binutils-gdb/gdb/disasm.c
Pedro Alves 8d297bbf60 Type-safe wrapper for enum flags
This patch fixes C++ build errors like this:

/home/pedro/gdb/mygit/cxx-convertion/src/gdb/linux-tdep.c:1126:35: error: invalid conversion from ‘int’ to ‘filterflags’ [-fpermissive]
       | COREFILTER_HUGETLB_PRIVATE);
                                   ^

This is a case of enums used as bit flags.  Unlike "regular" enums,
these values are supposed to be or'ed together.  However, in C++, the
type of "(ENUM1 | ENUM2)" is int, and you then can't assign an int to
an enum variable without a cast.  That means that this:

  enum foo_flags flags = 0;

  if (...)
    flags |= FOO_FLAG1;
  if (...)
    flags |= FOO_FLAG2;

... would have to be written as:

  enum foo_flags flags = (enum foo_flags) 0;

  if (...)
    flags = (enum foo_flags) (flags | FOO_FLAG1);
  if (...)
    flags = (enum foo_flags) (flags | FOO_FLAG2);

which is ... ugly.  Alternatively, we'd have to use an int for the
variable's type, which isn't ideal either.

This patch instead adds an "enum flags" class.  "enum flags" are
exactly the enums where the values are bits that are meant to be ORed
together.

This allows writing code like the below, while with raw enums this
would fail to compile without casts to enum type at the assignments to
'f':

  enum some_flag
  {
     flag_val1 = 1 << 1,
     flag_val2 = 1 << 2,
     flag_val3 = 1 << 3,
     flag_val4 = 1 << 4,
  };
  DEF_ENUM_FLAGS_TYPE(enum some_flag, some_flags)

  some_flags f = flag_val1 | flag_val2;
  f |= flag_val3;

It's also possible to assign literal zero to an enum flags variable
(meaning, no flags), dispensing either adding an awkward explicit "no
value" value to the enumeration or the cast to assignments from 0.
For example:

  some_flags f = 0;
  f |= flag_val3 | flag_val4;

Note that literal integers other than zero do fail to compile:

  some_flags f = 1; // error

C is still supported -- DEF_ENUM_FLAGS_TYPE is just a typedef in that
case.

gdb/ChangeLog:
2015-11-17  Pedro Alves  <palves@redhat.com>

	* btrace.h: Include common/enum-flags.h.
	(btrace_insn_flags): Define.
	(struct btrace_insn) <flags>: Change type.
	(btrace_function_flags): Define.
	(struct btrace_function) <flags>: Change type.
	(btrace_thread_flags): Define.
	(struct btrace_thread_info) <flags>: Change type.
	* c-exp.y (token_flags): Rename to ...
	(token_flag): ... this.
	(token_flags): Define.
	(struct token) <flags>: Change type.
	* common/enum-flags.h: New file.
	* compile/compile-c-types.c (convert_qualified): Change type of
	'quals' local.
	* compile/compile-internal.h: Include "common/enum-flags.h".
	(gcc_qualifiers_flags): Define.
	* completer.c (enum reg_completer_targets): Rename to ...
	(enum reg_completer_target): ... this.
	(reg_completer_targets): Define.
	(reg_or_group_completer_1): Change type of 'targets' parameter.
	* disasm.c (do_mixed_source_and_assembly_deprecated): Change type
	of 'psl_flags' local.
	(do_mixed_source_and_assembly): Change type of 'psl_flags' local.
	* infrun.c: Include "common/enum-flags.h".
	(enum step_over_what): Rename to ...
	(enum step_over_what_flag): ... this.
	(step_over_what): Change type.
	(start_step_over): Change type of 'step_what' local.
	(thread_still_needs_step_over): Now returns a step_over_what.
	Adjust.
	(keep_going_pass_signal): Change type of 'step_what' local.
	* linux-tdep.c: Include "common/enum-flags.h".
	(enum filterflags): Rename to ...
	(enum filter_flag): ... this.
	(filter_flags): Define.
	(dump_mapping_p): Change type of 'filterflags' parameter.
	(linux_find_memory_regions_full): Change type of 'filterflags'
	local.
	(linux_find_memory_regions_full): Pass the address of an unsigned
	int to sscanf instead of the address of an enum.
	* record-btrace.c (btrace_print_lines): Change type of local
	'psl_flags'.
	(btrace_call_history): Replace 'flags' parameter
	with 'int_flags' parameter.  Adjust.
	(record_btrace_call_history, record_btrace_call_history_range)
	(record_btrace_call_history_from): Rename 'flags' parameter to
	'int_flags'.  Use record_print_flags.
	* record.h: Include "common/enum-flags.h".
	(record_print_flags): Define.
	* source.c: Include "common/enum-flags.h".
	(print_source_lines_base, print_source_lines): Change type of
	flags parameter.
	* symtab.h: Include "common/enum-flags.h".
	(enum print_source_lines_flags): Rename to ...
	(enum print_source_lines_flag): ... this.
	(print_source_lines_flags): Define.
	(print_source_lines): Change prototype.
2015-11-17 13:31:29 +00:00

