1257 lines
35 KiB
C
1257 lines
35 KiB
C
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
|
||
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
|
||
Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "xcoffsolib.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
|
||
#include "bfd.h"
|
||
#include "exceptions.h"
|
||
#include "gdb-stabs.h"
|
||
#include "regcache.h"
|
||
#include "arch-utils.h"
|
||
#include "ppc-tdep.h"
|
||
#include "exec.h"
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <sys/reg.h>
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/user.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
#include <fcntl.h>
|
||
#include <errno.h>
|
||
|
||
#include <a.out.h>
|
||
#include <sys/file.h>
|
||
#include "gdb_stat.h"
|
||
#include <sys/core.h>
|
||
#define __LDINFO_PTRACE32__ /* for __ld_info32 */
|
||
#define __LDINFO_PTRACE64__ /* for __ld_info64 */
|
||
#include <sys/ldr.h>
|
||
#include <sys/systemcfg.h>
|
||
|
||
/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
|
||
debugging 32-bit and 64-bit processes. Define a typedef and macros for
|
||
accessing fields in the appropriate structures. */
|
||
|
||
/* In 32-bit compilation mode (which is the only mode from which ptrace()
|
||
works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
|
||
|
||
#ifdef __ld_info32
|
||
# define ARCH3264
|
||
#endif
|
||
|
||
/* Return whether the current architecture is 64-bit. */
|
||
|
||
#ifndef ARCH3264
|
||
# define ARCH64() 0
|
||
#else
|
||
# define ARCH64() (register_size (current_gdbarch, 0) == 8)
|
||
#endif
|
||
|
||
/* Union of 32-bit and 64-bit ".reg" core file sections. */
|
||
|
||
typedef union {
|
||
#ifdef ARCH3264
|
||
struct __context64 r64;
|
||
#else
|
||
struct mstsave r64;
|
||
#endif
|
||
struct mstsave r32;
|
||
} CoreRegs;
|
||
|
||
/* Union of 32-bit and 64-bit versions of ld_info. */
|
||
|
||
typedef union {
|
||
#ifndef ARCH3264
|
||
struct ld_info l32;
|
||
struct ld_info l64;
|
||
#else
|
||
struct __ld_info32 l32;
|
||
struct __ld_info64 l64;
|
||
#endif
|
||
} LdInfo;
|
||
|
||
/* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
|
||
declare and initialize a variable named VAR suitable for use as the arch64
|
||
parameter to the various LDI_*() macros. */
|
||
|
||
#ifndef ARCH3264
|
||
# define ARCH64_DECL(var)
|
||
#else
|
||
# define ARCH64_DECL(var) int var = ARCH64 ()
|
||
#endif
|
||
|
||
/* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
|
||
otherwise. This technique only works for FIELDs with the same data type in
|
||
32-bit and 64-bit versions of ld_info. */
|
||
|
||
#ifndef ARCH3264
|
||
# define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
|
||
#else
|
||
# define LDI_FIELD(ldi, arch64, field) \
|
||
(arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
|
||
#endif
|
||
|
||
/* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
|
||
process otherwise. */
|
||
|
||
#define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
|
||
#define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
|
||
#define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
|
||
|
||
extern struct vmap *map_vmap (bfd * bf, bfd * arch);
|
||
|
||
static void vmap_exec (void);
|
||
|
||
static void vmap_ldinfo (LdInfo *);
|
||
|
||
static struct vmap *add_vmap (LdInfo *);
|
||
|
||
static int objfile_symbol_add (void *);
|
||
|
||
static void vmap_symtab (struct vmap *);
|
||
|
||
static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
|
||
|
||
static void exec_one_dummy_insn (void);
|
||
|
||
extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
|
||
|
||
/* Given REGNO, a gdb register number, return the corresponding
|
||
number suitable for use as a ptrace() parameter. Return -1 if
|
||
there's no suitable mapping. Also, set the int pointed to by
|
||
ISFLOAT to indicate whether REGNO is a floating point register. */
|
||
|
||
static int
|
||
regmap (int regno, int *isfloat)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
*isfloat = 0;
|
||
if (tdep->ppc_gp0_regnum <= regno
|
