487 lines
14 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-mt.c -- Assembler for the Morpho Technologies mt .
Copyright (C) 2005, 2006, 2007 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "as.h"
#include "dwarf2dbg.h"
#include "subsegs.h"
#include "symcat.h"
#include "opcodes/mt-desc.h"
#include "opcodes/mt-opc.h"
#include "cgen.h"
#include "elf/common.h"
#include "elf/mt.h"
#include "libbfd.h"
/* Structure to hold all of the different components
describing an individual instruction. */
typedef struct
{
const CGEN_INSN * insn;
const CGEN_INSN * orig_insn;
CGEN_FIELDS fields;
#if CGEN_INT_INSN_P
CGEN_INSN_INT buffer [1];
#define INSN_VALUE(buf) (*(buf))
#else
unsigned char buffer [CGEN_MAX_INSN_SIZE];
#define INSN_VALUE(buf) (buf)
#endif
char * addr;
fragS * frag;
int num_fixups;
fixS * fixups [GAS_CGEN_MAX_FIXUPS];
int indices [MAX_OPERAND_INSTANCES];
}
mt_insn;
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{ "word", cons, 4 },
{ NULL, NULL, 0 }
};
static int no_scheduling_restrictions = 0;
struct option md_longopts[] =
{
#define OPTION_NO_SCHED_REST (OPTION_MD_BASE)
{ "nosched", no_argument, NULL, OPTION_NO_SCHED_REST },
#define OPTION_MARCH (OPTION_MD_BASE + 1)
{ "march", required_argument, NULL, OPTION_MARCH},
{ NULL, no_argument, NULL, 0 },
};
size_t md_longopts_size = sizeof (md_longopts);
const char * md_shortopts = "";
/* Mach selected from command line. */
static int mt_mach = bfd_mach_ms1;
static unsigned mt_mach_bitmask = 1 << MACH_MS1;
/* Flags to set in the elf header */
static flagword mt_flags = EF_MT_CPU_MRISC;
/* The architecture to use. */
enum mt_architectures
{
ms1_64_001,
ms1_16_002,
ms1_16_003,
ms2
};
/* MT architecture we are using for this output file. */
static enum mt_architectures mt_arch = ms1_16_002;
int
md_parse_option (int c ATTRIBUTE_UNUSED, char * arg)
{
switch (c)
{
case OPTION_MARCH:
if (strcmp (arg, "ms1-64-001") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC;
mt_mach = bfd_mach_ms1;
mt_mach_bitmask = 1 << MACH_MS1;
mt_arch = ms1_64_001;
}
else if (strcmp (arg, "ms1-16-002") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC;
mt_mach = bfd_mach_ms1;
mt_mach_bitmask = 1 << MACH_MS1;
mt_arch = ms1_16_002;
}
else if (strcmp (arg, "ms1-16-003") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC2;
mt_mach = bfd_mach_mrisc2;
mt_mach_bitmask = 1 << MACH_MS1_003;
mt_arch = ms1_16_003;
}
else if (strcmp (arg, "ms2") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MS2;
mt_mach = bfd_mach_mrisc2;
mt_mach_bitmask = 1 << MACH_MS2;
mt_arch = ms2;
}
case OPTION_NO_SCHED_REST:
no_scheduling_restrictions = 1;
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (FILE * stream)
{
fprintf (stream, _("MT specific command line options:\n"));
fprintf (stream, _(" -march=ms1-64-001 allow ms1-64-001 instructions\n"));
fprintf (stream, _(" -march=ms1-16-002 allow ms1-16-002 instructions (default)\n"));
fprintf (stream, _(" -march=ms1-16-003 allow ms1-16-003 instructions\n"));
fprintf (stream, _(" -march=ms2 allow ms2 instructions \n"));
fprintf (stream, _(" -nosched disable scheduling restrictions\n"));
}
void
md_begin (void)
{
/* Initialize the `cgen' interface. */
/* Set the machine number and endian. */
gas_cgen_cpu_desc = mt_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, mt_mach_bitmask,
CGEN_CPU_OPEN_ENDIAN,
CGEN_ENDIAN_BIG,
CGEN_CPU_OPEN_END);
mt_cgen_init_asm (gas_cgen_cpu_desc);
/* This is a callback from cgen to gas to parse operands. */
cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand);
/* Set the ELF flags if desired. */
if (mt_flags)
bfd_set_private_flags (stdoutput, mt_flags);
/* Set the machine type. */
bfd_default_set_arch_mach (stdoutput, bfd_arch_mt, mt_mach);
}
void
md_assemble (char * str)
{
static long delayed_load_register = 0;
static long prev_delayed_load_register = 0;
static int last_insn_had_delay_slot = 0;
static int last_insn_in_noncond_delay_slot = 0;
static int last_insn_has_load_delay = 0;
static int last_insn_was_memory_access = 0;
static int last_insn_was_io_insn = 0;
static int last_insn_was_arithmetic_or_logic = 0;
static int last_insn_was_branch_insn = 0;
static int last_insn_was_conditional_branch_insn = 0;
mt_insn insn;
char * errmsg;
/* Initialize GAS's cgen interface for a new instruction. */
gas_cgen_init_parse ();
insn.insn = mt_cgen_assemble_insn
(gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg);
if (!insn.insn)
{
as_bad ("%s", errmsg);
return;
}
/* Doesn't really matter what we pass for RELAX_P here. */
gas_cgen_finish_insn (insn.insn, insn.buffer,
