0747795c08
This changes all includes to use the form "common/filename.h" rather than just "filename.h". This was written by a script. gdb/ChangeLog 2019-01-25 Tom Tromey <tom@tromey.com> * xtensa-linux-nat.c: Fix common/ includes. * xml-support.h: Fix common/ includes. * xml-support.c: Fix common/ includes. * x86-linux-nat.c: Fix common/ includes. * windows-nat.c: Fix common/ includes. * varobj.h: Fix common/ includes. * varobj.c: Fix common/ includes. * value.c: Fix common/ includes. * valops.c: Fix common/ includes. * utils.c: Fix common/ includes. * unittests/xml-utils-selftests.c: Fix common/ includes. * unittests/utils-selftests.c: Fix common/ includes. * unittests/unpack-selftests.c: Fix common/ includes. * unittests/tracepoint-selftests.c: Fix common/ includes. * unittests/style-selftests.c: Fix common/ includes. * unittests/string_view-selftests.c: Fix common/ includes. * unittests/scoped_restore-selftests.c: Fix common/ includes. * unittests/scoped_mmap-selftests.c: Fix common/ includes. * unittests/scoped_fd-selftests.c: Fix common/ includes. * unittests/rsp-low-selftests.c: Fix common/ includes. * unittests/parse-connection-spec-selftests.c: Fix common/ includes. * unittests/optional-selftests.c: Fix common/ includes. * unittests/offset-type-selftests.c: Fix common/ includes. * unittests/observable-selftests.c: Fix common/ includes. * unittests/mkdir-recursive-selftests.c: Fix common/ includes. * unittests/memrange-selftests.c: Fix common/ includes. * unittests/memory-map-selftests.c: Fix common/ includes. * unittests/lookup_name_info-selftests.c: Fix common/ includes. * unittests/function-view-selftests.c: Fix common/ includes. * unittests/environ-selftests.c: Fix common/ includes. * unittests/copy_bitwise-selftests.c: Fix common/ includes. * unittests/common-utils-selftests.c: Fix common/ includes. * unittests/cli-utils-selftests.c: Fix common/ includes. * unittests/array-view-selftests.c: Fix common/ includes. * ui-file.c: Fix common/ includes. * tui/tui-io.c: Fix common/ includes. * tracepoint.h: Fix common/ includes. * tracepoint.c: Fix common/ includes. * tracefile-tfile.c: Fix common/ includes. * top.h: Fix common/ includes. * top.c: Fix common/ includes. * thread.c: Fix common/ includes. * target/waitstatus.h: Fix common/ includes. * target/waitstatus.c: Fix common/ includes. * target.h: Fix common/ includes. * target.c: Fix common/ includes. * target-memory.c: Fix common/ includes. * target-descriptions.c: Fix common/ includes. * symtab.h: Fix common/ includes. * symfile.c: Fix common/ includes. * stap-probe.c: Fix common/ includes. * spu-linux-nat.c: Fix common/ includes. * sparc-nat.c: Fix common/ includes. * source.c: Fix common/ includes. * solib.c: Fix common/ includes. * solib-target.c: Fix common/ includes. * ser-unix.c: Fix common/ includes. * ser-tcp.c: Fix common/ includes. * ser-pipe.c: Fix common/ includes. * ser-base.c: Fix common/ includes. * selftest-arch.c: Fix common/ includes. * s12z-tdep.c: Fix common/ includes. * rust-exp.y: Fix common/ includes. * rs6000-aix-tdep.c: Fix common/ includes. * riscv-tdep.c: Fix common/ includes. * remote.c: Fix common/ includes. * remote-notif.h: Fix common/ includes. * remote-fileio.h: Fix common/ includes. * remote-fileio.c: Fix common/ includes. * regcache.h: Fix common/ includes. * regcache.c: Fix common/ includes. * record-btrace.c: Fix common/ includes. * python/python.c: Fix common/ includes. * python/py-type.c: Fix common/ includes. * python/py-inferior.c: Fix common/ includes. * progspace.h: Fix common/ includes. * producer.c: Fix common/ includes. * procfs.c: Fix common/ includes. * proc-api.c: Fix common/ includes. * printcmd.c: Fix common/ includes. * ppc-linux-nat.c: Fix common/ includes. * parser-defs.h: Fix common/ includes. * osdata.c: Fix common/ includes. * obsd-nat.c: Fix common/ includes. * nat/x86-linux.c: Fix common/ includes. * nat/x86-linux-dregs.c: Fix common/ includes. * nat/x86-dregs.h: Fix common/ includes. * nat/x86-dregs.c: Fix common/ includes. * nat/ppc-linux.c: Fix common/ includes. * nat/mips-linux-watch.h: Fix common/ includes. * nat/mips-linux-watch.c: Fix common/ includes. * nat/linux-waitpid.c: Fix common/ includes. * nat/linux-ptrace.h: Fix common/ includes. * nat/linux-ptrace.c: Fix common/ includes. * nat/linux-procfs.c: Fix common/ includes. * nat/linux-personality.c: Fix common/ includes. * nat/linux-osdata.c: Fix common/ includes. * nat/linux-namespaces.c: Fix common/ includes. * nat/linux-btrace.h: Fix common/ includes. * nat/linux-btrace.c: Fix common/ includes. * nat/fork-inferior.c: Fix common/ includes. * nat/amd64-linux-siginfo.c: Fix common/ includes. * nat/aarch64-sve-linux-ptrace.c: Fix common/ includes. * nat/aarch64-linux.c: Fix common/ includes. * nat/aarch64-linux-hw-point.h: Fix common/ includes. * nat/aarch64-linux-hw-point.c: Fix common/ includes. * namespace.h: Fix common/ includes. * mips-linux-tdep.c: Fix common/ includes. * minsyms.c: Fix common/ includes. * mi/mi-parse.h: Fix common/ includes. * mi/mi-main.c: Fix common/ includes. * mi/mi-cmd-env.c: Fix common/ includes. * memrange.h: Fix common/ includes. * memattr.c: Fix common/ includes. * maint.h: Fix common/ includes. * maint.c: Fix common/ includes. * main.c: Fix common/ includes. * machoread.c: Fix common/ includes. * location.c: Fix common/ includes. * linux-thread-db.c: Fix common/ includes. * linux-nat.c: Fix common/ includes. * linux-fork.c: Fix common/ includes. * inline-frame.c: Fix common/ includes. * infrun.c: Fix common/ includes. * inflow.c: Fix common/ includes. * inferior.h: Fix common/ includes. * inferior.c: Fix common/ includes. * infcmd.c: Fix common/ includes. * inf-ptrace.c: Fix common/ includes. * inf-child.c: Fix common/ includes. * ia64-linux-nat.c: Fix common/ includes. * i387-tdep.c: Fix common/ includes. * i386-tdep.c: Fix common/ includes. * i386-linux-tdep.c: Fix common/ includes. * i386-linux-nat.c: Fix common/ includes. * i386-go32-tdep.c: Fix common/ includes. * i386-fbsd-tdep.c: Fix common/ includes. * i386-fbsd-nat.c: Fix common/ includes. * guile/scm-type.c: Fix common/ includes. * guile/guile.c: Fix common/ includes. * go32-nat.c: Fix common/ includes. * gnu-nat.c: Fix common/ includes. * gdbthread.h: Fix common/ includes. * gdbarch-selftests.c: Fix common/ includes. * gdb_usleep.c: Fix common/ includes. * gdb_select.h: Fix common/ includes. * gdb_bfd.c: Fix common/ includes. * gcore.c: Fix common/ includes. * fork-child.c: Fix common/ includes. * findvar.c: Fix common/ includes. * fbsd-nat.c: Fix common/ includes. * event-top.c: Fix common/ includes. * event-loop.c: Fix common/ includes. * dwarf2read.c: Fix common/ includes. * dwarf2loc.c: Fix common/ includes. * dwarf2-frame.c: Fix common/ includes. * dwarf-index-cache.c: Fix common/ includes. * dtrace-probe.c: Fix common/ includes. * disasm-selftests.c: Fix common/ includes. * defs.h: Fix common/ includes. * csky-tdep.c: Fix common/ includes. * cp-valprint.c: Fix common/ includes. * cp-support.h: Fix common/ includes. * cp-support.c: Fix common/ includes. * corelow.c: Fix common/ includes. * completer.h: Fix common/ includes. * completer.c: Fix common/ includes. * compile/compile.c: Fix common/ includes. * compile/compile-loc2c.c: Fix common/ includes. * compile/compile-cplus-types.c: Fix common/ includes. * compile/compile-cplus-symbols.c: Fix common/ includes. * command.h: Fix common/ includes. * cli/cli-dump.c: Fix common/ includes. * cli/cli-cmds.c: Fix common/ includes. * charset.c: Fix common/ includes. * build-id.c: Fix common/ includes. * btrace.h: Fix common/ includes. * btrace.c: Fix common/ includes. * breakpoint.h: Fix common/ includes. * breakpoint.c: Fix common/ includes. * ax.h: (enum agent_op): Fix common/ includes. * ax-general.c (struct aop_map): Fix common/ includes. * ax-gdb.c: Fix common/ includes. * auxv.c: Fix common/ includes. * auto-load.c: Fix common/ includes. * arm-tdep.c: Fix common/ includes. * arch/riscv.c: Fix common/ includes. * arch/ppc-linux-common.c: Fix common/ includes. * arch/i386.c: Fix common/ includes. * arch/arm.c: Fix common/ includes. * arch/arm-linux.c: Fix common/ includes. * arch/arm-get-next-pcs.c: Fix common/ includes. * arch/amd64.c: Fix common/ includes. * arch/aarch64.c: Fix common/ includes. * arch/aarch64-insn.c: Fix common/ includes. * arch-utils.c: Fix common/ includes. * amd64-windows-tdep.c: Fix common/ includes. * amd64-tdep.c: Fix common/ includes. * amd64-sol2-tdep.c: Fix common/ includes. * amd64-obsd-tdep.c: Fix common/ includes. * amd64-nbsd-tdep.c: Fix common/ includes. * amd64-linux-tdep.c: Fix common/ includes. * amd64-linux-nat.c: Fix common/ includes. * amd64-fbsd-tdep.c: Fix common/ includes. * amd64-fbsd-nat.c: Fix common/ includes. * amd64-dicos-tdep.c: Fix common/ includes. * amd64-darwin-tdep.c: Fix common/ includes. * agent.c: Fix common/ includes. * ada-lang.h: Fix common/ includes. * ada-lang.c: Fix common/ includes. * aarch64-tdep.c: Fix common/ includes. gdb/gdbserver/ChangeLog 2019-01-25 Tom Tromey <tom@tromey.com> * win32-low.c: Fix common/ includes. * win32-i386-low.c: Fix common/ includes. * tracepoint.c: Fix common/ includes. * thread-db.c: Fix common/ includes. * target.h: Fix common/ includes. * symbol.c: Fix common/ includes. * spu-low.c: Fix common/ includes. * server.h: Fix common/ includes. * server.c: Fix common/ includes. * remote-utils.c: Fix common/ includes. * regcache.h: Fix common/ includes. * regcache.c: Fix common/ includes. * nto-x86-low.c: Fix common/ includes. * notif.h: Fix common/ includes. * mem-break.h: Fix common/ includes. * lynx-low.c: Fix common/ includes. * lynx-i386-low.c: Fix common/ includes. * linux-x86-tdesc-selftest.c: Fix common/ includes. * linux-x86-low.c: Fix common/ includes. * linux-low.c: Fix common/ includes. * inferiors.h: Fix common/ includes. * i387-fp.c: Fix common/ includes. * hostio.c: Fix common/ includes. * hostio-errno.c: Fix common/ includes. * gdbthread.h: Fix common/ includes. * gdbreplay.c: Fix common/ includes. * fork-child.c: Fix common/ includes. * event-loop.c: Fix common/ includes. * ax.c: (enum gdb_agent_op): Fix common/ includes.
