a64fafb545
The type struct partial_symtab contains two fields (disregarding field next) that express relations with other symtabs: user and dependencies. When using "maint print psymbols", we see both the dependencies and the user fields: ... Partial symtab for source file (object 0x35ef270) ... Depends on 0 other partial symtabs. Shared partial symtab with user 0x35d5f40 ... But with "maint info psymtabs", we only see dependencies: ... { psymtab ((struct partial_symtab *) 0x35ef270) ... dependencies (none) } ... Add printing of the user field for "maint info psymtabs", such that we have: ... { psymtab ((struct partial_symtab *) 0x35ef270) ... + user hello.c ((struct partial_symtab *) 0x35d5f40) dependencies (none) } ... Tested on x86_64-linux. gdb/ChangeLog: 2020-03-24 Tom de Vries <tdevries@suse.de> * psymtab.c (maintenance_info_psymtabs): Print user field.
2227 lines
65 KiB
C
2227 lines
65 KiB
C
/* Partial symbol tables.
|
||
|
||
Copyright (C) 2009-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "objfiles.h"
|
||
#include "psympriv.h"
|
||
#include "block.h"
|
||
#include "filenames.h"
|
||
#include "source.h"
|
||
#include "addrmap.h"
|
||
#include "gdbtypes.h"
|
||
#include "ui-out.h"
|
||
#include "command.h"
|
||
#include "readline/tilde.h"
|
||
#include "gdb_regex.h"
|
||
#include "dictionary.h"
|
||
#include "language.h"
|
||
#include "cp-support.h"
|
||
#include "gdbcmd.h"
|
||
#include <algorithm>
|
||
#include <set>
|
||
|
||
static struct partial_symbol *lookup_partial_symbol (struct objfile *,
|
||
struct partial_symtab *,
|
||
const char *, int,
|
||
domain_enum);
|
||
|
||
static const char *psymtab_to_fullname (struct partial_symtab *ps);
|
||
|
||
static struct partial_symbol *find_pc_sect_psymbol (struct objfile *,
|
||
struct partial_symtab *,
|
||
CORE_ADDR,
|
||
struct obj_section *);
|
||
|
||
static struct compunit_symtab *psymtab_to_symtab (struct objfile *objfile,
|
||
struct partial_symtab *pst);
|
||
|
||
|
||
|
||
static unsigned long psymbol_hash (const void *addr, int length);
|
||
static int psymbol_compare (const void *addr1, const void *addr2, int length);
|
||
|
||
psymtab_storage::psymtab_storage ()
|
||
: psymbol_cache (psymbol_hash, psymbol_compare)
|
||
{
|
||
}
|
||
|
||
psymtab_storage::~psymtab_storage ()
|
||
{
|
||
partial_symtab *iter = psymtabs;
|
||
while (iter != nullptr)
|
||
{
|
||
partial_symtab *next = iter->next;
|
||
delete iter;
|
||
iter = next;
|
||
}
|
||
}
|
||
|
||
/* See psymtab.h. */
|
||
|
||
void
|
||
psymtab_storage::install_psymtab (partial_symtab *pst)
|
||
{
|
||
pst->next = psymtabs;
|
||
psymtabs = pst;
|
||
}
|
||
|
||
|
||
|
||
/* See psymtab.h. */
|
||
|
||
psymtab_storage::partial_symtab_range
|
||
require_partial_symbols (struct objfile *objfile, bool verbose)
|
||
{
|
||
if ((objfile->flags & OBJF_PSYMTABS_READ) == 0)
|
||
{
|
||
objfile->flags |= OBJF_PSYMTABS_READ;
|
||
|
||
if (objfile->sf->sym_read_psymbols)
|
||
{
|
||
if (verbose)
|
||
printf_filtered (_("Reading symbols from %s...\n"),
|
||
objfile_name (objfile));
|
||
(*objfile->sf->sym_read_psymbols) (objfile);
|
||
|
||
/* Partial symbols list are not expected to changed after this
|
||
point. */
|
||
objfile->partial_symtabs->global_psymbols.shrink_to_fit ();
|
||
objfile->partial_symtabs->static_psymbols.shrink_to_fit ();
|
||
|
||
if (verbose && !objfile_has_symbols (objfile))
|
||
printf_filtered (_("(No debugging symbols found in %s)\n"),
|
||
objfile_name (objfile));
|
||
}
|
||
}
|
||
|
||
return objfile->psymtabs ();
|
||
}
|
||
|
||
/* Helper function for psym_map_symtabs_matching_filename that
|
||
expands the symtabs and calls the iterator. */
|
||
|
||
static bool
|
||
partial_map_expand_apply (struct objfile *objfile,
|
||
const char *name,
|
||
const char *real_path,
|
||
struct partial_symtab *pst,
|
||
gdb::function_view<bool (symtab *)> callback)
|
||
{
|
||
struct compunit_symtab *last_made = objfile->compunit_symtabs;
|
||
|
||
/* Shared psymtabs should never be seen here. Instead they should
|
||
be handled properly by the caller. */
|
||
gdb_assert (pst->user == NULL);
|
||
|
||
/* Don't visit already-expanded psymtabs. */
|
||
if (pst->readin_p ())
|
||
return 0;
|
||
|
||
/* This may expand more than one symtab, and we want to iterate over
|
||
all of them. */
|
||
psymtab_to_symtab (objfile, pst);
|
||
|
||
return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
|
||
last_made, callback);
|
||
}
|
||
|
||
/* Psymtab version of map_symtabs_matching_filename. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static bool
|
||
psym_map_symtabs_matching_filename
|
||
(struct objfile *objfile,
|
||
const char *name,
|
||
const char *real_path,
|
||
gdb::function_view<bool (symtab *)> callback)
|
||
{
|
||
const char *name_basename = lbasename (name);
|
||
|
||
for (partial_symtab *pst : require_partial_symbols (objfile, true))
|
||
{
|
||
/* We can skip shared psymtabs here, because any file name will be
|
||
attached to the unshared psymtab. */
|
||
if (pst->user != NULL)
|
||
continue;
|
||
|
||
/* Anonymous psymtabs don't have a file name. */
|
||
if (pst->anonymous)
|
||
continue;
|
||
|
||
if (compare_filenames_for_search (pst->filename, name))
|
||
{
|
||
if (partial_map_expand_apply (objfile, name, real_path,
|
||
pst, callback))
|
||
return true;
|
||
continue;
|
||
}
|
||
|
||
/* Before we invoke realpath, which can get expensive when many
|
||
files are involved, do a quick comparison of the basenames. */
|
||
if (! basenames_may_differ
|
||
&& FILENAME_CMP (name_basename, lbasename (pst->filename)) != 0)
|
||
continue;
|
||
|
||
if (compare_filenames_for_search (psymtab_to_fullname (pst), name))
|
||
{
|
||
if (partial_map_expand_apply (objfile, name, real_path,
|
||
pst, callback))
|
||
return true;
|
||
continue;
|
||
}
|
||
|
||
/* If the user gave us an absolute path, try to find the file in
|
||
this symtab and use its absolute path. */
|
||
if (real_path != NULL)
|
||
{
|
||
gdb_assert (IS_ABSOLUTE_PATH (real_path));
|
||
gdb_assert (IS_ABSOLUTE_PATH (name));
|
||
if (filename_cmp (psymtab_to_fullname (pst), real_path) == 0)
|
||
{
|
||
if (partial_map_expand_apply (objfile, name, real_path,
|
||
pst, callback))
|
||
return true;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Find which partial symtab contains PC and SECTION starting at psymtab PST.
|
||
We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
|
||
|
||
static struct partial_symtab *
|
||
find_pc_sect_psymtab_closer (struct objfile *objfile,
|
||
CORE_ADDR pc, struct obj_section *section,
|
||
struct partial_symtab *pst,
|
||
struct bound_minimal_symbol msymbol)
|
||
{
|
||
struct partial_symtab *tpst;
|
||
struct partial_symtab *best_pst = pst;
|
||
CORE_ADDR best_addr = pst->text_low (objfile);
|
||
|
||
gdb_assert (!pst->psymtabs_addrmap_supported);
|
||
|
||
/* An objfile that has its functions reordered might have
|
||
many partial symbol tables containing the PC, but
|
||
we want the partial symbol table that contains the
|
||
function containing the PC. */
|
||
if (!(objfile->flags & OBJF_REORDERED)
|
||
&& section == NULL) /* Can't validate section this way. */
|
||
return pst;
|
||
|
||
if (msymbol.minsym == NULL)
|
||
return pst;
|
||
|
||
/* The code range of partial symtabs sometimes overlap, so, in
|
||
the loop below, we need to check all partial symtabs and
|
||
find the one that fits better for the given PC address. We
|
||
select the partial symtab that contains a symbol whose
|
||
address is closest to the PC address. By closest we mean
|
||
that find_pc_sect_symbol returns the symbol with address
|
||
that is closest and still less than the given PC. */
|
||
for (tpst = pst; tpst != NULL; tpst = tpst->next)
|
||
{
|
||
if (pc >= tpst->text_low (objfile) && pc < tpst->text_high (objfile))
|
||
{
|
||
struct partial_symbol *p;
|
||
CORE_ADDR this_addr;
|
||
|
||
/* NOTE: This assumes that every psymbol has a
|
||
corresponding msymbol, which is not necessarily
|
||
true; the debug info might be much richer than the
|
||
object's symbol table. */
|
||
p = find_pc_sect_psymbol (objfile, tpst, pc, section);
|
||
if (p != NULL
|
||
&& (p->address (objfile) == BMSYMBOL_VALUE_ADDRESS (msymbol)))
|
||
return tpst;
|
||
|
||
/* Also accept the textlow value of a psymtab as a
|
||
"symbol", to provide some support for partial
|
||
symbol tables with line information but no debug
|
||
symbols (e.g. those produced by an assembler). */
|
||
if (p != NULL)
|
||
this_addr = p->address (objfile);
|
||
else
|
||
this_addr = tpst->text_low (objfile);
|
||
|
||
/* Check whether it is closer than our current
|
||
BEST_ADDR. Since this symbol address is
|
||
necessarily lower or equal to PC, the symbol closer
|
||
to PC is the symbol which address is the highest.
