbol-file".
883 lines
24 KiB
C
883 lines
24 KiB
C
/* GDB routines for manipulating objfiles.
|
||
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
/* This file contains support routines for creating, manipulating, and
|
||
destroying objfile structures. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h" /* Binary File Description */
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdb-stabs.h"
|
||
#include "target.h"
|
||
#include "bcache.h"
|
||
#include "mdebugread.h"
|
||
#include "gdb_assert.h"
|
||
#include <sys/types.h>
|
||
#include "gdb_stat.h"
|
||
#include <fcntl.h>
|
||
#include "gdb_obstack.h"
|
||
#include "gdb_string.h"
|
||
#include "hashtab.h"
|
||
|
||
#include "breakpoint.h"
|
||
#include "block.h"
|
||
#include "dictionary.h"
|
||
#include "source.h"
|
||
|
||
/* Prototypes for local functions */
|
||
|
||
static void objfile_alloc_data (struct objfile *objfile);
|
||
static void objfile_free_data (struct objfile *objfile);
|
||
|
||
/* Externally visible variables that are owned by this module.
|
||
See declarations in objfile.h for more info. */
|
||
|
||
struct objfile *object_files; /* Linked list of all objfiles */
|
||
struct objfile *current_objfile; /* For symbol file being read in */
|
||
struct objfile *symfile_objfile; /* Main symbol table loaded from */
|
||
struct objfile *rt_common_objfile; /* For runtime common symbols */
|
||
|
||
/* Locate all mappable sections of a BFD file.
|
||
objfile_p_char is a char * to get it through
|
||
bfd_map_over_sections; we cast it back to its proper type. */
|
||
|
||
#ifndef TARGET_KEEP_SECTION
|
||
#define TARGET_KEEP_SECTION(ASECT) 0
|
||
#endif
|
||
|
||
/* Called via bfd_map_over_sections to build up the section table that
|
||
the objfile references. The objfile contains pointers to the start
|
||
of the table (objfile->sections) and to the first location after
|
||
the end of the table (objfile->sections_end). */
|
||
|
||
static void
|
||
add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
|
||
void *objfile_p_char)
|
||
{
|
||
struct objfile *objfile = (struct objfile *) objfile_p_char;
|
||
struct obj_section section;
|
||
flagword aflag;
|
||
|
||
aflag = bfd_get_section_flags (abfd, asect);
|
||
|
||
if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
|
||
return;
|
||
|
||
if (0 == bfd_section_size (abfd, asect))
|
||
return;
|
||
section.offset = 0;
|
||
section.objfile = objfile;
|
||
section.the_bfd_section = asect;
|
||
section.ovly_mapped = 0;
|
||
section.addr = bfd_section_vma (abfd, asect);
|
||
section.endaddr = section.addr + bfd_section_size (abfd, asect);
|
||
obstack_grow (&objfile->objfile_obstack, (char *) §ion, sizeof (section));
|
||
objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
|
||
}
|
||
|
||
/* Builds a section table for OBJFILE.
|
||
Returns 0 if OK, 1 on error (in which case bfd_error contains the
|
||
error).
|
||
|
||
Note that while we are building the table, which goes into the
|
||
psymbol obstack, we hijack the sections_end pointer to instead hold
|
||
a count of the number of sections. When bfd_map_over_sections
|
||
returns, this count is used to compute the pointer to the end of
|
||
the sections table, which then overwrites the count.
|
||
|
||
Also note that the OFFSET and OVLY_MAPPED in each table entry
|
||
are initialized to zero.
|
||
|
||
Also note that if anything else writes to the psymbol obstack while
|
||
we are building the table, we're pretty much hosed. */
|
||
|
||
int
|
||
build_objfile_section_table (struct objfile *objfile)
|
||
{
|
||
/* objfile->sections can be already set when reading a mapped symbol
|
||
file. I believe that we do need to rebuild the section table in
|
||
this case (we rebuild other things derived from the bfd), but we
|
||
can't free the old one (it's in the objfile_obstack). So we just
|
||
waste some memory. */
|
||
|
||
objfile->sections_end = 0;
|
||
bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
|
||
objfile->sections = (struct obj_section *)
|
||
obstack_finish (&objfile->objfile_obstack);
|
||
objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
|
||
return (0);
|
||
}
|
||
|
||
/* Given a pointer to an initialized bfd (ABFD) and some flag bits
|
||
allocate a new objfile struct, fill it in as best we can, link it
|
||
into the list of all known objfiles, and return a pointer to the
|
||
new objfile struct.