602 lines
16 KiB
C
602 lines
16 KiB
C
/* Functions for manipulating expressions designed to be executed on the agent
|
||
Copyright (C) 1998-2019 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Despite what the above comment says about this file being part of
|
||
GDB, we would like to keep these functions free of GDB
|
||
dependencies, since we want to be able to use them in contexts
|
||
outside of GDB (test suites, the stub, etc.) */
|
||
|
||
#include "defs.h"
|
||
#include "ax.h"
|
||
|
||
#include "value.h"
|
||
#include "user-regs.h"
|
||
|
||
static void grow_expr (struct agent_expr *x, int n);
|
||
|
||
static void append_const (struct agent_expr *x, LONGEST val, int n);
|
||
|
||
static LONGEST read_const (struct agent_expr *x, int o, int n);
|
||
|
||
static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
|
||
|
||
/* Functions for building expressions. */
|
||
|
||
agent_expr::agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
|
||
{
|
||
this->len = 0;
|
||
this->size = 1; /* Change this to a larger value once
|
||
reallocation code is tested. */
|
||
this->buf = (unsigned char *) xmalloc (this->size);
|
||
|
||
this->gdbarch = gdbarch;
|
||
this->scope = scope;
|
||
|
||
/* Bit vector for registers used. */
|
||
this->reg_mask_len = 1;
|
||
this->reg_mask = XCNEWVEC (unsigned char, this->reg_mask_len);
|
||
|
||
this->tracing = 0;
|
||
this->trace_string = 0;
|
||
}
|
||
|
||
agent_expr::~agent_expr ()
|
||
{
|
||
xfree (this->buf);
|
||
xfree (this->reg_mask);
|
||
}
|
||
|
||
/* Make sure that X has room for at least N more bytes. This doesn't
|
||
affect the length, just the allocated size. */
|
||
static void
|
||
grow_expr (struct agent_expr *x, int n)
|
||
{
|
||
if (x->len + n > x->size)
|
||
{
|
||
x->size *= 2;
|
||
if (x->size < x->len + n)
|
||
x->size = x->len + n + 10;
|
||
x->buf = (unsigned char *) xrealloc (x->buf, x->size);
|
||
}
|
||
}
|
||
|
||
|
||
/* Append the low N bytes of VAL as an N-byte integer to the
|
||
expression X, in big-endian order. */
|
||
static void
|
||
append_const (struct agent_expr *x, LONGEST val, int n)
|
||
{
|
||
int i;
|
||
|
||
grow_expr (x, n);
|
||
for (i = n - 1; i >= 0; i--)
|
||
{
|
||
x->buf[x->len + i] = val & 0xff;
|
||
val >>= 8;
|
||
}
|
||
x->len += n;
|
||
}
|
||
|
||
|
||
/* Extract an N-byte big-endian unsigned integer from expression X at
|
||
offset O. */
|
||
static LONGEST
|
||
read_const (struct agent_expr *x, int o, int n)
|
||
{
|
||
int i;
|
||
LONGEST accum = 0;
|
||
|
||
/* Make sure we're not reading off the end of the expression. */
|
||
if (o + n > x->len)
|
||
error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
|
||
|
||
for (i = 0; i < n; i++)
|
||
accum = (accum << 8) | x->buf[o + i];
|
||
|
||
return accum;
|
||
}
|
||
|
||
/* See ax.h. */
|
||
|
||
void
|
||
ax_raw_byte (struct agent_expr *x, gdb_byte byte)
|
||
{
|
||
grow_expr (x, 1);
|
||
x->buf[x->len++] = byte;
|
||
}
|
||
|
||
/* Append a simple operator OP to EXPR. */
|
||
void
|
||
ax_simple (struct agent_expr *x, enum agent_op op)
|
||
{
|
||
ax_raw_byte (x, op);
|
||
}
|
||
|
||
/* Append a pick operator to EXPR. DEPTH is the stack item to pick,
|
||
with 0 being top of stack. */