928 lines
26 KiB
C

/* Disassemble support for GDB.
Copyright (C) 2000-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "target.h"
#include "value.h"
#include "ui-out.h"
#include "disasm.h"
#include "gdbcore.h"
#include "dis-asm.h"
#include "source.h"
/* Disassemble functions.
FIXME: We should get rid of all the duplicate code in gdb that does
the same thing: disassemble_command() and the gdbtk variation. */
/* This structure is used to store line number information for the
deprecated /m option.
We need a different sort of line table from the normal one cuz we can't
depend upon implicit line-end pc's for lines to do the
reordering in this function. */
struct deprecated_dis_line_entry
{
int line;
CORE_ADDR start_pc;
CORE_ADDR end_pc;
};
/* This Structure is used to store line number information.
We need a different sort of line table from the normal one cuz we can't
depend upon implicit line-end pc's for lines to do the
reordering in this function. */
struct dis_line_entry
{
struct symtab *symtab;
int line;
};
/* Hash function for dis_line_entry. */
static hashval_t
hash_dis_line_entry (const void *item)
{
const struct dis_line_entry *dle = (const struct dis_line_entry *) item;
return htab_hash_pointer (dle->symtab) + dle->line;
}
/* Equal function for dis_line_entry. */
static int
eq_dis_line_entry (const void *item_lhs, const void *item_rhs)
{
const struct dis_line_entry *lhs = (const struct dis_line_entry *) item_lhs;
const struct dis_line_entry *rhs = (const struct dis_line_entry *) item_rhs;
return (lhs->symtab == rhs->symtab
&& lhs->line == rhs->line);
}
/* Create the table to manage lines for mixed source/disassembly. */
static htab_t
allocate_dis_line_table (void)
{
return htab_create_alloc (41,
hash_dis_line_entry, eq_dis_line_entry,
xfree, xcalloc, xfree);
}
/* Add DLE to TABLE.
Returns 1 if added, 0 if already present. */
static void
maybe_add_dis_line_entry (htab_t table, struct symtab *symtab, int line)
{
void **slot;
struct dis_line_entry dle, *dlep;
dle.symtab = symtab;
dle.line = line;
slot = htab_find_slot (table, &dle, INSERT);
if (*slot == NULL)
{
dlep = XNEW (struct dis_line_entry);
dlep->symtab = symtab;
dlep->line = line;
*slot = dlep;
}
}
/* Return non-zero if SYMTAB, LINE are in TABLE. */
static int
line_has_code_p (htab_t table, struct symtab *symtab, int line)
{
struct dis_line_entry dle;
dle.symtab = symtab;
dle.line = line;
return htab_find (table, &dle) != NULL;
}
/* Like target_read_memory, but slightly different parameters. */
static int
dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
struct disassemble_info *info)
{
return target_read_code (memaddr, myaddr, len);
}
/* Like memory_error with slightly different parameters. */
static void
dis_asm_memory_error (int err, bfd_vma memaddr,
struct disassemble_info *info)
{
memory_error (TARGET_XFER_E_IO, memaddr);
}
/* Like print_address with slightly different parameters. */
static void
dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
{
struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
print_address (gdbarch, addr, (struct ui_file *) info->stream);
}
static int
compare_lines (const void *mle1p, const void *mle2p)
{
struct deprecated_dis_line_entry *mle1, *mle2;
int val;
mle1 = (struct deprecated_dis_line_entry *) mle1p;
mle2 = (struct deprecated_dis_line_entry *) mle2p;
/* End of sequence markers have a line number of 0 but don't want to
be sorted to the head of the list, instead sort by PC. */
if (mle1->line == 0 || mle2->line == 0)
{
val = mle1->start_pc - mle2->start_pc;
if (val == 0)
val = mle1->line - mle2->line;
}
else
{
val = mle1->line - mle2->line;
if (val == 0)
val = mle1->start_pc - mle2->start_pc;
}
return val;
}
/* See disasm.h. */
int
gdb_pretty_print_insn (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info * di,