|
||
|
||
The FLAGS word contains various bits (OBJF_*) that can be taken as
|
||
requests for specific operations. Other bits like OBJF_SHARED are
|
||
simply copied through to the new objfile flags member. */
|
||
|
||
/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
|
||
by jv-lang.c, to create an artificial objfile used to hold
|
||
information about dynamically-loaded Java classes. Unfortunately,
|
||
that branch of this function doesn't get tested very frequently, so
|
||
it's prone to breakage. (E.g. at one time the name was set to NULL
|
||
in that situation, which broke a loop over all names in the dynamic
|
||
library loader.) If you change this function, please try to leave
|
||
things in a consistent state even if abfd is NULL. */
|
||
|
||
struct objfile *
|
||
allocate_objfile (bfd *abfd, int flags)
|
||
{
|
||
struct objfile *objfile = NULL;
|
||
struct objfile *last_one = NULL;
|
||
|
||
/* If we don't support mapped symbol files, didn't ask for the file to be
|
||
mapped, or failed to open the mapped file for some reason, then revert
|
||
back to an unmapped objfile. */
|
||
|
||
if (objfile == NULL)
|
||
{
|
||
objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
|
||
memset (objfile, 0, sizeof (struct objfile));
|
||
objfile->md = NULL;
|
||
objfile->psymbol_cache = bcache_xmalloc ();
|
||
objfile->macro_cache = bcache_xmalloc ();
|
||
/* We could use obstack_specify_allocation here instead, but
|
||
gdb_obstack.h specifies the alloc/dealloc functions. */
|
||
obstack_init (&objfile->objfile_obstack);
|
||
terminate_minimal_symbol_table (objfile);
|
||
}
|
||
|
||
objfile_alloc_data (objfile);
|
||
|
||
/* Update the per-objfile information that comes from the bfd, ensuring
|
||
that any data that is reference is saved in the per-objfile data
|
||
region. */
|
||
|
||
objfile->obfd = abfd;
|
||
if (objfile->name != NULL)
|
||
{
|
||
xfree (objfile->name);
|
||
}
|
||
if (abfd != NULL)
|
||
{
|
||
objfile->name = xstrdup (bfd_get_filename (abfd));
|
||
objfile->mtime = bfd_get_mtime (abfd);
|
||
|
||
/* Build section table. */
|
||
|
||
if (build_objfile_section_table (objfile))
|
||
{
|
||
error (_("Can't find the file sections in `%s': %s"),
|
||
objfile->name, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
objfile->name = xstrdup ("<<anonymous objfile>>");
|
||
}
|
||
|
||
/* Initialize the section indexes for this objfile, so that we can
|
||
later detect if they are used w/o being properly assigned to. */
|
||
|
||
objfile->sect_index_text = -1;
|
||
objfile->sect_index_data = -1;
|
||
objfile->sect_index_bss = -1;
|
||
objfile->sect_index_rodata = -1;
|
||
|
||
/* We don't yet have a C++-specific namespace symtab. */
|
||
|
||
objfile->cp_namespace_symtab = NULL;
|
||
|
||
/* Add this file onto the tail of the linked list of other such files. */
|
||
|
||
objfile->next = NULL;
|
||
if (object_files == NULL)
|
||
object_files = objfile;
|
||
else
|
||
{
|
||
for (last_one = object_files;
|
||
last_one->next;
|
||
last_one = last_one->next);
|
||
last_one->next = objfile;
|
||
}
|
||
|
||
/* Save passed in flag bits. */
|
||
objfile->flags |= flags;
|
||
|
||
return (objfile);
|
||
}
|
||
|
||
/* Initialize entry point information for this objfile. */
|
||
|
||
void
|
||
init_entry_point_info (struct objfile *objfile)
|
||
{
|
||
/* Save startup file's range of PC addresses to help blockframe.c
|
||
decide where the bottom of the stack is. */
|
||
|
||
if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
|
||
{
|
||
/* Executable file -- record its entry point so we'll recognize
|
||
the startup file because it contains the entry point. */
|
||
objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
|
||
}
|
||
else
|
||
{
|
||
/* Examination of non-executable.o files. Short-circuit this stuff. */
|
||
objfile->ei.entry_point = INVALID_ENTRY_POINT;
|
||
}
|
||
}
|
||
|
||
/* Get current entry point address. */
|
||
|
||
CORE_ADDR
|
||
entry_point_address (void)
|
||
{
|
||
return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
|
||
}
|
||
|
||
/* Create the terminating entry of OBJFILE's minimal symbol table.