||
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||
return regno;
|
||
else if (tdep->ppc_fp0_regnum >= 0
|
||
&& tdep->ppc_fp0_regnum <= regno
|
||
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
||
{
|
||
*isfloat = 1;
|
||
return regno - tdep->ppc_fp0_regnum + FPR0;
|
||
}
|
||
else if (regno == PC_REGNUM)
|
||
return IAR;
|
||
else if (regno == tdep->ppc_ps_regnum)
|
||
return MSR;
|
||
else if (regno == tdep->ppc_cr_regnum)
|
||
return CR;
|
||
else if (regno == tdep->ppc_lr_regnum)
|
||
return LR;
|
||
else if (regno == tdep->ppc_ctr_regnum)
|
||
return CTR;
|
||
else if (regno == tdep->ppc_xer_regnum)
|
||
return XER;
|
||
else if (tdep->ppc_fpscr_regnum >= 0
|
||
&& regno == tdep->ppc_fpscr_regnum)
|
||
return FPSCR;
|
||
else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
|
||
return MQ;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
|
||
|
||
static int
|
||
rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
|
||
{
|
||
int ret = ptrace (req, id, (int *)addr, data, buf);
|
||
#if 0
|
||
printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
|
||
req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
|
||
#endif
|
||
return ret;
|
||
}
|
||
|
||
/* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
|
||
|
||
static int
|
||
rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
|
||
{
|
||
#ifdef ARCH3264
|
||
int ret = ptracex (req, id, addr, data, buf);
|
||
#else
|
||
int ret = 0;
|
||
#endif
|
||
#if 0
|
||
printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
|
||
req, id, addr, data, (unsigned int)buf, ret);
|
||
#endif
|
||
return ret;
|
||
}
|
||
|
||
/* Fetch register REGNO from the inferior. */
|
||
|
||
static void
|
||
fetch_register (int regno)
|
||
{
|
||
int addr[MAX_REGISTER_SIZE];
|
||
int nr, isfloat;
|
||
|
||
/* Retrieved values may be -1, so infer errors from errno. */
|
||
errno = 0;
|
||
|
||
nr = regmap (regno, &isfloat);
|
||
|
||
/* Floating-point registers. */
|
||
if (isfloat)
|
||
rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
|
||
|
||
/* Bogus register number. */
|
||
else if (nr < 0)
|
||
{
|
||
if (regno >= NUM_REGS)
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"gdb error: register no %d not implemented.\n",
|
||
regno);
|
||
return;
|
||
}
|
||
|
||
/* Fixed-point registers. */
|
||
else
|
||
{
|
||
if (!ARCH64 ())
|
||
*addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
|
||
else
|
||
{
|
||
/* PT_READ_GPR requires the buffer parameter to point to long long,
|
||
even if the register is really only 32 bits. */
|
||
long long buf;
|
||
rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
|
||
if (register_size (current_gdbarch, regno) == 8)
|
||
memcpy (addr, &buf, 8);
|
||
else
|
||
*addr = buf;
|
||
}
|
||
}
|
||
|
||
if (!errno)
|
||
regcache_raw_supply (current_regcache, regno, (char *) addr);
|
||
else
|
||
{
|
||
#if 0
|
||
/* FIXME: this happens 3 times at the start of each 64-bit program. */
|
||
perror ("ptrace read");
|
||
#endif
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* Store register REGNO back into the inferior. */
|
||
|
||
static void
|
||
store_register (int regno)
|
||
{
|
||
int addr[MAX_REGISTER_SIZE];
|
||
int nr, isfloat;
|
||
|
||
/* Fetch the register's value from the register cache. */
|
||
regcache_raw_collect (current_regcache, regno, addr);
|
||
|
||
/* -1 can be a successful return value, so infer errors from errno. */
|
||
errno = 0;
|
||
|
||
nr = regmap (regno, &isfloat);
|
||
|
||
/* Floating-point registers. */
|
||
if (isfloat)
|
||
rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
|
||
|
||
/* Bogus register number. */
|
||
else if (nr < 0)
|
||
{
|
||
if (regno >= NUM_REGS)
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"gdb error: register no %d not implemented.\n",
|
||
regno);
|
||
}
|
||
|
||
/* Fixed-point registers. */
|
||
else
|
||
{
|
||
if (regno == SP_REGNUM)
|
||
/* Execute one dummy instruction (which is a breakpoint) in inferior
|
||
process to give kernel a chance to do internal housekeeping.
