binutils-gdb/gdb/findvar.c
Jim Blandy 4478b372e9 * gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new
functions which architectures can redefine, defaulting to
generic_pointer_to_address and generic_address_to_pointer.
* findvar.c (extract_typed_address, store_typed_address,
generic_pointer_to_address, generic_address_to_pointer): New
functions.
(POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default
definitions.
(extract_address, store_address): Doc fixes.
* values.c (value_as_pointer): Doc fix.
(value_from_pointer): New function.
* defs.h (extract_typed_address, store_typed_address): New
declarations.
* inferior.h (generic_address_to_pointer,
generic_pointer_to_address): New declarations.
* value.h (value_from_pointer): New declaration.

* ax-gdb.c (const_var_ref): Use value_from_pointer, not
value_from_longest.
* blockframe.c (generic_push_dummy_frame): Use read_pc and
read_sp, not read_register.
* c-valprint.c (c_val_print): Use extract_typed_address instead of
extract_address to extract vtable entries and references.
* cp-valprint.c (cp_print_value_fields): Use value_from_pointer
instead of value_from_longest to extract the vtable's address.
* eval.c (evaluate_subexp_standard): Use value_from_pointer
instead of value_from_longest to compute `this', and for doing
pointer-to-member dereferencing.
* findvar.c (read_register): Use extract_unsigned_integer, not
extract_address.
(read_var_value): Use store_typed_address instead of store_address
for building label values.
(locate_var_value): Use value_from_pointer instead of
value_from_longest.
* hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer,
instead of value_from_longest, to build arguments to __d_shl_get.
* printcmd.c (set_next_address): Use value_from_pointer, not
value_from_longest.
(x_command): Use value_from_pointer, not value_from_longest.
* tracepoint.c (set_traceframe_context): Use value_from_pointer,
not value_from_longest.
* valarith.c (value_add, value_sub): Use value_from_pointer, not
value_from_longest.
* valops.c (find_function_in_inferior, value_coerce_array,
value_coerce_function, value_addr, hand_function_call): Same.
* value.h (COERCE_REF): Use unpack_pointer, not unpack_long.
* values.c (unpack_long): Use extract_typed_address to produce
addresses from pointers and references, not extract_address.
(value_from_longest): Use store_typed_address instead of
store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00

1814 lines
46 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Find a variable's value in memory, for GDB, the GNU debugger.
Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "floatformat.h"
#include "symfile.h" /* for overlay functions */
/* This is used to indicate that we don't know the format of the floating point
number. Typically, this is useful for native ports, where the actual format
is irrelevant, since no conversions will be taking place. */
const struct floatformat floatformat_unknown;
/* Registers we shouldn't try to store. */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif
static void write_register_gen PARAMS ((int, char *));
static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame));
/* Basic byte-swapping routines. GDB has needed these for a long time...
All extract a target-format integer at ADDR which is LEN bytes long. */
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
/* 8 bit characters are a pretty safe assumption these days, so we
assume it throughout all these swapping routines. If we had to deal with
9 bit characters, we would need to make len be in bits and would have
to re-write these routines... */
you lose
#endif
LONGEST
extract_signed_integer (void *addr, int len)
{
LONGEST retval;
unsigned char *p;
unsigned char *startaddr = (unsigned char *) addr;
unsigned char *endaddr = startaddr + len;
if (len > (int) sizeof (LONGEST))
error ("\
That operation is not available on integers of more than %d bytes.",
sizeof (LONGEST));
/* Start at the most significant end of the integer, and work towards
the least significant. */
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
{
p = startaddr;
/* Do the sign extension once at the start. */
retval = ((LONGEST) * p ^ 0x80) - 0x80;
for (++p; p < endaddr; ++p)
retval = (retval << 8) | *p;
}
else
{
p = endaddr - 1;
/* Do the sign extension once at the start. */
retval = ((LONGEST) * p ^ 0x80) - 0x80;
for (--p; p >= startaddr; --p)
retval = (retval << 8) | *p;
}
return retval;
}
ULONGEST
extract_unsigned_integer (void *addr, int len)
{
ULONGEST retval;
unsigned char *p;
unsigned char *startaddr = (unsigned char *) addr;
unsigned char *endaddr = startaddr + len;
if (len > (int) sizeof (ULONGEST))
error ("\
That operation is not available on integers of more than %d bytes.",
sizeof (ULONGEST));
/* Start at the most significant end of the integer, and work towards
the least significant. */
retval = 0;
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
{
for (p = startaddr; p < endaddr; ++p)
retval = (retval << 8) | *p;
}
else
{
for (p = endaddr - 1; p >= startaddr; --p)
retval = (retval << 8) | *p;
}
return retval;
}
/* Sometimes a long long unsigned integer can be extracted as a
LONGEST value. This is done so that we can print these values
better. If this integer can be converted to a LONGEST, this
function returns 1 and sets *PVAL. Otherwise it returns 0. */
int
extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
{
char *p, *first_addr;
int len;
len = orig_len;
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
{
for (p = (char *) addr;
len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
p++)
{
if (*p == 0)
len--;
else
break;
}
first_addr = p;
}
else
{
first_addr = (char *) addr;
for (p = (char *) addr + orig_len - 1;
len > (int) sizeof (LONGEST) && p >= (char *) addr;
p--)
{
if (*p == 0)
len--;
else
break;
}
}
if (len <= (int) sizeof (LONGEST))
{
*pval = (LONGEST) extract_unsigned_integer (first_addr,
sizeof (LONGEST));
return 1;
}
return 0;
}
/* Treat the LEN bytes at ADDR as a target-format address, and return
that address. ADDR is a buffer in the GDB process, not in the
inferior.