const struct disasm_insn *insn, int flags,
struct ui_file *stb)
{
/* parts of the symbolic representation of the address */
int unmapped;
int offset;
int line;
int size;
struct cleanup *ui_out_chain;
char *filename = NULL;
char *name = NULL;
CORE_ADDR pc;
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
pc = insn->addr;
if (insn->number != 0)
{
ui_out_field_fmt (uiout, "insn-number", "%u", insn->number);
ui_out_text (uiout, "\t");
}
if ((flags & DISASSEMBLY_SPECULATIVE) != 0)
{
if (insn->is_speculative)
{
ui_out_field_string (uiout, "is-speculative", "?");
/* The speculative execution indication overwrites the first
character of the PC prefix.
We assume a PC prefix length of 3 characters. */
if ((flags & DISASSEMBLY_OMIT_PC) == 0)
ui_out_text (uiout, pc_prefix (pc) + 1);
else
ui_out_text (uiout, " ");
}
else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
ui_out_text (uiout, pc_prefix (pc));
else
ui_out_text (uiout, " ");
}
else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
ui_out_text (uiout, pc_prefix (pc));
ui_out_field_core_addr (uiout, "address", gdbarch, pc);
if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
&line, &unmapped))
{
/* We don't care now about line, filename and unmapped. But we might in
the future. */
ui_out_text (uiout, " <");
if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
ui_out_field_string (uiout, "func-name", name);
ui_out_text (uiout, "+");
ui_out_field_int (uiout, "offset", offset);
ui_out_text (uiout, ">:\t");
}
else
ui_out_text (uiout, ":\t");
if (filename != NULL)
xfree (filename);
if (name != NULL)
xfree (name);
ui_file_rewind (stb);
if (flags & DISASSEMBLY_RAW_INSN)
{
CORE_ADDR end_pc;
bfd_byte data;
int err;
const char *spacer = "";
/* Build the opcodes using a temporary stream so we can
write them out in a single go for the MI. */
struct ui_file *opcode_stream = mem_fileopen ();
struct cleanup *cleanups =
make_cleanup_ui_file_delete (opcode_stream);
size = gdbarch_print_insn (gdbarch, pc, di);
end_pc = pc + size;
for (;pc < end_pc; ++pc)
{
err = (*di->read_memory_func) (pc, &data, 1, di);
if (err != 0)
(*di->memory_error_func) (err, pc, di);
fprintf_filtered (opcode_stream, "%s%02x",
spacer, (unsigned) data);
spacer = " ";
}
ui_out_field_stream (uiout, "opcodes", opcode_stream);
ui_out_text (uiout, "\t");
do_cleanups (cleanups);
}
else
size = gdbarch_print_insn (gdbarch, pc, di);
ui_out_field_stream (uiout, "inst", stb);
ui_file_rewind (stb);
do_cleanups (ui_out_chain);
ui_out_text (uiout, "\n");
return size;
}
static int
dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info * di,
CORE_ADDR low, CORE_ADDR high,
int how_many, int flags, struct ui_file *stb,
CORE_ADDR *end_pc)
{
struct disasm_insn insn;
int num_displayed = 0;
memset (&insn, 0, sizeof (insn));
insn.addr = low;
while (insn.addr < high && (how_many < 0 || num_displayed < how_many))
{
int size;
size = gdb_pretty_print_insn (gdbarch, uiout, di, &insn, flags, stb);
if (size <= 0)
break;
++num_displayed;
insn.addr += size;
/* Allow user to bail out with ^C. */
QUIT;
}
if (end_pc != NULL)
*end_pc = insn.addr;
return num_displayed;
}
/* The idea here is to present a source-O-centric view of a
function to the user. This means that things are presented
in source order, with (possibly) out of order assembly
immediately following.
N.B. This view is deprecated. */
static void
do_mixed_source_and_assembly_deprecated
(struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info *di, struct symtab *symtab,
CORE_ADDR low, CORE_ADDR high,
int how_many, int flags, struct ui_file *stb)
{
int newlines = 0;
int nlines;
struct linetable_entry *le;
struct deprecated_dis_line_entry *mle;
struct symtab_and_line sal;
int i;
int out_of_order = 0;
int next_line = 0;
int num_displayed = 0;
print_source_lines_flags psl_flags = 0;
