binutils-gdb/gdb/gdbtypes.c
Daniel Jacobowitz ea37ba0926 * NEWS: Update description of string changes. Mention print/s.
* c-valprint.c (textual_element_type): New.
	(c_val_print): Use it.  Do not skip address printing for pointers
	with a string format.
	(c_value_print): Doc update.
	* dwarf2read.c (read_array_type): Use make_vector_type.
	* gdbtypes.c (make_vector_type): New.
	(init_vector_type): Use it.
	(gdbtypes_post_init): Initialize builtin_true_unsigned_char.
	(_initialize_gdbtypes): Mark int8_t and uint8_t as TYPE_FLAG_NOTTEXT.
	* gdbtypes.h (struct builtin_type): Add builtin_true_unsigned_char.
	(TYPE_FLAG_NOTTEXT, TYPE_NOTTEXT): New.
	(make_vector_type): New.
	* printcmd.c (print_formatted): Only handle 's' and 'i' for examine.
	Call the language print routine for string format.
	(print_scalar_formatted): Call val_print for string format.  Handle
	unsigned original types for char format.
	(validate_format): Do not reject string format.
	* stabsread.c (read_type): Use make_vector_type.
	* xml-tdesc.c (tdesc_start_vector): Use init_vector_type.

	* gdb.texinfo (Output Formats): Update 'c' description.  Describe 's'.
	(Examining Memory): Update mentions of the 's' format.
	(Automatic Display): Likewise.

	* gdb.arch/i386-sse.exp: Do not expect character constants.
	* gdb.base/charsign.c, gdb.base/charsign.exp: Delete.
	* gdb.base/display.exp: Allow print/s.
	* gdb.base/printcmds.exp, gdb.base/setvar.exp: Revert signed
	and unsigned char array changes.
2007-09-05 00:51:49 +00:00

3661 lines
106 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Support routines for manipulating internal types for GDB.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Cygnus Support, using pieces from other GDB modules.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdb_string.h"
#include "bfd.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "target.h"
#include "value.h"
#include "demangle.h"
#include "complaints.h"
#include "gdbcmd.h"
#include "wrapper.h"
#include "cp-abi.h"
#include "gdb_assert.h"
#include "hashtab.h"
/* These variables point to the objects
representing the predefined C data types. */
struct type *builtin_type_int0;
struct type *builtin_type_int8;
struct type *builtin_type_uint8;
struct type *builtin_type_int16;
struct type *builtin_type_uint16;
struct type *builtin_type_int32;
struct type *builtin_type_uint32;
struct type *builtin_type_int64;
struct type *builtin_type_uint64;
struct type *builtin_type_int128;
struct type *builtin_type_uint128;
/* Floatformat pairs. */
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_single_big,
&floatformat_ieee_single_little
};
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_double_big,
&floatformat_ieee_double_little
};
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ieee_double_big,
&floatformat_ieee_double_littlebyte_bigword
};
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_i387_ext,
&floatformat_i387_ext
};
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_m68881_ext,
&floatformat_m68881_ext
};
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
&floatformat_arm_ext_big,
&floatformat_arm_ext_littlebyte_bigword
};
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ia64_spill_big,
&floatformat_ia64_spill_little
};
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
&floatformat_ia64_quad_big,
&floatformat_ia64_quad_little
};
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
&floatformat_vax_f,
&floatformat_vax_f
};
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
&floatformat_vax_d,
&floatformat_vax_d
};
struct type *builtin_type_ieee_single;
struct type *builtin_type_ieee_double;
struct type *builtin_type_i387_ext;
struct type *builtin_type_m68881_ext;
struct type *builtin_type_arm_ext;
struct type *builtin_type_ia64_spill;
struct type *builtin_type_ia64_quad;
int opaque_type_resolution = 1;
static void
show_opaque_type_resolution (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file, _("\
Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
value);
}
int overload_debug = 0;
static void
show_overload_debug (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
value);
}
struct extra
{
char str[128];
int len;
}; /* Maximum extension is 128! FIXME */
static void print_bit_vector (B_TYPE *, int);
static void print_arg_types (struct field *, int, int);
static void dump_fn_fieldlists (struct type *, int);
static void print_cplus_stuff (struct type *, int);
static void virtual_base_list_aux (struct type *dclass);
/* Alloc a new type structure and fill it with some defaults. If
OBJFILE is non-NULL, then allocate the space for the type structure
in that objfile's objfile_obstack. Otherwise allocate the new type
structure by xmalloc () (for permanent types). */
struct type *
alloc_type (struct objfile *objfile)
{
struct type *type;
/* Alloc the structure and start off with all fields zeroed. */
if (objfile == NULL)
{
type = xmalloc (sizeof (struct type));
memset (type, 0, sizeof (struct type));
TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
}
else
{
type = obstack_alloc (&objfile->objfile_obstack,
sizeof (struct type));
memset (type, 0, sizeof (struct type));
TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
sizeof (struct main_type));
OBJSTAT (objfile, n_types++);
}
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
/* Initialize the fields that might not be zero. */
TYPE_CODE (type) = TYPE_CODE_UNDEF;
TYPE_OBJFILE (type) = objfile;
TYPE_VPTR_FIELDNO (type) = -1;
TYPE_CHAIN (type) = type; /* Chain back to itself. */
return (type);
}
/* Alloc a new type instance structure, fill it with some defaults,
and point it at OLDTYPE. Allocate the new type instance from the
same place as OLDTYPE. */
static struct type *
alloc_type_instance (struct type *oldtype)
{
struct type *type;
/* Allocate the structure. */
if (TYPE_OBJFILE (oldtype) == NULL)
{
type = xmalloc (sizeof (struct type));
memset (type, 0, sizeof (struct type));
}
else
{
type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
sizeof (struct type));
memset (type, 0, sizeof (struct type));
}
TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
return (type);
}
/* Clear all remnants of the previous type at TYPE, in preparation for
replacing it with something else. */
static void
smash_type (struct type *type)
{
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
/* For now, delete the rings. */
TYPE_CHAIN (type) = type;
/* For now, leave the pointer/reference types alone. */
}
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
to a pointer to memory where the pointer type should be stored.
If *TYPEPTR is zero, update it to point to the pointer type we return.