This function should only be used by target-specific code. It
assumes that a pointer has the same representation as that thing's
address represented as an integer. Some machines use word
addresses, or similarly munged things, for certain types of
pointers, so that assumption doesn't hold everywhere.
Common code should use extract_typed_address instead, or something
else based on POINTER_TO_ADDRESS. */
CORE_ADDR
extract_address (void *addr, int len)
{
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
whether we want this to be true eventually. */
return (CORE_ADDR) extract_unsigned_integer (addr, len);
}
#ifndef POINTER_TO_ADDRESS
#define POINTER_TO_ADDRESS generic_pointer_to_address
#endif
/* Treat the bytes at BUF as a pointer of type TYPE, and return the
address it represents. */
CORE_ADDR
extract_typed_address (void *buf, struct type *type)
{
if (TYPE_CODE (type) != TYPE_CODE_PTR
&& TYPE_CODE (type) != TYPE_CODE_REF)
internal_error ("findvar.c (generic_pointer_to_address): "
"type is not a pointer or reference");
return POINTER_TO_ADDRESS (type, buf);
}
void
store_signed_integer (void *addr, int len, LONGEST val)
{
unsigned char *p;
unsigned char *startaddr = (unsigned char *) addr;
unsigned char *endaddr = startaddr + len;
/* Start at the least significant end of the integer, and work towards
the most significant. */
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
{
for (p = endaddr - 1; p >= startaddr; --p)
{
*p = val & 0xff;
val >>= 8;
}
}
else
{
for (p = startaddr; p < endaddr; ++p)
{
*p = val & 0xff;
val >>= 8;
}
}
}
void
store_unsigned_integer (void *addr, int len, ULONGEST val)
{
unsigned char *p;
unsigned char *startaddr = (unsigned char *) addr;
unsigned char *endaddr = startaddr + len;
/* Start at the least significant end of the integer, and work towards
the most significant. */
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
{
for (p = endaddr - 1; p >= startaddr; --p)
{
*p = val & 0xff;
val >>= 8;
}
}
else
{
for (p = startaddr; p < endaddr; ++p)
{
*p = val & 0xff;
val >>= 8;
}
}
}
/* Store the address VAL as a LEN-byte value in target byte order at
ADDR. ADDR is a buffer in the GDB process, not in the inferior.
This function should only be used by target-specific code. It
assumes that a pointer has the same representation as that thing's
address represented as an integer. Some machines use word
addresses, or similarly munged things, for certain types of
pointers, so that assumption doesn't hold everywhere.
Common code should use store_typed_address instead, or something else
based on ADDRESS_TO_POINTER. */
void
store_address (void *addr, int len, LONGEST val)
{
store_unsigned_integer (addr, len, val);
}
#ifndef ADDRESS_TO_POINTER
#define ADDRESS_TO_POINTER generic_address_to_pointer
#endif
/* Store the address ADDR as a pointer of type TYPE at BUF, in target
form. */
void
store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
{
if (TYPE_CODE (type) != TYPE_CODE_PTR
&& TYPE_CODE (type) != TYPE_CODE_REF)
internal_error ("findvar.c (generic_address_to_pointer): "
"type is not a pointer or reference");
ADDRESS_TO_POINTER (type, buf, addr);
}
/* Extract a floating-point number from a target-order byte-stream at ADDR.
Returns the value as type DOUBLEST.
If the host and target formats agree, we just copy the raw data into the
appropriate type of variable and return, letting the host increase precision
as necessary. Otherwise, we call the conversion routine and let it do the
dirty work. */
DOUBLEST
extract_floating (void *addr, int len)
{
DOUBLEST dretval;
if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
{
if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
{
float retval;
memcpy (&retval, addr, sizeof (retval));
return retval;
}
else
floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
}
else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
{
if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
{
double retval;
memcpy (&retval, addr, sizeof (retval));
return retval;
}
else
floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
}
else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
{
if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
{
DOUBLEST retval;
memcpy (&retval, addr, sizeof (retval));
return retval;
}
else
floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
}
else
{
error ("Can't deal with a floating point number of %d bytes.", len);
}
return dretval;
}
void
store_floating (void *addr, int len, DOUBLEST val)
{
if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
{
if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
{
float floatval = val;
memcpy (addr, &floatval, sizeof (floatval));
}
else
floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
}
else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
{
if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
{
double doubleval = val;
memcpy (addr, &doubleval, sizeof (doubleval));
}
else
floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
}
else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
{
if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
memcpy (addr, &val, sizeof (val));
else
floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
}
else
{
error ("Can't deal with a floating point number of %d bytes.", len);
}
}
/* Return the address in which frame FRAME's value of register REGNUM
has been saved in memory. Or return zero if it has not been saved.
