1235 lines
28 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-rce.c -- Assemble code for the Experimental RCE
Copyright (C) 1993,1994 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
Adapted from the SH assember
Relocation doesnt work yet.
*/
#include <stdio.h>
#include "as.h"
#include "bfd.h"
#include "subsegs.h"
#define DEFINE_TABLE
#include "opcodes/rce-opc.h"
#include <ctype.h>
#include <string.h>
#if 1 /**** TEMP ****/
#define R_PCRELIMM8BY4 23 /* 8 bit pc relative to long boundary shifted 4 */
#define R_PCRELIMM11BY2 24 /* 11 bit pc relative to long boundary shifted 2 */
#endif /**** TEMP ****/
const char comment_chars[] = "!";
const char line_separator_chars[] = ";";
const char line_comment_chars[] = "!";
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function
*/
void cons ();
void s_align_bytes ();
const pseudo_typeS md_pseudo_table[] =
{
{"page", listing_eject, 0},
{0, 0, 0}
};
const int md_reloc_size = 8;
static int relax; /* set if -relax seen */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
#define JREG 0 /* Register used as a temp when relaxing */
#define C(what,length) (((what) << 2) + (length))
#define GET_WHAT(x) ((x>>2))
/* These are the two types of relaxable instruction */
#define COND_JUMP 1
#define UNCD_JUMP 2
#define UNDEF_DISP 0
#define COND12 1
#define COND32 2
#define UNCD12 1
#define UNCD32 2
#define UNDEF_WORD_DISP 4
#define END 5
#define C12_LEN 2
#define C32_LEN 10 /* allow for align */
#define U12_LEN 2
#define U32_LEN 8 /* allow for align */
/* Initialize the relax table */
const relax_typeS md_relax_table[] =
{
{ 1, 1, 0, 0 }, /* 0: unused */
{ 1, 1, 0, 0 }, /* 1: unused */
{ 1, 1, 0, 0 }, /* 2: unused */
{ 1, 1, 0, 0 }, /* 3: unused */
{ 1, 1, 0, 0 }, /* 4: unused */
{ 2048, -2046, C12_LEN, C(COND_JUMP, COND32) }, /* 5: C(COND_JUMP, COND12) */
{ 0, 0, C32_LEN, 0 }, /* 6: C(COND_JUMP, COND32) */
{ 1, 1, 0, 0 }, /* 7: unused */
{ 1, 1, 0, 0 }, /* 8: unused */
{ 2048, -2046, U12_LEN, C(UNCD_JUMP, UNCD32) }, /* 9: C(UNCD_JUMP, UNCD12) */
{ 0, 0, U32_LEN, 0 }, /*10: C(UNCD_JUMP, UNCD32) */
{ 1, 1, 0, 0 }, /*11: unused */
};
static struct hash_control *opcode_hash_control; /* Opcode mnemonics */
/*
This function is called once, at assembler startup time. This should
set up all the tables, etc that the MD part of the assembler needs
*/
void
md_begin ()
{
rce_opcode_info *opcode;
char *prev_name = "";
opcode_hash_control = hash_new ();
/* Insert unique names into hash table */
for (opcode = rce_table; opcode->name; opcode++)
{
if (strcmp (prev_name, opcode->name))
{
prev_name = opcode->name;
hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
}
else
{
/* Make all the opcodes with the same name point to the same
string */
opcode->name = prev_name;
}
}
}
static int reg_m;
static int reg_n;
static expressionS immediate; /* absolute expression */