We allocate new memory if needed. */
struct type *
make_pointer_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct objfile *objfile;
struct type *chain;
ntype = TYPE_POINTER_TYPE (type);
if (ntype)
{
if (typeptr == 0)
return ntype; /* Don't care about alloc,
and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type (TYPE_OBJFILE (type));
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
chain = TYPE_CHAIN (ntype);
smash_type (ntype);
TYPE_CHAIN (ntype) = chain;
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_POINTER_TYPE (type) = ntype;
/* FIXME! Assume the machine has only one representation for
pointers! */
TYPE_LENGTH (ntype) =
gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_PTR;
/* Mark pointers as unsigned. The target converts between pointers
and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
gdbarch_address_to_pointer. */
TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
TYPE_POINTER_TYPE (type) = ntype;
/* Update the length of all the other variants of this type. */
chain = TYPE_CHAIN (ntype);
while (chain != ntype)
{
TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
chain = TYPE_CHAIN (chain);
}
return ntype;
}
/* Given a type TYPE, return a type of pointers to that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_pointer_type (struct type *type)
{
return make_pointer_type (type, (struct type **) 0);
}
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
points to a pointer to memory where the reference type should be
stored. If *TYPEPTR is zero, update it to point to the reference
type we return. We allocate new memory if needed. */
struct type *
make_reference_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct objfile *objfile;
struct type *chain;
ntype = TYPE_REFERENCE_TYPE (type);
if (ntype)
{
if (typeptr == 0)
return ntype; /* Don't care about alloc,
and have new type. */
else if (*typeptr == 0)
{
*typeptr = ntype; /* Tracking alloc, and have new type. */
return ntype;
}
}
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type (TYPE_OBJFILE (type));
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
chain = TYPE_CHAIN (ntype);
smash_type (ntype);
TYPE_CHAIN (ntype) = chain;
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_REFERENCE_TYPE (type) = ntype;
/* FIXME! Assume the machine has only one representation for
references, and that it matches the (only) representation for
pointers! */
TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
TYPE_CODE (ntype) = TYPE_CODE_REF;
if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
TYPE_REFERENCE_TYPE (type) = ntype;
/* Update the length of all the other variants of this type. */
chain = TYPE_CHAIN (ntype);
while (chain != ntype)
{
TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
chain = TYPE_CHAIN (chain);
}
return ntype;
}
/* Same as above, but caller doesn't care about memory allocation
details. */
struct type *
lookup_reference_type (struct type *type)
{
return make_reference_type (type, (struct type **) 0);
}
/* Lookup a function type that returns type TYPE. TYPEPTR, if
nonzero, points to a pointer to memory where the function type
should be stored. If *TYPEPTR is zero, update it to point to the
function type we return. We allocate new memory if needed. */
struct type *
make_function_type (struct type *type, struct type **typeptr)
{
struct type *ntype; /* New type */
struct objfile *objfile;
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
{
ntype = alloc_type (TYPE_OBJFILE (type));
if (typeptr)
*typeptr = ntype;
}
else /* We have storage, but need to reset it. */
{
ntype = *typeptr;
objfile = TYPE_OBJFILE (ntype);
smash_type (ntype);
TYPE_OBJFILE (ntype) = objfile;
}
TYPE_TARGET_TYPE (ntype) = type;
TYPE_LENGTH (ntype) = 1;
TYPE_CODE (ntype) = TYPE_CODE_FUNC;
return ntype;
}
/* Given a type TYPE, return a type of functions that return that type.
May need to construct such a type if this is the first use. */
struct type *
lookup_function_type (struct type *type)
{
return make_function_type (type, (struct type **) 0);
}
/* Identify address space identifier by name --
return the integer flag defined in gdbtypes.h. */
extern int
address_space_name_to_int (char *space_identifier)
{
struct gdbarch *gdbarch = current_gdbarch;
int type_flags;
/* Check for known address space delimiters. */
if (!strcmp (space_identifier, "code"))
return TYPE_FLAG_CODE_SPACE;
else if (!strcmp (space_identifier, "data"))
return TYPE_FLAG_DATA_SPACE;
else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
&& gdbarch_address_class_name_to_type_flags (gdbarch,
space_identifier,
&type_flags))
return type_flags;
else
error (_("Unknown address space specifier: \"%s\""), space_identifier);
}
/* Identify address space identifier by integer flag as defined in
gdbtypes.h -- return the string version of the adress space name. */
const char *
address_space_int_to_name (int space_flag)
{
struct gdbarch *gdbarch = current_gdbarch;
if (space_flag & TYPE_FLAG_CODE_SPACE)
return "code";
else if (space_flag & TYPE_FLAG_DATA_SPACE)
return "data";
else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
&& gdbarch_address_class_type_flags_to_name_p (gdbarch))
return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
else
return NULL;
}
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
If STORAGE is non-NULL, create the new type instance there.
STORAGE must be in the same obstack as TYPE. */
static struct type *
make_qualified_type (struct type *type, int new_flags,
struct type *storage)
{
struct type *ntype;
ntype = type;
do {
if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
return ntype;
ntype = TYPE_CHAIN (ntype);
} while (ntype != type);
/* Create a new type instance. */
if (storage == NULL)
ntype = alloc_type_instance (type);
else
{
/* If STORAGE was provided, it had better be in the same objfile
as TYPE. Otherwise, we can't link it into TYPE's cv chain:
if one objfile is freed and the other kept, we'd have
dangling pointers. */
gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
ntype = storage;
TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
TYPE_CHAIN (ntype) = ntype;
}
/* Pointers or references to the original type are not relevant to
the new type. */
TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
/* Chain the new qualified type to the old type. */
TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
TYPE_CHAIN (type) = ntype;
/* Now set the instance flags and return the new type. */
TYPE_INSTANCE_FLAGS (ntype) = new_flags;
/* Set length of new type to that of the original type. */
TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
return ntype;
}
/* Make an address-space-delimited variant of a type -- a type that
is identical to the one supplied except that it has an address
space attribute attached to it (such as "code" or "data").
The space attributes "code" and "data" are for Harvard
architectures. The address space attributes are for architectures
which have alternately sized pointers or pointers with alternate
representations. */
struct type *
make_type_with_address_space (struct type *type, int space_flag)
{
struct type *ntype;
int new_flags = ((TYPE_INSTANCE_FLAGS (type)
& ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
| TYPE_FLAG_ADDRESS_CLASS_ALL))
| space_flag);
return make_qualified_type (type, new_flags, NULL);
}
/* Make a "c-v" variant of a type -- a type that is identical to the
one supplied except that it may have const or volatile attributes
CNST is a flag for setting the const attribute
VOLTL is a flag for setting the volatile attribute
TYPE is the base type whose variant we are creating.