If REGNUM specifies the SP, the value we return is actually
the SP value, not an address where it was saved. */
CORE_ADDR
find_saved_register (frame, regnum)
struct frame_info *frame;
int regnum;
{
register struct frame_info *frame1 = NULL;
register CORE_ADDR addr = 0;
if (frame == NULL) /* No regs saved if want current frame */
return 0;
#ifdef HAVE_REGISTER_WINDOWS
/* We assume that a register in a register window will only be saved
in one place (since the name changes and/or disappears as you go
towards inner frames), so we only call get_frame_saved_regs on
the current frame. This is directly in contradiction to the
usage below, which assumes that registers used in a frame must be
saved in a lower (more interior) frame. This change is a result
of working on a register window machine; get_frame_saved_regs
always returns the registers saved within a frame, within the
context (register namespace) of that frame. */
/* However, note that we don't want this to return anything if
nothing is saved (if there's a frame inside of this one). Also,
callers to this routine asking for the stack pointer want the
stack pointer saved for *this* frame; this is returned from the
next frame. */
if (REGISTER_IN_WINDOW_P (regnum))
{
frame1 = get_next_frame (frame);
if (!frame1)
return 0; /* Registers of this frame are active. */
/* Get the SP from the next frame in; it will be this
current frame. */
if (regnum != SP_REGNUM)
frame1 = frame;
FRAME_INIT_SAVED_REGS (frame1);
return frame1->saved_regs[regnum]; /* ... which might be zero */
}
#endif /* HAVE_REGISTER_WINDOWS */
/* Note that this next routine assumes that registers used in
frame x will be saved only in the frame that x calls and
frames interior to it. This is not true on the sparc, but the
above macro takes care of it, so we should be all right. */
while (1)
{
QUIT;
frame1 = get_prev_frame (frame1);
if (frame1 == 0 || frame1 == frame)
break;
FRAME_INIT_SAVED_REGS (frame1);
if (frame1->saved_regs[regnum])
addr = frame1->saved_regs[regnum];
}
return addr;
}
/* Find register number REGNUM relative to FRAME and put its (raw,
target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
variable was optimized out (and thus can't be fetched). Set *LVAL
to lval_memory, lval_register, or not_lval, depending on whether
the value was fetched from memory, from a register, or in a strange
and non-modifiable way (e.g. a frame pointer which was calculated
rather than fetched). Set *ADDRP to the address, either in memory
on as a REGISTER_BYTE offset into the registers array.
Note that this implementation never sets *LVAL to not_lval. But
it can be replaced by defining GET_SAVED_REGISTER and supplying
your own.
The argument RAW_BUFFER must point to aligned memory. */
void
default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
char *raw_buffer;
int *optimized;
CORE_ADDR *addrp;
struct frame_info *frame;
int regnum;
enum lval_type *lval;
{
CORE_ADDR addr;
if (!target_has_registers)
error ("No registers.");
/* Normal systems don't optimize out things with register numbers. */
if (optimized != NULL)
*optimized = 0;
addr = find_saved_register (frame, regnum);
if (addr != 0)
{
if (lval != NULL)
*lval = lval_memory;
if (regnum == SP_REGNUM)
{
if (raw_buffer != NULL)
{
/* Put it back in target format. */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
(LONGEST) addr);
}
if (addrp != NULL)
*addrp = 0;
return;
}
if (raw_buffer != NULL)
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
}
else
{
if (lval != NULL)
*lval = lval_register;
addr = REGISTER_BYTE (regnum);
if (raw_buffer != NULL)
read_register_gen (regnum, raw_buffer);
}
if (addrp != NULL)
*addrp = addr;
}
#if !defined (GET_SAVED_REGISTER)
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
#endif
void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
char *raw_buffer;
int *optimized;
CORE_ADDR *addrp;
struct frame_info *frame;
int regnum;
enum lval_type *lval;
{
GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
}
/* Copy the bytes of register REGNUM, relative to the input stack frame,
into our memory at MYADDR, in target byte order.
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
Returns 1 if could not be read, 0 if could. */
static int
read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
int regnum;
char *myaddr;
struct frame_info *frame;
{
int optim;
if (regnum == FP_REGNUM && frame)
{
/* Put it back in target format. */
store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
(LONGEST) FRAME_FP (frame));
return 0;
}
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
regnum, (enum lval_type *) NULL);
if (register_valid[regnum] < 0)
return 1; /* register value not available */
return optim;
}
/* Copy the bytes of register REGNUM, relative to the current stack frame,
into our memory at MYADDR, in target byte order.
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
Returns 1 if could not be read, 0 if could. */
int
read_relative_register_raw_bytes (regnum, myaddr)
int regnum;
char *myaddr;
{
return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
selected_frame);
}
/* Return a `value' with the contents of register REGNUM
in its virtual format, with the type specified by
REGISTER_VIRTUAL_TYPE.
NOTE: returns NULL if register value is not available.
Caller will check return value or die! */
value_ptr
value_of_register (regnum)
int regnum;
{
CORE_ADDR addr;
int optim;
register value_ptr reg_val;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
enum lval_type lval;
get_saved_register (raw_buffer, &optim, &addr,
selected_frame, regnum, &lval);
if (register_valid[regnum] < 0)
return NULL; /* register value not available */
reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
/* Convert raw data to virtual format if necessary. */
if (REGISTER_CONVERTIBLE (regnum))
{
REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
raw_buffer, VALUE_CONTENTS_RAW (reg_val));
}
else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
REGISTER_RAW_SIZE (regnum));
else
internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
REGISTER_NAME (regnum),
regnum,
REGISTER_RAW_SIZE (regnum),
REGISTER_VIRTUAL_SIZE (regnum));
VALUE_LVAL (reg_val) = lval;
VALUE_ADDRESS (reg_val) = addr;
VALUE_REGNO (reg_val) = regnum;
VALUE_OPTIMIZED_OUT (reg_val) = optim;
return reg_val;
}
/* Low level examining and depositing of registers.