|
||
|
||
void
|
||
ax_pick (struct agent_expr *x, int depth)
|
||
{
|
||
if (depth < 0 || depth > 255)
|
||
error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
|
||
ax_simple (x, aop_pick);
|
||
append_const (x, 1, depth);
|
||
}
|
||
|
||
|
||
/* Append a sign-extension or zero-extension instruction to EXPR, to
|
||
extend an N-bit value. */
|
||
static void
|
||
generic_ext (struct agent_expr *x, enum agent_op op, int n)
|
||
{
|
||
/* N must fit in a byte. */
|
||
if (n < 0 || n > 255)
|
||
error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
|
||
/* That had better be enough range. */
|
||
if (sizeof (LONGEST) * 8 > 255)
|
||
error (_("GDB bug: ax-general.c (generic_ext): "
|
||
"opcode has inadequate range"));
|
||
|
||
grow_expr (x, 2);
|
||
x->buf[x->len++] = op;
|
||
x->buf[x->len++] = n;
|
||
}
|
||
|
||
|
||
/* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
|
||
void
|
||
ax_ext (struct agent_expr *x, int n)
|
||
{
|
||
generic_ext (x, aop_ext, n);
|
||
}
|
||
|
||
|
||
/* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
|
||
void
|
||
ax_zero_ext (struct agent_expr *x, int n)
|
||
{
|
||
generic_ext (x, aop_zero_ext, n);
|
||
}
|
||
|
||
|
||
/* Append a trace_quick instruction to EXPR, to record N bytes. */
|
||
void
|
||
ax_trace_quick (struct agent_expr *x, int n)
|
||
{
|
||
/* N must fit in a byte. */
|
||
if (n < 0 || n > 255)
|
||
error (_("GDB bug: ax-general.c (ax_trace_quick): "
|
||
"size out of range for trace_quick"));
|
||
|
||
grow_expr (x, 2);
|
||
x->buf[x->len++] = aop_trace_quick;
|
||
x->buf[x->len++] = n;
|
||
}
|
||
|
||
|
||
/* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
|
||
aop_if_goto). We assume we don't know the target offset yet,
|
||
because it's probably a forward branch, so we leave space in EXPR
|
||
for the target, and return the offset in EXPR of that space, so we
|
||
can backpatch it once we do know the target offset. Use ax_label
|
||
to do the backpatching. */
|
||
int
|
||
ax_goto (struct agent_expr *x, enum agent_op op)
|
||
{
|
||
grow_expr (x, 3);
|
||
x->buf[x->len + 0] = op;
|
||
x->buf[x->len + 1] = 0xff;
|
||
x->buf[x->len + 2] = 0xff;
|
||
x->len += 3;
|
||
return x->len - 2;
|
||
}
|
||
|
||
/* Suppose a given call to ax_goto returns some value PATCH. When you
|
||
know the offset TARGET that goto should jump to, call
|
||
ax_label (EXPR, PATCH, TARGET)
|
||
to patch TARGET into the ax_goto instruction. */
|
||
void
|
||
ax_label (struct agent_expr *x, int patch, int target)
|
||
{
|
||
/* Make sure the value is in range. Don't accept 0xffff as an
|
||
offset; that's our magic sentinel value for unpatched branches. */
|
||
if (target < 0 || target >= 0xffff)
|
||
error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
|
||
|
||
x->buf[patch] = (target >> 8) & 0xff;
|
||
x->buf[patch + 1] = target & 0xff;
|
||
}
|
||
|
||
|
||
/* Assemble code to push a constant on the stack. */
|
||
void
|
||
ax_const_l (struct agent_expr *x, LONGEST l)
|
||
{
|
||
static enum agent_op ops[]
|
||
=
|
||
{aop_const8, aop_const16, aop_const32, aop_const64};
|
||
int size;
|
||
int op;
|
||
|
||
/* How big is the number? 'op' keeps track of which opcode to use.