If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
storage to hold the new qualified type; *TYPEPTR and TYPE must be
in the same objfile. Otherwise, allocate fresh memory for the new
type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
new type we construct. */
struct type *
make_cv_type (int cnst, int voltl,
struct type *type,
struct type **typeptr)
{
struct type *ntype; /* New type */
struct type *tmp_type = type; /* tmp type */
struct objfile *objfile;
int new_flags = (TYPE_INSTANCE_FLAGS (type)
& ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
if (cnst)
new_flags |= TYPE_FLAG_CONST;
if (voltl)
new_flags |= TYPE_FLAG_VOLATILE;
if (typeptr && *typeptr != NULL)
{
/* TYPE and *TYPEPTR must be in the same objfile. We can't have
a C-V variant chain that threads across objfiles: if one
objfile gets freed, then the other has a broken C-V chain.
This code used to try to copy over the main type from TYPE to
*TYPEPTR if they were in different objfiles, but that's
wrong, too: TYPE may have a field list or member function
lists, which refer to types of their own, etc. etc. The
whole shebang would need to be copied over recursively; you
can't have inter-objfile pointers. The only thing to do is
to leave stub types as stub types, and look them up afresh by
name each time you encounter them. */
gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
}
ntype = make_qualified_type (type, new_flags,
typeptr ? *typeptr : NULL);
if (typeptr != NULL)
*typeptr = ntype;
return ntype;
}
/* Replace the contents of ntype with the type *type. This changes the
contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
the changes are propogated to all types in the TYPE_CHAIN.
In order to build recursive types, it's inevitable that we'll need
to update types in place --- but this sort of indiscriminate
smashing is ugly, and needs to be replaced with something more
controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
clear if more steps are needed. */
void
replace_type (struct type *ntype, struct type *type)
{
struct type *chain;
/* These two types had better be in the same objfile. Otherwise,
the assignment of one type's main type structure to the other
will produce a type with references to objects (names; field
lists; etc.) allocated on an objfile other than its own. */
gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
*TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
/* The type length is not a part of the main type. Update it for
each type on the variant chain. */
chain = ntype;
do {
/* Assert that this element of the chain has no address-class bits
set in its flags. Such type variants might have type lengths
which are supposed to be different from the non-address-class
variants. This assertion shouldn't ever be triggered because
symbol readers which do construct address-class variants don't
call replace_type(). */
gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
TYPE_LENGTH (chain) = TYPE_LENGTH (type);
chain = TYPE_CHAIN (chain);
} while (ntype != chain);
/* Assert that the two types have equivalent instance qualifiers.
This should be true for at least all of our debug readers. */
gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
}
/* Implement direct support for MEMBER_TYPE in GNU C++.
May need to construct such a type if this is the first use.
The TYPE is the type of the member. The DOMAIN is the type
of the aggregate that the member belongs to. */
struct type *
lookup_memberptr_type (struct type *type, struct type *domain)
{
struct type *mtype;
mtype = alloc_type (TYPE_OBJFILE (type));
smash_to_memberptr_type (mtype, domain, type);
return (mtype);
}
/* Return a pointer-to-method type, for a method of type TO_TYPE. */
struct type *
lookup_methodptr_type (struct type *to_type)
{
struct type *mtype;
mtype = alloc_type (TYPE_OBJFILE (to_type));
TYPE_TARGET_TYPE (mtype) = to_type;
TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
return mtype;
}
/* Allocate a stub method whose return type is TYPE. This apparently
happens for speed of symbol reading, since parsing out the
arguments to the method is cpu-intensive, the way we are doing it.
So, we will fill in arguments later. This always returns a fresh
type. */
struct type *
allocate_stub_method (struct type *type)
{
struct type *mtype;
mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
TYPE_OBJFILE (type));
TYPE_TARGET_TYPE (mtype) = type;
/* _DOMAIN_TYPE (mtype) = unknown yet */
return (mtype);
}
/* Create a range type using either a blank type supplied in
RESULT_TYPE, or creating a new type, inheriting the objfile from
INDEX_TYPE.
Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
to HIGH_BOUND, inclusive.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
struct type *
create_range_type (struct type *result_type, struct type *index_type,
int low_bound, int high_bound)
{
if (result_type == NULL)
{
result_type = alloc_type (TYPE_OBJFILE (index_type));
}
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
TYPE_TARGET_TYPE (result_type) = index_type;
if (TYPE_STUB (index_type))
TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
else
TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
TYPE_NFIELDS (result_type) = 2;
TYPE_FIELDS (result_type) = (struct field *)
TYPE_ALLOC (result_type, 2 * sizeof (struct field));
memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
if (low_bound >= 0)
TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
return (result_type);
}
/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
TYPE. Return 1 if type is a range type, 0 if it is discrete (and
bounds will fit in LONGEST), or -1 otherwise. */
int
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
{
CHECK_TYPEDEF (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_RANGE:
*lowp = TYPE_LOW_BOUND (type);
*highp = TYPE_HIGH_BOUND (type);
return 1;
case TYPE_CODE_ENUM:
if (TYPE_NFIELDS (type) > 0)
{
/* The enums may not be sorted by value, so search all
entries */
int i;
*lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
for (i = 0; i < TYPE_NFIELDS (type); i++)
{
if (TYPE_FIELD_BITPOS (type, i) < *lowp)
*lowp = TYPE_FIELD_BITPOS (type, i);
if (TYPE_FIELD_BITPOS (type, i) > *highp)
*highp = TYPE_FIELD_BITPOS (type, i);
}
/* Set unsigned indicator if warranted. */
if (*lowp >= 0)
{
TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
}
}
else
{
*lowp = 0;
*highp = -1;
}
return 0;
case TYPE_CODE_BOOL:
*lowp = 0;
*highp = 1;
return 0;
case TYPE_CODE_INT:
if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
return -1;
if (!TYPE_UNSIGNED (type))
{
*lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
*highp = -*lowp - 1;
return 0;
}
/* ... fall through for unsigned ints ... */
case TYPE_CODE_CHAR:
*lowp = 0;
/* This round-about calculation is to avoid shifting by
TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
if TYPE_LENGTH (type) == sizeof (LONGEST). */
*highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
*highp = (*highp - 1) | *highp;
return 0;
default:
return -1;
}
}
/* Create an array type using either a blank type supplied in
RESULT_TYPE, or creating a new type, inheriting the objfile from
RANGE_TYPE.