|
||
Otherwise the following ptrace(2) calls will mess up user stack
|
||
since kernel will get confused about the bottom of the stack
|
||
(%sp). */
|
||
exec_one_dummy_insn ();
|
||
|
||
/* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
|
||
the register's value is passed by value, but for 64-bit inferiors,
|
||
the address of a buffer containing the value is passed. */
|
||
if (!ARCH64 ())
|
||
rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
|
||
else
|
||
{
|
||
/* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
|
||
area, even if the register is really only 32 bits. */
|
||
long long buf;
|
||
if (register_size (current_gdbarch, regno) == 8)
|
||
memcpy (&buf, addr, 8);
|
||
else
|
||
buf = *addr;
|
||
rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
|
||
}
|
||
}
|
||
|
||
if (errno)
|
||
{
|
||
perror ("ptrace write");
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* Read from the inferior all registers if REGNO == -1 and just register
|
||
REGNO otherwise. */
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
if (regno != -1)
|
||
fetch_register (regno);
|
||
|
||
else
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* Read 32 general purpose registers. */
|
||
for (regno = tdep->ppc_gp0_regnum;
|
||
regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
regno++)
|
||
{
|
||
fetch_register (regno);
|
||
}
|
||
|
||
/* Read general purpose floating point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (regno = 0; regno < ppc_num_fprs; regno++)
|
||
fetch_register (tdep->ppc_fp0_regnum + regno);
|
||
|
||
/* Read special registers. */
|
||
fetch_register (PC_REGNUM);
|
||
fetch_register (tdep->ppc_ps_regnum);
|
||
fetch_register (tdep->ppc_cr_regnum);
|
||
fetch_register (tdep->ppc_lr_regnum);
|
||
fetch_register (tdep->ppc_ctr_regnum);
|
||
fetch_register (tdep->ppc_xer_regnum);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
fetch_register (tdep->ppc_fpscr_regnum);
|
||
if (tdep->ppc_mq_regnum >= 0)
|
||
fetch_register (tdep->ppc_mq_regnum);
|
||
}
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
if (regno != -1)
|
||
store_register (regno);
|
||
|
||
else
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* Write general purpose registers first. */
|
||
for (regno = tdep->ppc_gp0_regnum;
|
||
regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
regno++)
|
||
{
|
||
store_register (regno);
|
||
}
|
||
|
||
/* Write floating point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (regno = 0; regno < ppc_num_fprs; regno++)
|
||
store_register (tdep->ppc_fp0_regnum + regno);
|
||
|
||
/* Write special registers. */
|
||
store_register (PC_REGNUM);
|
||
store_register (tdep->ppc_ps_regnum);
|
||
store_register (tdep->ppc_cr_regnum);
|
||
store_register (tdep->ppc_lr_regnum);
|
||
store_register (tdep->ppc_ctr_regnum);
|
||
store_register (tdep->ppc_xer_regnum);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
store_register (tdep->ppc_fpscr_regnum);
|
||
if (tdep->ppc_mq_regnum >= 0)
|
||
store_register (tdep->ppc_mq_regnum);
|
||
}
|
||
}
|
||
|
||
/* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
|
||
process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
|
||
success. */
|
||
|
||
static int
|
||
read_word (CORE_ADDR from, int *to, int arch64)
|
||
{
|
||
/* Retrieved values may be -1, so infer errors from errno. */
|
||
errno = 0;
|
||
|
||
if (arch64)
|
||
*to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
|
||
else
|
||
*to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
|
||
0, NULL);
|
||
|
||
return !errno;
|
||
}
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero.
|
||
|
||
Returns the length copied, which is either the LEN argument or
|
||
zero. This xfer function does not do partial moves, since
|
||
deprecated_child_ops doesn't allow memory operations to cross below
|
||
us in the target stack anyway. */
|
||
|
||
int
|
||
child_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
|
||
int write, struct mem_attrib *attrib,
|
||
struct target_ops *target)
|
||
{
|
||
/* Round starting address down to 32-bit word boundary. */
|
||
int mask = sizeof (int) - 1;
|
||
CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
|
||
|
||
/* Round ending address up to 32-bit word boundary. */
|
||
int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
|
||
/ sizeof (int);
|
||
|
||
/* Allocate word transfer buffer. */
|
||
/* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
|
||
because it uses alloca to allocate a buffer of arbitrary size.
