binutils-gdb/sim/v850/interp.c
Andrew Cagney 410230cf6d Check reserved bits before executing instructions.
Make v850[eq] the the default simulator.
Report illegal instructions.
Include v850e instructions in v850eq.
1997-09-12 05:56:38 +00:00

451 lines
8.7 KiB
C

#include <signal.h>
#include "sim-main.h"
#include "sim-options.h"
#include "v850_sim.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "bfd.h"
#ifndef INLINE
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
#endif
/* For compatibility */
SIM_DESC simulator;
/* v850 interrupt model */
enum interrupt_type
{
int_reset,
int_nmi,
int_intov1,
int_intp10,
int_intp11,
int_intp12,
int_intp13,
int_intcm4,
num_int_types
};
char *interrupt_names[] = {
"reset",
"nmi",
"intov1",
"intp10",
"intp11",
"intp12",
"intp13",
"intcm4",
NULL
};
static void
do_interrupt (sd, data)
SIM_DESC sd;
void *data;
{
char **interrupt_name = (char**)data;
enum interrupt_type inttype;
inttype = (interrupt_name - STATE_WATCHPOINTS (sd)->interrupt_names);
/* Disable further interrupts. */
PSW |= PSW_ID;
/* Indicate that we're doing interrupt not exception processing. */
PSW &= ~PSW_EP;
if (inttype == int_reset)
{
PC = 0;
PSW = 0x20;
ECR = 0;
/* (Might be useful to init other regs with random values.) */
}
else if (inttype == int_nmi)
{
if (PSW & PSW_NP)
{
/* We're already working on an NMI, so this one must wait
around until the previous one is done. The processor
ignores subsequent NMIs, so we don't need to count them. */
State.pending_nmi = 1;
}
else
{
FEPC = PC;
FEPSW = PSW;
/* Set the FECC part of the ECR. */
ECR &= 0x0000ffff;
ECR |= 0x10;
PSW |= PSW_NP;
PC = 0x10;
}
}
else
{
EIPC = PC;
EIPSW = PSW;
/* Clear the EICC part of the ECR, will set below. */
ECR &= 0xffff0000;
switch (inttype)
{
case int_intov1:
PC = 0x80;
ECR |= 0x80;
break;
case int_intp10:
PC = 0x90;
ECR |= 0x90;
break;
case int_intp11:
PC = 0xa0;
ECR |= 0xa0;
break;
case int_intp12:
PC = 0xb0;
ECR |= 0xb0;
break;
case int_intp13:
PC = 0xc0;
ECR |= 0xc0;
break;
case int_intcm4:
PC = 0xd0;
ECR |= 0xd0;
break;
default:
/* Should never be possible. */
abort ();
break;
}
}
}
/* These default values correspond to expected usage for the chip. */
int v850_debug;
uint32 OP[4];
static long hash PARAMS ((long));
#if 0
static void do_format_1_2 PARAMS ((uint32));
static void do_format_3 PARAMS ((uint32));
static void do_format_4 PARAMS ((uint32));
static void do_format_5 PARAMS ((uint32));
static void do_format_6 PARAMS ((uint32));
static void do_format_7 PARAMS ((uint32));
static void do_format_8 PARAMS ((uint32));
static void do_format_9_10 PARAMS ((uint32));
#endif
#define MAX_HASH 63
struct hash_entry
{
struct hash_entry *next;
unsigned long opcode;
unsigned long mask;
struct simops *ops;
};
struct hash_entry hash_table[MAX_HASH+1];
static INLINE long
hash(insn)
long insn;
{
if ( (insn & 0x0600) == 0
|| (insn & 0x0700) == 0x0200
|| (insn & 0x0700) == 0x0600
|| (insn & 0x0780) == 0x0700)
return (insn & 0x07e0) >> 5;
if ((insn & 0x0700) == 0x0300
|| (insn & 0x0700) == 0x0400
|| (insn & 0x0700) == 0x0500)
return (insn & 0x0780) >> 7;
if ((insn & 0x07c0) == 0x0780)
return (insn & 0x07c0) >> 6;
return (insn & 0x07e0) >> 5;
}
#if 0
static struct hash_entry *
lookup_hash (sd, ins)
SIM_DESC sd;
uint32 ins;
{
struct hash_entry *h;
h = &hash_table[hash(ins)];
while ((ins & h->mask) != h->opcode)
{
if (h->next == NULL)
{
sim_io_error (sd, "ERROR looking up hash for 0x%lx, PC=0x%lx",
(long) ins, (long) PC);
}
h = h->next;
}
return (h);
}
#endif
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, cb);
#if 0