struct cleanup *ui_out_chain;
struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
gdb_assert (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL);
nlines = SYMTAB_LINETABLE (symtab)->nitems;
le = SYMTAB_LINETABLE (symtab)->item;
if (flags & DISASSEMBLY_FILENAME)
psl_flags |= PRINT_SOURCE_LINES_FILENAME;
mle = (struct deprecated_dis_line_entry *)
alloca (nlines * sizeof (struct deprecated_dis_line_entry));
/* Copy linetable entries for this function into our data
structure, creating end_pc's and setting out_of_order as
appropriate. */
/* First, skip all the preceding functions. */
for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
/* Now, copy all entries before the end of this function. */
for (; i < nlines - 1 && le[i].pc < high; i++)
{
if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
continue; /* Ignore duplicates. */
/* Skip any end-of-function markers. */
if (le[i].line == 0)
continue;
mle[newlines].line = le[i].line;
if (le[i].line > le[i + 1].line)
out_of_order = 1;
mle[newlines].start_pc = le[i].pc;
mle[newlines].end_pc = le[i + 1].pc;
newlines++;
}
/* If we're on the last line, and it's part of the function,
then we need to get the end pc in a special way. */
if (i == nlines - 1 && le[i].pc < high)
{
mle[newlines].line = le[i].line;
mle[newlines].start_pc = le[i].pc;
sal = find_pc_line (le[i].pc, 0);
mle[newlines].end_pc = sal.end;
newlines++;
}
/* Now, sort mle by line #s (and, then by addresses within lines). */
if (out_of_order)
qsort (mle, newlines, sizeof (struct deprecated_dis_line_entry),
compare_lines);
/* Now, for each line entry, emit the specified lines (unless
they have been emitted before), followed by the assembly code
for that line. */
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
for (i = 0; i < newlines; i++)
{
/* Print out everything from next_line to the current line. */
if (mle[i].line >= next_line)
{
if (next_line != 0)
{
/* Just one line to print. */
if (next_line == mle[i].line)
{
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
}
else
{
/* Several source lines w/o asm instructions associated. */
for (; next_line < mle[i].line; next_line++)
{
struct cleanup *ui_out_list_chain_line;
struct cleanup *ui_out_tuple_chain_line;
ui_out_tuple_chain_line
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, next_line, next_line + 1,
psl_flags);
ui_out_list_chain_line
= make_cleanup_ui_out_list_begin_end (uiout,
"line_asm_insn");
do_cleanups (ui_out_list_chain_line);
do_cleanups (ui_out_tuple_chain_line);
}
/* Print the last line and leave list open for
asm instructions to be added. */
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
}
}
else
{
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags);
}
next_line = mle[i].line + 1;
ui_out_list_chain
= make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
}
num_displayed += dump_insns (gdbarch, uiout, di,
mle[i].start_pc, mle[i].end_pc,
how_many, flags, stb, NULL);
/* When we've reached the end of the mle array, or we've seen the last
assembly range for this source line, close out the list/tuple. */
if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
{
do_cleanups (ui_out_list_chain);
do_cleanups (ui_out_tuple_chain);
ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
ui_out_list_chain = make_cleanup (null_cleanup, 0);
ui_out_text (uiout, "\n");
}
if (how_many >= 0 && num_displayed >= how_many)
break;
}
do_cleanups (ui_out_chain);
}
/* The idea here is to present a source-O-centric view of a
function to the user. This means that things are presented
in source order, with (possibly) out of order assembly
immediately following. */
static void
do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info *di,
struct symtab *main_symtab,
CORE_ADDR low, CORE_ADDR high,