Elements will be of type ELEMENT_TYPE, the indices will be of type
RANGE_TYPE.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into an array
type? */
struct type *
create_array_type (struct type *result_type,
struct type *element_type,
struct type *range_type)
{
LONGEST low_bound, high_bound;
if (result_type == NULL)
{
result_type = alloc_type (TYPE_OBJFILE (range_type));
}
TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
TYPE_TARGET_TYPE (result_type) = element_type;
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
low_bound = high_bound = 0;
CHECK_TYPEDEF (element_type);
TYPE_LENGTH (result_type) =
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
TYPE_NFIELDS (result_type) = 1;
TYPE_FIELDS (result_type) =
(struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
TYPE_FIELD_TYPE (result_type, 0) = range_type;
TYPE_VPTR_FIELDNO (result_type) = -1;
/* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
if (TYPE_LENGTH (result_type) == 0)
TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
return (result_type);
}
/* Create a string type using either a blank type supplied in
RESULT_TYPE, or creating a new type. String types are similar
enough to array of char types that we can use create_array_type to
build the basic type and then bash it into a string type.
For fixed length strings, the range type contains 0 as the lower
bound and the length of the string minus one as the upper bound.
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
sure it is TYPE_CODE_UNDEF before we bash it into a string
type? */
struct type *
create_string_type (struct type *result_type,
struct type *range_type)
{
struct type *string_char_type;
string_char_type = language_string_char_type (current_language,
current_gdbarch);
result_type = create_array_type (result_type,
string_char_type,
range_type);
TYPE_CODE (result_type) = TYPE_CODE_STRING;
return (result_type);
}
struct type *
create_set_type (struct type *result_type, struct type *domain_type)
{
if (result_type == NULL)
{
result_type = alloc_type (TYPE_OBJFILE (domain_type));
}
TYPE_CODE (result_type) = TYPE_CODE_SET;
TYPE_NFIELDS (result_type) = 1;
TYPE_FIELDS (result_type) = (struct field *)
TYPE_ALLOC (result_type, 1 * sizeof (struct field));
memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
if (!TYPE_STUB (domain_type))
{
LONGEST low_bound, high_bound, bit_length;
if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
low_bound = high_bound = 0;
bit_length = high_bound - low_bound + 1;
TYPE_LENGTH (result_type)
= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
if (low_bound >= 0)
TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
}
TYPE_FIELD_TYPE (result_type, 0) = domain_type;
return (result_type);
}
void
append_flags_type_flag (struct type *type, int bitpos, char *name)
{
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
gdb_assert (bitpos < TYPE_NFIELDS (type));
gdb_assert (bitpos >= 0);
if (name)
{
TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
}
else
{
/* Don't show this field to the user. */
TYPE_FIELD_BITPOS (type, bitpos) = -1;
}
}
struct type *
init_flags_type (char *name, int length)
{
int nfields = length * TARGET_CHAR_BIT;
struct type *type;
type = init_type (TYPE_CODE_FLAGS, length,
TYPE_FLAG_UNSIGNED, name, NULL);
TYPE_NFIELDS (type) = nfields;
TYPE_FIELDS (type) = TYPE_ALLOC (type,
nfields * sizeof (struct field));
memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
return type;
}
/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
and any array types nested inside it. */
void
make_vector_type (struct type *array_type)
{
struct type *inner_array, *elt_type;
int flags;
/* Find the innermost array type, in case the array is
multi-dimensional. */
inner_array = array_type;
while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
inner_array = TYPE_TARGET_TYPE (inner_array);
elt_type = TYPE_TARGET_TYPE (inner_array);
if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
{
flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
elt_type = make_qualified_type (elt_type, flags, NULL);
TYPE_TARGET_TYPE (inner_array) = elt_type;
}
TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
}
struct type *
init_vector_type (struct type *elt_type, int n)
{
struct type *array_type;
array_type = create_array_type (0, elt_type,
create_range_type (0,
builtin_type_int,
0, n-1));
make_vector_type (array_type);
return array_type;
}
/* Smash TYPE to be a type of pointers to members of DOMAIN with type
TO_TYPE. A member pointer is a wierd thing -- it amounts to a
typed offset into a struct, e.g. "an int at offset 8". A MEMBER
TYPE doesn't include the offset (that's the value of the MEMBER
itself), but does include the structure type into which it points
(for some reason).
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_memberptr_type (struct type *type, struct type *domain,
struct type *to_type)
{
struct objfile *objfile;
objfile = TYPE_OBJFILE (type);
smash_type (type);
TYPE_OBJFILE (type) = objfile;
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
/* Assume that a data member pointer is the same size as a normal
pointer. */
TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
}
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
METHOD just means `function that gets an extra "this" argument'.