|
||
This way we return the psymtab which contains such
|
||
best match symbol. This can help in cases where the
|
||
symbol information/debuginfo is not complete, like
|
||
for instance on IRIX6 with gcc, where no debug info
|
||
is emitted for statics. (See also the nodebug.exp
|
||
testcase.) */
|
||
if (this_addr > best_addr)
|
||
{
|
||
best_addr = this_addr;
|
||
best_pst = tpst;
|
||
}
|
||
}
|
||
}
|
||
return best_pst;
|
||
}
|
||
|
||
/* Find which partial symtab contains PC and SECTION. Return NULL if
|
||
none. We return the psymtab that contains a symbol whose address
|
||
exactly matches PC, or, if we cannot find an exact match, the
|
||
psymtab that contains a symbol whose address is closest to PC. */
|
||
|
||
static struct partial_symtab *
|
||
find_pc_sect_psymtab (struct objfile *objfile, CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
struct bound_minimal_symbol msymbol)
|
||
{
|
||
/* Try just the PSYMTABS_ADDRMAP mapping first as it has better
|
||
granularity than the later used TEXTLOW/TEXTHIGH one. However, we need
|
||
to take care as the PSYMTABS_ADDRMAP can hold things other than partial
|
||
symtabs in some cases.
|
||
|
||
This function should only be called for objfiles that are using partial
|
||
symtabs, not for objfiles that are using indexes (.gdb_index or
|
||
.debug_names), however 'maintenance print psymbols' calls this function
|
||
directly for all objfiles. If we assume that PSYMTABS_ADDRMAP contains
|
||
partial symtabs then we will end up returning a pointer to an object
|
||
that is not a partial_symtab, which doesn't end well. */
|
||
|
||
if (objfile->partial_symtabs->psymtabs != NULL
|
||
&& objfile->partial_symtabs->psymtabs_addrmap != NULL)
|
||
{
|
||
CORE_ADDR baseaddr = objfile->text_section_offset ();
|
||
|
||
struct partial_symtab *pst
|
||
= ((struct partial_symtab *)
|
||
addrmap_find (objfile->partial_symtabs->psymtabs_addrmap,
|
||
pc - baseaddr));
|
||
if (pst != NULL)
|
||
{
|
||
/* FIXME: addrmaps currently do not handle overlayed sections,
|
||
so fall back to the non-addrmap case if we're debugging
|
||
overlays and the addrmap returned the wrong section. */
|
||
if (overlay_debugging && msymbol.minsym != NULL && section != NULL)
|
||
{
|
||
struct partial_symbol *p;
|
||
|
||
/* NOTE: This assumes that every psymbol has a
|
||
corresponding msymbol, which is not necessarily
|
||
true; the debug info might be much richer than the
|
||
object's symbol table. */
|
||
p = find_pc_sect_psymbol (objfile, pst, pc, section);
|
||
if (p == NULL
|
||
|| (p->address (objfile)
|
||
!= BMSYMBOL_VALUE_ADDRESS (msymbol)))
|
||
goto next;
|
||
}
|
||
|
||
/* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
|
||
PSYMTABS_ADDRMAP we used has already the best 1-byte
|
||
granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
|
||
a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
|
||
overlap. */
|
||
|
||
return pst;
|
||
}
|
||
}
|
||
|
||
next:
|
||
|
||
/* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
|
||
which still have no corresponding full SYMTABs read. But it is not
|
||
present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
|
||
so far. */
|
||
|
||
/* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
|
||
its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
|
||
debug info type in single OBJFILE. */
|
||
|
||
for (partial_symtab *pst : require_partial_symbols (objfile, true))
|
||
if (!pst->psymtabs_addrmap_supported
|
||
&& pc >= pst->text_low (objfile) && pc < pst->text_high (objfile))
|
||
{
|
||
struct partial_symtab *best_pst;
|
||
|
||
best_pst = find_pc_sect_psymtab_closer (objfile, pc, section, pst,
|
||
msymbol);
|
||
if (best_pst != NULL)
|
||
return best_pst;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Psymtab version of find_pc_sect_compunit_symtab. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static struct compunit_symtab *
|
||
psym_find_pc_sect_compunit_symtab (struct objfile *objfile,
|
||
struct bound_minimal_symbol msymbol,
|
||
CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
int warn_if_readin)
|
||
{
|
||
struct partial_symtab *ps = find_pc_sect_psymtab (objfile, pc, section,
|
||
msymbol);
|
||
if (ps != NULL)
|
||
{
|
||
if (warn_if_readin && ps->readin_p ())
|
||
/* Might want to error() here (in case symtab is corrupt and
|
||
will cause a core dump), but maybe we can successfully
|
||
continue, so let's not. */
|
||
warning (_("\
|
||
(Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
|
||
paddress (get_objfile_arch (objfile), pc));
|
||
psymtab_to_symtab (objfile, ps);
|
||
return ps->get_compunit_symtab ();
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Find which partial symbol within a psymtab matches PC and SECTION.
|
||
Return NULL if none. */
|
||
|
||
static struct partial_symbol *
|
||
find_pc_sect_psymbol (struct objfile *objfile,
|
||
struct partial_symtab *psymtab, CORE_ADDR pc,
|
||
struct obj_section *section)
|
||
{
|
||
struct partial_symbol *best = NULL;
|
||
CORE_ADDR best_pc;
|
||
const CORE_ADDR textlow = psymtab->text_low (objfile);
|
||
|
||
gdb_assert (psymtab != NULL);
|
||
|
||
/* Cope with programs that start at address 0. */
|
||
best_pc = (textlow != 0) ? textlow - 1 : 0;
|
||
|
||
/* Search the global symbols as well as the static symbols, so that
|
||
find_pc_partial_function doesn't use a minimal symbol and thus
|
||
cache a bad endaddr. */
|
||
for (int i = 0; i < psymtab->n_global_syms; i++)
|
||
{
|
||
partial_symbol *p
|
||
= objfile->partial_symtabs->global_psymbols[psymtab->globals_offset
|
||
+ i];
|
||
|
||
if (p->domain == VAR_DOMAIN
|
||
&& p->aclass == LOC_BLOCK
|
||
&& pc >= p->address (objfile)
|
||
&& (p->address (objfile) > best_pc
|
||
|| (psymtab->text_low (objfile) == 0
|
||
&& best_pc == 0 && p->address (objfile) == 0)))
|
||
{
|
||
if (section != NULL) /* Match on a specific section. */
|
||
{
|
||
if (!matching_obj_sections (p->obj_section (objfile),
|
||
section))
|
||
continue;
|
||
}
|
||
best_pc = p->address (objfile);
|
||
best = p;
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < psymtab->n_static_syms; i++)
|
||
{
|
||
partial_symbol *p
|
||
= objfile->partial_symtabs->static_psymbols[psymtab->statics_offset
|
||
+ i];
|
||
|
||
if (p->domain == VAR_DOMAIN
|
||
&& p->aclass == LOC_BLOCK
|
||
&& pc >= p->address (objfile)
|
||
&& (p->address (objfile) > best_pc
|
||
|| (psymtab->text_low (objfile) == 0
|
||
&& best_pc == 0 && p->address (objfile) == 0)))
|
||
{
|
||
if (section != NULL) /* Match on a specific section. */
|
||
{
|
||
if (!matching_obj_sections (p->obj_section (objfile),
|
||
section))
|
||
continue;
|
||
}
|
||
best_pc = p->address (objfile);
|
||
best = p;
|
||
}
|
||
}
|
||
|
||
return best;
|
||
}
|
||
|
||
/* Psymtab version of lookup_symbol. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static struct compunit_symtab *
|
||
psym_lookup_symbol (struct objfile *objfile,
|
||
block_enum block_index, const char *name,
|
||
const domain_enum domain)
|
||
{
|
||
const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
|
||
struct compunit_symtab *stab_best = NULL;
|
||
|
||
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
|
||
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
if (!ps->readin_p () && lookup_partial_symbol (objfile, ps, name,
|
||
psymtab_index, domain))
|
||
{
|
||
struct symbol *sym, *with_opaque = NULL;
|
||
struct compunit_symtab *stab = psymtab_to_symtab (objfile, ps);
|
||
/* Note: While psymtab_to_symtab can return NULL if the
|
||
partial symtab is empty, we can assume it won't here
|
||
because lookup_partial_symbol succeeded. */
|
||
const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
|
||
const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
|
||
|
||
sym = block_find_symbol (block, name, domain,
|
||
block_find_non_opaque_type_preferred,
|
||
&with_opaque);
|
||
|
||
/* Some caution must be observed with overloaded functions
|
||
and methods, since the index will not contain any overload
|
||
information (but NAME might contain it). */
|
||
|
||
if (sym != NULL
|
||
&& SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
|
||
return stab;
|
||
if (with_opaque != NULL
|
||
&& SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
|
||
stab_best = stab;
|
||
|
||
/* Keep looking through other psymtabs. */
|
||
}
|
||
}
|
||
|
||
return stab_best;
|
||
}
|
||
|
||
/* Returns true if PSYM matches LOOKUP_NAME. */
|
||
|
||
static bool
|
||
psymbol_name_matches (partial_symbol *psym,
|
||
const lookup_name_info &lookup_name)
|
||
{
|
||
const language_defn *lang = language_def (psym->ginfo.language ());
|
||
symbol_name_matcher_ftype *name_match
|
||
= get_symbol_name_matcher (lang, lookup_name);
|
||
return name_match (psym->ginfo.search_name (), lookup_name, NULL);
|
||
}
|
||
|
||
/* Look in PST for a symbol in DOMAIN whose name matches NAME. Search
|
||
the global block of PST if GLOBAL, and otherwise the static block.