|
||
For very large xfers, this could crash GDB's stack. */
|
||
int *buf = (int *) alloca (count * sizeof (int));
|
||
|
||
int arch64 = ARCH64 ();
|
||
int i;
|
||
|
||
if (!write)
|
||
{
|
||
/* Retrieve memory a word at a time. */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
if (!read_word (addr, buf + i, arch64))
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy memory to supplied buffer. */
|
||
addr -= count * sizeof (int);
|
||
memcpy (myaddr, (char *)buf + (memaddr - addr), len);
|
||
}
|
||
else
|
||
{
|
||
/* Fetch leading memory needed for alignment. */
|
||
if (addr < memaddr)
|
||
if (!read_word (addr, buf, arch64))
|
||
return 0;
|
||
|
||
/* Fetch trailing memory needed for alignment. */
|
||
if (addr + count * sizeof (int) > memaddr + len)
|
||
if (!read_word (addr + (count - 1) * sizeof (int),
|
||
buf + count - 1, arch64))
|
||
return 0;
|
||
|
||
/* Copy supplied data into memory buffer. */
|
||
memcpy ((char *)buf + (memaddr - addr), myaddr, len);
|
||
|
||
/* Store memory one word at a time. */
|
||
for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
if (arch64)
|
||
rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
|
||
else
|
||
rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
|
||
buf[i], NULL);
|
||
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
return len;
|
||
}
|
||
|
||
/* Execute one dummy breakpoint instruction. This way we give the kernel
|
||
a chance to do some housekeeping and update inferior's internal data,
|
||
including u_area. */
|
||
|
||
static void
|
||
exec_one_dummy_insn (void)
|
||
{
|
||
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
|
||
|
||
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
|
||
int ret, status, pid;
|
||
CORE_ADDR prev_pc;
|
||
|
||
/* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
|
||
assume that this address will never be executed again by the real
|
||
code. */
|
||
|
||
target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
|
||
|
||
/* You might think this could be done with a single ptrace call, and
|
||
you'd be correct for just about every platform I've ever worked
|
||
on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
|
||
the inferior never hits the breakpoint (it's also worth noting
|
||
powerpc-ibm-aix4.1.3 works correctly). */
|
||
prev_pc = read_pc ();
|
||
write_pc (DUMMY_INSN_ADDR);
|
||
if (ARCH64 ())
|
||
ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
|
||
else
|
||
ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
|
||
|
||
if (ret != 0)
|
||
perror ("pt_continue");
|
||
|
||
do
|
||
{
|
||
pid = wait (&status);
|
||
}
|
||
while (pid != PIDGET (inferior_ptid));
|
||
|
||
write_pc (prev_pc);
|
||
target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
|
||
}
|
||
|
||
/* Fetch registers from the register section in core bfd. */
|
||
|
||
static void
|
||
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
|
||
int which, CORE_ADDR reg_addr)
|
||
{
|
||
CoreRegs *regs;
|
||
int regi;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (which != 0)
|
||
{
|
||
fprintf_unfiltered
|
||
(gdb_stderr,
|
||
"Gdb error: unknown parameter to fetch_core_registers().\n");
|
||
return;
|
||
}
|
||
|
||
regs = (CoreRegs *) core_reg_sect;
|
||
|
||
/* Put the register values from the core file section in the regcache. */
|
||
|
||
if (ARCH64 ())
|
||
{
|
||
for (regi = 0; regi < ppc_num_gprs; regi++)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
|
||
(char *) ®s->r64.gpr[regi]);
|
||
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (regi = 0; regi < ppc_num_fprs; regi++)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
|
||
(char *) ®s->r64.fpr[regi]);
|
||
|
||
regcache_raw_supply (current_regcache, PC_REGNUM,
|
||
(char *) ®s->r64.iar);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
|
||
(char *) ®s->r64.msr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
|
||
(char *) ®s->r64.cr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
|
||
(char *) ®s->r64.lr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
|
||
(char *) ®s->r64.ctr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
|
||
(char *) ®s->r64.xer);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
|
||
(char *) ®s->r64.fpscr);
|
||
}
|
||
else
|
||
{
|
||
for (regi = 0; regi < ppc_num_gprs; regi++)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
|
||
(char *) ®s->r32.gpr[regi]);
|
||
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (regi = 0; regi < ppc_num_fprs; regi++)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
|
||
(char *) ®s->r32.fpr[regi]);
|
||
|
||
regcache_raw_supply (current_regcache, PC_REGNUM,
|
||
(char *) ®s->r32.iar);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
|
||
(char *) ®s->r32.msr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
|
||
(char *) ®s->r32.cr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
|
||
(char *) ®s->r32.lr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
|
||
(char *) ®s->r32.ctr);
|
||
regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
|
||
(char *) ®s->r32.xer);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
|
||
(char *) ®s->r32.fpscr);
|
||
if (tdep->ppc_mq_regnum >= 0)
|
||
regcache_raw_supply (current_regcache, tdep->ppc_mq_regnum,
|
||
(char *) ®s->r32.mq);
|
||
}
|
||
}
|
||
|
||
|
||
/* Copy information about text and data sections from LDI to VP for a 64-bit
|
||
process if ARCH64 and for a 32-bit process otherwise. */
|
||
|
||
static void
|
||
vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
|
||
{
|
||
if (arch64)
|
||
{
|
||
vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
|
||
vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
|
||
vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
|
||
vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
|
||
}
|
||
else
|
||
{
|
||
vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
|
||
vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
|
||
vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
|
||
vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
|
||
}
|
||
|
||
/* The run time loader maps the file header in addition to the text
|
||
section and returns a pointer to the header in ldinfo_textorg.