When "smashing" the type, we preserve the objfile that the old type
pointed to, since we aren't changing where the type is actually
allocated. */
void
smash_to_method_type (struct type *type, struct type *domain,
struct type *to_type, struct field *args,
int nargs, int varargs)
{
struct objfile *objfile;
objfile = TYPE_OBJFILE (type);
smash_type (type);
TYPE_OBJFILE (type) = objfile;
TYPE_TARGET_TYPE (type) = to_type;
TYPE_DOMAIN_TYPE (type) = domain;
TYPE_FIELDS (type) = args;
TYPE_NFIELDS (type) = nargs;
if (varargs)
TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
TYPE_CODE (type) = TYPE_CODE_METHOD;
}
/* Return a typename for a struct/union/enum type without "struct ",
"union ", or "enum ". If the type has a NULL name, return NULL. */
char *
type_name_no_tag (const struct type *type)
{
if (TYPE_TAG_NAME (type) != NULL)
return TYPE_TAG_NAME (type);
/* Is there code which expects this to return the name if there is
no tag name? My guess is that this is mainly used for C++ in
cases where the two will always be the same. */
return TYPE_NAME (type);
}
/* Lookup a typedef or primitive type named NAME, visible in lexical
block BLOCK. If NOERR is nonzero, return zero if NAME is not
suitably defined. */
struct type *
lookup_typename (char *name, struct block *block, int noerr)
{
struct symbol *sym;
struct type *tmp;
sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
(struct symtab **) NULL);
if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
{
tmp = language_lookup_primitive_type_by_name (current_language,
current_gdbarch,
name);
if (tmp)
{
return (tmp);
}
else if (!tmp && noerr)
{
return (NULL);
}
else
{
error (_("No type named %s."), name);
}
}
return (SYMBOL_TYPE (sym));
}
struct type *
lookup_unsigned_typename (char *name)
{
char *uns = alloca (strlen (name) + 10);
strcpy (uns, "unsigned ");
strcpy (uns + 9, name);
return (lookup_typename (uns, (struct block *) NULL, 0));
}
struct type *
lookup_signed_typename (char *name)
{
struct type *t;
char *uns = alloca (strlen (name) + 8);
strcpy (uns, "signed ");
strcpy (uns + 7, name);
t = lookup_typename (uns, (struct block *) NULL, 1);
/* If we don't find "signed FOO" just try again with plain "FOO". */
if (t != NULL)
return t;
return lookup_typename (name, (struct block *) NULL, 0);
}
/* Lookup a structure type named "struct NAME",
visible in lexical block BLOCK. */
struct type *
lookup_struct (char *name, struct block *block)
{
struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
(struct symtab **) NULL);
if (sym == NULL)
{
error (_("No struct type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
error (_("This context has class, union or enum %s, not a struct."),
name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup a union type named "union NAME",
visible in lexical block BLOCK. */
struct type *
lookup_union (char *name, struct block *block)
{
struct symbol *sym;
struct type *t;
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
(struct symtab **) NULL);
if (sym == NULL)
error (_("No union type named %s."), name);
t = SYMBOL_TYPE (sym);
if (TYPE_CODE (t) == TYPE_CODE_UNION)
return (t);
/* C++ unions may come out with TYPE_CODE_CLASS, but we look at
* a further "declared_type" field to discover it is really a union.
*/
if (HAVE_CPLUS_STRUCT (t))
if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
return (t);
/* If we get here, it's not a union. */
error (_("This context has class, struct or enum %s, not a union."),
name);
}
/* Lookup an enum type named "enum NAME",
visible in lexical block BLOCK. */
struct type *
lookup_enum (char *name, struct block *block)
{
struct symbol *sym;
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
(struct symtab **) NULL);
if (sym == NULL)
{
error (_("No enum type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
{
error (_("This context has class, struct or union %s, not an enum."),
name);
}
return (SYMBOL_TYPE (sym));
}
/* Lookup a template type named "template NAME<TYPE>",
visible in lexical block BLOCK. */
struct type *
lookup_template_type (char *name, struct type *type,
struct block *block)
{
struct symbol *sym;
char *nam = (char *)
alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
strcpy (nam, name);
strcat (nam, "<");
strcat (nam, TYPE_NAME (type));
strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
(struct symtab **) NULL);
if (sym == NULL)
{
error (_("No template type named %s."), name);
}
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
{
error (_("This context has class, union or enum %s, not a struct."),
name);
}
return (SYMBOL_TYPE (sym));
}
/* Given a type TYPE, lookup the type of the component of type named
NAME.
TYPE can be either a struct or union, or a pointer or reference to
a struct or union. If it is a pointer or reference, its target
type is automatically used. Thus '.' and '->' are interchangable,
as specified for the definitions of the expression element types
STRUCTOP_STRUCT and STRUCTOP_PTR.
If NOERR is nonzero, return zero if NAME is not suitably defined.
If NAME is the name of a baseclass type, return that type. */
struct type *
lookup_struct_elt_type (struct type *type, char *name, int noerr)
{
int i;
for (;;)
{
CHECK_TYPEDEF (type);
if (TYPE_CODE (type) != TYPE_CODE_PTR
&& TYPE_CODE (type) != TYPE_CODE_REF)
break;
type = TYPE_TARGET_TYPE (type);
}
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
{
target_terminal_ours ();
gdb_flush (gdb_stdout);
fprintf_unfiltered (gdb_stderr, "Type ");
type_print (type, "", gdb_stderr, -1);
error (_(" is not a structure or union type."));
}
#if 0
/* FIXME: This change put in by Michael seems incorrect for the case
where the structure tag name is the same as the member name.
I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
foo; } bell;" Disabled by fnf. */
{
char *typename;
typename = type_name_no_tag (type);
if (typename != NULL && strcmp (typename, name) == 0)
return type;
}
#endif
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
{
char *t_field_name = TYPE_FIELD_NAME (type, i);
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
{
return TYPE_FIELD_TYPE (type, i);
}
}
/* OK, it's not in this class. Recursively check the baseclasses. */
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
{
struct type *t;
t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
if (t != NULL)
{
return t;
}
}
if (noerr)
{
return NULL;
}
target_terminal_ours ();
gdb_flush (gdb_stdout);
fprintf_unfiltered (gdb_stderr, "Type ");
type_print (type, "", gdb_stderr, -1);
fprintf_unfiltered (gdb_stderr, " has no component named ");
fputs_filtered (name, gdb_stderr);
error (("."));
return (struct type *) -1; /* For lint */
}
/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
valid. Callers should be aware that in some cases (for example,
the type or one of its baseclasses is a stub type and we are
debugging a .o file), this function will not be able to find the
virtual function table pointer, and vptr_fieldno will remain -1 and
vptr_basetype will remain NULL. */
void
fill_in_vptr_fieldno (struct type *type)
{
CHECK_TYPEDEF (type);
if (TYPE_VPTR_FIELDNO (type) < 0)
{
int i;
/* We must start at zero in case the first (and only) baseclass
is virtual (and hence we cannot share the table pointer). */
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
{
struct type *baseclass = check_typedef (TYPE_BASECLASS (type,
i));
fill_in_vptr_fieldno (baseclass);
if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
{
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
break;
}
}
}
}
/* Find the method and field indices for the destructor in class type T.