|
||
MATCH is the comparison operation that returns true iff MATCH (s,
|
||
NAME), where s is a SYMBOL_SEARCH_NAME. If ORDERED_COMPARE is
|
||
non-null, the symbols in the block are assumed to be ordered
|
||
according to it (allowing binary search). It must be compatible
|
||
with MATCH. Returns the symbol, if found, and otherwise NULL. */
|
||
|
||
static struct partial_symbol *
|
||
match_partial_symbol (struct objfile *objfile,
|
||
struct partial_symtab *pst, int global,
|
||
const lookup_name_info &name, domain_enum domain,
|
||
symbol_compare_ftype *ordered_compare)
|
||
{
|
||
struct partial_symbol **start, **psym;
|
||
struct partial_symbol **top, **real_top, **bottom, **center;
|
||
int length = (global ? pst->n_global_syms : pst->n_static_syms);
|
||
int do_linear_search = 1;
|
||
|
||
if (length == 0)
|
||
return NULL;
|
||
|
||
start = (global ?
|
||
&objfile->partial_symtabs->global_psymbols[pst->globals_offset] :
|
||
&objfile->partial_symtabs->static_psymbols[pst->statics_offset]);
|
||
|
||
if (global && ordered_compare) /* Can use a binary search. */
|
||
{
|
||
do_linear_search = 0;
|
||
|
||
/* Binary search. This search is guaranteed to end with center
|
||
pointing at the earliest partial symbol whose name might be
|
||
correct. At that point *all* partial symbols with an
|
||
appropriate name will be checked against the correct
|
||
domain. */
|
||
|
||
bottom = start;
|
||
top = start + length - 1;
|
||
real_top = top;
|
||
while (top > bottom)
|
||
{
|
||
center = bottom + (top - bottom) / 2;
|
||
gdb_assert (center < top);
|
||
|
||
enum language lang = (*center)->ginfo.language ();
|
||
const char *lang_ln
|
||
= name.language_lookup_name (lang).c_str ();
|
||
|
||
if (ordered_compare ((*center)->ginfo.search_name (),
|
||
lang_ln) >= 0)
|
||
top = center;
|
||
else
|
||
bottom = center + 1;
|
||
}
|
||
gdb_assert (top == bottom);
|
||
|
||
while (top <= real_top
|
||
&& psymbol_name_matches (*top, name))
|
||
{
|
||
if (symbol_matches_domain ((*top)->ginfo.language (),
|
||
(*top)->domain, domain))
|
||
return *top;
|
||
top++;
|
||
}
|
||
}
|
||
|
||
/* Can't use a binary search or else we found during the binary search that
|
||
we should also do a linear search. */
|
||
|
||
if (do_linear_search)
|
||
{
|
||
for (psym = start; psym < start + length; psym++)
|
||
{
|
||
if (symbol_matches_domain ((*psym)->ginfo.language (),
|
||
(*psym)->domain, domain)
|
||
&& psymbol_name_matches (*psym, name))
|
||
return *psym;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns the name used to search psymtabs. Unlike symtabs, psymtabs do
|
||
not contain any method/function instance information (since this would
|
||
force reading type information while reading psymtabs). Therefore,
|
||
if NAME contains overload information, it must be stripped before searching
|
||
psymtabs. */
|
||
|
||
static gdb::unique_xmalloc_ptr<char>
|
||
psymtab_search_name (const char *name)
|
||
{
|
||
switch (current_language->la_language)
|
||
{
|
||
case language_cplus:
|
||
{
|
||
if (strchr (name, '('))
|
||
{
|
||
gdb::unique_xmalloc_ptr<char> ret = cp_remove_params (name);
|
||
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return make_unique_xstrdup (name);
|
||
}
|
||
|
||
/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
|
||
Check the global symbols if GLOBAL, the static symbols if not. */
|
||
|
||
static struct partial_symbol *
|
||
lookup_partial_symbol (struct objfile *objfile,
|
||
struct partial_symtab *pst, const char *name,
|
||
int global, domain_enum domain)
|
||
{
|
||
struct partial_symbol **start, **psym;
|
||
struct partial_symbol **top, **real_top, **bottom, **center;
|
||
int length = (global ? pst->n_global_syms : pst->n_static_syms);
|
||
int do_linear_search = 1;
|
||
|
||
if (length == 0)
|
||
return NULL;
|
||
|
||
gdb::unique_xmalloc_ptr<char> search_name = psymtab_search_name (name);
|
||
|
||
lookup_name_info lookup_name (search_name.get (), symbol_name_match_type::FULL);
|
||
|
||
start = (global ?
|
||
&objfile->partial_symtabs->global_psymbols[pst->globals_offset] :
|
||
&objfile->partial_symtabs->static_psymbols[pst->statics_offset]);
|
||
|
||
if (global) /* This means we can use a binary search. */
|
||
{
|
||
do_linear_search = 0;
|
||
|
||
/* Binary search. This search is guaranteed to end with center
|
||
pointing at the earliest partial symbol whose name might be
|
||
correct. At that point *all* partial symbols with an
|
||
appropriate name will be checked against the correct
|
||
domain. */
|
||
|
||
bottom = start;
|
||
top = start + length - 1;
|
||
real_top = top;
|
||
while (top > bottom)
|
||
{
|
||
center = bottom + (top - bottom) / 2;
|
||
if (!(center < top))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
if (strcmp_iw_ordered ((*center)->ginfo.search_name (),
|
||
search_name.get ()) >= 0)
|
||
{
|
||
top = center;
|
||
}
|
||
else
|
||
{
|
||
bottom = center + 1;
|
||
}
|
||
}
|
||
if (!(top == bottom))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
|
||
/* For `case_sensitivity == case_sensitive_off' strcmp_iw_ordered will
|
||
search more exactly than what matches SYMBOL_MATCHES_SEARCH_NAME. */
|
||
while (top >= start && symbol_matches_search_name (&(*top)->ginfo,
|
||
lookup_name))
|
||
top--;
|
||
|
||
/* Fixup to have a symbol which matches SYMBOL_MATCHES_SEARCH_NAME. */
|
||
top++;
|
||
|
||
while (top <= real_top && symbol_matches_search_name (&(*top)->ginfo,
|
||
lookup_name))
|
||
{
|
||
if (symbol_matches_domain ((*top)->ginfo.language (),
|
||
(*top)->domain, domain))
|
||
return *top;
|
||
top++;
|
||
}
|
||
}
|
||
|
||
/* Can't use a binary search or else we found during the binary search that
|
||
we should also do a linear search. */
|
||
|
||
if (do_linear_search)
|
||
{
|
||
for (psym = start; psym < start + length; psym++)
|
||
{
|
||
if (symbol_matches_domain ((*psym)->ginfo.language (),
|
||
(*psym)->domain, domain)
|
||
&& symbol_matches_search_name (&(*psym)->ginfo, lookup_name))
|
||
return *psym;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Get the symbol table that corresponds to a partial_symtab.
|
||
This is fast after the first time you do it.
|
||
The result will be NULL if the primary symtab has no symbols,
|
||
which can happen. Otherwise the result is the primary symtab
|
||
that contains PST. */
|
||
|
||
static struct compunit_symtab *
|
||
psymtab_to_symtab (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
/* If it is a shared psymtab, find an unshared psymtab that includes
|
||
it. Any such psymtab will do. */
|
||
while (pst->user != NULL)
|
||
pst = pst->user;
|
||
|
||
/* If it's been looked up before, return it. */
|
||
if (pst->get_compunit_symtab ())
|
||
return pst->get_compunit_symtab ();
|
||
|
||
/* If it has not yet been read in, read it. */
|
||
if (!pst->readin_p ())
|
||
{
|
||
scoped_restore decrementer = increment_reading_symtab ();
|
||
|
||
if (info_verbose)
|
||
{
|
||
printf_filtered (_("Reading in symbols for %s...\n"),
|
||
pst->filename);
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
pst->read_symtab (objfile);
|
||
}
|
||
|
||
return pst->get_compunit_symtab ();
|
||
}
|
||
|
||
/* Psymtab version of find_last_source_symtab. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static struct symtab *
|
||
psym_find_last_source_symtab (struct objfile *ofp)
|
||
{
|
||
struct partial_symtab *cs_pst = NULL;
|
||
|
||
for (partial_symtab *ps : require_partial_symbols (ofp, true))
|
||
{
|
||
const char *name = ps->filename;
|
||
int len = strlen (name);
|
||
|
||
if (!(len > 2 && (strcmp (&name[len - 2], ".h") == 0
|
||
|| strcmp (name, "<<C++-namespaces>>") == 0)))
|
||
cs_pst = ps;
|
||
}
|
||
|
||
if (cs_pst)
|
||
{
|
||
if (cs_pst->readin_p ())
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("select_source_symtab: "
|
||
"readin pst found and no symtabs."));
|
||
}
|
||
else
|
||
{
|
||
struct compunit_symtab *cust = psymtab_to_symtab (ofp, cs_pst);
|
||
|
||
if (cust == NULL)
|
||
return NULL;
|
||
return compunit_primary_filetab (cust);
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Psymtab version of forget_cached_source_info. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_forget_cached_source_info (struct objfile *objfile)
|
||
{
|
||
for (partial_symtab *pst : require_partial_symbols (objfile, true))
|
||
{
|
||
if (pst->fullname != NULL)
|
||
{
|
||
xfree (pst->fullname);
|
||
pst->fullname = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_partial_symbols (struct gdbarch *gdbarch, struct objfile *objfile,
|
||
struct partial_symbol **p, int count, const char *what,
|
||
struct ui_file *outfile)
|
||
{
|
||
fprintf_filtered (outfile, " %s partial symbols:\n", what);
|
||
while (count-- > 0)