|
||
If OBJFILE->msymbols is zero, allocate a single entry from
|
||
OBJFILE->objfile_obstack; otherwise, just initialize
|
||
OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
|
||
void
|
||
terminate_minimal_symbol_table (struct objfile *objfile)
|
||
{
|
||
if (! objfile->msymbols)
|
||
objfile->msymbols = ((struct minimal_symbol *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (objfile->msymbols[0])));
|
||
|
||
{
|
||
struct minimal_symbol *m
|
||
= &objfile->msymbols[objfile->minimal_symbol_count];
|
||
|
||
memset (m, 0, sizeof (*m));
|
||
/* Don't rely on these enumeration values being 0's. */
|
||
MSYMBOL_TYPE (m) = mst_unknown;
|
||
SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
|
||
}
|
||
}
|
||
|
||
|
||
/* Put one object file before a specified on in the global list.
|
||
This can be used to make sure an object file is destroyed before
|
||
another when using ALL_OBJFILES_SAFE to free all objfiles. */
|
||
void
|
||
put_objfile_before (struct objfile *objfile, struct objfile *before_this)
|
||
{
|
||
struct objfile **objp;
|
||
|
||
unlink_objfile (objfile);
|
||
|
||
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
||
{
|
||
if (*objp == before_this)
|
||
{
|
||
objfile->next = *objp;
|
||
*objp = objfile;
|
||
return;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
_("put_objfile_before: before objfile not in list"));
|
||
}
|
||
|
||
/* Put OBJFILE at the front of the list. */
|
||
|
||
void
|
||
objfile_to_front (struct objfile *objfile)
|
||
{
|
||
struct objfile **objp;
|
||
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
||
{
|
||
if (*objp == objfile)
|
||
{
|
||
/* Unhook it from where it is. */
|
||
*objp = objfile->next;
|
||
/* Put it in the front. */
|
||
objfile->next = object_files;
|
||
object_files = objfile;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Unlink OBJFILE from the list of known objfiles, if it is found in the
|
||
list.
|
||
|
||
It is not a bug, or error, to call this function if OBJFILE is not known
|
||
to be in the current list. This is done in the case of mapped objfiles,
|
||
for example, just to ensure that the mapped objfile doesn't appear twice
|
||
in the list. Since the list is threaded, linking in a mapped objfile
|
||
twice would create a circular list.
|
||
|
||
If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
|
||
unlinking it, just to ensure that we have completely severed any linkages
|
||
between the OBJFILE and the list. */
|
||
|
||
void
|
||
unlink_objfile (struct objfile *objfile)
|
||
{
|
||
struct objfile **objpp;
|
||
|
||
for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
|
||
{
|
||
if (*objpp == objfile)
|
||
{
|
||
*objpp = (*objpp)->next;
|
||
objfile->next = NULL;
|
||
return;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
_("unlink_objfile: objfile already unlinked"));
|
||
}
|
||
|
||
|
||
/* Destroy an objfile and all the symtabs and psymtabs under it. Note
|
||
that as much as possible is allocated on the objfile_obstack
|
||
so that the memory can be efficiently freed.