int how_many, int flags, struct ui_file *stb)
{
int newlines = 0;
const struct linetable_entry *le, *first_le;
struct symtab_and_line sal;
int i, nlines;
int out_of_order = 0;
int next_line = 0;
int num_displayed = 0;
print_source_lines_flags psl_flags = 0;
struct cleanup *cleanups;
struct cleanup *ui_out_chain;
struct cleanup *ui_out_tuple_chain;
struct cleanup *ui_out_list_chain;
CORE_ADDR pc;
struct symtab *last_symtab;
int last_line;
htab_t dis_line_table;
gdb_assert (main_symtab != NULL && SYMTAB_LINETABLE (main_symtab) != NULL);
/* First pass: collect the list of all source files and lines.
We do this so that we can only print lines containing code once.
We try to print the source text leading up to the next instruction,
but if that text is for code that will be disassembled later, then
we'll want to defer printing it until later with its associated code. */
dis_line_table = allocate_dis_line_table ();
cleanups = make_cleanup_htab_delete (dis_line_table);
pc = low;
/* The prologue may be empty, but there may still be a line number entry
for the opening brace which is distinct from the first line of code.
If the prologue has been eliminated find_pc_line may return the source
line after the opening brace. We still want to print this opening brace.
first_le is used to implement this. */
nlines = SYMTAB_LINETABLE (main_symtab)->nitems;
le = SYMTAB_LINETABLE (main_symtab)->item;
first_le = NULL;
/* Skip all the preceding functions. */
for (i = 0; i < nlines && le[i].pc < low; i++)
continue;
if (i < nlines && le[i].pc < high)
first_le = &le[i];
/* Add lines for every pc value. */
while (pc < high)
{
struct symtab_and_line sal;
int length;
sal = find_pc_line (pc, 0);
length = gdb_insn_length (gdbarch, pc);
pc += length;
if (sal.symtab != NULL)
maybe_add_dis_line_entry (dis_line_table, sal.symtab, sal.line);
}
/* Second pass: print the disassembly.
Output format, from an MI perspective:
The result is a ui_out list, field name "asm_insns", where elements have
name "src_and_asm_line".
Each element is a tuple of source line specs (field names line, file,
fullname), and field "line_asm_insn" which contains the disassembly.
Field "line_asm_insn" is a list of tuples: address, func-name, offset,
opcodes, inst.
CLI output works on top of this because MI ignores ui_out_text output,
which is where we put file name and source line contents output.
Cleanup usage:
cleanups:
For things created at the beginning of this function and need to be
kept until the end of this function.
ui_out_chain
Handles the outer "asm_insns" list.
ui_out_tuple_chain
The tuples for each group of consecutive disassemblies.
ui_out_list_chain
List of consecutive source lines or disassembled insns. */
if (flags & DISASSEMBLY_FILENAME)
psl_flags |= PRINT_SOURCE_LINES_FILENAME;
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
ui_out_tuple_chain = NULL;
ui_out_list_chain = NULL;
last_symtab = NULL;
last_line = 0;
pc = low;
while (pc < high)
{
struct linetable_entry *le = NULL;
struct symtab_and_line sal;
CORE_ADDR end_pc;
int start_preceding_line_to_display = 0;
int end_preceding_line_to_display = 0;
int new_source_line = 0;
sal = find_pc_line (pc, 0);
if (sal.symtab != last_symtab)
{
/* New source file. */
new_source_line = 1;
/* If this is the first line of output, check for any preceding
lines. */
if (last_line == 0
&& first_le != NULL
&& first_le->line < sal.line)
{
start_preceding_line_to_display = first_le->line;
end_preceding_line_to_display = sal.line;
}
}
else
{
/* Same source file as last time. */
if (sal.symtab != NULL)
{
if (sal.line > last_line + 1 && last_line != 0)
{
int l;
/* Several preceding source lines. Print the trailing ones
not associated with code that we'll print later. */
for (l = sal.line - 1; l > last_line; --l)
{
if (line_has_code_p (dis_line_table, sal.symtab, l))
