binutils-gdb/sim/common/sim-fpu.c

783 lines
15 KiB
C

/* Simulator Floating-point support.
Copyright (C) 1994, 1997 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef SIM_FPU_C
#define SIM_FPU_C
#include "sim-main.h"
#include "sim-fpu.h"
#include "sim-assert.h"
#include <math.h>
/* Floating point number is <SIGN:1><EXP:EXPBITS><FRAC:FRACBITS> */
#define SP_NGARDS 7L
#define SP_GARDROUND 0x3f
#define SP_GARDMASK 0x7f
#define SP_GARDMSB 0x40
#define SP_EXPBITS 8
#define SP_EXPBIAS 127
#define SP_FRACBITS 23
#define SP_EXPMAX (0xff)
#define SP_QUIET_NAN 0x100000L
#define SP_FRAC_NBITS 32
#define SP_FRACHIGH 0x80000000L
#define SP_FRACHIGH2 0xc0000000L
#define DP_NGARDS 8L
#define DP_GARDROUND 0x7f
#define DP_GARDMASK 0xff
#define DP_GARDMSB 0x80
#define DP_EXPBITS 11
#define DP_EXPBIAS 1023
#define DP_FRACBITS 52
#define DP_EXPMAX (0x7ff)
#define DP_QUIET_NAN 0x8000000000000LL
#define DP_FRAC_NBITS 64
#define DP_FRACHIGH 0x8000000000000000LL
#define DP_FRACHIGH2 0xc000000000000000LL
#define EXPMAX (is_double ? DP_EXPMAX : SP_EXPMAX)
#define EXPBITS (is_double ? DP_EXPBITS : SP_EXPBITS)
#define EXPBIAS (is_double ? DP_EXPBIAS : SP_EXPBIAS)
#define FRACBITS (is_double ? DP_FRACBITS : SP_FRACBITS)
#define NGARDS (is_double ? DP_NGARDS : (SP_NGARDS ))
#define SIGNBIT (1LL << (EXPBITS + FRACBITS))
#define FRAC_NBITS (is_double ? DP_FRAC_NBITS : SP_FRAC_NBITS)
#define GARDMASK (is_double ? DP_GARDMASK : SP_GARDMASK)
#define GARDMSB (is_double ? DP_GARDMSB : SP_GARDMSB)
#define GARDROUND (is_double ? DP_GARDROUND : SP_GARDROUND)
/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa
of a float and of a double. Assumes there are only two float types.
(double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS))
*/
#define F_D_BITOFF (is_double ? 0 : (52+8-(23+7)))
#if 0
#define (is_double ? DP_ : SP_)
#endif
#define NORMAL_EXPMIN (-(EXPBIAS)+1)
#define IMPLICIT_1 (1LL<<(FRACBITS+NGARDS))
#define IMPLICIT_2 (1LL<<(FRACBITS+1+NGARDS))
#define MAX_SI_INT (is_double ? LSMASK64 (63) : LSMASK64 (31))
#define MAX_USI_INT (is_double ? LSMASK64 (64) : LSMASK64 (32))
typedef enum
{
sim_fpu_class_snan,
sim_fpu_class_qnan,
sim_fpu_class_zero,
sim_fpu_class_number,
sim_fpu_class_infinity,
} sim_fpu_class;
typedef struct _sim_ufpu {
sim_fpu_class class;
int normal_exp;
int sign;
unsigned64 fraction;
union {
double d;
unsigned64 i;
} val;
} sim_ufpu;
STATIC_INLINE_SIM_FPU (unsigned64)
pack_fpu (const sim_ufpu *src, int is_double)
{
unsigned64 fraction;
unsigned64 exp;
int sign;
switch (src->class)
{
default:
/* create a NaN */
case sim_fpu_class_qnan:
case sim_fpu_class_snan:
sign = 1; /* fixme - always a qNaN */
exp = EXPMAX;
fraction = src->fraction;
break;
case sim_fpu_class_infinity:
sign = src->sign;
exp = EXPMAX;
fraction = 0;
break;
case sim_fpu_class_zero:
sign = src->sign;
exp = 0;
fraction = 0;
break;
case sim_fpu_class_number:
if (src->normal_exp < NORMAL_EXPMIN)
{
/* This number's exponent is too low to fit into the bits
available in the number, so we'll store 0 in the exponent and
shift the fraction to the right to make up for it. */