|
||
Adjust the text start address to point to the real start address
|
||
of the text section. */
|
||
vp->tstart += vp->toffs;
|
||
}
|
||
|
||
/* handle symbol translation on vmapping */
|
||
|
||
static void
|
||
vmap_symtab (struct vmap *vp)
|
||
{
|
||
struct objfile *objfile;
|
||
struct section_offsets *new_offsets;
|
||
int i;
|
||
|
||
objfile = vp->objfile;
|
||
if (objfile == NULL)
|
||
{
|
||
/* OK, it's not an objfile we opened ourselves.
|
||
Currently, that can only happen with the exec file, so
|
||
relocate the symbols for the symfile. */
|
||
if (symfile_objfile == NULL)
|
||
return;
|
||
objfile = symfile_objfile;
|
||
}
|
||
else if (!vp->loaded)
|
||
/* If symbols are not yet loaded, offsets are not yet valid. */
|
||
return;
|
||
|
||
new_offsets =
|
||
(struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
|
||
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
|
||
|
||
/* The symbols in the object file are linked to the VMA of the section,
|
||
relocate them VMA relative. */
|
||
new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
|
||
new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
|
||
new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
|
||
|
||
objfile_relocate (objfile, new_offsets);
|
||
}
|
||
|
||
/* Add symbols for an objfile. */
|
||
|
||
static int
|
||
objfile_symbol_add (void *arg)
|
||
{
|
||
struct objfile *obj = (struct objfile *) arg;
|
||
|
||
syms_from_objfile (obj, NULL, 0, 0, 0, 0);
|
||
new_symfile_objfile (obj, 0, 0);
|
||
return 1;
|
||
}
|
||
|
||
/* Add symbols for a vmap. Return zero upon error. */
|
||
|
||
int
|
||
vmap_add_symbols (struct vmap *vp)
|
||
{
|
||
if (catch_errors (objfile_symbol_add, vp->objfile,
|
||
"Error while reading shared library symbols:\n",
|
||
RETURN_MASK_ALL))
|
||
{
|
||
/* Note this is only done if symbol reading was successful. */
|
||
vp->loaded = 1;
|
||
vmap_symtab (vp);
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Add a new vmap entry based on ldinfo() information.
|
||
|
||
If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
|
||
core file), the caller should set it to -1, and we will open the file.
|
||
|
||
Return the vmap new entry. */
|
||
|
||
static struct vmap *
|
||
add_vmap (LdInfo *ldi)
|
||
{
|
||
bfd *abfd, *last;
|
||
char *mem, *objname, *filename;
|
||
struct objfile *obj;
|
||
struct vmap *vp;
|
||
int fd;
|
||
ARCH64_DECL (arch64);
|
||
|
||
/* This ldi structure was allocated using alloca() in
|
||
xcoff_relocate_symtab(). Now we need to have persistent object
|
||
and member names, so we should save them. */
|
||
|
||
filename = LDI_FILENAME (ldi, arch64);
|
||
mem = filename + strlen (filename) + 1;
|
||
mem = savestring (mem, strlen (mem));
|
||
objname = savestring (filename, strlen (filename));
|
||
|
||
fd = LDI_FD (ldi, arch64);
|
||
if (fd < 0)
|
||
/* Note that this opens it once for every member; a possible
|
||
enhancement would be to only open it once for every object. */
|
||
abfd = bfd_openr (objname, gnutarget);
|
||
else
|
||
abfd = bfd_fdopenr (objname, gnutarget, fd);
|
||
if (!abfd)
|
||
{
|
||
warning (_("Could not open `%s' as an executable file: %s"),
|
||
objname, bfd_errmsg (bfd_get_error ()));
|
||
return NULL;
|
||
}
|
||
|
||
/* make sure we have an object file */
|
||
|
||
if (bfd_check_format (abfd, bfd_object))
|
||
vp = map_vmap (abfd, 0);
|
||
|
||
else if (bfd_check_format (abfd, bfd_archive))
|
||
{
|
||
last = 0;
|
||
/* FIXME??? am I tossing BFDs? bfd? */
|
||
while ((last = bfd_openr_next_archived_file (abfd, last)))
|
||
if (DEPRECATED_STREQ (mem, last->filename))
|
||
break;
|
||
|
||
if (!last)
|
||
{
|
||
warning (_("\"%s\": member \"%s\" missing."), objname, mem);
|
||
bfd_close (abfd);
|
||
return NULL;
|
||
}
|
||
|
||
if (!bfd_check_format (last, bfd_object))
|
||
{
|
||
warning (_("\"%s\": member \"%s\" not in executable format: %s."),
|
||
objname, mem, bfd_errmsg (bfd_get_error ()));
|
||
bfd_close (last);
|
||
bfd_close (abfd);
|
||
return NULL;
|
||
}
|
||
|
||
vp = map_vmap (last, abfd);
|
||
}
|
||
else
|
||
{
|
||
warning (_("\"%s\": not in executable format: %s."),
|
||
objname, bfd_errmsg (bfd_get_error ()));
|
||
bfd_close (abfd);
|
||
return NULL;
|
||
}
|
||
obj = allocate_objfile (vp->bfd, 0);
|
||
vp->objfile = obj;
|
||
|
||
/* Always add symbols for the main objfile. */
|
||
if (vp == vmap || auto_solib_add)
|
||
vmap_add_symbols (vp);
|
||
return vp;
|
||
}
|
||
|
||
/* update VMAP info with ldinfo() information
|
||
Input is ptr to ldinfo() results. */
|
||
|
||
static void
|
||
vmap_ldinfo (LdInfo *ldi)
|
||
{
|
||
struct stat ii, vi;
|
||
struct vmap *vp;
|
||
int got_one, retried;
|
||
int got_exec_file = 0;
|
||
uint next;
|
||
int arch64 = ARCH64 ();
|
||
|
||
/* For each *ldi, see if we have a corresponding *vp.