|
||
Notice that we don't really care whether the original number was
|
||
signed or unsigned; we always reproduce the value exactly, and
|
||
use the shortest representation. */
|
||
for (op = 0, size = 8; size < 64; size *= 2, op++)
|
||
{
|
||
LONGEST lim = ((LONGEST) 1) << (size - 1);
|
||
|
||
if (-lim <= l && l <= lim - 1)
|
||
break;
|
||
}
|
||
|
||
/* Emit the right opcode... */
|
||
ax_simple (x, ops[op]);
|
||
|
||
/* Emit the low SIZE bytes as an unsigned number. We know that
|
||
sign-extending this will yield l. */
|
||
append_const (x, l, size / 8);
|
||
|
||
/* Now, if it was negative, and not full-sized, sign-extend it. */
|
||
if (l < 0 && size < 64)
|
||
ax_ext (x, size);
|
||
}
|
||
|
||
|
||
void
|
||
ax_const_d (struct agent_expr *x, LONGEST d)
|
||
{
|
||
/* FIXME: floating-point support not present yet. */
|
||
error (_("GDB bug: ax-general.c (ax_const_d): "
|
||
"floating point not supported yet"));
|
||
}
|
||
|
||
|
||
/* Assemble code to push the value of register number REG on the
|
||
stack. */
|
||
void
|
||
ax_reg (struct agent_expr *x, int reg)
|
||
{
|
||
if (reg >= gdbarch_num_regs (x->gdbarch))
|
||
{
|
||
/* This is a pseudo-register. */
|
||
if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
|
||
error (_("'%s' is a pseudo-register; "
|
||
"GDB cannot yet trace its contents."),
|
||
user_reg_map_regnum_to_name (x->gdbarch, reg));
|
||
if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
|
||
error (_("Trace '%s' failed."),
|
||
user_reg_map_regnum_to_name (x->gdbarch, reg));
|
||
}
|
||
else
|
||
{
|
||
/* Get the remote register number. */
|
||
reg = gdbarch_remote_register_number (x->gdbarch, reg);
|
||
|
||
/* Make sure the register number is in range. */
|
||
if (reg < 0 || reg > 0xffff)
|
||
error (_("GDB bug: ax-general.c (ax_reg): "
|
||
"register number out of range"));
|
||
grow_expr (x, 3);
|
||
x->buf[x->len] = aop_reg;
|
||
x->buf[x->len + 1] = (reg >> 8) & 0xff;
|
||
x->buf[x->len + 2] = (reg) & 0xff;
|
||
x->len += 3;
|
||
}
|
||
}
|
||
|
||
/* Assemble code to operate on a trace state variable. */
|
||
|
||
void
|
||
ax_tsv (struct agent_expr *x, enum agent_op op, int num)
|
||
{
|
||
/* Make sure the tsv number is in range. */
|
||
if (num < 0 || num > 0xffff)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("ax-general.c (ax_tsv): variable "
|
||
"number is %d, out of range"), num);
|
||
|
||
grow_expr (x, 3);
|
||
x->buf[x->len] = op;
|
||
x->buf[x->len + 1] = (num >> 8) & 0xff;
|
||
x->buf[x->len + 2] = (num) & 0xff;
|
||
x->len += 3;
|
||
}
|
||
|
||
/* Append a string to the expression. Note that the string is going
|
||
into the bytecodes directly, not on the stack. As a precaution,
|
||
include both length as prefix, and terminate with a NUL. (The NUL
|
||
is counted in the length.) */
|
||
|
||
void
|
||
ax_string (struct agent_expr *x, const char *str, int slen)
|
||
{
|
||
int i;
|
||
|
||
/* Make sure the string length is reasonable. */
|
||
if (slen < 0 || slen > 0xffff)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("ax-general.c (ax_string): string "
|
||
"length is %d, out of allowed range"), slen);
|
||
|
||
grow_expr (x, 2 + slen + 1);
|
||
x->buf[x->len++] = ((slen + 1) >> 8) & 0xff;
|
||
x->buf[x->len++] = (slen + 1) & 0xff;
|
||
for (i = 0; i < slen; ++i)
|
||
x->buf[x->len++] = str[i];
|
||
x->buf[x->len++] = '\0';
|
||
}
|
||
|
||
|
||
|
||
/* Functions for disassembling agent expressions, and otherwise
|
||
debugging the expression compiler. */
|
||
|
||
struct aop_map aop_map[] =