break;
}
if (l < sal.line - 1)
{
start_preceding_line_to_display = l + 1;
end_preceding_line_to_display = sal.line;
}
}
if (sal.line != last_line)
new_source_line = 1;
else
{
/* Same source line as last time. This can happen, depending
on the debug info. */
}
}
}
if (new_source_line)
{
/* Skip the newline if this is the first instruction. */
if (pc > low)
ui_out_text (uiout, "\n");
if (ui_out_tuple_chain != NULL)
{
gdb_assert (ui_out_list_chain != NULL);
do_cleanups (ui_out_list_chain);
do_cleanups (ui_out_tuple_chain);
}
if (sal.symtab != last_symtab
&& !(flags & DISASSEMBLY_FILENAME))
{
/* Remember MI ignores ui_out_text.
We don't have to do anything here for MI because MI
output includes the source specs for each line. */
if (sal.symtab != NULL)
{
ui_out_text (uiout,
symtab_to_filename_for_display (sal.symtab));
}
else
ui_out_text (uiout, "unknown");
ui_out_text (uiout, ":\n");
}
if (start_preceding_line_to_display > 0)
{
/* Several source lines w/o asm instructions associated.
We need to preserve the structure of the output, so output
a bunch of line tuples with no asm entries. */
int l;
struct cleanup *ui_out_list_chain_line;
struct cleanup *ui_out_tuple_chain_line;
gdb_assert (sal.symtab != NULL);
for (l = start_preceding_line_to_display;
l < end_preceding_line_to_display;
++l)
{
ui_out_tuple_chain_line
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (sal.symtab, l, l + 1, psl_flags);
ui_out_list_chain_line
= make_cleanup_ui_out_list_begin_end (uiout,
"line_asm_insn");
do_cleanups (ui_out_list_chain_line);
do_cleanups (ui_out_tuple_chain_line);
}
}
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line");
if (sal.symtab != NULL)
print_source_lines (sal.symtab, sal.line, sal.line + 1, psl_flags);
else
ui_out_text (uiout, _("--- no source info for this pc ---\n"));
ui_out_list_chain
= make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
}
else
{
/* Here we're appending instructions to an existing line.
By construction the very first insn will have a symtab
and follow the new_source_line path above. */
gdb_assert (ui_out_tuple_chain != NULL);
gdb_assert (ui_out_list_chain != NULL);
}
if (sal.end != 0)
end_pc = min (sal.end, high);
else
end_pc = pc + 1;
num_displayed += dump_insns (gdbarch, uiout, di, pc, end_pc,
how_many, flags, stb, &end_pc);
pc = end_pc;
if (how_many >= 0 && num_displayed >= how_many)
break;
last_symtab = sal.symtab;
last_line = sal.line;
}
do_cleanups (ui_out_chain);
do_cleanups (cleanups);
}
static void
do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info * di,
CORE_ADDR low, CORE_ADDR high,
int how_many, int flags, struct ui_file *stb)
{
int num_displayed = 0;
struct cleanup *ui_out_chain;
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
flags, stb, NULL);
do_cleanups (ui_out_chain);
}
/* Initialize the disassemble info struct ready for the specified
stream. */
static int ATTRIBUTE_PRINTF (2, 3)
fprintf_disasm (void *stream, const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_filtered ((struct ui_file *) stream, format, args);
va_end (args);
/* Something non -ve. */
return 0;
}
struct disassemble_info
gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
{
struct disassemble_info di;
init_disassemble_info (&di, file, fprintf_disasm);
di.flavour = bfd_target_unknown_flavour;
di.memory_error_func = dis_asm_memory_error;
di.print_address_func = dis_asm_print_address;
/* NOTE: cagney/2003-04-28: The original code, from the old Insight
disassembler had a local optomization here. By default it would
access the executable file, instead of the target memory (there
was a growing list of exceptions though). Unfortunately, the
heuristic was flawed. Commands like "disassemble &variable"
didn't work as they relied on the access going to the target.