The caller is responsible for making
sure that the inferior is stopped before calling the fetching routines,
or it will get garbage. (a change from GDB version 3, in which
the caller got the value from the last stop). */
/* Contents and state of the registers (in target byte order). */
char *registers;
/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
register value was not available. */
signed char *register_valid;
/* The thread/process associated with the current set of registers. For now,
-1 is special, and means `no current process'. */
int registers_pid = -1;
/* Indicate that registers may have changed, so invalidate the cache. */
void
registers_changed ()
{
int i;
int numregs = ARCH_NUM_REGS;
registers_pid = -1;
/* Force cleanup of any alloca areas if using C alloca instead of
a builtin alloca. This particular call is used to clean up
areas allocated by low level target code which may build up
during lengthy interactions between gdb and the target before
gdb gives control to the user (ie watchpoints). */
alloca (0);
for (i = 0; i < numregs; i++)
register_valid[i] = 0;
if (registers_changed_hook)
registers_changed_hook ();
}
/* Indicate that all registers have been fetched, so mark them all valid. */
void
registers_fetched ()
{
int i;
int numregs = ARCH_NUM_REGS;
for (i = 0; i < numregs; i++)
register_valid[i] = 1;
}
/* read_register_bytes and write_register_bytes are generally a *BAD*
idea. They are inefficient because they need to check for partial
updates, which can only be done by scanning through all of the
registers and seeing if the bytes that are being read/written fall
inside of an invalid register. [The main reason this is necessary
is that register sizes can vary, so a simple index won't suffice.]
It is far better to call read_register_gen and write_register_gen
if you want to get at the raw register contents, as it only takes a
regno as an argument, and therefore can't do a partial register
update.
Prior to the recent fixes to check for partial updates, both read
and write_register_bytes always checked to see if any registers
were stale, and then called target_fetch_registers (-1) to update
the whole set. This caused really slowed things down for remote
targets. */
/* Copy INLEN bytes of consecutive data from registers
starting with the INREGBYTE'th byte of register data
into memory at MYADDR. */
void
read_register_bytes (inregbyte, myaddr, inlen)
int inregbyte;
char *myaddr;
int inlen;
{
int inregend = inregbyte + inlen;
int regno;
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
/* See if we are trying to read bytes from out-of-date registers. If so,
update just those registers. */
for (regno = 0; regno < NUM_REGS; regno++)
{
int regstart, regend;
if (register_valid[regno])
continue;
if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
continue;
regstart = REGISTER_BYTE (regno);
regend = regstart + REGISTER_RAW_SIZE (regno);
if (regend <= inregbyte || inregend <= regstart)
/* The range the user wants to read doesn't overlap with regno. */
continue;
/* We've found an invalid register where at least one byte will be read.
Update it from the target. */
target_fetch_registers (regno);
if (!register_valid[regno])
error ("read_register_bytes: Couldn't update register %d.", regno);
}
if (myaddr != NULL)
memcpy (myaddr, &registers[inregbyte], inlen);
}
/* Read register REGNO into memory at MYADDR, which must be large enough
for REGISTER_RAW_BYTES (REGNO). Target byte-order.
If the register is known to be the size of a CORE_ADDR or smaller,
read_register can be used instead. */
void
read_register_gen (regno, myaddr)
int regno;
char *myaddr;
{
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
if (!register_valid[regno])
target_fetch_registers (regno);
memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno));
}
/* Write register REGNO at MYADDR to the target. MYADDR points at
REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
static void
write_register_gen (regno, myaddr)
int regno;
char *myaddr;
{
int size;
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
the registers array if something writes to this register. */
if (CANNOT_STORE_REGISTER (regno))
return;
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
size = REGISTER_RAW_SIZE (regno);
/* If we have a valid copy of the register, and new value == old value,
then don't bother doing the actual store. */
if (register_valid[regno]
&& memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
return;
target_prepare_to_store ();
memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
register_valid[regno] = 1;
target_store_registers (regno);
}
/* Copy INLEN bytes of consecutive data from memory at MYADDR
into registers starting with the MYREGSTART'th byte of register data. */
void
write_register_bytes (myregstart, myaddr, inlen)
int myregstart;
char *myaddr;
int inlen;
{
int myregend = myregstart + inlen;
int regno;
target_prepare_to_store ();
/* Scan through the registers updating any that are covered by the range
myregstart<=>myregend using write_register_gen, which does nice things
like handling threads, and avoiding updates when the new and old contents
are the same. */
for (regno = 0; regno < NUM_REGS; regno++)
{
int regstart, regend;
regstart = REGISTER_BYTE (regno);
regend = regstart + REGISTER_RAW_SIZE (regno);
/* Is this register completely outside the range the user is writing? */
if (myregend <= regstart || regend <= myregstart)
/* do nothing */ ;
/* Is this register completely within the range the user is writing? */
else if (myregstart <= regstart && regend <= myregend)
write_register_gen (regno, myaddr + (regstart - myregstart));
/* The register partially overlaps the range being written. */
else
{
char regbuf[MAX_REGISTER_RAW_SIZE];
/* What's the overlap between this register's bytes and
those the caller wants to write? */
int overlapstart = max (regstart, myregstart);
int overlapend = min (regend, myregend);
/* We may be doing a partial update of an invalid register.