Return 1 if the destructor was found, otherwise, return 0. */
int
get_destructor_fn_field (struct type *t,
int *method_indexp,
int *field_indexp)
{
int i;
for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
{
int j;
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
{
if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
{
*method_indexp = i;
*field_indexp = j;
return 1;
}
}
}
return 0;
}
static void
stub_noname_complaint (void)
{
complaint (&symfile_complaints, _("stub type has NULL name"));
}
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
If this is a stubbed struct (i.e. declared as struct foo *), see if
we can find a full definition in some other file. If so, copy this
definition, so we can use it in future. There used to be a comment
(but not any code) that if we don't find a full definition, we'd
set a flag so we don't spend time in the future checking the same
type. That would be a mistake, though--we might load in more
symbols which contain a full definition for the type.
This used to be coded as a macro, but I don't think it is called
often enough to merit such treatment. */
/* Find the real type of TYPE. This function returns the real type,
after removing all layers of typedefs and completing opaque or stub
types. Completion changes the TYPE argument, but stripping of
typedefs does not. */
struct type *
check_typedef (struct type *type)
{
struct type *orig_type = type;
int is_const, is_volatile;
gdb_assert (type);
while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
{
if (!TYPE_TARGET_TYPE (type))
{
char *name;
struct symbol *sym;
/* It is dangerous to call lookup_symbol if we are currently
reading a symtab. Infinite recursion is one danger. */
if (currently_reading_symtab)
return type;
name = type_name_no_tag (type);
/* FIXME: shouldn't we separately check the TYPE_NAME and
the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
VAR_DOMAIN as appropriate? (this code was written before
TYPE_NAME and TYPE_TAG_NAME were separate). */
if (name == NULL)
{
stub_noname_complaint ();
return type;
}
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
(struct symtab **) NULL);
if (sym)
TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
else /* TYPE_CODE_UNDEF */
TYPE_TARGET_TYPE (type) = alloc_type (NULL);
}
type = TYPE_TARGET_TYPE (type);
}
is_const = TYPE_CONST (type);
is_volatile = TYPE_VOLATILE (type);
/* If this is a struct/class/union with no fields, then check
whether a full definition exists somewhere else. This is for
systems where a type definition with no fields is issued for such
types, instead of identifying them as stub types in the first
place. */
if (TYPE_IS_OPAQUE (type)
&& opaque_type_resolution
&& !currently_reading_symtab)
{
char *name = type_name_no_tag (type);
struct type *newtype;
if (name == NULL)
{
stub_noname_complaint ();
return type;
}
newtype = lookup_transparent_type (name);
if (newtype)
{
/* If the resolved type and the stub are in the same
objfile, then replace the stub type with the real deal.
But if they're in separate objfiles, leave the stub
alone; we'll just look up the transparent type every time
we call check_typedef. We can't create pointers between
types allocated to different objfiles, since they may
have different lifetimes. Trying to copy NEWTYPE over to
TYPE's objfile is pointless, too, since you'll have to
move over any other types NEWTYPE refers to, which could
be an unbounded amount of stuff. */
if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
make_cv_type (is_const, is_volatile, newtype, &type);
else
type = newtype;
}
}
/* Otherwise, rely on the stub flag being set for opaque/stubbed
types. */
else if (TYPE_STUB (type) && !currently_reading_symtab)
{
char *name = type_name_no_tag (type);
/* FIXME: shouldn't we separately check the TYPE_NAME and the
TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
as appropriate? (this code was written before TYPE_NAME and
TYPE_TAG_NAME were separate). */
struct symbol *sym;
if (name == NULL)
{
stub_noname_complaint ();
return type;
}
sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
0, (struct symtab **) NULL);
if (sym)
{
/* Same as above for opaque types, we can replace the stub
with the complete type only if they are int the same
objfile. */
if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
make_cv_type (is_const, is_volatile,
SYMBOL_TYPE (sym), &type);
else
type = SYMBOL_TYPE (sym);
}
}
if (TYPE_TARGET_STUB (type))
{
struct type *range_type;
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
{
/* Empty. */
}
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_NFIELDS (type) == 1
&& (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
== TYPE_CODE_RANGE))
{
/* Now recompute the length of the array type, based on its
number of elements and the target type's length. */
TYPE_LENGTH (type) =
((TYPE_FIELD_BITPOS (range_type, 1)
- TYPE_FIELD_BITPOS (range_type, 0) + 1)
* TYPE_LENGTH (target_type));
TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
}
else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
{
TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
}
}
/* Cache TYPE_LENGTH for future use. */
TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
return type;
}
/* Parse a type expression in the string [P..P+LENGTH). If an error
occurs, silently return builtin_type_void. */
static struct type *
safe_parse_type (char *p, int length)
{
struct ui_file *saved_gdb_stderr;
struct type *type;
/* Suppress error messages. */
saved_gdb_stderr = gdb_stderr;
gdb_stderr = ui_file_new ();
/* Call parse_and_eval_type() without fear of longjmp()s. */
if (!gdb_parse_and_eval_type (p, length, &type))
type = builtin_type_void;
/* Stop suppressing error messages. */
ui_file_delete (gdb_stderr);
gdb_stderr = saved_gdb_stderr;
return type;
}
/* Ugly hack to convert method stubs into method types.
He ain't kiddin'. This demangles the name of the method into a
string including argument types, parses out each argument type,
generates a string casting a zero to that type, evaluates the
string, and stuffs the resulting type into an argtype vector!!!
Then it knows the type of the whole function (including argument
types for overloading), which info used to be in the stab's but was
removed to hack back the space required for them. */
static void
check_stub_method (struct type *type, int method_id, int signature_id)
{
struct fn_field *f;
char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
char *demangled_name = cplus_demangle (mangled_name,
DMGL_PARAMS | DMGL_ANSI);
char *argtypetext, *p;
int depth = 0, argcount = 1;
struct field *argtypes;
struct type *mtype;
/* Make sure we got back a function string that we can use. */
if (demangled_name)
p = strchr (demangled_name, '(');
else
p = NULL;
if (demangled_name == NULL || p == NULL)
error (_("Internal: Cannot demangle mangled name `%s'."),
mangled_name);
/* Now, read in the parameters that define this type. */
p += 1;
argtypetext = p;
while (*p)
{
if (*p == '(' || *p == '<')
{
depth += 1;
}
else if (*p == ')' || *p == '>')
{
depth -= 1;
}
else if (*p == ',' && depth == 0)
{
argcount += 1;
}
p += 1;
}
/* If we read one argument and it was ``void'', don't count it. */
if (strncmp (argtypetext, "(void)", 6) == 0)
argcount -= 1;
/* We need one extra slot, for the THIS pointer. */
argtypes = (struct field *)
TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
p = argtypetext;
/* Add THIS pointer for non-static methods. */
f = TYPE_FN_FIELDLIST1 (type, method_id);
if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
argcount = 0;
else
{
argtypes[0].type = lookup_pointer_type (type);
argcount = 1;
}
if (*p != ')') /* () means no args, skip while */
{
depth = 0;
while (*p)
{
if (depth <= 0 && (*p == ',' || *p == ')'))
{
/* Avoid parsing of ellipsis, they will be handled below.