/* try and parse a reg name */
static char *
parse_reg (s, reg)
char *s;
unsigned *reg;
{
if ( tolower(s[0]) == 'r')
{
if (s[1] == '1' && s[2] >= '0' && s[2] <= '5')
{
*reg = 10 + s[2] - '0';
return s+3;
}
if (s[1] >= '0' && s[1] <= '9')
{
*reg = (s[1] - '0');
return s+2;
}
}
as_bad("register expected");
return s;
}
static struct Cregs {
char *name;
unsigned int crnum;
} cregs[] = {
{"psr", 0},
{"epsr", 1},
{"fpsr", 2},
{"epc", 3},
{"fpc", 4},
{"ss0", 5},
{"ss1", 6},
{"ss2", 7},
{"ss3", 8},
{"aar", 9},
{"gcr", 10},
{"gsr", 11},
{"", 0}
};
static char *
parse_creg (s, reg)
char *s;
unsigned *reg;
{
char buf[10];
int i,j,length;
if ( (tolower(s[0]) == 'c' && tolower(s[1]) == 'r') )
{
if (s[2] == '3' && s[3] >= '0' && s[3] <= '1')
{
*reg = 30 + s[3] - '0';
return s+4;
}
if (s[2] == '2' && s[3] >= '0' && s[3] <= '9')
{
*reg = 20 + s[3] - '0';
return s+4;
}
if (s[2] == '1' && s[3] >= '0' && s[3] <= '9')
{
*reg = 10 + s[3] - '0';
return s+4;
}
if (s[2] >= '0' && s[2] <= '9')
{
*reg = (s[2] - '0');
return s+3;
}
}
/** look at alternate creg names before giving error **/
for(i=0; *(cregs[i].name)!='\0'; i++) {
length=strlen(cregs[i].name);
for(j=0; j<length; j++) buf[j]=tolower(s[j]);
if ( strncmp(cregs[i].name,buf,length)==0 ) {
*reg=cregs[i].crnum;
return( s+length );
}
}
as_bad("register expected");
return s;
}
static char *
parse_exp(s)
char *s;
{ char *save;
char *new;
save = input_line_pointer;
input_line_pointer = s;
expression(&immediate);
if (immediate.X_op == O_absent)
as_bad("missing operand");
new = input_line_pointer;
input_line_pointer = save;
return new;
}
static char *
parse_imm(s, val, min, max)
char *s;
unsigned *val;
unsigned min, max;
{ char *new;
new = parse_exp(s);
if (immediate.X_op != O_constant
|| immediate.X_add_number < min
|| immediate.X_add_number > max)
{
as_bad ("operand must be absolute in range %d..%d", min, max);
}
*val = immediate.X_add_number;
return new;
}
/* look for immediate notation '#' */
static char *
parse_imm_notation(s)
char *s;
{
static int isa_imm;
if( s == (char *)(NULL) ) return( (char *)(isa_imm) );
isa_imm=0;
while( isspace(*s) )
s++;
if( *s=='#' ) {
isa_imm=1;
s++;
}
return(s);
}
static char *
parse_mem(s, reg, off, siz)
char *s;
unsigned *reg;
unsigned *off;
unsigned siz;
{ char *new;
char *parse_imm_notation();
if (*s == '(')
{ s = parse_reg(s+1, reg);
if (*s == ',')
{
s = parse_imm_notation(s+1);
if( parse_imm_notation(NULL) ) siz=1;
s = parse_imm(s, off, 0, 63);
if (siz > 1)
{ if (siz > 2)
{
if (*off & 0x3)
as_bad ("operand must be a multiple of 4");
*off >>= 2;
}
else
{
if (*off & 0x1)
as_bad ("operand must be a multiple of 2");
*off >>= 1;
}
}
}
else
*off = 0;
if (*s == ')')
s++;
}
else
as_bad("base register expected");
return s;
}
/* This is the guts of the machine-dependent assembler. STR points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to.