struct simops *s;
struct hash_entry *h;
#endif
/* for compatibility */
simulator = sd;
/* FIXME: should be better way of setting up interrupts */
STATE_WATCHPOINTS (sd)->pc = &(PC);
STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
STATE_WATCHPOINTS (sd)->interrupt_handler = do_interrupt;
STATE_WATCHPOINTS (sd)->interrupt_names = interrupt_names;
/* start-sanitize-v850e */
STATE_ARCHITECTURE (sd) = bfd_lookup_arch (bfd_arch_v850, bfd_mach_v850e);
/* end-sanitize-v850e */
/* start-sanitize-v850eq */
STATE_ARCHITECTURE (sd) = bfd_lookup_arch (bfd_arch_v850, bfd_mach_v850eq);
/* end-sanitize-v850eq */
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
return 0;
/* Allocate core managed memory */
/* "Mirror" the ROM addresses below 1MB. */
sim_do_commandf (sd, "memory region 0,0x100000,0x%lx", V850_ROM_SIZE);
/* Chunk of ram adjacent to rom */
sim_do_commandf (sd, "memory region 0x100000,0x%lx", V850_LOW_END-0x100000);
/* peripheral I/O region - mirror 1K across 4k (0x1000) */
sim_do_command (sd, "memory region 0xfff000,0x1000,1024");
/* similarly if in the internal RAM region */
sim_do_command (sd, "memory region 0xffe000,0x1000,1024");
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* check for/establish the a reference program image */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL),
abfd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
/* establish any remaining configuration options */
if (sim_config (sd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
#if 0
/* put all the opcodes in the hash table */
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode)];
/* go to the last entry in the chain */
while (h->next)
h = h->next;
if (h->ops)
{
h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
}
#endif
return sd;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
sim_module_uninstall (sd);
}
int
sim_stop (sd)
SIM_DESC sd;
{
return 0;
}
#if 0
void
sim_engine_run (sd, next_cpu_nr, siggnal)
SIM_DESC sd;
int next_cpu_nr;
int siggnal;
{
uint32 inst;
SIM_ADDR oldpc;
while (1)
{
struct hash_entry * h;
/* Fetch the current instruction. */
inst = RLW (PC);
oldpc = PC;
h = lookup_hash (sd, inst);
OP[0] = inst & 0x1f;
OP[1] = (inst >> 11) & 0x1f;
OP[2] = (inst >> 16) & 0xffff;
OP[3] = inst;
/* fprintf (stderr, "PC = %x, SP = %x\n", PC, SP ); */
if (inst == 0)
{
fprintf (stderr, "NOP encountered!\n");
break;
}
PC += h->ops->func ();
if (oldpc == PC)
{
sim_io_eprintf (sd, "simulator loop at %lx\n", (long) PC );
break;
}
if (sim_events_tick (sd))
{
sim_events_process (sd);
}
}
}
#endif
#if 0
int
sim_trace (sd)
SIM_DESC sd;
{
#ifdef DEBUG
v850_debug = DEBUG;
#endif
sim_resume (sd, 0, 0);
return 1;
}
#endif
void
sim_info (sd, verbose)
SIM_DESC sd;
int verbose;
{
profile_print (sd, STATE_VERBOSE_P (sd), NULL, NULL);
}
SIM_RC
sim_create_inferior (sd, prog_bfd, argv, env)
SIM_DESC sd;
struct _bfd *prog_bfd;
char **argv;
char **env;
{
memset (&State, 0, sizeof (State));
if (prog_bfd != NULL)
PC = bfd_get_start_address (prog_bfd);
return SIM_RC_OK;
}
void
sim_fetch_register (sd, rn, memory)
SIM_DESC sd;
int rn;
unsigned char *memory;
{
*(unsigned32*)memory = H2T_4 (State.regs[rn]);
}
void
sim_store_register (sd, rn, memory)
SIM_DESC sd;
int rn;
unsigned char *memory;
{
State.regs[rn] = T2H_4 (*(unsigned32*)memory);
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
char *mm_cmd = "memory-map";
char *int_cmd = "interrupt";
if (sim_args_command (sd, cmd) != SIM_RC_OK)
{
if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
else
sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
}
}