|
||
|
||
Things which we do NOT free because they are not in malloc'd memory
|
||
or not in memory specific to the objfile include:
|
||
|
||
objfile -> sf
|
||
|
||
FIXME: If the objfile is using reusable symbol information (via mmalloc),
|
||
then we need to take into account the fact that more than one process
|
||
may be using the symbol information at the same time (when mmalloc is
|
||
extended to support cooperative locking). When more than one process
|
||
is using the mapped symbol info, we need to be more careful about when
|
||
we free objects in the reusable area. */
|
||
|
||
void
|
||
free_objfile (struct objfile *objfile)
|
||
{
|
||
if (objfile->separate_debug_objfile)
|
||
{
|
||
free_objfile (objfile->separate_debug_objfile);
|
||
}
|
||
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
{
|
||
/* We freed the separate debug file, make sure the base objfile
|
||
doesn't reference it. */
|
||
objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
|
||
}
|
||
|
||
/* Remove any references to this objfile in the global value
|
||
lists. */
|
||
preserve_values (objfile);
|
||
|
||
/* First do any symbol file specific actions required when we are
|
||
finished with a particular symbol file. Note that if the objfile
|
||
is using reusable symbol information (via mmalloc) then each of
|
||
these routines is responsible for doing the correct thing, either
|
||
freeing things which are valid only during this particular gdb
|
||
execution, or leaving them to be reused during the next one. */
|
||
|
||
if (objfile->sf != NULL)
|
||
{
|
||
(*objfile->sf->sym_finish) (objfile);
|
||
}
|
||
|
||
/* We always close the bfd. */
|
||
|
||
if (objfile->obfd != NULL)
|
||
{
|
||
char *name = bfd_get_filename (objfile->obfd);
|
||
if (!bfd_close (objfile->obfd))
|
||
warning (_("cannot close \"%s\": %s"),
|
||
name, bfd_errmsg (bfd_get_error ()));
|
||
xfree (name);
|
||
}
|
||
|
||
/* Remove it from the chain of all objfiles. */
|
||
|
||
unlink_objfile (objfile);
|
||
|
||
/* If we are going to free the runtime common objfile, mark it
|
||
as unallocated. */
|
||
|
||
if (objfile == rt_common_objfile)
|
||
rt_common_objfile = NULL;
|
||
|
||
/* Before the symbol table code was redone to make it easier to
|
||
selectively load and remove information particular to a specific
|
||
linkage unit, gdb used to do these things whenever the monolithic
|
||
symbol table was blown away. How much still needs to be done
|
||
is unknown, but we play it safe for now and keep each action until
|
||
it is shown to be no longer needed. */
|
||
|
||
/* Not all our callers call clear_symtab_users (objfile_purge_solibs,
|
||
for example), so we need to call this here. */
|
||
clear_pc_function_cache ();
|
||
|
||
/* Check to see if the current_source_symtab belongs to this objfile,
|
||
and if so, call clear_current_source_symtab_and_line. */
|
||
|
||
{
|
||
struct symtab_and_line cursal = get_current_source_symtab_and_line ();
|
||
struct symtab *s;
|
||
|
||
ALL_OBJFILE_SYMTABS (objfile, s)
|
||
{
|
||
if (s == cursal.symtab)
|
||
clear_current_source_symtab_and_line ();
|
||
}
|
||
}
|
||
|
||
/* The last thing we do is free the objfile struct itself. */
|
||
|
||
objfile_free_data (objfile);
|
||
if (objfile->name != NULL)
|
||
{
|
||
xfree (objfile->name);
|
||
}
|
||
if (objfile->global_psymbols.list)
|
||
xfree (objfile->global_psymbols.list);
|
||
if (objfile->static_psymbols.list)
|
||
xfree (objfile->static_psymbols.list);
|
||
/* Free the obstacks for non-reusable objfiles */
|
||
bcache_xfree (objfile->psymbol_cache);
|
||
bcache_xfree (objfile->macro_cache);
|
||
if (objfile->demangled_names_hash)
|
||
htab_delete (objfile->demangled_names_hash);
|
||
obstack_free (&objfile->objfile_obstack, 0);
|
||
xfree (objfile);
|
||
objfile = NULL;
|
||
}
|
||
|
||
static void
|
||
do_free_objfile_cleanup (void *obj)
|
||
{
|
||
free_objfile (obj);
|
||
}
|
||
|
||
struct cleanup *
|
||
make_cleanup_free_objfile (struct objfile *obj)
|
||
{
|
||
return make_cleanup (do_free_objfile_cleanup, obj);
|
||
}
|
||
|
||
/* Free all the object files at once and clean up their users. */
|
||
|
||
void
|
||
free_all_objfiles (void)
|
||
{
|
||
struct objfile *objfile, *temp;
|
||
|
||
ALL_OBJFILES_SAFE (objfile, temp)
|
||
{
|
||
free_objfile (objfile);
|
||
}
|
||
clear_symtab_users ();
|
||
}
|
||
|
||
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
||
entries in new_offsets. */
|
||
void
|
||
objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
|
||
{
|
||
struct section_offsets *delta =
|
||
((struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
|
||
|
||
{
|
||
int i;
|
||
int something_changed = 0;