*/
void
md_assemble (str)
char *str;
{
char *op_start;
char *op_end;
rce_opcode_info *opcode;
char *output;
int nlen = 0;
unsigned short inst;
unsigned reg, off;
char name[20];
/* Drop leading whitespace */
while (*str == ' ')
str++;
/* find the op code end */
for (op_start = op_end = str;
*op_end && nlen < 20 && !is_end_of_line[*op_end] && *op_end != ' ';
op_end++)
{
name[nlen] = op_start[nlen];
nlen++;
}
name[nlen] = 0;
if (nlen == 0)
{
as_bad ("can't find opcode ");
return;
}
opcode = (rce_opcode_info *) hash_find (opcode_hash_control, name);
if (opcode == NULL)
{
as_bad ("unknown opcode \"%s\"", name);
return;
}
inst = opcode->inst;
switch (opcode->opclass)
{ case O0:
output = frag_more (2);
break;
case OT:
op_end = parse_imm_notation(op_end + 1);
op_end = parse_imm(op_end, &reg, 0, 7);
inst |= reg;
output = frag_more (2);
break;
case O1:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
output = frag_more (2);
break;
case JSR:
op_end = parse_reg (op_end + 1, &reg);
if(reg==15)
as_bad("invalid register specified -> r15");
inst |= reg;
output = frag_more (2);
break;
case OC:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
if (*op_end == ',')
{ op_end = parse_creg(op_end + 1, &reg);
inst |= reg<<4;
}
output = frag_more (2);
break;
case O2:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
if (*op_end == ',')
{ op_end = parse_reg(op_end + 1, &reg);
inst |= reg<<4;
}
else
as_bad("second operand missing");
output = frag_more (2);
break;
case X1: /** handle both syntax-> xtrb- r1,rx OR xtrb- rx **/
op_end = parse_reg (op_end + 1, &reg);
if (*op_end == ',') { /** xtrb- r1,rx **/
if (reg != 1)
as_bad("destination register must be r1");
op_end = parse_reg(op_end + 1, &reg);
}
else { /** xtrb- rx **/
}
inst |= reg;
output = frag_more (2);
break;
case OI:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
if (*op_end == ',')
{ unsigned int maxval = 32;
unsigned int minval = 1;
op_end = parse_imm_notation(op_end + 1);
if( parse_imm_notation(NULL) ) {
maxval=31;
minval=0;
}
op_end = parse_imm(op_end, &reg, minval, maxval);
inst |= (reg-minval)<<4;
}
else
as_bad("second operand missing");
output = frag_more (2);
break;
case OB:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
if (*op_end == ',')
{ unsigned upper = 31;
op_end = parse_imm_notation(op_end + 1);
op_end = parse_imm(op_end, &reg, 0, upper);
inst |= reg<<4;
}
else
as_bad("second operand missing");
output = frag_more (2);
break;
case SI:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
if (*op_end == ',')
{ unsigned upper = 31;
op_end = parse_imm_notation(op_end + 1);
op_end = parse_imm(op_end, &reg, 1, upper);
inst |= reg<<4;
}
else
as_bad("second operand missing");
output = frag_more (2);
break;
case I7:
op_end = parse_reg (op_end + 1, &reg);
inst |= reg;
if (*op_end == ',')
{ unsigned upper = 0x7f;
op_end = parse_imm_notation(op_end + 1);
op_end = parse_imm(op_end, &reg, 0, upper);
inst |= reg<<4;
}
else
as_bad("second operand missing");
output = frag_more (2);
break;
case LS:
op_end = parse_reg(op_end + 1, &reg);
inst |= reg<<8;
if (*op_end == ',')
{
int size;
if ((inst & 0x6000) == 0)
size = 4;
else if ((inst & 0x6000) == 0x4000)
size = 2;
else if ((inst & 0x6000) == 0x2000)
size = 1;
op_end = parse_mem(op_end + 1, &reg, &off, size);
inst |= (reg) | (off<<4);
}
else
as_bad("second operand missing");
output = frag_more (2);
break;
case LI:
op_end = parse_reg (op_end + 1, &reg);
if (*op_end == ',')
{ unsigned val;
op_end = parse_imm_notation(op_end + 1);
op_end = parse_imm(op_end, &val, 0, 0x7FF);