int shift = NORMAL_EXPMIN - src->normal_exp;
sign = src->sign;
exp = 0;
if (shift > (FRAC_NBITS - NGARDS))
{
/* No point shifting, since it's more that 64 out. */
fraction = 0;
}
else
{
/* Shift by the value */
fraction = src->fraction >> F_D_BITOFF;
fraction >>= shift;
fraction >>= NGARDS;
}
}
else if (src->normal_exp > EXPBIAS)
{
/* Infinity */
sign = src->sign;
exp = EXPMAX;
fraction = 0;
}
else
{
sign = src->sign;
exp = (src->normal_exp + EXPBIAS);
fraction = src->fraction >> F_D_BITOFF;
/* IF the gard bits are the all zero, but the first, then we're
half way between two numbers, choose the one which makes the
lsb of the answer 0. */
if ((fraction & GARDMASK) == GARDMSB)
{
if (fraction & (1 << NGARDS))
fraction += GARDROUND + 1;
}
else
{
/* Add a one to the guards to round up */
fraction += GARDROUND;
}
if (fraction >= IMPLICIT_2)
{
fraction >>= 1;
exp += 1;
}
fraction >>= NGARDS;
}
}
return ((sign ? SIGNBIT : 0)
| (exp << FRACBITS)
| LSMASKED64 (fraction, FRACBITS));
}
STATIC_INLINE_SIM_FPU (void)
unpack_fpu (sim_ufpu *dst, unsigned64 s, int is_double)
{
unsigned64 fraction = LSMASKED64 (s, FRACBITS);
unsigned exp = LSMASKED64 (s >> FRACBITS, EXPBITS);
dst->sign = (s & SIGNBIT) != 0;
if (exp == 0)
{
/* Hmm. Looks like 0 */
if (fraction == 0)
{
/* tastes like zero */
dst->class = sim_fpu_class_zero;
}
else
{
/* Zero exponent with non zero fraction - it's denormalized,
so there isn't a leading implicit one - we'll shift it so
it gets one. */
dst->normal_exp = exp - EXPBIAS + 1;
fraction <<= NGARDS;
dst->class = sim_fpu_class_number;
while (fraction < IMPLICIT_1)
{
fraction <<= 1;
dst->normal_exp--;
}
dst->fraction = fraction << F_D_BITOFF;
}
}
else if (exp == EXPMAX)
{
/* Huge exponent*/
if (fraction == 0)
{
/* Attached to a zero fraction - means infinity */
dst->class = sim_fpu_class_infinity;
}
else
{
/* Non zero fraction, means nan */
if (dst->sign)
{
dst->class = sim_fpu_class_snan;
}
else
{
dst->class = sim_fpu_class_qnan;
}
/* Keep the fraction part as the nan number */
dst->fraction = fraction << F_D_BITOFF;
}
}
else
{
/* Nothing strange about this number */
dst->normal_exp = exp - EXPBIAS;
dst->class = sim_fpu_class_number;
dst->fraction = ((fraction << NGARDS) | IMPLICIT_1) << F_D_BITOFF;
}
/* sanity checks */
dst->val.i = -1;
dst->val.i = pack_fpu (dst, 1);
{
if (is_double)
{
ASSERT (dst->val.i == s);
}
else
{
unsigned32 val = pack_fpu (dst, 0);
unsigned32 org = s;
ASSERT (val == org);
}
}
}
STATIC_INLINE_SIM_FPU (sim_fpu)
ufpu2fpu (const sim_ufpu *d)
{
sim_fpu ans;
ans.val.i = pack_fpu (d, 1);
return ans;
}
STATIC_INLINE_SIM_FPU (sim_ufpu)
fpu2ufpu (const sim_fpu *d)
{
sim_ufpu ans;
unpack_fpu (&ans, d->val.i, 1);
return ans;
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_number (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_zero:
case sim_fpu_class_number:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_nan (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_qnan:
case sim_fpu_class_snan:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_zero (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_zero:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (int)