Update it from the target before scribbling on it. */
read_register_gen (regno, regbuf);
memcpy (registers + overlapstart,
myaddr + (overlapstart - myregstart),
overlapend - overlapstart);
target_store_registers (regno);
}
}
}
/* Return the raw contents of register REGNO, regarding it as an integer. */
/* This probably should be returning LONGEST rather than CORE_ADDR. */
CORE_ADDR
read_register (regno)
int regno;
{
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
if (!register_valid[regno])
target_fetch_registers (regno);
return ((CORE_ADDR)
extract_unsigned_integer (&registers[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno)));
}
CORE_ADDR
read_register_pid (regno, pid)
int regno, pid;
{
int save_pid;
CORE_ADDR retval;
if (pid == inferior_pid)
return read_register (regno);
save_pid = inferior_pid;
inferior_pid = pid;
retval = read_register (regno);
inferior_pid = save_pid;
return retval;
}
/* Store VALUE, into the raw contents of register number REGNO.
This should probably write a LONGEST rather than a CORE_ADDR */
void
write_register (regno, val)
int regno;
LONGEST val;
{
PTR buf;
int size;
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
the registers array if something writes to this register. */
if (CANNOT_STORE_REGISTER (regno))
return;
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
size = REGISTER_RAW_SIZE (regno);
buf = alloca (size);
store_signed_integer (buf, size, (LONGEST) val);
/* If we have a valid copy of the register, and new value == old value,
then don't bother doing the actual store. */
if (register_valid[regno]
&& memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
return;
target_prepare_to_store ();
memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
register_valid[regno] = 1;
target_store_registers (regno);
}
void
write_register_pid (regno, val, pid)
int regno;
CORE_ADDR val;
int pid;
{
int save_pid;
if (pid == inferior_pid)
{
write_register (regno, val);
return;
}
save_pid = inferior_pid;
inferior_pid = pid;
write_register (regno, val);
inferior_pid = save_pid;
}
/* Record that register REGNO contains VAL.
This is used when the value is obtained from the inferior or core dump,
so there is no need to store the value there.
If VAL is a NULL pointer, then it's probably an unsupported register. We
just set it's value to all zeros. We might want to record this fact, and
report it to the users of read_register and friends.
*/
void
supply_register (regno, val)
int regno;
char *val;
{
#if 1
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
#endif
register_valid[regno] = 1;
if (val)
memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
else
memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
/* On some architectures, e.g. HPPA, there are a few stray bits in some
registers, that the rest of the code would like to ignore. */
#ifdef CLEAN_UP_REGISTER_VALUE
CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
#endif
}
/* This routine is getting awfully cluttered with #if's. It's probably
time to turn this into READ_PC and define it in the tm.h file.
Ditto for write_pc.
1999-06-08: The following were re-written so that it assumes the
existance of a TARGET_READ_PC et.al. macro. A default generic
version of that macro is made available where needed.
Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
by the multi-arch framework, it will eventually be possible to
eliminate the intermediate read_pc_pid(). The client would call
TARGET_READ_PC directly. (cagney). */
#ifndef TARGET_READ_PC
#define TARGET_READ_PC generic_target_read_pc
#endif
CORE_ADDR
generic_target_read_pc (int pid)
{
#ifdef PC_REGNUM
if (PC_REGNUM >= 0)
{
CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
return pc_val;
}
#endif
internal_error ("generic_target_read_pc");
return 0;
}
CORE_ADDR
read_pc_pid (pid)
int pid;
{
int saved_inferior_pid;
CORE_ADDR pc_val;
/* In case pid != inferior_pid. */
saved_inferior_pid = inferior_pid;
inferior_pid = pid;
pc_val = TARGET_READ_PC (pid);
inferior_pid = saved_inferior_pid;
return pc_val;
}
CORE_ADDR
read_pc ()
{
return read_pc_pid (inferior_pid);
}
#ifndef TARGET_WRITE_PC
#define TARGET_WRITE_PC generic_target_write_pc
#endif
void
generic_target_write_pc (pc, pid)
CORE_ADDR pc;
int pid;
{
#ifdef PC_REGNUM
if (PC_REGNUM >= 0)
write_register_pid (PC_REGNUM, pc, pid);
#ifdef NPC_REGNUM
if (NPC_REGNUM >= 0)
write_register_pid (NPC_REGNUM, pc + 4, pid);
#ifdef NNPC_REGNUM
if (NNPC_REGNUM >= 0)