inst |= val&0x7FF;
}
else
as_bad("second operand missing");
if (reg != 1)
as_bad("register must be r1");
output = frag_more (2);
break;
case LR:
op_end = parse_reg(op_end + 1, &reg);
if( reg==0 || reg==15 )
as_bad ("invalid register 'r0' and 'r15' illegal");
inst |= (reg<<8);
if (*op_end++ == ',')
{
/** look for # notation **/
op_end = parse_imm_notation(op_end);
if( parse_imm_notation(NULL) )
{ unsigned val;
op_end = parse_imm(op_end, &val, 0, 0x0FF);
inst |= val&0x0FF;
output = frag_more (2);
}
else
{
output = frag_more (2);
if (*op_end++ != '[' )
as_bad ("second operand missing '['");
input_line_pointer = parse_exp(op_end);
if (*input_line_pointer++ != ']' )
as_bad ("second operand missing ']'");
fix_new_exp(frag_now, output-frag_now->fr_literal, 2, &immediate,
1, R_PCRELIMM8BY4);
}
}
else
as_bad("second operand missing");
break;
case LJ:
/** look for # notation **/
op_end = parse_imm_notation(op_end + 1) -1;
if( parse_imm_notation(NULL) )
{ unsigned val;
op_end = parse_imm(op_end+1, &val, 0, 0x0FF);
inst |= val&0x0FF;
output = frag_more (2);
}
else
{ output = frag_more (2);
if (*++op_end != '[')
as_bad ("operand missing '['");
input_line_pointer = parse_exp(op_end+1);
if (*input_line_pointer++ != ']')
as_bad ("operand missing ']'");
fix_new_exp(frag_now, output-frag_now->fr_literal,
2, &immediate, 1, R_PCRELIMM8BY4);
}
break;
case OM:
op_end = parse_reg(op_end + 1, &reg);
if (*op_end == '-')
{ int endreg;
op_end = parse_reg(op_end + 1, &endreg);
if (*op_end == ',')
{ int basereg;
op_end++;
if (*op_end == '(')
{ op_end = parse_reg(op_end + 1, &basereg);
if (*op_end == ')')
op_end++;
if (endreg == 15 && basereg == 0)
{
if(reg==0 || reg==15)
as_bad("bad register list, 'r0' and 'r15' invalid as starting registers");
inst |= 0x0080; /* list form */
inst |= reg;
}
else if (endreg - reg == 3)
{ inst |= basereg; /* quadrant form */
switch (reg)
{ case 0: break;
case 4: inst |= (1<<5); break;
case 8: inst |= (2<<5); break;
case 12: inst |= (3<<5); break;
default:
as_bad("first register must be r0, r4, r8, or r12");
}
}
else
as_bad("bad register list or base register");
}
else
as_bad("base register expected");
}
else
as_bad("second operand missing");
}
else
as_bad("reg-reg expected");
output = frag_more (2);
break;
case OQ:
op_end = parse_reg(op_end + 1, &reg);
if (*op_end == '-')
{ int endreg;
op_end = parse_reg(op_end + 1, &endreg);
if (*op_end == ',')
{ int basereg;
op_end++;
if (*op_end == '(')
{ op_end = parse_reg(op_end + 1, &basereg);
if (*op_end == ')')
op_end++;
if (endreg - reg == 3)
{ inst |= basereg; /* quadrant form */
switch (reg)
{ case 0: break;
case 4: inst |= (1<<5); break;
case 8: inst |= (2<<5); break;
case 12: inst |= (3<<5); break;
default:
as_bad("first register must be r0, r4, r8, or r12");
}
}
else
as_bad("bad register list or base register");
}
else
as_bad("base register expected");
}
else
as_bad("second operand missing");
}
else
as_bad("reg-reg expected");
output = frag_more (2);
break;
case BR:
op_end = parse_imm_notation(op_end + 1);
if( parse_imm_notation(NULL) )
{ unsigned val;
op_end = parse_imm(op_end, &val, 0, 0x7FF);
inst |= val&0x7FF;
output = frag_more (2);
}
else
{ output = frag_more (2);
input_line_pointer = parse_exp(op_end);
fix_new_exp (frag_now, output-frag_now->fr_literal,
2, &immediate, 1, R_PCRELIMM11BY2);
}
break;
default:
as_bad("cant deal with opcode \"%s\"", name);
}
output[0] = (inst>>8);
output[1] = (inst);
}
#ifndef BFD_ASSEMBLER
void
DEFUN (tc_crawl_symbol_chain, (headers),