|
||
{
|
||
QUIT;
|
||
fprintf_filtered (outfile, " `%s'", (*p)->ginfo.linkage_name ());
|
||
if ((*p)->ginfo.demangled_name () != NULL)
|
||
{
|
||
fprintf_filtered (outfile, " `%s'",
|
||
(*p)->ginfo.demangled_name ());
|
||
}
|
||
fputs_filtered (", ", outfile);
|
||
switch ((*p)->domain)
|
||
{
|
||
case UNDEF_DOMAIN:
|
||
fputs_filtered ("undefined domain, ", outfile);
|
||
break;
|
||
case VAR_DOMAIN:
|
||
/* This is the usual thing -- don't print it. */
|
||
break;
|
||
case STRUCT_DOMAIN:
|
||
fputs_filtered ("struct domain, ", outfile);
|
||
break;
|
||
case MODULE_DOMAIN:
|
||
fputs_filtered ("module domain, ", outfile);
|
||
break;
|
||
case LABEL_DOMAIN:
|
||
fputs_filtered ("label domain, ", outfile);
|
||
break;
|
||
case COMMON_BLOCK_DOMAIN:
|
||
fputs_filtered ("common block domain, ", outfile);
|
||
break;
|
||
default:
|
||
fputs_filtered ("<invalid domain>, ", outfile);
|
||
break;
|
||
}
|
||
switch ((*p)->aclass)
|
||
{
|
||
case LOC_UNDEF:
|
||
fputs_filtered ("undefined", outfile);
|
||
break;
|
||
case LOC_CONST:
|
||
fputs_filtered ("constant int", outfile);
|
||
break;
|
||
case LOC_STATIC:
|
||
fputs_filtered ("static", outfile);
|
||
break;
|
||
case LOC_REGISTER:
|
||
fputs_filtered ("register", outfile);
|
||
break;
|
||
case LOC_ARG:
|
||
fputs_filtered ("pass by value", outfile);
|
||
break;
|
||
case LOC_REF_ARG:
|
||
fputs_filtered ("pass by reference", outfile);
|
||
break;
|
||
case LOC_REGPARM_ADDR:
|
||
fputs_filtered ("register address parameter", outfile);
|
||
break;
|
||
case LOC_LOCAL:
|
||
fputs_filtered ("stack parameter", outfile);
|
||
break;
|
||
case LOC_TYPEDEF:
|
||
fputs_filtered ("type", outfile);
|
||
break;
|
||
case LOC_LABEL:
|
||
fputs_filtered ("label", outfile);
|
||
break;
|
||
case LOC_BLOCK:
|
||
fputs_filtered ("function", outfile);
|
||
break;
|
||
case LOC_CONST_BYTES:
|
||
fputs_filtered ("constant bytes", outfile);
|
||
break;
|
||
case LOC_UNRESOLVED:
|
||
fputs_filtered ("unresolved", outfile);
|
||
break;
|
||
case LOC_OPTIMIZED_OUT:
|
||
fputs_filtered ("optimized out", outfile);
|
||
break;
|
||
case LOC_COMPUTED:
|
||
fputs_filtered ("computed at runtime", outfile);
|
||
break;
|
||
default:
|
||
fputs_filtered ("<invalid location>", outfile);
|
||
break;
|
||
}
|
||
fputs_filtered (", ", outfile);
|
||
fputs_filtered (paddress (gdbarch, (*p)->unrelocated_address ()), outfile);
|
||
fprintf_filtered (outfile, "\n");
|
||
p++;
|
||
}
|
||
}
|
||
|
||
static void
|
||
dump_psymtab (struct objfile *objfile, struct partial_symtab *psymtab,
|
||
struct ui_file *outfile)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
int i;
|
||
|
||
if (psymtab->anonymous)
|
||
{
|
||
fprintf_filtered (outfile, "\nAnonymous partial symtab (%s) ",
|
||
psymtab->filename);
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (outfile, "\nPartial symtab for source file %s ",
|
||
psymtab->filename);
|
||
}
|
||
fprintf_filtered (outfile, "(object ");
|
||
gdb_print_host_address (psymtab, outfile);
|
||
fprintf_filtered (outfile, ")\n\n");
|
||
fprintf_filtered (outfile, " Read from object file %s (",
|
||
objfile_name (objfile));
|
||
gdb_print_host_address (objfile, outfile);
|
||
fprintf_filtered (outfile, ")\n");
|
||
|
||
if (psymtab->readin_p ())
|
||
{
|
||
fprintf_filtered (outfile,
|
||
" Full symtab was read (at ");
|
||
gdb_print_host_address (psymtab->get_compunit_symtab (), outfile);
|
||
fprintf_filtered (outfile, ")\n");
|
||
}
|
||
|
||
fprintf_filtered (outfile, " Symbols cover text addresses ");
|
||
fputs_filtered (paddress (gdbarch, psymtab->text_low (objfile)), outfile);
|
||
fprintf_filtered (outfile, "-");
|
||
fputs_filtered (paddress (gdbarch, psymtab->text_high (objfile)), outfile);
|
||
fprintf_filtered (outfile, "\n");
|
||
fprintf_filtered (outfile, " Address map supported - %s.\n",
|
||
psymtab->psymtabs_addrmap_supported ? "yes" : "no");
|
||
fprintf_filtered (outfile, " Depends on %d other partial symtabs.\n",
|
||
psymtab->number_of_dependencies);
|
||
for (i = 0; i < psymtab->number_of_dependencies; i++)
|
||
{
|
||
fprintf_filtered (outfile, " %d ", i);
|
||
gdb_print_host_address (psymtab->dependencies[i], outfile);
|
||
fprintf_filtered (outfile, " %s\n",
|
||
psymtab->dependencies[i]->filename);
|
||
}
|
||
if (psymtab->user != NULL)
|
||
{
|
||
fprintf_filtered (outfile, " Shared partial symtab with user ");
|
||
gdb_print_host_address (psymtab->user, outfile);
|
||
fprintf_filtered (outfile, "\n");
|
||
}
|
||
if (psymtab->n_global_syms > 0)
|
||
{
|
||
print_partial_symbols
|
||
(gdbarch, objfile,
|
||
&objfile->partial_symtabs->global_psymbols[psymtab->globals_offset],
|
||
psymtab->n_global_syms, "Global", outfile);
|
||
}
|
||
if (psymtab->n_static_syms > 0)
|
||
{
|
||
print_partial_symbols
|
||
(gdbarch, objfile,
|
||
&objfile->partial_symtabs->static_psymbols[psymtab->statics_offset],
|
||
psymtab->n_static_syms, "Static", outfile);
|
||
}
|
||
fprintf_filtered (outfile, "\n");
|
||
}
|
||
|
||
/* Psymtab version of print_stats. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_print_stats (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
i = 0;
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
if (!ps->readin_p ())
|
||
i++;
|
||
}
|
||
printf_filtered (_(" Number of psym tables (not yet expanded): %d\n"), i);
|
||
}
|
||
|
||
/* Psymtab version of dump. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_dump (struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
if (objfile->partial_symtabs->psymtabs)
|
||
{
|
||
printf_filtered ("Psymtabs:\n");
|
||
for (psymtab = objfile->partial_symtabs->psymtabs;
|
||
psymtab != NULL;
|
||
psymtab = psymtab->next)
|
||
{
|
||
printf_filtered ("%s at ",
|
||
psymtab->filename);
|
||
gdb_print_host_address (psymtab, gdb_stdout);
|
||
printf_filtered (", ");
|
||
wrap_here (" ");
|
||
}
|
||
printf_filtered ("\n\n");
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of expand_symtabs_for_function. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_symtabs_for_function (struct objfile *objfile,
|
||
const char *func_name)
|
||
{
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
if (ps->readin_p ())
|
||
continue;
|
||
|
||
if ((lookup_partial_symbol (objfile, ps, func_name, 1, VAR_DOMAIN)
|
||
!= NULL)
|
||
|| (lookup_partial_symbol (objfile, ps, func_name, 0, VAR_DOMAIN)
|
||
!= NULL))
|
||
psymtab_to_symtab (objfile, ps);
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of expand_all_symtabs. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_all_symtabs (struct objfile *objfile)
|
||
{
|
||
for (partial_symtab *psymtab : require_partial_symbols (objfile, true))
|
||
psymtab_to_symtab (objfile, psymtab);
|
||
}
|
||
|
||
/* Psymtab version of expand_symtabs_with_fullname. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_symtabs_with_fullname (struct objfile *objfile,
|
||
const char *fullname)
|
||
{
|
||
for (partial_symtab *p : require_partial_symbols (objfile, true))
|
||
{
|
||
/* Anonymous psymtabs don't have a name of a source file. */
|
||
if (p->anonymous)
|
||
continue;
|
||
|
||
/* psymtab_to_fullname tries to open the file which is slow.
|
||
Don't call it if we know the basenames don't match. */
|
||
if ((basenames_may_differ
|
||
|| filename_cmp (lbasename (fullname), lbasename (p->filename)) == 0)
|
||
&& filename_cmp (fullname, psymtab_to_fullname (p)) == 0)
|
||
psymtab_to_symtab (objfile, p);
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of map_symbol_filenames. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_map_symbol_filenames (struct objfile *objfile,
|
||
symbol_filename_ftype *fun, void *data,
|
||
int need_fullname)
|
||
{
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
const char *fullname;
|
||
|
||
if (ps->readin_p ())
|
||
continue;
|
||
|
||
/* We can skip shared psymtabs here, because any file name will be
|
||
attached to the unshared psymtab. */
|
||
if (ps->user != NULL)
|
||
continue;
|
||
|
||
/* Anonymous psymtabs don't have a file name. */
|
||
if (ps->anonymous)
|
||
continue;
|
||
|
||
QUIT;
|
||
if (need_fullname)
|
||
fullname = psymtab_to_fullname (ps);
|
||
else
|
||
fullname = NULL;
|
||
(*fun) (ps->filename, fullname, data);
|
||
}
|
||
}
|
||
|
||
/* Finds the fullname that a partial_symtab represents.
|
||
|
||
If this functions finds the fullname, it will save it in ps->fullname
|
||
and it will also return the value.
|
||
|
||
If this function fails to find the file that this partial_symtab represents,
|
||
NULL will be returned and ps->fullname will be set to NULL. */
|
||
|
||
static const char *
|
||
psymtab_to_fullname (struct partial_symtab *ps)
|
||
{
|
||
gdb_assert (!ps->anonymous);
|
||
|
||
/* Use cached copy if we have it.