write_register_pid (NNPC_REGNUM, pc + 8, pid);
#endif
#endif
#else
internal_error ("generic_target_write_pc");
#endif
}
void
write_pc_pid (pc, pid)
CORE_ADDR pc;
int pid;
{
int saved_inferior_pid;
/* In case pid != inferior_pid. */
saved_inferior_pid = inferior_pid;
inferior_pid = pid;
TARGET_WRITE_PC (pc, pid);
inferior_pid = saved_inferior_pid;
}
void
write_pc (pc)
CORE_ADDR pc;
{
write_pc_pid (pc, inferior_pid);
}
/* Cope with strage ways of getting to the stack and frame pointers */
#ifndef TARGET_READ_SP
#define TARGET_READ_SP generic_target_read_sp
#endif
CORE_ADDR
generic_target_read_sp ()
{
#ifdef SP_REGNUM
if (SP_REGNUM >= 0)
return read_register (SP_REGNUM);
#endif
internal_error ("generic_target_read_sp");
}
CORE_ADDR
read_sp ()
{
return TARGET_READ_SP ();
}
#ifndef TARGET_WRITE_SP
#define TARGET_WRITE_SP generic_target_write_sp
#endif
void
generic_target_write_sp (val)
CORE_ADDR val;
{
#ifdef SP_REGNUM
if (SP_REGNUM >= 0)
{
write_register (SP_REGNUM, val);
return;
}
#endif
internal_error ("generic_target_write_sp");
}
void
write_sp (val)
CORE_ADDR val;
{
TARGET_WRITE_SP (val);
}
#ifndef TARGET_READ_FP
#define TARGET_READ_FP generic_target_read_fp
#endif
CORE_ADDR
generic_target_read_fp ()
{
#ifdef FP_REGNUM
if (FP_REGNUM >= 0)
return read_register (FP_REGNUM);
#endif
internal_error ("generic_target_read_fp");
}
CORE_ADDR
read_fp ()
{
return TARGET_READ_FP ();
}
#ifndef TARGET_WRITE_FP
#define TARGET_WRITE_FP generic_target_write_fp
#endif
void
generic_target_write_fp (val)
CORE_ADDR val;
{
#ifdef FP_REGNUM
if (FP_REGNUM >= 0)
{
write_register (FP_REGNUM, val);
return;
}
#endif
internal_error ("generic_target_write_fp");
}
void
write_fp (val)
CORE_ADDR val;
{
TARGET_WRITE_FP (val);
}
/* Given a pointer of type TYPE in target form in BUF, return the
address it represents. */
CORE_ADDR
generic_pointer_to_address (struct type *type, char *buf)
{
return extract_address (buf, TYPE_LENGTH (type));
}
/* Given an address, store it as a pointer of type TYPE in target
format in BUF. */
void
generic_address_to_pointer (struct type *type, char *buf, CORE_ADDR addr)
{
store_address (buf, TYPE_LENGTH (type), addr);
}
/* Will calling read_var_value or locate_var_value on SYM end
up caring what frame it is being evaluated relative to? SYM must
be non-NULL. */
int
symbol_read_needs_frame (sym)
struct symbol *sym;
{
switch (SYMBOL_CLASS (sym))
{
/* All cases listed explicitly so that gcc -Wall will detect it if
we failed to consider one. */
case LOC_REGISTER:
case LOC_ARG:
case LOC_REF_ARG:
case LOC_REGPARM:
case LOC_REGPARM_ADDR:
case LOC_LOCAL:
case LOC_LOCAL_ARG:
case LOC_BASEREG:
case LOC_BASEREG_ARG:
case LOC_THREAD_LOCAL_STATIC:
return 1;
case LOC_UNDEF:
case LOC_CONST:
case LOC_STATIC:
case LOC_INDIRECT:
case LOC_TYPEDEF:
case LOC_LABEL:
/* Getting the address of a label can be done independently of the block,
even if some *uses* of that address wouldn't work so well without
the right frame. */
case LOC_BLOCK:
case LOC_CONST_BYTES:
case LOC_UNRESOLVED:
case LOC_OPTIMIZED_OUT:
return 0;
}
return 1;
}
/* Given a struct symbol for a variable,
and a stack frame id, read the value of the variable
and return a (pointer to a) struct value containing the value.
If the variable cannot be found, return a zero pointer.
If FRAME is NULL, use the selected_frame. */
value_ptr
read_var_value (var, frame)
register struct symbol *var;
struct frame_info *frame;
{
register value_ptr v;
struct type *type = SYMBOL_TYPE (var);
CORE_ADDR addr;
register int len;
v = allocate_value (type);
VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
len = TYPE_LENGTH (type);
if (frame == NULL)
frame = selected_frame;
switch (SYMBOL_CLASS (var))
{
case LOC_CONST:
/* Put the constant back in target format. */
store_signed_integer (VALUE_CONTENTS_RAW (v), len,
(LONGEST) SYMBOL_VALUE (var));
VALUE_LVAL (v) = not_lval;
return v;
case LOC_LABEL:
/* Put the constant back in target format. */
if (overlay_debugging)
{
CORE_ADDR addr
= symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
SYMBOL_BFD_SECTION (var));
store_typed_address (VALUE_CONTENTS_RAW (v), type, addr);
}
else
store_typed_address (VALUE_CONTENTS_RAW (v), type,
SYMBOL_VALUE_ADDRESS (var));
VALUE_LVAL (v) = not_lval;
return v;
case LOC_CONST_BYTES:
{
char *bytes_addr;
bytes_addr = SYMBOL_VALUE_BYTES (var);
memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
VALUE_LVAL (v) = not_lval;
return v;
}
case LOC_STATIC:
if (overlay_debugging)
addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
SYMBOL_BFD_SECTION (var));
else
addr = SYMBOL_VALUE_ADDRESS (var);
break;
case LOC_INDIRECT:
/* The import slot does not have a real address in it from the
dynamic loader (dld.sl on HP-UX), if the target hasn't begun
execution yet, so check for that. */
if (!target_has_execution)
error ("\
Attempt to access variable defined in different shared object or load module when\n\
addresses have not been bound by the dynamic loader. Try again when executable is running.");
addr = SYMBOL_VALUE_ADDRESS (var);
addr = read_memory_unsigned_integer
(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
break;
case LOC_ARG:
if (frame == NULL)
return 0;
addr = FRAME_ARGS_ADDRESS (frame);
if (!addr)
return 0;
addr += SYMBOL_VALUE (var);
break;
case LOC_REF_ARG:
if (frame == NULL)
return 0;
addr = FRAME_ARGS_ADDRESS (frame);
if (!addr)
return 0;
addr += SYMBOL_VALUE (var);
addr = read_memory_unsigned_integer
(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
break;
case LOC_LOCAL:
case LOC_LOCAL_ARG:
if (frame == NULL)
return 0;
addr = FRAME_LOCALS_ADDRESS (frame);
addr += SYMBOL_VALUE (var);
break;
case LOC_BASEREG:
case LOC_BASEREG_ARG:
{
char buf[MAX_REGISTER_RAW_SIZE];
get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
NULL);
addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
addr += SYMBOL_VALUE (var);
break;
}
case LOC_THREAD_LOCAL_STATIC:
{
char buf[MAX_REGISTER_RAW_SIZE];
get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
NULL);
addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
addr += SYMBOL_VALUE (var);
break;
}
case LOC_TYPEDEF:
error ("Cannot look up value of a typedef");
break;
case LOC_BLOCK:
if (overlay_debugging)
VALUE_ADDRESS (v) = symbol_overlayed_address
(BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
else
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
return v;
case LOC_REGISTER:
case LOC_REGPARM:
case LOC_REGPARM_ADDR:
{
struct block *b;
int regno = SYMBOL_VALUE (var);
value_ptr regval;
if (frame == NULL)
return 0;
b = get_frame_block (frame);
if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
{
regval = value_from_register (lookup_pointer_type (type),
regno,
frame);
if (regval == NULL)
error ("Value of register variable not available.");
addr = value_as_pointer (regval);
VALUE_LVAL (v) = lval_memory;
}
else
{
regval = value_from_register (type, regno, frame);
if (regval == NULL)
error ("Value of register variable not available.");
return regval;
}
}
break;
case LOC_UNRESOLVED:
{
struct minimal_symbol *msym;
msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
if (msym == NULL)
return 0;
if (overlay_debugging)
addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
SYMBOL_BFD_SECTION (msym));
else
addr = SYMBOL_VALUE_ADDRESS (msym);
}
break;
case LOC_OPTIMIZED_OUT:
VALUE_LVAL (v) = not_lval;
VALUE_OPTIMIZED_OUT (v) = 1;
return v;
default:
error ("Cannot look up value of a botched symbol.");
break;
}
VALUE_ADDRESS (v) = addr;
VALUE_LAZY (v) = 1;
return v;
}
/* Return a value of type TYPE, stored in register REGNUM, in frame
FRAME.
NOTE: returns NULL if register value is not available.
Caller will check return value or die! */
value_ptr
value_from_register (type, regnum, frame)
struct type *type;
int regnum;
struct frame_info *frame;
{
char raw_buffer[MAX_REGISTER_RAW_SIZE];
CORE_ADDR addr;
int optim;
value_ptr v = allocate_value (type);
char *value_bytes = 0;
int value_bytes_copied = 0;
int num_storage_locs;
enum lval_type lval;
int len;
CHECK_TYPEDEF (type);
len = TYPE_LENGTH (type);
/* Pointers on D10V are really only 16 bits, but we lie to gdb elsewhere... */
if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
len = 2;
VALUE_REGNO (v) = regnum;
num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
1);
if (num_storage_locs > 1
#ifdef GDB_TARGET_IS_H8500
|| TYPE_CODE (type) == TYPE_CODE_PTR
#endif
)
{
/* Value spread across multiple storage locations. */
int local_regnum;
int mem_stor = 0, reg_stor = 0;
int mem_tracking = 1;
CORE_ADDR last_addr = 0;
CORE_ADDR first_addr = 0;
value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
/* Copy all of the data out, whereever it may be. */
#ifdef GDB_TARGET_IS_H8500
/* This piece of hideosity is required because the H8500 treats registers
differently depending upon whether they are used as pointers or not. As a
pointer, a register needs to have a page register tacked onto the front.