is_ufpu_inf (const sim_ufpu *d)
{
switch (d->class)
{
case sim_fpu_class_infinity:
return 1;
default:
return 0;
}
}
STATIC_INLINE_SIM_FPU (sim_fpu)
fpu_nan (void)
{
sim_ufpu tmp;
tmp.class = sim_fpu_class_snan;
tmp.fraction = 0;
tmp.sign = 1;
tmp.normal_exp = 0;
return ufpu2fpu (&tmp);
}
STATIC_INLINE_SIM_FPU (signed64)
fpu2i (sim_fpu s, int is_double)
{
sim_ufpu a = fpu2ufpu (&s);
unsigned64 tmp;
if (is_ufpu_zero (&a))
return 0;
if (is_ufpu_nan (&a))
return 0;
/* get reasonable MAX_SI_INT... */
if (is_ufpu_inf (&a))
return a.sign ? MAX_SI_INT : (-MAX_SI_INT)-1;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > (FRAC_NBITS - 2))
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS)));
else
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
return a.sign ? (-tmp) : (tmp);
}
STATIC_INLINE_SIM_FPU (unsigned64)
fpu2u (sim_fpu s, int is_double)
{
sim_ufpu a = fpu2ufpu (&s);
unsigned64 tmp;
if (is_ufpu_zero (&a))
return 0;
if (is_ufpu_nan (&a))
return 0;
/* get reasonable MAX_USI_INT... */
if (is_ufpu_inf (&a))
return a.sign ? MAX_USI_INT : 0;
/* it is a negative number */
if (a.sign)
return 0;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > (FRAC_NBITS - 1))
return MAX_USI_INT;
if (a.normal_exp > (FRACBITS + NGARDS + F_D_BITOFF))
tmp = (a.fraction << (a.normal_exp - (FRACBITS + NGARDS + F_D_BITOFF)));
else
tmp = (a.fraction >> ((FRACBITS + NGARDS + F_D_BITOFF) - a.normal_exp));
return tmp;
}
/* register <-> sim_fpu */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_32to (unsigned32 s)
{
sim_ufpu tmp;
unpack_fpu (&tmp, s, 0);
return ufpu2fpu (&tmp);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_64to (unsigned64 s)
{
sim_fpu ans;
ans.val.i = s;
return ans;
}
INLINE_SIM_FPU (unsigned32)
sim_fpu_to32 (sim_fpu l)
{
/* convert to single safely */
sim_ufpu tmp = fpu2ufpu (&l);
return pack_fpu (&tmp, 0);
}
INLINE_SIM_FPU (unsigned64)
sim_fpu_to64 (sim_fpu s)
{
return s.val.i;
}
/* Arithmetic ops */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_add (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d + r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_sub (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d - r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_mul (sim_fpu l,
sim_fpu r)
{
sim_fpu ans;
ans.val.d = l.val.d * r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_div (sim_fpu l,
sim_fpu r)
{
const int is_double = 1;
sim_ufpu a = fpu2ufpu (&l);
sim_ufpu b = fpu2ufpu (&r);
unsigned64 bit;
unsigned64 numerator;
unsigned64 denominator;
unsigned64 quotient;
if (is_ufpu_nan (&a))
{
return ufpu2fpu (&a);
}
if (is_ufpu_nan (&b))
{
return ufpu2fpu (&b);
}
if (is_ufpu_inf (&a) || is_ufpu_zero (&a))
{
if (a.class == b.class)
return fpu_nan ();
return l;
}
a.sign = a.sign ^ b.sign;
if (is_ufpu_inf (&b))
{
a.fraction = 0;
a.normal_exp = 0;
return ufpu2fpu (&a);
}
if (is_ufpu_zero (&b))
{
a.class = sim_fpu_class_infinity;
return ufpu2fpu (&a);
}
/* Calculate the mantissa by multiplying both 64bit numbers to get a