object_headers * headers)
{
}
void
DEFUN (tc_headers_hook, (headers),
object_headers * headers)
{
}
#endif
symbolS *
DEFUN (md_undefined_symbol, (name),
char *name)
{
return 0;
}
void
DEFUN_VOID (md_end)
{
}
/* Various routines to kill one day */
/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6
/* Turn a string in input_line_pointer into a floating point constant of type
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
*/
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
char *atof_ieee ();
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return "Bad call to MD_NTOF()";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
for (wordP = words; prec--;)
{
md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return 0;
}
CONST char *md_shortopts = "";
struct option md_longopts[] = {
#define OPTION_RELAX (OPTION_MD_BASE)
#define OPTION_LITTLE (OPTION_MD_BASE+1)
{"relax", no_argument, NULL, OPTION_RELAX},
{"little", no_argument, NULL, OPTION_LITTLE},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg;
{
switch (c)
{
case OPTION_RELAX:
relax = 1;
break;
case OPTION_LITTLE:
abort ();
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf(stream, "\
RCE options:\n\
-relax alter jump instructions for long displacements\n");
}
int md_short_jump_size;
void
tc_Nout_fix_to_chars ()
{
as_fatal ("call to tc_Nout_fix_to_chars");
}
void
md_create_short_jump (ptr, from_Nddr, to_Nddr, frag, to_symbol)
char *ptr;
addressT from_Nddr;
addressT to_Nddr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal ("failed sanity check: short_jump");
}
void
md_create_long_jump (ptr, from_Nddr, to_Nddr, frag, to_symbol)
char *ptr;
addressT from_Nddr, to_Nddr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal ("failed sanity check: long_jump");
}
/*
called after relaxing, change the frags so they know how big they are
*/
#ifndef BFD_ASSEMBLER
void
md_convert_frag (headers, fragP)
object_headers *headers;
register fragS *fragP;
#else
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd;
segT sec;
register fragS *fragP;
#endif
{
unsigned char *buffer = (unsigned char *) (fragP->fr_fix + fragP->fr_literal);
int targ_addr = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
#ifdef BFD_ASSEMBLER /* not needed otherwise? */
targ_addr += fragP->fr_symbol->sy_frag->fr_address;
#endif
switch (fragP->fr_subtype)
{
case C (COND_JUMP, COND12):
case C (UNCD_JUMP, UNCD12):
{
/* Get the address of the end of the instruction */
int next_inst = fragP->fr_fix + fragP->fr_address + 2;
unsigned char t0;
int disp = targ_addr - next_inst;
if (disp&1)
as_bad("odd displacement at %x", next_inst-2);
if (disp < 0) /* move sign to low order bit */
disp |= 1;
t0 = buffer[0] & 0xF8;
md_number_to_chars (buffer, disp, 2);
buffer[0] = (buffer[0] & 0x07) | t0;
fragP->fr_fix += 2;
fragP->fr_var = 0;
}
break;
case C (COND_JUMP, COND32):
case C (COND_JUMP, UNDEF_WORD_DISP):
{
/* A conditional branch wont fit into 12 bits so:
* b!cond 1f
* jmpi 0f
* .align 2
* 0: .long disp
* 1:
*/
int next_inst = fragP->fr_fix + fragP->fr_address + C32_LEN;
int align = next_inst&02;
buffer[0] ^= 0x08; /* Toggle T/F bit */
buffer[2] = 0x73; /* Build jmpi */
buffer[3] = 0x00;
if (align)
{
buffer[1] = 3; /* branch over jmpi, and ptr */
buffer[4] = 0; /* space for 32 bit address */
buffer[5] = 0;
buffer[6] = 0;
buffer[7] = 0;
/* Make reloc for the long disp */
fix_new(fragP, fragP->fr_fix + 4, 4,
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
#if 0
/**** frag has shrunk but gas can't deal with that */