Also avoid ``void'' as above. */
if (strncmp (argtypetext, "...", p - argtypetext) != 0
&& strncmp (argtypetext, "void", p - argtypetext) != 0)
{
argtypes[argcount].type =
safe_parse_type (argtypetext, p - argtypetext);
argcount += 1;
}
argtypetext = p + 1;
}
if (*p == '(' || *p == '<')
{
depth += 1;
}
else if (*p == ')' || *p == '>')
{
depth -= 1;
}
p += 1;
}
}
TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
/* Now update the old "stub" type into a real type. */
mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
TYPE_DOMAIN_TYPE (mtype) = type;
TYPE_FIELDS (mtype) = argtypes;
TYPE_NFIELDS (mtype) = argcount;
TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
TYPE_FN_FIELD_STUB (f, signature_id) = 0;
if (p[-2] == '.')
TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
xfree (demangled_name);
}
/* This is the external interface to check_stub_method, above. This
function unstubs all of the signatures for TYPE's METHOD_ID method
name. After calling this function TYPE_FN_FIELD_STUB will be
cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
correct.
This function unfortunately can not die until stabs do. */
void
check_stub_method_group (struct type *type, int method_id)
{
int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
int j, found_stub = 0;
for (j = 0; j < len; j++)
if (TYPE_FN_FIELD_STUB (f, j))
{
found_stub = 1;
check_stub_method (type, method_id, j);
}
/* GNU v3 methods with incorrect names were corrected when we read
in type information, because it was cheaper to do it then. The
only GNU v2 methods with incorrect method names are operators and
destructors; destructors were also corrected when we read in type
information.
Therefore the only thing we need to handle here are v2 operator
names. */
if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
{
int ret;
char dem_opname[256];
ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
method_id),
dem_opname, DMGL_ANSI);
if (!ret)
ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
method_id),
dem_opname, 0);
if (ret)
TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
}
}
const struct cplus_struct_type cplus_struct_default;
void
allocate_cplus_struct_type (struct type *type)
{
if (!HAVE_CPLUS_STRUCT (type))
{
TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
*(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
}
}
/* Helper function to initialize the standard scalar types.
If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
the string pointed to by name in the objfile_obstack for that
objfile, and initialize the type name to that copy. There are
places (mipsread.c in particular, where init_type is called with a
NULL value for NAME). */
struct type *
init_type (enum type_code code, int length, int flags,
char *name, struct objfile *objfile)
{
struct type *type;
type = alloc_type (objfile);
TYPE_CODE (type) = code;
TYPE_LENGTH (type) = length;
TYPE_FLAGS (type) |= flags;
if ((name != NULL) && (objfile != NULL))
{
TYPE_NAME (type) = obsavestring (name, strlen (name),
&objfile->objfile_obstack);
}
else
{
TYPE_NAME (type) = name;
}
/* C++ fancies. */
if (name && strcmp (name, "char") == 0)
TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
|| code == TYPE_CODE_NAMESPACE)
{
INIT_CPLUS_SPECIFIC (type);
}
return (type);
}
/* Helper function. Create an empty composite type. */
struct type *
init_composite_type (char *name, enum type_code code)
{
struct type *t;
gdb_assert (code == TYPE_CODE_STRUCT
|| code == TYPE_CODE_UNION);
t = init_type (code, 0, 0, NULL, NULL);
TYPE_TAG_NAME (t) = name;
return t;
}
/* Helper function. Append a field to a composite type. */
void
append_composite_type_field (struct type *t, char *name,
struct type *field)
{
struct field *f;
TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
sizeof (struct field) * TYPE_NFIELDS (t));
f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
memset (f, 0, sizeof f[0]);
FIELD_TYPE (f[0]) = field;
FIELD_NAME (f[0]) = name;
if (TYPE_CODE (t) == TYPE_CODE_UNION)
{
if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
TYPE_LENGTH (t) = TYPE_LENGTH (field);
}
else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
{
TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
if (TYPE_NFIELDS (t) > 1)
{
FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
+ TYPE_LENGTH (field) * TARGET_CHAR_BIT);
}
}
}
/* Look up a fundamental type for the specified objfile.
May need to construct such a type if this is the first use.
Some object file formats (ELF, COFF, etc) do not define fundamental
types such as "int" or "double". Others (stabs for example), do
define fundamental types.
For the formats which don't provide fundamental types, gdb can
create such types, using defaults reasonable for the current
language and the current target machine.
NOTE: This routine is obsolescent. Each debugging format reader
should manage it's own fundamental types, either creating them from
suitable defaults or reading them from the debugging information,
whichever is appropriate. The DWARF reader has already been fixed
to do this. Once the other readers are fixed, this routine will go
away. Also note that fundamental types should be managed on a
compilation unit basis in a multi-language environment, not on a
linkage unit basis as is done here. */
struct type *
lookup_fundamental_type (struct objfile *objfile, int typeid)
{
struct type **typep;
int nbytes;
if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
{
error (_("internal error - invalid fundamental type id %d"),
typeid);
}
/* If this is the first time we need a fundamental type for this
objfile then we need to initialize the vector of type
pointers. */
if (objfile->fundamental_types == NULL)
{
nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
objfile->fundamental_types = (struct type **)
obstack_alloc (&objfile->objfile_obstack, nbytes);
memset ((char *) objfile->fundamental_types, 0, nbytes);
OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
}
/* Look for this particular type in the fundamental type vector. If
one is not found, create and install one appropriate for the
current language. */
typep = objfile->fundamental_types + typeid;
if (*typep == NULL)
{
*typep = create_fundamental_type (objfile, typeid);
}
return (*typep);
}
int
can_dereference (struct type *t)
{
/* FIXME: Should we return true for references as well as
pointers? */
CHECK_TYPEDEF (t);
return
(t != NULL
&& TYPE_CODE (t) == TYPE_CODE_PTR
&& TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
}
int
is_integral_type (struct type *t)
{
CHECK_TYPEDEF (t);
return
((t != NULL)
&& ((TYPE_CODE (t) == TYPE_CODE_INT)
|| (TYPE_CODE (t) == TYPE_CODE_ENUM)
|| (TYPE_CODE (t) == TYPE_CODE_FLAGS)
|| (TYPE_CODE (t) == TYPE_CODE_CHAR)
|| (TYPE_CODE (t) == TYPE_CODE_RANGE)
|| (TYPE_CODE (t) == TYPE_CODE_BOOL)));
}
/* Check whether BASE is an ancestor or base class or DCLASS
Return 1 if so, and 0 if not.