|
||
If so, update the mapping, and symbol table.
|
||
If not, add an entry and symbol table. */
|
||
|
||
do
|
||
{
|
||
char *name = LDI_FILENAME (ldi, arch64);
|
||
char *memb = name + strlen (name) + 1;
|
||
int fd = LDI_FD (ldi, arch64);
|
||
|
||
retried = 0;
|
||
|
||
if (fstat (fd, &ii) < 0)
|
||
{
|
||
/* The kernel sets ld_info to -1, if the process is still using the
|
||
object, and the object is removed. Keep the symbol info for the
|
||
removed object and issue a warning. */
|
||
warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
|
||
name, fd);
|
||
continue;
|
||
}
|
||
retry:
|
||
for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
/* First try to find a `vp', which is the same as in ldinfo.
|
||
If not the same, just continue and grep the next `vp'. If same,
|
||
relocate its tstart, tend, dstart, dend values. If no such `vp'
|
||
found, get out of this for loop, add this ldi entry as a new vmap
|
||
(add_vmap) and come back, find its `vp' and so on... */
|
||
|
||
/* The filenames are not always sufficient to match on. */
|
||
|
||
if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
|
||
|| (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
|
||
continue;
|
||
|
||
/* See if we are referring to the same file.
|
||
We have to check objfile->obfd, symfile.c:reread_symbols might
|
||
have updated the obfd after a change. */
|
||
objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
|
||
if (objfile == NULL
|
||
|| objfile->obfd == NULL
|
||
|| bfd_stat (objfile->obfd, &vi) < 0)
|
||
{
|
||
warning (_("Unable to stat %s, keeping its symbols"), name);
|
||
continue;
|
||
}
|
||
|
||
if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
|
||
continue;
|
||
|
||
if (!retried)
|
||
close (fd);
|
||
|
||
++got_one;
|
||
|
||
/* Found a corresponding VMAP. Remap! */
|
||
|
||
vmap_secs (vp, ldi, arch64);
|
||
|
||
/* The objfile is only NULL for the exec file. */
|
||
if (vp->objfile == NULL)
|
||
got_exec_file = 1;
|
||
|
||
/* relocate symbol table(s). */
|
||
vmap_symtab (vp);
|
||
|
||
/* Announce new object files. Doing this after symbol relocation
|
||
makes aix-thread.c's job easier. */
|
||
if (deprecated_target_new_objfile_hook && vp->objfile)
|
||
deprecated_target_new_objfile_hook (vp->objfile);
|
||
|
||
/* There may be more, so we don't break out of the loop. */
|
||
}
|
||
|
||
/* if there was no matching *vp, we must perforce create the sucker(s) */
|
||
if (!got_one && !retried)
|
||
{
|
||
add_vmap (ldi);
|
||
++retried;
|
||
goto retry;
|
||
}
|
||
}
|
||
while ((next = LDI_NEXT (ldi, arch64))
|
||
&& (ldi = (void *) (next + (char *) ldi)));
|
||
|
||
/* If we don't find the symfile_objfile anywhere in the ldinfo, it
|
||
is unlikely that the symbol file is relocated to the proper
|
||
address. And we might have attached to a process which is
|
||
running a different copy of the same executable. */
|
||
if (symfile_objfile != NULL && !got_exec_file)
|
||
{
|
||
warning (_("Symbol file %s\nis not mapped; discarding it.\n\
|
||
If in fact that file has symbols which the mapped files listed by\n\
|
||
\"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
|
||
\"add-symbol-file\" commands (note that you must take care of relocating\n\
|
||
symbols to the proper address)."),
|
||
symfile_objfile->name);
|
||
free_objfile (symfile_objfile);
|
||
symfile_objfile = NULL;
|
||
}
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* As well as symbol tables, exec_sections need relocation. After
|
||
the inferior process' termination, there will be a relocated symbol
|
||
table exist with no corresponding inferior process. At that time, we
|
||
need to use `exec' bfd, rather than the inferior process's memory space
|
||
to look up symbols.