|
||
We rely on forget_cached_source_info being called appropriately
|
||
to handle cases like the file being moved. */
|
||
if (ps->fullname == NULL)
|
||
{
|
||
gdb::unique_xmalloc_ptr<char> fullname;
|
||
scoped_fd fd = find_and_open_source (ps->filename, ps->dirname,
|
||
&fullname);
|
||
ps->fullname = fullname.release ();
|
||
|
||
if (fd.get () < 0)
|
||
{
|
||
/* rewrite_source_path would be applied by find_and_open_source, we
|
||
should report the pathname where GDB tried to find the file. */
|
||
|
||
if (ps->dirname == NULL || IS_ABSOLUTE_PATH (ps->filename))
|
||
fullname.reset (xstrdup (ps->filename));
|
||
else
|
||
fullname.reset (concat (ps->dirname, SLASH_STRING,
|
||
ps->filename, (char *) NULL));
|
||
|
||
ps->fullname = rewrite_source_path (fullname.get ()).release ();
|
||
if (ps->fullname == NULL)
|
||
ps->fullname = fullname.release ();
|
||
}
|
||
}
|
||
|
||
return ps->fullname;
|
||
}
|
||
|
||
/* Psymtab version of map_matching_symbols. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_map_matching_symbols
|
||
(struct objfile *objfile,
|
||
const lookup_name_info &name, domain_enum domain,
|
||
int global,
|
||
gdb::function_view<symbol_found_callback_ftype> callback,
|
||
symbol_compare_ftype *ordered_compare)
|
||
{
|
||
const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
|
||
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
QUIT;
|
||
if (ps->readin_p ()
|
||
|| match_partial_symbol (objfile, ps, global, name, domain,
|
||
ordered_compare))
|
||
{
|
||
struct compunit_symtab *cust = psymtab_to_symtab (objfile, ps);
|
||
const struct block *block;
|
||
|
||
if (cust == NULL)
|
||
continue;
|
||
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
|
||
if (!iterate_over_symbols_terminated (block, name,
|
||
domain, callback))
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A helper for psym_expand_symtabs_matching that handles searching
|
||
included psymtabs. This returns true if a symbol is found, and
|
||
false otherwise. It also updates the 'searched_flag' on the
|
||
various psymtabs that it searches. */
|
||
|
||
static bool
|
||
recursively_search_psymtabs
|
||
(struct partial_symtab *ps,
|
||
struct objfile *objfile,
|
||
enum search_domain domain,
|
||
const lookup_name_info &lookup_name,
|
||
gdb::function_view<expand_symtabs_symbol_matcher_ftype> sym_matcher)
|
||
{
|
||
int keep_going = 1;
|
||
enum psymtab_search_status result = PST_SEARCHED_AND_NOT_FOUND;
|
||
int i;
|
||
|
||
if (ps->searched_flag != PST_NOT_SEARCHED)
|
||
return ps->searched_flag == PST_SEARCHED_AND_FOUND;
|
||
|
||
/* Recurse into shared psymtabs first, because they may have already
|
||
been searched, and this could save some time. */
|
||
for (i = 0; i < ps->number_of_dependencies; ++i)
|
||
{
|
||
int r;
|
||
|
||
/* Skip non-shared dependencies, these are handled elsewhere. */
|
||
if (ps->dependencies[i]->user == NULL)
|
||
continue;
|
||
|
||
r = recursively_search_psymtabs (ps->dependencies[i],
|
||
objfile, domain, lookup_name,
|
||
sym_matcher);
|
||
if (r != 0)
|
||
{
|
||
ps->searched_flag = PST_SEARCHED_AND_FOUND;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
partial_symbol **gbound
|
||
= (objfile->partial_symtabs->global_psymbols.data ()
|
||
+ ps->globals_offset + ps->n_global_syms);
|
||
partial_symbol **sbound
|
||
= (objfile->partial_symtabs->static_psymbols.data ()
|
||
+ ps->statics_offset + ps->n_static_syms);
|
||
partial_symbol **bound = gbound;
|
||
|
||
/* Go through all of the symbols stored in a partial
|
||
symtab in one loop. */
|
||
partial_symbol **psym = (objfile->partial_symtabs->global_psymbols.data ()
|
||
+ ps->globals_offset);
|
||
while (keep_going)
|
||
{
|
||
if (psym >= bound)
|
||
{
|
||
if (bound == gbound && ps->n_static_syms != 0)
|
||
{
|
||
psym = (objfile->partial_symtabs->static_psymbols.data ()
|
||
+ ps->statics_offset);
|
||
bound = sbound;
|
||
}
|
||
else
|
||
keep_going = 0;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
QUIT;
|
||
|
||
if ((domain == ALL_DOMAIN
|
||
|| (domain == MODULES_DOMAIN
|
||
&& (*psym)->domain == MODULE_DOMAIN)
|
||
|| (domain == VARIABLES_DOMAIN
|
||
&& (*psym)->aclass != LOC_TYPEDEF
|
||
&& (*psym)->aclass != LOC_BLOCK)
|
||
|| (domain == FUNCTIONS_DOMAIN
|
||
&& (*psym)->aclass == LOC_BLOCK)
|
||
|| (domain == TYPES_DOMAIN
|
||
&& (*psym)->aclass == LOC_TYPEDEF))
|
||
&& psymbol_name_matches (*psym, lookup_name)
|
||
&& (sym_matcher == NULL
|
||
|| sym_matcher ((*psym)->ginfo.search_name ())))
|
||
{
|
||
/* Found a match, so notify our caller. */
|
||
result = PST_SEARCHED_AND_FOUND;
|
||
keep_going = 0;
|
||
}
|
||
}
|
||
psym++;
|
||
}
|
||
|
||
ps->searched_flag = result;
|
||
return result == PST_SEARCHED_AND_FOUND;
|
||
}
|
||
|
||
/* Psymtab version of expand_symtabs_matching. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static void
|
||
psym_expand_symtabs_matching
|
||
(struct objfile *objfile,
|
||
gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
|
||
const lookup_name_info &lookup_name_in,
|
||
gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
|
||
gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
|
||
enum search_domain domain)
|
||
{
|
||
lookup_name_info lookup_name = lookup_name_in.make_ignore_params ();
|
||
|
||
/* Clear the search flags. */
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
ps->searched_flag = PST_NOT_SEARCHED;
|
||
|
||
for (partial_symtab *ps : objfile->psymtabs ())
|
||
{
|
||
QUIT;
|
||
|
||
if (ps->readin_p ())
|
||
continue;
|
||
|
||
/* We skip shared psymtabs because file-matching doesn't apply
|
||
to them; but we search them later in the loop. */
|
||
if (ps->user != NULL)
|
||
continue;
|
||
|
||
if (file_matcher)
|
||
{
|
||
bool match;
|
||
|
||
if (ps->anonymous)
|
||
continue;
|
||
|
||
match = file_matcher (ps->filename, false);
|
||
if (!match)
|
||
{
|
||
/* Before we invoke realpath, which can get expensive when many
|
||
files are involved, do a quick comparison of the basenames. */
|
||
if (basenames_may_differ
|
||
|| file_matcher (lbasename (ps->filename), true))
|
||
match = file_matcher (psymtab_to_fullname (ps), false);
|
||
}
|
||
if (!match)
|
||
continue;
|
||
}
|
||
|
||
if (recursively_search_psymtabs (ps, objfile, domain,
|
||
lookup_name, symbol_matcher))
|
||
{
|
||
struct compunit_symtab *symtab =
|
||
psymtab_to_symtab (objfile, ps);
|
||
|
||
if (expansion_notify != NULL)
|
||
expansion_notify (symtab);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Psymtab version of has_symbols. See its definition in
|
||
the definition of quick_symbol_functions in symfile.h. */
|
||
|
||
static int
|
||
psym_has_symbols (struct objfile *objfile)
|
||
{
|
||
return objfile->partial_symtabs->psymtabs != NULL;
|
||
}
|
||
|
||
/* Helper function for psym_find_compunit_symtab_by_address that fills
|
||
in psymbol_map for a given range of psymbols. */
|
||
|
||
static void
|
||
psym_fill_psymbol_map (struct objfile *objfile,
|
||
struct partial_symtab *psymtab,
|
||
std::set<CORE_ADDR> *seen_addrs,
|
||
const std::vector<partial_symbol *> &symbols,
|
||
int start,
|
||
int length)
|
||
{
|
||
for (int i = 0; i < length; ++i)
|
||
{
|
||
struct partial_symbol *psym = symbols[start + i];
|
||
|
||
if (psym->aclass == LOC_STATIC)
|
||
{
|
||
CORE_ADDR addr = psym->address (objfile);
|
||
if (seen_addrs->find (addr) == seen_addrs->end ())
|
||
{
|
||
seen_addrs->insert (addr);
|
||
objfile->psymbol_map.emplace_back (addr, psymtab);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See find_compunit_symtab_by_address in quick_symbol_functions, in
|
||
symfile.h. */
|
||
|
||
static compunit_symtab *
|
||
psym_find_compunit_symtab_by_address (struct objfile *objfile,
|
||
CORE_ADDR address)
|
||
{
|
||
if (objfile->psymbol_map.empty ())
|
||
{
|
||
std::set<CORE_ADDR> seen_addrs;
|
||
|
||
for (partial_symtab *pst : require_partial_symbols (objfile, true))
|
||
{
|
||
psym_fill_psymbol_map (objfile, pst,
|
||
&seen_addrs,
|
||
objfile->partial_symtabs->global_psymbols,
|
||
pst->globals_offset,
|
||
pst->n_global_syms);
|
||
psym_fill_psymbol_map (objfile, pst,
|
||
&seen_addrs,
|
||
objfile->partial_symtabs->static_psymbols,
|
||
pst->statics_offset,
|
||
pst->n_static_syms);
|
||
}
|
||
|
||
objfile->psymbol_map.shrink_to_fit ();
|
||
|
||
std::sort (objfile->psymbol_map.begin (), objfile->psymbol_map.end (),
|
||
[] (const std::pair<CORE_ADDR, partial_symtab *> &a,
|
||
const std::pair<CORE_ADDR, partial_symtab *> &b)