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
{
|
||
delta->offsets[i] =
|
||
ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
|
||
if (ANOFFSET (delta, i) != 0)
|
||
something_changed = 1;
|
||
}
|
||
if (!something_changed)
|
||
return;
|
||
}
|
||
|
||
/* OK, get all the symtabs. */
|
||
{
|
||
struct symtab *s;
|
||
|
||
ALL_OBJFILE_SYMTABS (objfile, s)
|
||
{
|
||
struct linetable *l;
|
||
struct blockvector *bv;
|
||
int i;
|
||
|
||
/* First the line table. */
|
||
l = LINETABLE (s);
|
||
if (l)
|
||
{
|
||
for (i = 0; i < l->nitems; ++i)
|
||
l->item[i].pc += ANOFFSET (delta, s->block_line_section);
|
||
}
|
||
|
||
/* Don't relocate a shared blockvector more than once. */
|
||
if (!s->primary)
|
||
continue;
|
||
|
||
bv = BLOCKVECTOR (s);
|
||
for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
|
||
{
|
||
struct block *b;
|
||
struct symbol *sym;
|
||
struct dict_iterator iter;
|
||
|
||
b = BLOCKVECTOR_BLOCK (bv, i);
|
||
BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
|
||
BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
|
||
|
||
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
||
{
|
||
fixup_symbol_section (sym, objfile);
|
||
|
||
/* The RS6000 code from which this was taken skipped
|
||
any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
|
||
But I'm leaving out that test, on the theory that
|
||
they can't possibly pass the tests below. */
|
||
if ((SYMBOL_CLASS (sym) == LOC_LABEL
|
||
|| SYMBOL_CLASS (sym) == LOC_STATIC
|
||
|| SYMBOL_CLASS (sym) == LOC_INDIRECT)
|
||
&& SYMBOL_SECTION (sym) >= 0)
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (sym) +=
|
||
ANOFFSET (delta, SYMBOL_SECTION (sym));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
struct partial_symtab *p;
|
||
|
||
ALL_OBJFILE_PSYMTABS (objfile, p)
|
||
{
|
||
p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
}
|
||
|
||
{
|
||
struct partial_symbol **psym;
|
||
|
||
for (psym = objfile->global_psymbols.list;
|
||
psym < objfile->global_psymbols.next;
|
||
psym++)
|
||
{
|
||
fixup_psymbol_section (*psym, objfile);
|
||
if (SYMBOL_SECTION (*psym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
|
||
SYMBOL_SECTION (*psym));
|
||
}
|
||
for (psym = objfile->static_psymbols.list;
|
||
psym < objfile->static_psymbols.next;
|
||
psym++)
|
||
{
|
||
fixup_psymbol_section (*psym, objfile);
|
||
if (SYMBOL_SECTION (*psym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
|
||
SYMBOL_SECTION (*psym));
|
||
}
|
||
}
|
||
|
||
{
|
||
struct minimal_symbol *msym;
|
||
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
||
if (SYMBOL_SECTION (msym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
|
||
}
|
||
/* Relocating different sections by different amounts may cause the symbols
|
||
to be out of order. */
|
||
msymbols_sort (objfile);
|
||
|
||
{
|
||
int i;
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
(objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
|
||
}
|
||
|
||
if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
|
||
{
|
||
/* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
|
||
only as a fallback. */
|
||
struct obj_section *s;
|
||
s = find_pc_section (objfile->ei.entry_point);
|
||
if (s)
|
||
objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
|
||
else
|
||
objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
{
|
||
struct obj_section *s;
|
||
bfd *abfd;
|
||
|
||
abfd = objfile->obfd;
|
||
|
||
ALL_OBJFILE_OSECTIONS (objfile, s)
|
||
{
|
||
int idx = s->the_bfd_section->index;
|
||
|
||
s->addr += ANOFFSET (delta, idx);
|
||
s->endaddr += ANOFFSET (delta, idx);
|
||
}
|
||
}
|
||
|
||
/* Relocate breakpoints as necessary, after things are relocated. */
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* Many places in gdb want to test just to see if we have any partial
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_partial_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->psymtabs != NULL)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Many places in gdb want to test just to see if we have any full
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_full_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->symtabs != NULL)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This operations deletes all objfile entries that represent solibs that
|
||
weren't explicitly loaded by the user, via e.g., the add-symbol-file
|
||
command.
|
||
*/
|
||
void
|
||
objfile_purge_solibs (void)
|
||
{
|
||
struct objfile *objf;
|
||
struct objfile *temp;
|
||
|
||
ALL_OBJFILES_SAFE (objf, temp)
|
||
{
|
||
/* We assume that the solib package has been purged already, or will
|
||
be soon.