fragP->fr_fix += C32_LEN - 2;
#else
fragP->fr_fix += C32_LEN;
#endif
}
else
{
buffer[1] = 4; /* branch over jmpi, and ptr */
buffer[4] = 0; /* alignment */
buffer[5] = 0;
buffer[6] = 0; /* space for 32 bit address */
buffer[7] = 0;
buffer[8] = 0;
buffer[9] = 0;
/* Make reloc for the long disp */
fix_new(fragP, fragP->fr_fix + 6, 4,
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
fragP->fr_fix += C32_LEN;
}
fragP->fr_var = 0;
}
break;
case C (UNCD_JUMP, UNCD32):
case C (UNCD_JUMP, UNDEF_WORD_DISP):
{
/* An unconditional branch wont fit in 12 bits, make code which looks like
* jmpi 0f
* .align 2
* 0: .long disp
*/
int next_inst = fragP->fr_fix + fragP->fr_address + U32_LEN;
int align = next_inst&02;
buffer[0] = 0x73; /* build jmpi */
buffer[1] = 0x00;
if (align)
{
buffer[2] = 0; /* space for 32 bit address */
buffer[3] = 0;
buffer[4] = 0;
buffer[5] = 0;
/* Make reloc for the long disp */
fix_new (fragP, fragP->fr_fix + 2, 4,
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
#if 0
/**** frag has shrunk but gas can't deal with that */
fragP->fr_fix += U32_LEN - 2;
#else
fragP->fr_fix += U32_LEN;
#endif
}
else
{
buffer[2] = 0; /* alignment */
buffer[3] = 0;
buffer[4] = 0; /* space for 32 bit address */
buffer[5] = 0;
buffer[6] = 0;
buffer[7] = 0;
/* Make reloc for the long disp */
fix_new (fragP, fragP->fr_fix + 4, 4,
fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
fragP->fr_fix += U32_LEN;
}
fragP->fr_var = 0;
}
break;
default:
abort ();
}
}
void
md_apply_fix1 (fixP, val)
fixS *fixP;
long val;
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
int addr = fixP->fx_frag->fr_address + fixP->fx_where;
switch (fixP->fx_r_type)
{
case R_PCRELIMM11BY2: /* second byte of 2 byte opcode */
val /= 2;
if (((val & ~0x3ff) != 0) && ((val | 0x3ff) != -1))
as_warn ("pcrel for branch too far (0x%x) at 0x%x", val, addr);
/*****
BR no longer puts the sign-bit in bit0, leaves it in bit10
buf[0] |= ((val >> 7) & 0x7);
buf[1] |= ((val & 0x7f) << 1);
buf[1] |= ((val >> 10) & 0x1);
*****/
buf[0] |= ((val >> 8) & 0x7);
buf[1] |= (val & 0xff);
break;
case R_PCRELIMM8BY4: /* lower 8 bits of 2 byte opcode */
val += 3;
val /= 4;
if (val & ~0xff)
as_warn ("pcrel for lrw too far (0x%x) at 0x%x", val, addr);
buf[1] |= (val & 0xff);
break;
default:
if (fixP->fx_size != 4)
abort ();
*buf++ = val >> 24;
*buf++ = val >> 16;
*buf++ = val >> 8;
*buf = val >> 0;
break;
}
}
#ifdef BFD_ASSEMBLER
int
md_apply_fix (fixP, valp)
fixS *fixP;
valueT *valp;
{
md_apply_fix1 (fixP, *valp);
return 1;
}
#else
void
md_apply_fix (fixP, val)
fixS *fixP;
long val;
{
md_apply_fix1 (fixP, val);
}
#endif
int md_long_jump_size;
/*
called just before address relaxation, return the length
by which a fragment must grow to reach it's destination
*/
int
md_estimate_size_before_relax (fragP, segment_type)
register fragS *fragP;
register segT segment_type;
{
switch (fragP->fr_subtype)
{
case C (UNCD_JUMP, UNDEF_DISP):
/* used to be a branch to somewhere which was unknown */
if (!fragP->fr_symbol)
{
fragP->fr_subtype = C (UNCD_JUMP, UNCD12);
fragP->fr_var = md_relax_table[C (UNCD_JUMP, UNCD12)].rlx_length;
}
else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
{
fragP->fr_subtype = C (UNCD_JUMP, UNCD12);
fragP->fr_var = md_relax_table[C (UNCD_JUMP, UNCD12)].rlx_length;
}
else
{
fragP->fr_subtype = C (UNCD_JUMP, UNDEF_WORD_DISP);
fragP->fr_var = md_relax_table[C (UNCD_JUMP, UNCD32)].rlx_length;
return md_relax_table[C (UNCD_JUMP, UNCD32)].rlx_length;
}
break;
default:
abort ();
case C (COND_JUMP, UNDEF_DISP):