128 bit number */
{
/* quotient =
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
*/
a.normal_exp = a.normal_exp - b.normal_exp;
numerator = a.fraction;
denominator = b.fraction;
if (numerator < denominator)
{
/* Fraction will be less than 1.0 */
numerator *= 2;
a.normal_exp--;
}
bit = IMPLICIT_1;
quotient = 0;
/* ??? Does divide one bit at a time. Optimize. */
while (bit)
{
if (numerator >= denominator)
{
quotient |= bit;
numerator -= denominator;
}
bit >>= 1;
numerator *= 2;
}
if ((quotient & GARDMASK) == GARDMSB)
{
if (quotient & (1 << NGARDS))
{
/* half way, so round to even */
quotient += GARDROUND + 1;
}
else if (numerator)
{
/* but we really weren't half way, more bits exist */
quotient += GARDROUND + 1;
}
}
a.fraction = quotient;
return ufpu2fpu (&a);
}
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_inv (sim_fpu r)
{
sim_fpu ans;
ans.val.d = 1 / r.val.d;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_sqrt (sim_fpu r)
{
sim_fpu ans;
ans.val.d = sqrt (r.val.d);
return ans;
}
/* int/long -> sim_fpu */
INLINE_SIM_FPU (sim_fpu)
sim_fpu_i32to (signed32 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (signed32)
sim_fpu_to32i (sim_fpu s)
{
return fpu2i (s, 0);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_u32to (unsigned32 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (unsigned32)
sim_fpu_to32u (sim_fpu s)
{
return fpu2u (s, 0);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_i64to (signed64 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (signed64)
sim_fpu_to64i (sim_fpu s)
{
return fpu2i (s, 1);
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_u64to (unsigned64 s)
{
sim_fpu ans;
ans.val.d = s;
return ans;
}
INLINE_SIM_FPU (unsigned64)
sim_fpu_to64u (sim_fpu s)
{
return fpu2u (s, 1);
}
/* sim_fpu -> host format */
INLINE_SIM_FPU (float)
sim_fpu_2f (sim_fpu f)
{
return f.val.d;
}
INLINE_SIM_FPU (double)
sim_fpu_2d (sim_fpu s)
{
return s.val.d;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_f2 (float f)
{
sim_fpu ans;
ans.val.d = f;
return ans;
}
INLINE_SIM_FPU (sim_fpu)
sim_fpu_d2 (double d)
{
sim_fpu ans;
ans.val.d = d;
return ans;
}
/* General */
INLINE_SIM_FPU (int)
sim_fpu_is_nan (sim_fpu d)
{
sim_ufpu tmp = fpu2ufpu (&d);
return is_ufpu_nan (&tmp);
}
/* Compare operators */
INLINE_SIM_FPU (int)
sim_fpu_is_lt (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d < r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_le (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d <= r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_eq (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d == r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_ne (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d != r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_ge (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d >= r.val.d);
else
return 0;
}
INLINE_SIM_FPU (int)
sim_fpu_is_gt (sim_fpu l,
sim_fpu r)
{
sim_ufpu tl = fpu2ufpu (&l);
sim_ufpu tr = fpu2ufpu (&r);
if (!is_ufpu_nan (&tl) && !is_ufpu_nan (&tr))
return (l.val.d > r.val.d);
else
return 0;
}
#endif