Further, it has been supperseeded by trust-read-only-sections
(although that should be superseeded by target_trust..._p()). */
di.read_memory_func = dis_asm_read_memory;
di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
di.endian = gdbarch_byte_order (gdbarch);
di.endian_code = gdbarch_byte_order_for_code (gdbarch);
di.application_data = gdbarch;
disassemble_init_for_target (&di);
return di;
}
void
gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
char *file_string, int flags, int how_many,
CORE_ADDR low, CORE_ADDR high)
{
struct ui_file *stb = mem_fileopen ();
struct cleanup *cleanups = make_cleanup_ui_file_delete (stb);
struct disassemble_info di = gdb_disassemble_info (gdbarch, stb);
struct symtab *symtab;
struct linetable_entry *le = NULL;
int nlines = -1;
/* Assume symtab is valid for whole PC range. */
symtab = find_pc_line_symtab (low);
if (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL)
nlines = SYMTAB_LINETABLE (symtab)->nitems;
if (!(flags & (DISASSEMBLY_SOURCE_DEPRECATED | DISASSEMBLY_SOURCE))
|| nlines <= 0)
do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
else if (flags & DISASSEMBLY_SOURCE)
do_mixed_source_and_assembly (gdbarch, uiout, &di, symtab, low, high,
how_many, flags, stb);
else if (flags & DISASSEMBLY_SOURCE_DEPRECATED)
do_mixed_source_and_assembly_deprecated (gdbarch, uiout, &di, symtab,
low, high, how_many, flags, stb);
do_cleanups (cleanups);
gdb_flush (gdb_stdout);
}
/* Print the instruction at address MEMADDR in debugged memory,
on STREAM. Returns the length of the instruction, in bytes,
and, if requested, the number of branch delay slot instructions. */
int
gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
struct ui_file *stream, int *branch_delay_insns)
{
struct disassemble_info di;
int length;
di = gdb_disassemble_info (gdbarch, stream);
length = gdbarch_print_insn (gdbarch, memaddr, &di);
if (branch_delay_insns)
{
if (di.insn_info_valid)
*branch_delay_insns = di.branch_delay_insns;
else
*branch_delay_insns = 0;
}
return length;
}
static void
do_ui_file_delete (void *arg)
{
ui_file_delete ((struct ui_file *) arg);
}
/* Return the length in bytes of the instruction at address MEMADDR in
debugged memory. */
int
gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
{
static struct ui_file *null_stream = NULL;
/* Dummy file descriptor for the disassembler. */
if (!null_stream)
{
null_stream = ui_file_new ();
make_final_cleanup (do_ui_file_delete, null_stream);
}
return gdb_print_insn (gdbarch, addr, null_stream, NULL);
}
/* fprintf-function for gdb_buffered_insn_length. This function is a
nop, we don't want to print anything, we just want to compute the
length of the insn. */
static int ATTRIBUTE_PRINTF (2, 3)
gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
{
return 0;
}
/* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
static void
gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
struct disassemble_info *di,
const gdb_byte *insn, int max_len,
CORE_ADDR addr)
{
init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
/* init_disassemble_info installs buffer_read_memory, etc.
so we don't need to do that here.
The cast is necessary until disassemble_info is const-ified. */
di->buffer = (gdb_byte *) insn;
di->buffer_length = max_len;
di->buffer_vma = addr;
di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
di->endian = gdbarch_byte_order (gdbarch);
di->endian_code = gdbarch_byte_order_for_code (gdbarch);
disassemble_init_for_target (di);
}
/* Return the length in bytes of INSN. MAX_LEN is the size of the
buffer containing INSN. */
int
gdb_buffered_insn_length (struct gdbarch *gdbarch,
const gdb_byte *insn, int max_len, CORE_ADDR addr)
{
struct disassemble_info di;
gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
return gdbarch_print_insn (gdbarch, addr, &di);
}