|
||
{
|
||
return a.first < b.first;
|
||
});
|
||
}
|
||
|
||
auto iter = std::lower_bound
|
||
(objfile->psymbol_map.begin (), objfile->psymbol_map.end (), address,
|
||
[] (const std::pair<CORE_ADDR, partial_symtab *> &a,
|
||
CORE_ADDR b)
|
||
{
|
||
return a.first < b;
|
||
});
|
||
|
||
if (iter == objfile->psymbol_map.end () || iter->first != address)
|
||
return NULL;
|
||
|
||
return psymtab_to_symtab (objfile, iter->second);
|
||
}
|
||
|
||
const struct quick_symbol_functions psym_functions =
|
||
{
|
||
psym_has_symbols,
|
||
psym_find_last_source_symtab,
|
||
psym_forget_cached_source_info,
|
||
psym_map_symtabs_matching_filename,
|
||
psym_lookup_symbol,
|
||
psym_print_stats,
|
||
psym_dump,
|
||
psym_expand_symtabs_for_function,
|
||
psym_expand_all_symtabs,
|
||
psym_expand_symtabs_with_fullname,
|
||
psym_map_matching_symbols,
|
||
psym_expand_symtabs_matching,
|
||
psym_find_pc_sect_compunit_symtab,
|
||
psym_find_compunit_symtab_by_address,
|
||
psym_map_symbol_filenames
|
||
};
|
||
|
||
|
||
|
||
static void
|
||
sort_pst_symbols (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
/* Sort the global list; don't sort the static list. */
|
||
auto begin = objfile->partial_symtabs->global_psymbols.begin ();
|
||
std::advance (begin, pst->globals_offset);
|
||
|
||
/* The psymbols for this partial_symtab are currently at the end of the
|
||
vector. */
|
||
auto end = objfile->partial_symtabs->global_psymbols.end ();
|
||
|
||
std::sort (begin, end, [] (partial_symbol *s1, partial_symbol *s2)
|
||
{
|
||
return strcmp_iw_ordered (s1->ginfo.search_name (),
|
||
s2->ginfo.search_name ()) < 0;
|
||
});
|
||
}
|
||
|
||
/* Partially fill a partial symtab. It will be completely filled at
|
||
the end of the symbol list. */
|
||
|
||
partial_symtab::partial_symtab (const char *filename,
|
||
struct objfile *objfile,
|
||
CORE_ADDR textlow)
|
||
: partial_symtab (filename, objfile)
|
||
{
|
||
set_text_low (textlow);
|
||
set_text_high (raw_text_low ()); /* default */
|
||
|
||
auto *v1 = new std::vector<partial_symbol *>;
|
||
objfile->partial_symtabs->current_global_psymbols.push_back (v1);
|
||
auto *v2 = new std::vector<partial_symbol *>;
|
||
objfile->partial_symtabs->current_static_psymbols.push_back (v2);
|
||
}
|
||
|
||
/* Concat vectors V1 and V2. */
|
||
|
||
static void
|
||
concat (std::vector<partial_symbol *> *v1, std::vector<partial_symbol *> *v2)
|
||
{
|
||
v1->insert (v1->end (), v2->begin (), v2->end ());
|
||
v2->clear ();
|
||
}
|
||
|
||
/* Perform "finishing up" operations of a partial symtab. */
|
||
|
||
void
|
||
end_psymtab_common (struct objfile *objfile, struct partial_symtab *pst)
|
||
{
|
||
pst->globals_offset = objfile->partial_symtabs->global_psymbols.size ();
|
||
pst->statics_offset = objfile->partial_symtabs->static_psymbols.size ();
|
||
|
||
auto *current_global_psymbols
|
||
= objfile->partial_symtabs->current_global_psymbols.back ();
|
||
auto *current_static_psymbols
|
||
= objfile->partial_symtabs->current_static_psymbols.back ();
|
||
objfile->partial_symtabs->current_global_psymbols.pop_back ();
|
||
objfile->partial_symtabs->current_static_psymbols.pop_back ();
|
||
|
||
pst->n_global_syms
|
||
= current_global_psymbols->size ();
|
||
pst->n_static_syms
|
||
= current_static_psymbols->size ();
|
||
|
||
concat (&objfile->partial_symtabs->global_psymbols, current_global_psymbols);
|
||
concat (&objfile->partial_symtabs->static_psymbols, current_static_psymbols);
|
||
|
||
delete current_global_psymbols;
|
||
delete current_static_psymbols;
|
||
|
||
sort_pst_symbols (objfile, pst);
|
||
}
|
||
|
||
/* Calculate a hash code for the given partial symbol. The hash is
|
||
calculated using the symbol's value, language, domain, class
|
||
and name. These are the values which are set by
|
||
add_psymbol_to_bcache. */
|
||
|
||
static unsigned long
|
||
psymbol_hash (const void *addr, int length)
|
||
{
|
||
unsigned long h = 0;
|
||
struct partial_symbol *psymbol = (struct partial_symbol *) addr;
|
||
unsigned int lang = psymbol->ginfo.language ();
|
||
unsigned int domain = psymbol->domain;
|
||
unsigned int theclass = psymbol->aclass;
|
||
|
||
h = fast_hash (&psymbol->ginfo.value, sizeof (psymbol->ginfo.value), h);
|
||
h = fast_hash (&lang, sizeof (unsigned int), h);
|
||
h = fast_hash (&domain, sizeof (unsigned int), h);
|
||
h = fast_hash (&theclass, sizeof (unsigned int), h);
|
||
/* Note that psymbol names are interned via compute_and_set_names, so
|
||
there's no need to hash the contents of the name here. */
|
||
h = fast_hash (&psymbol->ginfo.m_name, sizeof (psymbol->ginfo.m_name), h);
|
||
|
||
return h;
|
||
}
|
||
|
||
/* Returns true if the symbol at addr1 equals the symbol at addr2.
|
||
For the comparison this function uses a symbols value,
|
||
language, domain, class and name. */
|
||
|
||
static int
|
||
psymbol_compare (const void *addr1, const void *addr2, int length)
|
||
{
|
||
struct partial_symbol *sym1 = (struct partial_symbol *) addr1;
|
||
struct partial_symbol *sym2 = (struct partial_symbol *) addr2;
|
||
|
||
return (memcmp (&sym1->ginfo.value, &sym2->ginfo.value,
|
||
sizeof (sym1->ginfo.value)) == 0
|
||
&& sym1->ginfo.language () == sym2->ginfo.language ()
|
||
&& sym1->domain == sym2->domain
|
||
&& sym1->aclass == sym2->aclass
|
||
/* Note that psymbol names are interned via
|
||
compute_and_set_names, so there's no need to compare the
|
||
contents of the name here. */
|
||
&& sym1->ginfo.linkage_name () == sym2->ginfo.linkage_name ());
|
||
}
|
||
|
||
/* Helper function, initialises partial symbol structure and stashes
|
||
it into objfile's bcache. Note that our caching mechanism will
|
||
use all fields of struct partial_symbol to determine hash value of the
|
||
structure. In other words, having two symbols with the same name but
|
||
different domain (or address) is possible and correct. */
|
||
|
||
static struct partial_symbol *
|
||
add_psymbol_to_bcache (gdb::string_view name, bool copy_name,
|
||
domain_enum domain,
|
||
enum address_class theclass,
|
||
short section,
|
||
CORE_ADDR coreaddr,
|
||
enum language language, struct objfile *objfile,
|
||
int *added)
|
||
{
|
||
struct partial_symbol psymbol;
|
||
memset (&psymbol, 0, sizeof (psymbol));
|
||
|
||
psymbol.set_unrelocated_address (coreaddr);
|
||
psymbol.ginfo.section = section;
|
||
psymbol.domain = domain;
|
||
psymbol.aclass = theclass;
|
||
psymbol.ginfo.set_language (language, objfile->partial_symtabs->obstack ());
|
||
psymbol.ginfo.compute_and_set_names (name, copy_name, objfile->per_bfd);
|
||
|
||
/* Stash the partial symbol away in the cache. */
|
||
return ((struct partial_symbol *)
|
||
objfile->partial_symtabs->psymbol_cache.insert
|
||
(&psymbol, sizeof (struct partial_symbol), added));
|
||
}
|
||
|
||
/* Helper function, adds partial symbol to the given partial symbol list. */
|
||
|
||
static void
|
||
append_psymbol_to_list (std::vector<partial_symbol *> *list,
|
||
struct partial_symbol *psym,
|
||
struct objfile *objfile)
|
||
{
|
||
list->push_back (psym);
|
||
OBJSTAT (objfile, n_psyms++);
|
||
}
|
||
|
||
/* See psympriv.h. */
|
||
|
||
void
|
||
add_psymbol_to_list (gdb::string_view name, bool copy_name,
|
||
domain_enum domain,
|
||
enum address_class theclass,
|
||
short section,
|
||
psymbol_placement where,
|
||
CORE_ADDR coreaddr,
|
||
enum language language, struct objfile *objfile)
|
||
{
|
||
struct partial_symbol *psym;
|
||
|
||
int added;
|
||
|
||
/* Stash the partial symbol away in the cache. */
|
||
psym = add_psymbol_to_bcache (name, copy_name, domain, theclass,
|
||
section, coreaddr, language, objfile, &added);
|
||
|
||
/* Do not duplicate global partial symbols. */
|
||
if (where == psymbol_placement::GLOBAL && !added)
|
||
return;
|
||
|
||
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
|
||
std::vector<partial_symbol *> *list
|
||
= (where == psymbol_placement::STATIC
|
||
? objfile->partial_symtabs->current_static_psymbols.back ()
|
||
: objfile->partial_symtabs->current_global_psymbols.back ());
|
||
append_psymbol_to_list (list, psym, objfile);
|
||
}
|
||
|
||
/* See psympriv.h. */
|
||
|
||
void
|
||
init_psymbol_list (struct objfile *objfile, int total_symbols)
|
||
{
|
||
if (objfile->partial_symtabs->global_psymbols.capacity () == 0
|
||
&& objfile->partial_symtabs->static_psymbols.capacity () == 0)
|
||
{
|
||
/* Current best guess is that approximately a twentieth of the
|
||