|
||
|
||
`exec_sections' need to be relocated only once, as long as the exec
|
||
file remains unchanged.
|
||
*/
|
||
|
||
static void
|
||
vmap_exec (void)
|
||
{
|
||
static bfd *execbfd;
|
||
int i;
|
||
|
||
if (execbfd == exec_bfd)
|
||
return;
|
||
|
||
execbfd = exec_bfd;
|
||
|
||
if (!vmap || !exec_ops.to_sections)
|
||
error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
|
||
|
||
for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
|
||
{
|
||
if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
|
||
{
|
||
exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
|
||
exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
|
||
}
|
||
else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
|
||
{
|
||
exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
|
||
exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
|
||
}
|
||
else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
|
||
{
|
||
exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
|
||
exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set the current architecture from the host running GDB. Called when
|
||
starting a child process. */
|
||
|
||
static void
|
||
set_host_arch (int pid)
|
||
{
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
struct gdbarch_info info;
|
||
|
||
if (__power_rs ())
|
||
{
|
||
arch = bfd_arch_rs6000;
|
||
mach = bfd_mach_rs6k;
|
||
}
|
||
else
|
||
{
|
||
arch = bfd_arch_powerpc;
|
||
mach = bfd_mach_ppc;
|
||
}
|
||
|
||
/* FIXME: schauer/2002-02-25:
|
||
We don't know if we are executing a 32 or 64 bit executable,
|
||
and have no way to pass the proper word size to rs6000_gdbarch_init.
|
||
So we have to avoid switching to a new architecture, if the architecture
|
||
matches already.
|
||
Blindly calling rs6000_gdbarch_init used to work in older versions of
|
||
GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
|
||
determine the wordsize. */
|
||
if (exec_bfd)
|
||
{
|
||
const struct bfd_arch_info *exec_bfd_arch_info;
|
||
|
||
exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
|
||
if (arch == exec_bfd_arch_info->arch)
|
||
return;
|
||
}
|
||
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
|
||
gdbarch_info_init (&info);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
info.abfd = exec_bfd;
|
||
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("set_host_arch: failed to select architecture"));
|
||
}
|
||
|
||
|
||
/* xcoff_relocate_symtab - hook for symbol table relocation.
|
||
also reads shared libraries. */
|
||
|
||
void
|
||
xcoff_relocate_symtab (unsigned int pid)
|
||
{
|
||
int load_segs = 64; /* number of load segments */
|
||
int rc;
|
||
LdInfo *ldi = NULL;
|
||
int arch64 = ARCH64 ();
|
||
int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
|
||
int size;
|
||
|
||
do
|
||
{
|
||
size = load_segs * ldisize;
|
||
ldi = (void *) xrealloc (ldi, size);
|
||
|
||
#if 0
|
||
/* According to my humble theory, AIX has some timing problems and
|
||
when the user stack grows, kernel doesn't update stack info in time
|
||
and ptrace calls step on user stack. That is why we sleep here a
|
||
little, and give kernel to update its internals. */
|
||
usleep (36000);
|
||
#endif
|
||
|
||
if (arch64)
|
||
rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
|
||
else
|
||
rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
|
||
|
||
if (rc == -1)
|
||
{
|
||
if (errno == ENOMEM)
|
||
load_segs *= 2;
|
||
else
|
||
perror_with_name (_("ptrace ldinfo"));
|
||
}
|
||
else
|
||
{
|
||
vmap_ldinfo (ldi);
|
||
vmap_exec (); /* relocate the exec and core sections as well. */
|
||
}
|
||
} while (rc == -1);
|
||
if (ldi)
|
||
xfree (ldi);
|
||
}
|
||
|
||
/* Core file stuff. */
|
||
|
||
/* Relocate symtabs and read in shared library info, based on symbols
|
||
from the core file. */
|
||
|
||
void
|
||
xcoff_relocate_core (struct target_ops *target)
|
||
{
|
||
struct bfd_section *ldinfo_sec;
|
||
int offset = 0;
|
||
LdInfo *ldi;
|
||
struct vmap *vp;
|
||
int arch64 = ARCH64 ();
|
||
|
||
/* Size of a struct ld_info except for the variable-length filename. */
|
||