/* used to be a branch to somewhere which was unknown */
if (fragP->fr_symbol
&& S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
{
/* Got a symbol and it's defined in this segment, become byte
sized - maybe it will fix up */
fragP->fr_subtype = C (COND_JUMP, COND12);
fragP->fr_var = md_relax_table[C (COND_JUMP, COND12)].rlx_length;
}
else if (fragP->fr_symbol)
{
/* Its got a segment, but its not ours, so it will always be long */
fragP->fr_subtype = C (COND_JUMP, UNDEF_WORD_DISP);
fragP->fr_var = md_relax_table[C (COND_JUMP, COND32)].rlx_length;
return md_relax_table[C (COND_JUMP, COND32)].rlx_length;
}
else
{
/* We know the abs value */
fragP->fr_subtype = C (COND_JUMP, COND12);
fragP->fr_var = md_relax_table[C (COND_JUMP, COND12)].rlx_length;
}
break;
}
return fragP->fr_var;
}
/* Put number into target byte order */
void
md_number_to_chars (ptr, use, nbytes)
char *ptr;
valueT use;
int nbytes;
{
switch (nbytes)
{
case 4:
*ptr++ = (use >> 24) & 0xff;
case 3:
*ptr++ = (use >> 16) & 0xff;
case 2:
*ptr++ = (use >> 8) & 0xff;
case 1:
*ptr++ = (use >> 0) & 0xff;
break;
default:
abort ();
}
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment;
valueT size;
{
return size; /* Byte alignment is fine */
}
long
md_pcrel_from (fixP)
fixS *fixP;
{
int gap = fixP->fx_size + fixP->fx_where +
fixP->fx_frag->fr_address;
return gap;
}
void
dump_literals (i)
int i;
{
/* does nothing for now. */
}
#ifdef BFD_ASSEMBLER
arelent *
tc_gen_reloc (section, fixp)
asection *section;
fixS *fixp;
{
arelent *rel;
bfd_reloc_code_real_type code;
#define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
switch (F (fixp->fx_size, fixp->fx_pcrel))
{
#define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
MAP (1, 0, BFD_RELOC_8);
MAP (2, 0, BFD_RELOC_16);
MAP (4, 0, BFD_RELOC_32);
MAP (1, 1, BFD_RELOC_8_PCREL);
MAP (2, 1, BFD_RELOC_16_PCREL);
MAP (4, 1, BFD_RELOC_32_PCREL);
default:
as_bad ("Can not do %d byte %srelocation", fixp->fx_size,
fixp->fx_pcrel ? "pc-relative" : "");
}
rel = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
assert (rel != 0);
rel->sym_ptr_ptr = &fixp->fx_addsy->bsym;
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (fixp->fx_pcrel)
rel->addend = fixp->fx_addnumber;
else
rel->addend = 0;
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
if (!rel->howto)
{
const char *name;
name = S_GET_NAME (fixp->fx_addsy);
if (name == NULL)
name = "<unknown>";
as_fatal ("Cannot find relocation type for symbol %s, code %d",
name, (int) code);
}
return rel;
}
#else /* !BFD_ASSEMBLER */
#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
void
tc_aout_fix_to_chars(where, fixP, segment_address_in_file)
char *where;
fixS *fixP;
relax_addressT segment_address_in_file;
{
/*
* In: length of relocation (or of address) in chars: 1, 2 or 4.
* Out: GNU LD relocation length code: 0, 1, or 2.
*/
static CONST unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
long r_symbolnum;
know (fixP->fx_addsy != NULL);
md_number_to_chars (where,
fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
4);
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
? S_GET_TYPE (fixP->fx_addsy)
: fixP->fx_addsy->sy_number);
where[4] = (r_symbolnum >> 16) & 0x0ff;
where[5] = (r_symbolnum >> 8) & 0x0ff;
where[6] = r_symbolnum & 0x0ff;
where[7] = (((fixP->fx_pcrel << 7) & 0x80)
| ((nbytes_r_length[fixP->fx_size] << 5) & 0x60)
| (((!S_IS_DEFINED (fixP->fx_addsy)) << 4) & 0x10));
}
void
tc_aout_pre_write_hook (headers)
object_headers *headers;
{
}
#endif
#endif /* !BFD_ASSEMBLER */