|
||
*/
|
||
if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
|
||
free_objfile (objf);
|
||
}
|
||
}
|
||
|
||
|
||
/* Many places in gdb want to test just to see if we have any minimal
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_minimal_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->minimal_symbol_count > 0)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Returns a section whose range includes PC and SECTION, or NULL if
|
||
none found. Note the distinction between the return type, struct
|
||
obj_section (which is defined in gdb), and the input type "struct
|
||
bfd_section" (which is a bfd-defined data type). The obj_section
|
||
contains a pointer to the "struct bfd_section". */
|
||
|
||
struct obj_section *
|
||
find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
|
||
{
|
||
struct obj_section *s;
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJSECTIONS (objfile, s)
|
||
if ((section == 0 || section == s->the_bfd_section) &&
|
||
s->addr <= pc && pc < s->endaddr)
|
||
return (s);
|
||
|
||
return (NULL);
|
||
}
|
||
|
||
/* Returns a section whose range includes PC or NULL if none found.
|
||
Backward compatibility, no section. */
|
||
|
||
struct obj_section *
|
||
find_pc_section (CORE_ADDR pc)
|
||
{
|
||
return find_pc_sect_section (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
|
||
/* In SVR4, we recognize a trampoline by it's section name.
|
||
That is, if the pc is in a section named ".plt" then we are in
|
||
a trampoline. */
|
||
|
||
int
|
||
in_plt_section (CORE_ADDR pc, char *name)
|
||
{
|
||
struct obj_section *s;
|
||
int retval = 0;
|
||
|
||
s = find_pc_section (pc);
|
||
|
||
retval = (s != NULL
|
||
&& s->the_bfd_section->name != NULL
|
||
&& strcmp (s->the_bfd_section->name, ".plt") == 0);
|
||
return (retval);
|
||
}
|
||
|
||
/* Return nonzero if NAME is in the import list of OBJFILE. Else
|
||
return zero. */
|
||
|
||
int
|
||
is_in_import_list (char *name, struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
if (!objfile || !name || !*name)
|
||
return 0;
|
||
|
||
for (i = 0; i < objfile->import_list_size; i++)
|
||
if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Keep a registry of per-objfile data-pointers required by other GDB
|
||
modules. */
|
||
|
||
struct objfile_data
|
||
{
|
||
unsigned index;
|
||
};
|
||
|
||
struct objfile_data_registration
|
||
{
|
||
struct objfile_data *data;
|
||
struct objfile_data_registration *next;
|
||
};
|
||
|
||
struct objfile_data_registry
|
||
{
|
||
struct objfile_data_registration *registrations;
|
||
unsigned num_registrations;
|
||
};
|
||
|
||
static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
|
||
|
||
const struct objfile_data *
|
||
register_objfile_data (void)
|
||
{
|
||
struct objfile_data_registration **curr;
|
||
|
||
/* Append new registration. */
|
||
for (curr = &objfile_data_registry.registrations;
|
||
*curr != NULL; curr = &(*curr)->next);
|
||
|
||
*curr = XMALLOC (struct objfile_data_registration);
|
||
(*curr)->next = NULL;
|
||
(*curr)->data = XMALLOC (struct objfile_data);
|
||
(*curr)->data->index = objfile_data_registry.num_registrations++;
|
||
|
||
return (*curr)->data;
|
||
}
|
||
|
||
static void
|
||
objfile_alloc_data (struct objfile *objfile)
|
||
{
|
||
gdb_assert (objfile->data == NULL);
|
||
objfile->num_data = objfile_data_registry.num_registrations;
|
||
objfile->data = XCALLOC (objfile->num_data, void *);
|
||
}
|
||
|
||
static void
|
||
objfile_free_data (struct objfile *objfile)
|
||
{
|
||
gdb_assert (objfile->data != NULL);
|
||
xfree (objfile->data);
|
||
objfile->data = NULL;
|
||
}
|
||
|
||
void
|
||
clear_objfile_data (struct objfile *objfile)
|
||
{
|
||
gdb_assert (objfile->data != NULL);
|
||
memset (objfile->data, 0, objfile->num_data * sizeof (void *));
|
||
}
|
||
|
||
void
|
||
set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
|
||
void *value)
|
||
{
|
||
gdb_assert (data->index < objfile->num_data);
|
||
objfile->data[data->index] = value;
|
||
}
|
||
|
||
void *
|
||
objfile_data (struct objfile *objfile, const struct objfile_data *data)
|
||
{
|
||
gdb_assert (data->index < objfile->num_data);
|
||
return objfile->data[data->index];
|
||
}
|