|
||
{
|
||
{0, 0, 0, 0, 0}
|
||
#define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
|
||
, { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
|
||
#include "common/ax.def"
|
||
#undef DEFOP
|
||
};
|
||
|
||
|
||
/* Disassemble the expression EXPR, writing to F. */
|
||
void
|
||
ax_print (struct ui_file *f, struct agent_expr *x)
|
||
{
|
||
int i;
|
||
|
||
fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
|
||
fprintf_filtered (f, _("Reg mask:"));
|
||
for (i = 0; i < x->reg_mask_len; ++i)
|
||
fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
|
||
fprintf_filtered (f, _("\n"));
|
||
|
||
/* Check the size of the name array against the number of entries in
|
||
the enum, to catch additions that people didn't sync. */
|
||
if ((sizeof (aop_map) / sizeof (aop_map[0]))
|
||
!= aop_last)
|
||
error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
|
||
|
||
for (i = 0; i < x->len;)
|
||
{
|
||
enum agent_op op = (enum agent_op) x->buf[i];
|
||
|
||
if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
|
||
|| !aop_map[op].name)
|
||
{
|
||
fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
|
||
i++;
|
||
continue;
|
||
}
|
||
if (i + 1 + aop_map[op].op_size > x->len)
|
||
{
|
||
fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
|
||
i, aop_map[op].name);
|
||
break;
|
||
}
|
||
|
||
fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
|
||
if (aop_map[op].op_size > 0)
|
||
{
|
||
fputs_filtered (" ", f);
|
||
|
||
print_longest (f, 'd', 0,
|
||
read_const (x, i + 1, aop_map[op].op_size));
|
||
}
|
||
/* Handle the complicated printf arguments specially. */
|
||
else if (op == aop_printf)
|
||
{
|
||
int slen, nargs;
|
||
|
||
i++;
|
||
nargs = x->buf[i++];
|
||
slen = x->buf[i++];
|
||
slen = slen * 256 + x->buf[i++];
|
||
fprintf_filtered (f, _(" \"%s\", %d args"),
|
||
&(x->buf[i]), nargs);
|
||
i += slen - 1;
|
||
}
|
||
fprintf_filtered (f, "\n");
|
||
i += 1 + aop_map[op].op_size;
|
||
}
|
||
}
|
||
|
||
/* Add register REG to the register mask for expression AX. */
|
||
void
|
||
ax_reg_mask (struct agent_expr *ax, int reg)
|
||
{
|
||
if (reg >= gdbarch_num_regs (ax->gdbarch))
|
||
{
|
||
/* This is a pseudo-register. */
|
||
if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
|
||
error (_("'%s' is a pseudo-register; "
|
||
"GDB cannot yet trace its contents."),
|
||
user_reg_map_regnum_to_name (ax->gdbarch, reg));
|
||
if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
|
||
error (_("Trace '%s' failed."),
|
||
user_reg_map_regnum_to_name (ax->gdbarch, reg));
|
||
}
|
||
else
|
||
{
|
||
int byte;
|
||
|
||
/* Get the remote register number. */
|
||
reg = gdbarch_remote_register_number (ax->gdbarch, reg);
|
||
byte = reg / 8;
|
||
|
||
/* Grow the bit mask if necessary. */
|
||
if (byte >= ax->reg_mask_len)
|
||
{
|
||
/* It's not appropriate to double here. This isn't a
|
||
string buffer. */
|
||
int new_len = byte + 1;
|
||
unsigned char *new_reg_mask
|
||
= XRESIZEVEC (unsigned char, ax->reg_mask, new_len);
|
||
|
||
memset (new_reg_mask + ax->reg_mask_len, 0,
|
||
(new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
|
||
ax->reg_mask_len = new_len;
|
||
ax->reg_mask = new_reg_mask;
|
||
}
|
||
|
||
ax->reg_mask[byte] |= 1 << (reg % 8);
|
||
}
|
||
}
|
||
|
||
/* Given an agent expression AX, fill in requirements and other descriptive
|
||
bits. */
|
||
void
|
||
ax_reqs (struct agent_expr *ax)
|
||
{
|
||
int i;
|
||
int height;
|
||
|
||
/* Jump target table. targets[i] is non-zero iff we have found a