total symbols (in a debugging file) are global or static
|
||
oriented symbols, then multiply that by slop factor of
|
||
two. */
|
||
objfile->partial_symtabs->global_psymbols.reserve (total_symbols / 10);
|
||
objfile->partial_symtabs->static_psymbols.reserve (total_symbols / 10);
|
||
}
|
||
}
|
||
|
||
/* See psympriv.h. */
|
||
|
||
partial_symtab::partial_symtab (const char *filename_, struct objfile *objfile)
|
||
: searched_flag (PST_NOT_SEARCHED),
|
||
text_low_valid (0),
|
||
text_high_valid (0)
|
||
{
|
||
objfile->partial_symtabs->install_psymtab (this);
|
||
|
||
filename = objfile->intern (filename_);
|
||
|
||
if (symtab_create_debug)
|
||
{
|
||
/* Be a bit clever with debugging messages, and don't print objfile
|
||
every time, only when it changes. */
|
||
static char *last_objfile_name = NULL;
|
||
|
||
if (last_objfile_name == NULL
|
||
|| strcmp (last_objfile_name, objfile_name (objfile)) != 0)
|
||
{
|
||
xfree (last_objfile_name);
|
||
last_objfile_name = xstrdup (objfile_name (objfile));
|
||
fprintf_filtered (gdb_stdlog,
|
||
"Creating one or more psymtabs for objfile %s ...\n",
|
||
last_objfile_name);
|
||
}
|
||
fprintf_filtered (gdb_stdlog,
|
||
"Created psymtab %s for module %s.\n",
|
||
host_address_to_string (this), filename);
|
||
}
|
||
}
|
||
|
||
/* See psympriv.h. */
|
||
|
||
void
|
||
partial_symtab::read_dependencies (struct objfile *objfile)
|
||
{
|
||
for (int i = 0; i < number_of_dependencies; ++i)
|
||
{
|
||
if (!dependencies[i]->readin_p ()
|
||
&& dependencies[i]->user == NULL)
|
||
{
|
||
/* Inform about additional files to be read in. */
|
||
if (info_verbose)
|
||
{
|
||
fputs_filtered (" ", gdb_stdout);
|
||
wrap_here ("");
|
||
fputs_filtered ("and ", gdb_stdout);
|
||
wrap_here ("");
|
||
printf_filtered ("%s...", dependencies[i]->filename);
|
||
wrap_here (""); /* Flush output */
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
dependencies[i]->expand_psymtab (objfile);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void
|
||
psymtab_storage::discard_psymtab (struct partial_symtab *pst)
|
||
{
|
||
struct partial_symtab **prev_pst;
|
||
|
||
/* From dbxread.c:
|
||
Empty psymtabs happen as a result of header files which don't
|
||
have any symbols in them. There can be a lot of them. But this
|
||
check is wrong, in that a psymtab with N_SLINE entries but
|
||
nothing else is not empty, but we don't realize that. Fixing
|
||
that without slowing things down might be tricky. */
|
||
|
||
/* First, snip it out of the psymtab chain. */
|
||
|
||
prev_pst = &psymtabs;
|
||
while ((*prev_pst) != pst)
|
||
prev_pst = &((*prev_pst)->next);
|
||
(*prev_pst) = pst->next;
|
||
delete pst;
|
||
}
|
||
|
||
|
||
|
||
/* We need to pass a couple of items to the addrmap_foreach function,
|
||
so use a struct. */
|
||
|
||
struct dump_psymtab_addrmap_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct partial_symtab *psymtab;
|
||
struct ui_file *outfile;
|
||
|
||
/* Non-zero if the previously printed addrmap entry was for PSYMTAB.
|
||
If so, we want to print the next one as well (since the next addrmap
|
||
entry defines the end of the range). */
|
||
int previous_matched;
|
||
};
|
||
|
||
/* Helper function for dump_psymtab_addrmap to print an addrmap entry. */
|
||
|
||
static int
|
||
dump_psymtab_addrmap_1 (void *datap, CORE_ADDR start_addr, void *obj)
|
||
{
|
||
struct dump_psymtab_addrmap_data *data
|
||
= (struct dump_psymtab_addrmap_data *) datap;
|
||
struct gdbarch *gdbarch = get_objfile_arch (data->objfile);
|
||
struct partial_symtab *addrmap_psymtab = (struct partial_symtab *) obj;
|
||
const char *psymtab_address_or_end = NULL;
|
||
|
||
QUIT;
|
||
|
||
if (data->psymtab == NULL
|
||
|| data->psymtab == addrmap_psymtab)
|
||
psymtab_address_or_end = host_address_to_string (addrmap_psymtab);
|
||
else if (data->previous_matched)
|
||
psymtab_address_or_end = "<ends here>";
|
||
|
||
if (data->psymtab == NULL
|
||
|| data->psymtab == addrmap_psymtab
|
||
|| data->previous_matched)
|
||
{
|
||
fprintf_filtered (data->outfile, " %s%s %s\n",
|
||
data->psymtab != NULL ? " " : "",
|
||
paddress (gdbarch, start_addr),
|
||
psymtab_address_or_end);
|
||
}
|
||
|
||
data->previous_matched = (data->psymtab == NULL
|
||
|| data->psymtab == addrmap_psymtab);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for maintenance_print_psymbols to print the addrmap
|
||
of PSYMTAB. If PSYMTAB is NULL print the entire addrmap. */
|
||
|
||
static void
|
||
dump_psymtab_addrmap (struct objfile *objfile, struct partial_symtab *psymtab,
|
||
struct ui_file *outfile)
|
||
{
|
||
struct dump_psymtab_addrmap_data addrmap_dump_data;
|
||
|
||
if ((psymtab == NULL
|
||
|| psymtab->psymtabs_addrmap_supported)
|
||
&& objfile->partial_symtabs->psymtabs_addrmap != NULL)
|
||
{
|
||
addrmap_dump_data.objfile = objfile;
|
||
addrmap_dump_data.psymtab = psymtab;
|
||
addrmap_dump_data.outfile = outfile;
|
||
addrmap_dump_data.previous_matched = 0;
|
||
fprintf_filtered (outfile, "%sddress map:\n",
|
||
psymtab == NULL ? "Entire a" : " A");
|
||
addrmap_foreach (objfile->partial_symtabs->psymtabs_addrmap,
|
||
dump_psymtab_addrmap_1, &addrmap_dump_data);
|
||
}
|
||
}
|
||
|
||
static void
|
||
maintenance_print_psymbols (const char *args, int from_tty)
|
||
{
|
||
struct ui_file *outfile = gdb_stdout;
|
||
char *address_arg = NULL, *source_arg = NULL, *objfile_arg = NULL;
|
||
int i, outfile_idx, found;
|
||
CORE_ADDR pc = 0;
|
||
struct obj_section *section = NULL;
|
||
|
||
dont_repeat ();
|
||
|
||
gdb_argv argv (args);
|
||
|
||
for (i = 0; argv != NULL && argv[i] != NULL; ++i)
|
||
{
|
||
if (strcmp (argv[i], "-pc") == 0)
|
||
{
|
||
if (argv[i + 1] == NULL)
|
||
error (_("Missing pc value"));
|
||
address_arg = argv[++i];
|
||
}
|
||
else if (strcmp (argv[i], "-source") == 0)
|
||
{
|
||
if (argv[i + 1] == NULL)
|
||
error (_("Missing source file"));
|
||
source_arg = argv[++i];
|
||
}
|
||
else if (strcmp (argv[i], "-objfile") == 0)
|
||
{
|
||
if (argv[i + 1] == NULL)
|
||
error (_("Missing objfile name"));
|
||
objfile_arg = argv[++i];
|
||
}
|
||
else if (strcmp (argv[i], "--") == 0)
|
||
{
|
||
/* End of options. */
|
||
++i;
|
||
break;
|
||
}
|
||
else if (argv[i][0] == '-')
|
||
{
|
||
/* Future proofing: Don't allow OUTFILE to begin with "-". */
|
||
error (_("Unknown option: %s"), argv[i]);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
outfile_idx = i;
|
||
|
||
if (address_arg != NULL && source_arg != NULL)
|
||
error (_("Must specify at most one of -pc and -source"));
|
||
|
||
stdio_file arg_outfile;
|
||
|
||
if (argv != NULL && argv[outfile_idx] != NULL)
|
||
{
|
||
if (argv[outfile_idx + 1] != NULL)
|
||
error (_("Junk at end of command"));
|
||
gdb::unique_xmalloc_ptr<char> outfile_name
|
||
(tilde_expand (argv[outfile_idx]));
|
||
if (!arg_outfile.open (outfile_name.get (), FOPEN_WT))
|
||
perror_with_name (outfile_name.get ());
|
||
outfile = &arg_outfile;
|
||
}
|
||
|
||
if (address_arg != NULL)
|
||
{
|
||
pc = parse_and_eval_address (address_arg);
|
||
/* If we fail to find a section, that's ok, try the lookup anyway. */
|
||
section = find_pc_section (pc);
|
||
}
|
||
|
||
found = 0;
|
||
for (objfile *objfile : current_program_space->objfiles ())
|
||
{
|
||
int printed_objfile_header = 0;
|
||
int print_for_objfile = 1;
|
||
|
||
QUIT;
|
||
if (objfile_arg != NULL)
|
||
print_for_objfile
|
||
= compare_filenames_for_search (objfile_name (objfile),
|
||
objfile_arg);
|
||
if (!print_for_objfile)
|
||
continue;
|
||
|
||
if (address_arg != NULL)
|
||
{
|
||
struct bound_minimal_symbol msymbol = { NULL, NULL };
|
||
|
||
/* We don't assume each pc has a unique objfile (this is for
|
||
debugging). */
|
||
struct partial_symtab *ps = find_pc_sect_psymtab (objfile, pc,
|
||
section, msymbol);
|
||
if (ps != NULL)
|
||
{
|
||
if (!printed_objfile_header)
|
||
{
|
||
outfile->printf ("\nPartial symtabs for objfile %s\n",
|
||
objfile_name (objfile));
|
||
printed_objfile_header = 1;
|
||
}
|
||
dump_psymtab (objfile, ps, outfile);
|
||
dump_psymtab_addrmap (objfile, ps, outfile);
|
||
found = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
int print_for_source = 0;
|
||
|
||
QUIT;
|
||
if (source_arg != NULL)
|
||
{
|
||
print_for_source
|
||
= compare_filenames_for_search (ps->filename, source_arg);
|
||
found = 1;
|
||
}
|
||
if (source_arg == NULL
|
||
|| print_for_source)
|
||
{
|
||
if (!printed_objfile_header)
|
||
{
|
||