An alternate way to do this would be to have gcc output different register
numbers for the pointer & non-pointer form of the register. But, it
doesn't, so we're stuck with this. */
if (TYPE_CODE (type) == TYPE_CODE_PTR
&& len > 2)
{
int page_regnum;
switch (regnum)
{
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
page_regnum = SEG_D_REGNUM;
break;
case R4_REGNUM:
case R5_REGNUM:
page_regnum = SEG_E_REGNUM;
break;
case R6_REGNUM:
case R7_REGNUM:
page_regnum = SEG_T_REGNUM;
break;
}
value_bytes[0] = 0;
get_saved_register (value_bytes + 1,
&optim,
&addr,
frame,
page_regnum,
&lval);
if (register_valid[page_regnum] == -1)
return NULL; /* register value not available */
if (lval == lval_register)
reg_stor++;
else
mem_stor++;
first_addr = addr;
last_addr = addr;
get_saved_register (value_bytes + 2,
&optim,
&addr,
frame,
regnum,
&lval);
if (register_valid[regnum] == -1)
return NULL; /* register value not available */
if (lval == lval_register)
reg_stor++;
else
{
mem_stor++;
mem_tracking = mem_tracking && (addr == last_addr);
}
last_addr = addr;
}
else
#endif /* GDB_TARGET_IS_H8500 */
for (local_regnum = regnum;
value_bytes_copied < len;
(value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
++local_regnum))
{
get_saved_register (value_bytes + value_bytes_copied,
&optim,
&addr,
frame,
local_regnum,
&lval);
if (register_valid[local_regnum] == -1)
return NULL; /* register value not available */
if (regnum == local_regnum)
first_addr = addr;
if (lval == lval_register)
reg_stor++;
else
{
mem_stor++;
mem_tracking =
(mem_tracking
&& (regnum == local_regnum
|| addr == last_addr));
}
last_addr = addr;
}
if ((reg_stor && mem_stor)
|| (mem_stor && !mem_tracking))
/* Mixed storage; all of the hassle we just went through was
for some good purpose. */
{
VALUE_LVAL (v) = lval_reg_frame_relative;
VALUE_FRAME (v) = FRAME_FP (frame);
VALUE_FRAME_REGNUM (v) = regnum;
}
else if (mem_stor)
{
VALUE_LVAL (v) = lval_memory;
VALUE_ADDRESS (v) = first_addr;
}
else if (reg_stor)
{
VALUE_LVAL (v) = lval_register;
VALUE_ADDRESS (v) = first_addr;
}
else
internal_error ("value_from_register: Value not stored anywhere!");
VALUE_OPTIMIZED_OUT (v) = optim;
/* Any structure stored in more than one register will always be
an integral number of registers. Otherwise, you'd need to do
some fiddling with the last register copied here for little
endian machines. */
/* Copy into the contents section of the value. */
memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
/* Finally do any conversion necessary when extracting this
type from more than one register. */
#ifdef REGISTER_CONVERT_TO_TYPE
REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
#endif
return v;
}
/* Data is completely contained within a single register. Locate the
register's contents in a real register or in core;
read the data in raw format. */
get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
if (register_valid[regnum] == -1)
return NULL; /* register value not available */
VALUE_OPTIMIZED_OUT (v) = optim;
VALUE_LVAL (v) = lval;
VALUE_ADDRESS (v) = addr;
/* Convert raw data to virtual format if necessary. */
if (REGISTER_CONVERTIBLE (regnum))
{
REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
raw_buffer, VALUE_CONTENTS_RAW (v));
}
else
{
/* Raw and virtual formats are the same for this register. */
if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
{
/* Big-endian, and we want less than full size. */
VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
}
memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
}
if (GDB_TARGET_IS_D10V
&& TYPE_CODE (type) == TYPE_CODE_PTR
&& TYPE_TARGET_TYPE (type)
&& (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
{
/* pointer to function */
unsigned long num;
unsigned short snum;
snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
num = D10V_MAKE_IADDR (snum);
store_address (VALUE_CONTENTS_RAW (v), 4, num);
}
else if (GDB_TARGET_IS_D10V
&& TYPE_CODE (type) == TYPE_CODE_PTR)
{
/* pointer to data */
unsigned long num;
unsigned short snum;
snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
num = D10V_MAKE_DADDR (snum);
store_address (VALUE_CONTENTS_RAW (v), 4, num);
}
return v;
}
/* Given a struct symbol for a variable or function,
and a stack frame id,
return a (pointer to a) struct value containing the properly typed
address. */
value_ptr
locate_var_value (var, frame)
register struct symbol *var;
struct frame_info *frame;
{
CORE_ADDR addr = 0;
struct type *type = SYMBOL_TYPE (var);
value_ptr lazy_value;
/* Evaluate it first; if the result is a memory address, we're fine.
Lazy evaluation pays off here. */
lazy_value = read_var_value (var, frame);
if (lazy_value == 0)
error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
if (VALUE_LAZY (lazy_value)
|| TYPE_CODE (type) == TYPE_CODE_FUNC)
{
value_ptr val;
addr = VALUE_ADDRESS (lazy_value);
val = value_from_pointer (lookup_pointer_type (type), addr);
VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
return val;
}
/* Not a memory address; check what the problem was. */
switch (VALUE_LVAL (lazy_value))
{
case lval_register:
case lval_reg_frame_relative:
error ("Address requested for identifier \"%s\" which is in a register.",
SYMBOL_SOURCE_NAME (var));
break;
default:
error ("Can't take address of \"%s\" which isn't an lvalue.",
SYMBOL_SOURCE_NAME (var));
break;
}
return 0; /* For lint -- never reached */
}
static void build_findvar PARAMS ((void));
static void
build_findvar ()
{
/* We allocate some extra slop since we do a lot of memcpy's around
`registers', and failing-soft is better than failing hard. */
int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
registers = xmalloc (sizeof_registers);
memset (registers, 0, sizeof_registers);
register_valid = xmalloc (sizeof_register_valid);
memset (register_valid, 0, sizeof_register_valid);
}
void _initialize_findvar PARAMS ((void));
void
_initialize_findvar ()
{
build_findvar ();
register_gdbarch_swap (&registers, sizeof (registers), NULL);
register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
register_gdbarch_swap (NULL, 0, build_findvar);
}