|
||
jump to offset i. */
|
||
char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
|
||
|
||
/* Instruction boundary table. boundary[i] is non-zero iff our scan
|
||
has reached an instruction starting at offset i. */
|
||
char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
|
||
|
||
/* Stack height record. If either targets[i] or boundary[i] is
|
||
non-zero, heights[i] is the height the stack should have before
|
||
executing the bytecode at that point. */
|
||
int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
|
||
|
||
/* Pointer to a description of the present op. */
|
||
struct aop_map *op;
|
||
|
||
memset (targets, 0, ax->len * sizeof (targets[0]));
|
||
memset (boundary, 0, ax->len * sizeof (boundary[0]));
|
||
|
||
ax->max_height = ax->min_height = height = 0;
|
||
ax->flaw = agent_flaw_none;
|
||
ax->max_data_size = 0;
|
||
|
||
for (i = 0; i < ax->len; i += 1 + op->op_size)
|
||
{
|
||
if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
|
||
{
|
||
ax->flaw = agent_flaw_bad_instruction;
|
||
return;
|
||
}
|
||
|
||
op = &aop_map[ax->buf[i]];
|
||
|
||
if (!op->name)
|
||
{
|
||
ax->flaw = agent_flaw_bad_instruction;
|
||
return;
|
||
}
|
||
|
||
if (i + 1 + op->op_size > ax->len)
|
||
{
|
||
ax->flaw = agent_flaw_incomplete_instruction;
|
||
return;
|
||
}
|
||
|
||
/* If this instruction is a forward jump target, does the
|
||
current stack height match the stack height at the jump
|
||
source? */
|
||
if (targets[i] && (heights[i] != height))
|
||
{
|
||
ax->flaw = agent_flaw_height_mismatch;
|
||
return;
|
||
}
|
||
|
||
boundary[i] = 1;
|
||
heights[i] = height;
|
||
|
||
height -= op->consumed;
|
||
if (height < ax->min_height)
|
||
ax->min_height = height;
|
||
height += op->produced;
|
||
if (height > ax->max_height)
|
||
ax->max_height = height;
|
||
|
||
if (op->data_size > ax->max_data_size)
|
||
ax->max_data_size = op->data_size;
|
||
|
||
/* For jump instructions, check that the target is a valid
|
||
offset. If it is, record the fact that that location is a
|
||
jump target, and record the height we expect there. */
|
||
if (aop_goto == op - aop_map
|
||
|| aop_if_goto == op - aop_map)
|
||
{
|
||
int target = read_const (ax, i + 1, 2);
|
||
if (target < 0 || target >= ax->len)
|
||
{
|
||
ax->flaw = agent_flaw_bad_jump;
|
||
return;
|
||
}
|
||
|
||
/* Do we have any information about what the stack height
|
||
should be at the target? */
|
||
if (targets[target] || boundary[target])
|
||
{
|
||
if (heights[target] != height)
|
||
{
|
||
ax->flaw = agent_flaw_height_mismatch;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Record the target, along with the stack height we expect. */
|
||
targets[target] = 1;
|
||
heights[target] = height;
|
||
}
|
||
|
||
/* For unconditional jumps with a successor, check that the
|
||
successor is a target, and pick up its stack height. */
|
||
if (aop_goto == op - aop_map
|
||
&& i + 3 < ax->len)
|
||
{
|
||
if (!targets[i + 3])
|
||
{
|
||
ax->flaw = agent_flaw_hole;
|
||
return;
|
||
}
|
||
|
||
height = heights[i + 3];
|
||
}
|
||
|
||
/* For reg instructions, record the register in the bit mask. */
|
||
if (aop_reg == op - aop_map)
|
||
{
|
||
int reg = read_const (ax, i + 1, 2);
|
||
|
||
ax_reg_mask (ax, reg);
|
||
}
|
||
}
|
||
|
||
/* Check that all the targets are on boundaries. */
|
||
for (i = 0; i < ax->len; i++)
|
||
if (targets[i] && !boundary[i])
|
||
{
|
||
ax->flaw = agent_flaw_bad_jump;
|
||
return;
|
||
}
|
||
|
||
ax->final_height = height;
|
||
}
|