CGEN_FIELDS_BITSIZE (& insn.fields), 1, NULL);
/* Handle Scheduling Restrictions. */
if (!no_scheduling_restrictions)
{
/* Detect consecutive Memory Accesses. */
if (last_insn_was_memory_access
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_MEMORY_ACCESS)
&& mt_mach == ms1_64_001)
as_warn (_("instruction %s may not follow another memory access instruction."),
CGEN_INSN_NAME (insn.insn));
/* Detect consecutive I/O Instructions. */
else if (last_insn_was_io_insn
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_IO_INSN))
as_warn (_("instruction %s may not follow another I/O instruction."),
CGEN_INSN_NAME (insn.insn));
/* Detect consecutive branch instructions. */
else if (last_insn_was_branch_insn
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN))
as_warn (_("%s may not occupy the delay slot of another branch insn."),
CGEN_INSN_NAME (insn.insn));
/* Detect data dependencies on delayed loads: memory and input insns. */
if (last_insn_has_load_delay && delayed_load_register)
{
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == delayed_load_register)
as_warn (_("operand references R%ld of previous load."),
insn.fields.f_sr1);
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == delayed_load_register)
as_warn (_("operand references R%ld of previous load."),
insn.fields.f_sr2);
}
/* Detect JAL/RETI hazard */
if (mt_mach == ms2
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_JAL_HAZARD))
{
if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == delayed_load_register)
|| (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == delayed_load_register))
as_warn (_("operand references R%ld of previous instrutcion."),
delayed_load_register);
else if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == prev_delayed_load_register)
|| (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == prev_delayed_load_register))
as_warn (_("operand references R%ld of instructcion before previous."),
prev_delayed_load_register);
}
/* Detect data dependency between conditional branch instruction
and an immediately preceding arithmetic or logical instruction. */
if (last_insn_was_arithmetic_or_logic
&& !last_insn_in_noncond_delay_slot
&& (delayed_load_register != 0)
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN)
&& mt_arch == ms1_64_001)
{
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == delayed_load_register)
as_warn (_("conditional branch or jal insn's operand references R%ld of previous arithmetic or logic insn."),
insn.fields.f_sr1);
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == delayed_load_register)
as_warn (_("conditional branch or jal insn's operand references R%ld of previous arithmetic or logic insn."),
insn.fields.f_sr2);
}
}
/* Keep track of details of this insn for processing next insn. */
last_insn_in_noncond_delay_slot = last_insn_was_branch_insn
&& !last_insn_was_conditional_branch_insn;
last_insn_had_delay_slot =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT);
last_insn_has_load_delay =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_LOAD_DELAY);
last_insn_was_memory_access =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_MEMORY_ACCESS);
last_insn_was_io_insn =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_IO_INSN);
last_insn_was_arithmetic_or_logic =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_AL_INSN);
last_insn_was_branch_insn =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN);
last_insn_was_conditional_branch_insn =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN)
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2);
prev_delayed_load_register = delayed_load_register;
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRDR))
delayed_load_register = insn.fields.f_dr;
else if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRDRRR))
delayed_load_register = insn.fields.f_drrr;
else /* Insns has no destination register. */
delayed_load_register = 0;
/* Generate dwarf2 line numbers. */
dwarf2_emit_insn (4);
}
valueT
md_section_align (segT segment, valueT size)
{
int align = bfd_get_section_alignment (stdoutput, segment);
return ((size + (1 << align) - 1) & (-1 << align));
}
symbolS *
md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
{
return NULL;
}
int
md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED,
segT segment ATTRIBUTE_UNUSED)
{
as_fatal (_("md_estimate_size_before_relax\n"));
return 1;
}
/* *fragP has been relaxed to its final size, and now needs to have
the bytes inside it modified to conform to the new size.