outfile->printf ("\nPartial symtabs for objfile %s\n",
|
||
objfile_name (objfile));
|
||
printed_objfile_header = 1;
|
||
}
|
||
dump_psymtab (objfile, ps, outfile);
|
||
dump_psymtab_addrmap (objfile, ps, outfile);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we're printing all the objfile's symbols dump the full addrmap. */
|
||
|
||
if (address_arg == NULL
|
||
&& source_arg == NULL
|
||
&& objfile->partial_symtabs->psymtabs_addrmap != NULL)
|
||
{
|
||
outfile->puts ("\n");
|
||
dump_psymtab_addrmap (objfile, NULL, outfile);
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
{
|
||
if (address_arg != NULL)
|
||
error (_("No partial symtab for address: %s"), address_arg);
|
||
if (source_arg != NULL)
|
||
error (_("No partial symtab for source file: %s"), source_arg);
|
||
}
|
||
}
|
||
|
||
/* List all the partial symbol tables whose names match REGEXP (optional). */
|
||
|
||
static void
|
||
maintenance_info_psymtabs (const char *regexp, int from_tty)
|
||
{
|
||
struct program_space *pspace;
|
||
|
||
if (regexp)
|
||
re_comp (regexp);
|
||
|
||
ALL_PSPACES (pspace)
|
||
for (objfile *objfile : pspace->objfiles ())
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
/* We don't want to print anything for this objfile until we
|
||
actually find a symtab whose name matches. */
|
||
int printed_objfile_start = 0;
|
||
|
||
for (partial_symtab *psymtab : require_partial_symbols (objfile, true))
|
||
{
|
||
QUIT;
|
||
|
||
if (! regexp
|
||
|| re_exec (psymtab->filename))
|
||
{
|
||
if (! printed_objfile_start)
|
||
{
|
||
printf_filtered ("{ objfile %s ", objfile_name (objfile));
|
||
wrap_here (" ");
|
||
printf_filtered ("((struct objfile *) %s)\n",
|
||
host_address_to_string (objfile));
|
||
printed_objfile_start = 1;
|
||
}
|
||
|
||
printf_filtered (" { psymtab %s ", psymtab->filename);
|
||
wrap_here (" ");
|
||
printf_filtered ("((struct partial_symtab *) %s)\n",
|
||
host_address_to_string (psymtab));
|
||
|
||
printf_filtered (" readin %s\n",
|
||
psymtab->readin_p () ? "yes" : "no");
|
||
printf_filtered (" fullname %s\n",
|
||
psymtab->fullname
|
||
? psymtab->fullname : "(null)");
|
||
printf_filtered (" text addresses ");
|
||
fputs_filtered (paddress (gdbarch,
|
||
psymtab->text_low (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" -- ");
|
||
fputs_filtered (paddress (gdbarch,
|
||
psymtab->text_high (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
printf_filtered (" psymtabs_addrmap_supported %s\n",
|
||
(psymtab->psymtabs_addrmap_supported
|
||
? "yes" : "no"));
|
||
printf_filtered (" globals ");
|
||
if (psymtab->n_global_syms)
|
||
{
|
||
auto p = &(objfile->partial_symtabs
|
||
->global_psymbols[psymtab->globals_offset]);
|
||
|
||
printf_filtered
|
||
("(* (struct partial_symbol **) %s @ %d)\n",
|
||
host_address_to_string (p),
|
||
psymtab->n_global_syms);
|
||
}
|
||
else
|
||
printf_filtered ("(none)\n");
|
||
printf_filtered (" statics ");
|
||
if (psymtab->n_static_syms)
|
||
{
|
||
auto p = &(objfile->partial_symtabs
|
||
->static_psymbols[psymtab->statics_offset]);
|
||
|
||
printf_filtered
|
||
("(* (struct partial_symbol **) %s @ %d)\n",
|
||
host_address_to_string (p),
|
||
psymtab->n_static_syms);
|
||
}
|
||
else
|
||
printf_filtered ("(none)\n");
|
||
if (psymtab->user)
|
||
printf_filtered (" user %s "
|
||
"((struct partial_symtab *) %s)\n",
|
||
psymtab->user->filename,
|
||
host_address_to_string (psymtab->user));
|
||
printf_filtered (" dependencies ");
|
||
if (psymtab->number_of_dependencies)
|
||
{
|
||
int i;
|
||
|
||
printf_filtered ("{\n");
|
||
for (i = 0; i < psymtab->number_of_dependencies; i++)
|
||
{
|
||
struct partial_symtab *dep = psymtab->dependencies[i];
|
||
|
||
/* Note the string concatenation there --- no
|
||
comma. */
|
||
printf_filtered (" psymtab %s "
|
||
"((struct partial_symtab *) %s)\n",
|
||
dep->filename,
|
||
host_address_to_string (dep));
|
||
}
|
||
printf_filtered (" }\n");
|
||
}
|
||
else
|
||
printf_filtered ("(none)\n");
|
||
printf_filtered (" }\n");
|
||
}
|
||
}
|
||
|
||
if (printed_objfile_start)
|
||
printf_filtered ("}\n");
|
||
}
|
||
}
|
||
|
||
/* Check consistency of currently expanded psymtabs vs symtabs. */
|
||
|
||
static void
|
||
maintenance_check_psymtabs (const char *ignore, int from_tty)
|
||
{
|
||
struct symbol *sym;
|
||
struct compunit_symtab *cust = NULL;
|
||
const struct blockvector *bv;
|
||
const struct block *b;
|
||
int length;
|
||
|
||
for (objfile *objfile : current_program_space->objfiles ())
|
||
for (partial_symtab *ps : require_partial_symbols (objfile, true))
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
/* We don't call psymtab_to_symtab here because that may cause symtab
|
||
expansion. When debugging a problem it helps if checkers leave
|
||
things unchanged. */
|
||
cust = ps->get_compunit_symtab ();
|
||
|
||
/* First do some checks that don't require the associated symtab. */
|
||
if (ps->text_high (objfile) < ps->text_low (objfile))
|
||
{
|
||
printf_filtered ("Psymtab ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" covers bad range ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_low (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_high (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
continue;
|
||
}
|
||
|
||
/* Now do checks requiring the associated symtab. */
|
||
if (cust == NULL)
|
||
continue;
|
||
bv = COMPUNIT_BLOCKVECTOR (cust);
|
||
b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
||
partial_symbol **psym
|
||
= &objfile->partial_symtabs->static_psymbols[ps->statics_offset];
|
||
length = ps->n_static_syms;
|
||
while (length--)
|
||
{
|
||
sym = block_lookup_symbol (b, (*psym)->ginfo.search_name (),
|
||
symbol_name_match_type::SEARCH_NAME,
|
||
(*psym)->domain);
|
||
if (!sym)
|
||
{
|
||
printf_filtered ("Static symbol `");
|
||
puts_filtered ((*psym)->ginfo.linkage_name ());
|
||
printf_filtered ("' only found in ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" psymtab\n");
|
||
}
|
||
psym++;
|
||
}
|
||
b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
||
psym = &objfile->partial_symtabs->global_psymbols[ps->globals_offset];
|
||
length = ps->n_global_syms;
|
||
while (length--)
|
||
{
|
||
sym = block_lookup_symbol (b, (*psym)->ginfo.search_name (),
|
||
symbol_name_match_type::SEARCH_NAME,
|
||
(*psym)->domain);
|
||
if (!sym)
|
||
{
|
||
printf_filtered ("Global symbol `");
|
||
puts_filtered ((*psym)->ginfo.linkage_name ());
|
||
printf_filtered ("' only found in ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" psymtab\n");
|
||
}
|
||
psym++;
|
||
}
|
||
if (ps->raw_text_high () != 0
|
||
&& (ps->text_low (objfile) < BLOCK_START (b)
|
||
|| ps->text_high (objfile) > BLOCK_END (b)))
|
||
{
|
||
printf_filtered ("Psymtab ");
|
||
puts_filtered (ps->filename);
|
||
printf_filtered (" covers ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_low (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, ps->text_high (objfile)),
|
||
gdb_stdout);
|
||
printf_filtered (" but symtab covers only ");
|
||
fputs_filtered (paddress (gdbarch, BLOCK_START (b)), gdb_stdout);
|
||
printf_filtered (" - ");
|
||
fputs_filtered (paddress (gdbarch, BLOCK_END (b)), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
void _initialize_psymtab ();
|
||
void
|
||
_initialize_psymtab ()
|
||
{
|
||
add_cmd ("psymbols", class_maintenance, maintenance_print_psymbols, _("\
|
||
Print dump of current partial symbol definitions.\n\
|
||
Usage: mt print psymbols [-objfile OBJFILE] [-pc ADDRESS] [--] [OUTFILE]\n\
|
||
mt print psymbols [-objfile OBJFILE] [-source SOURCE] [--] [OUTFILE]\n\
|
||
Entries in the partial symbol table are dumped to file OUTFILE,\n\
|
||
or the terminal if OUTFILE is unspecified.\n\
|
||
If ADDRESS is provided, dump only the file for that address.\n\
|
||
If SOURCE is provided, dump only that file's symbols.\n\
|
||
If OBJFILE is provided, dump only that file's minimal symbols."),
|
||
&maintenanceprintlist);
|
||
|
||
add_cmd ("psymtabs", class_maintenance, maintenance_info_psymtabs, _("\
|
||
List the partial symbol tables for all object files.\n\
|
||
This does not include information about individual partial symbols,\n\
|
||
just the symbol table structures themselves."),
|
||
&maintenanceinfolist);
|
||
|
||
add_cmd ("check-psymtabs", class_maintenance, maintenance_check_psymtabs,
|
||
_("\
|
||
Check consistency of currently expanded psymtabs versus symtabs."),
|
||
&maintenancelist);
|
||
}
|