int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
|
||
|
||
/* Allocated size of buffer. */
|
||
int buffer_size = nonfilesz;
|
||
char *buffer = xmalloc (buffer_size);
|
||
struct cleanup *old = make_cleanup (free_current_contents, &buffer);
|
||
|
||
ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
|
||
if (ldinfo_sec == NULL)
|
||
{
|
||
bfd_err:
|
||
fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
|
||
bfd_errmsg (bfd_get_error ()));
|
||
do_cleanups (old);
|
||
return;
|
||
}
|
||
do
|
||
{
|
||
int i;
|
||
int names_found = 0;
|
||
|
||
/* Read in everything but the name. */
|
||
if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
|
||
offset, nonfilesz) == 0)
|
||
goto bfd_err;
|
||
|
||
/* Now the name. */
|
||
i = nonfilesz;
|
||
do
|
||
{
|
||
if (i == buffer_size)
|
||
{
|
||
buffer_size *= 2;
|
||
buffer = xrealloc (buffer, buffer_size);
|
||
}
|
||
if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
|
||
offset + i, 1) == 0)
|
||
goto bfd_err;
|
||
if (buffer[i++] == '\0')
|
||
++names_found;
|
||
}
|
||
while (names_found < 2);
|
||
|
||
ldi = (LdInfo *) buffer;
|
||
|
||
/* Can't use a file descriptor from the core file; need to open it. */
|
||
if (arch64)
|
||
ldi->l64.ldinfo_fd = -1;
|
||
else
|
||
ldi->l32.ldinfo_fd = -1;
|
||
|
||
/* The first ldinfo is for the exec file, allocated elsewhere. */
|
||
if (offset == 0 && vmap != NULL)
|
||
vp = vmap;
|
||
else
|
||
vp = add_vmap (ldi);
|
||
|
||
/* Process next shared library upon error. */
|
||
offset += LDI_NEXT (ldi, arch64);
|
||
if (vp == NULL)
|
||
continue;
|
||
|
||
vmap_secs (vp, ldi, arch64);
|
||
|
||
/* Unless this is the exec file,
|
||
add our sections to the section table for the core target. */
|
||
if (vp != vmap)
|
||
{
|
||
struct section_table *stp;
|
||
|
||
target_resize_to_sections (target, 2);
|
||
stp = target->to_sections_end - 2;
|
||
|
||
stp->bfd = vp->bfd;
|
||
stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
|
||
stp->addr = vp->tstart;
|
||
stp->endaddr = vp->tend;
|
||
stp++;
|
||
|
||
stp->bfd = vp->bfd;
|
||
stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
|
||
stp->addr = vp->dstart;
|
||
stp->endaddr = vp->dend;
|
||
}
|
||
|
||
vmap_symtab (vp);
|
||
|
||
if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
|
||
deprecated_target_new_objfile_hook (vp->objfile);
|
||
}
|
||
while (LDI_NEXT (ldi, arch64) != 0);
|
||
vmap_exec ();
|
||
breakpoint_re_set ();
|
||
do_cleanups (old);
|
||
}
|
||
|
||
int
|
||
kernel_u_size (void)
|
||
{
|
||
return (sizeof (struct user));
|
||
}
|
||
|
||
/* Under AIX, we have to pass the correct TOC pointer to a function
|
||
when calling functions in the inferior.
|
||
We try to find the relative toc offset of the objfile containing PC
|
||
and add the current load address of the data segment from the vmap. */
|
||
|
||
static CORE_ADDR
|
||
find_toc_address (CORE_ADDR pc)
|
||
{
|
||
struct vmap *vp;
|
||
extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
|
||
|
||
for (vp = vmap; vp; vp = vp->nxt)
|
||
{
|
||
if (pc >= vp->tstart && pc < vp->tend)
|
||
{
|
||
/* vp->objfile is only NULL for the exec file. */
|
||
return vp->dstart + get_toc_offset (vp->objfile == NULL
|
||
? symfile_objfile
|
||
: vp->objfile);
|
||
}
|
||
}
|
||
error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
|
||
}
|
||
|
||
/* Register that we are able to handle rs6000 core file formats. */
|
||
|
||
static struct core_fns rs6000_core_fns =
|
||
{
|
||
bfd_target_xcoff_flavour, /* core_flavour */
|
||
default_check_format, /* check_format */
|
||
default_core_sniffer, /* core_sniffer */
|
||
fetch_core_registers, /* core_read_registers */
|
||
NULL /* next */
|
||
};
|
||
|
||
void
|
||
_initialize_core_rs6000 (void)
|
||
{
|
||
/* Initialize hook in rs6000-tdep.c for determining the TOC address
|
||
when calling functions in the inferior. */
|
||
rs6000_find_toc_address_hook = find_toc_address;
|
||
|
||
/* Initialize hook in rs6000-tdep.c to set the current architecture
|
||
when starting a child process. */
|
||
rs6000_set_host_arch_hook = set_host_arch;
|
||
|
||
deprecated_add_core_fns (&rs6000_core_fns);
|
||
}
|