Called after relaxation is finished.
fragP->fr_type == rs_machine_dependent.
fragP->fr_subtype is the subtype of what the address relaxed to. */
void
md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED,
segT sec ATTRIBUTE_UNUSED,
fragS * fragP ATTRIBUTE_UNUSED)
{
}
/* Functions concerning relocs. */
long
md_pcrel_from_section (fixS *fixP, segT sec)
{
if (fixP->fx_addsy != (symbolS *) NULL
&& (!S_IS_DEFINED (fixP->fx_addsy)
|| S_GET_SEGMENT (fixP->fx_addsy) != sec))
/* The symbol is undefined (or is defined but not in this section).
Let the linker figure it out. */
return 0;
/* Return the address of the opcode - cgen adjusts for opcode size
itself, to be consistent with the disassembler, which must do
so. */
return fixP->fx_where + fixP->fx_frag->fr_address;
}
/* Return the bfd reloc type for OPERAND of INSN at fixup FIXP.
Returns BFD_RELOC_NONE if no reloc type can be found.
*FIXP may be modified if desired. */
bfd_reloc_code_real_type
md_cgen_lookup_reloc (const CGEN_INSN * insn ATTRIBUTE_UNUSED,
const CGEN_OPERAND * operand,
fixS * fixP ATTRIBUTE_UNUSED)
{
bfd_reloc_code_real_type result;
result = BFD_RELOC_NONE;
switch (operand->type)
{
case MT_OPERAND_IMM16O:
result = BFD_RELOC_16_PCREL;
fixP->fx_pcrel = 1;
/* fixP->fx_no_overflow = 1; */
break;
case MT_OPERAND_IMM16:
case MT_OPERAND_IMM16Z:
/* These may have been processed at parse time. */
if (fixP->fx_cgen.opinfo != 0)
result = fixP->fx_cgen.opinfo;
fixP->fx_no_overflow = 1;
break;
case MT_OPERAND_LOOPSIZE:
result = BFD_RELOC_MT_PCINSN8;
fixP->fx_pcrel = 1;
/* Adjust for the delay slot, which is not part of the loop */
fixP->fx_offset -= 8;
break;
default:
result = BFD_RELOC_NONE;
break;
}
return result;
}
/* Write a value out to the object file, using the appropriate endianness. */
void
md_number_to_chars (char * buf, valueT val, int n)
{
number_to_chars_bigendian (buf, val, n);
}
char *
md_atof (int type, char * litP, int * sizeP)
{
return ieee_md_atof (type, litP, sizeP, FALSE);
}
/* See whether we need to force a relocation into the output file. */
int
mt_force_relocation (fixS * fixp ATTRIBUTE_UNUSED)
{
return 0;
}
void
mt_apply_fix (fixS *fixP, valueT *valueP, segT seg)
{
if ((fixP->fx_pcrel != 0) && (fixP->fx_r_type == BFD_RELOC_32))
fixP->fx_r_type = BFD_RELOC_32_PCREL;
gas_cgen_md_apply_fix (fixP, valueP, seg);
}
bfd_boolean
mt_fix_adjustable (fixS * fixP)
{
bfd_reloc_code_real_type reloc_type;
if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
{
const CGEN_INSN *insn = NULL;
int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED;
const CGEN_OPERAND *operand;
operand = cgen_operand_lookup_by_num(gas_cgen_cpu_desc, opindex);
reloc_type = md_cgen_lookup_reloc (insn, operand, fixP);
}
else
reloc_type = fixP->fx_r_type;
if (fixP->fx_addsy == NULL)
return TRUE;
/* Prevent all adjustments to global symbols. */
if (S_IS_EXTERNAL (fixP->fx_addsy))
return FALSE;
if (S_IS_WEAK (fixP->fx_addsy))
return FALSE;
return 1;
}