Note: callers may want to check for identity of the types before
calling this function -- identical types are considered to satisfy
the ancestor relationship even if they're identical. */
int
is_ancestor (struct type *base, struct type *dclass)
{
int i;
CHECK_TYPEDEF (base);
CHECK_TYPEDEF (dclass);
if (base == dclass)
return 1;
if (TYPE_NAME (base) && TYPE_NAME (dclass)
&& !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
return 1;
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
return 1;
return 0;
}
/* See whether DCLASS has a virtual table. This routine is aimed at
the HP/Taligent ANSI C++ runtime model, and may not work with other
runtime models. Return 1 => Yes, 0 => No. */
int
has_vtable (struct type *dclass)
{
/* In the HP ANSI C++ runtime model, a class has a vtable only if it
has virtual functions or virtual bases. */
int i;
if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
return 0;
/* First check for the presence of virtual bases. */
if (TYPE_FIELD_VIRTUAL_BITS (dclass))
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
return 1;
/* Next check for virtual functions. */
if (TYPE_FN_FIELDLISTS (dclass))
for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
return 1;
/* Recurse on non-virtual bases to see if any of them needs a
vtable. */
if (TYPE_FIELD_VIRTUAL_BITS (dclass))
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
&& (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
return 1;
/* Well, maybe we don't need a virtual table. */
return 0;
}
/* Return a pointer to the "primary base class" of DCLASS.
A NULL return indicates that DCLASS has no primary base, or that it
couldn't be found (insufficient information).
This routine is aimed at the HP/Taligent ANSI C++ runtime model,
and may not work with other runtime models. */
struct type *
primary_base_class (struct type *dclass)
{
/* In HP ANSI C++'s runtime model, a "primary base class" of a class
is the first directly inherited, non-virtual base class that
requires a virtual table. */
int i;
if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
return NULL;
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
if (!TYPE_FIELD_VIRTUAL (dclass, i)
&& has_vtable (TYPE_FIELD_TYPE (dclass, i)))
return TYPE_FIELD_TYPE (dclass, i);
return NULL;
}
/* Global manipulated by virtual_base_list[_aux](). */
static struct vbase *current_vbase_list = NULL;
/* Return a pointer to a null-terminated list of struct vbase items.
The vbasetype pointer of each item in the list points to the type
information for a virtual base of the argument DCLASS.
Helper function for virtual_base_list().
Note: the list goes backward, right-to-left.
virtual_base_list() copies the items out in reverse order. */
static void
virtual_base_list_aux (struct type *dclass)
{
struct vbase *tmp_vbase;
int i;
if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
return;
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
{
/* Recurse on this ancestor, first */
virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
/* If this current base is itself virtual, add it to the list */
if (BASETYPE_VIA_VIRTUAL (dclass, i))
{
struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
/* Check if base already recorded */
tmp_vbase = current_vbase_list;
while (tmp_vbase)
{
if (tmp_vbase->vbasetype == basetype)
break; /* found it */
tmp_vbase = tmp_vbase->next;
}
if (!tmp_vbase) /* normal exit from loop */
{
/* Allocate new item for this virtual base */
tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
/* Stick it on at the end of the list */
tmp_vbase->vbasetype = basetype;
tmp_vbase->next = current_vbase_list;
current_vbase_list = tmp_vbase;
}
} /* if virtual */
} /* for loop over bases */
}
/* Compute the list of virtual bases in the right order. Virtual
bases are laid out in the object's memory area in order of their
occurrence in a depth-first, left-to-right search through the
ancestors.
Argument DCLASS is the type whose virtual bases are required.
Return value is the address of a null-terminated array of pointers
to struct type items.
This routine is aimed at the HP/Taligent ANSI C++ runtime model,
and may not work with other runtime models.
This routine merely hands off the argument to virtual_base_list_aux()
and then copies the result into an array to save space. */
static struct type **
virtual_base_list (struct type *dclass)
{
struct vbase *tmp_vbase;
struct vbase *tmp_vbase_2;
int i;
int count;
struct type **vbase_array;
current_vbase_list = NULL;
virtual_base_list_aux (dclass);
for (i = 0, tmp_vbase = current_vbase_list;
tmp_vbase != NULL;
i++, tmp_vbase = tmp_vbase->next)
/* no body */ ;
count = i;
vbase_array = (struct type **)
xmalloc ((count + 1) * sizeof (struct type *));
for (i = count - 1, tmp_vbase = current_vbase_list;
i >= 0; i--,
tmp_vbase = tmp_vbase->next)
vbase_array[i] = tmp_vbase->vbasetype;
/* Get rid of constructed chain. */
tmp_vbase_2 = tmp_vbase = current_vbase_list;
while (tmp_vbase)
{
tmp_vbase = tmp_vbase->next;
xfree (tmp_vbase_2);
tmp_vbase_2 = tmp_vbase;
}
vbase_array[count] = NULL;
return vbase_array;
}
/* Return the length of the virtual base list of the type DCLASS. */
int
virtual_base_list_length (struct type *dclass)
{
int i;
struct vbase *tmp_vbase;
current_vbase_list = NULL;
virtual_base_list_aux (dclass);
for (i = 0, tmp_vbase = current_vbase_list;
tmp_vbase != NULL;
i++, tmp_vbase = tmp_vbase->next)
/* no body */ ;
return i;
}
/* Return the number of elements of the virtual base list of the type
DCLASS, ignoring those appearing in the primary base (and its
primary base, recursively). */
int
virtual_base_list_length_skip_primaries (struct type *dclass)
{
int i;
struct vbase *tmp_vbase;
struct type *primary;
primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
if (!primary)
return virtual_base_list_length (dclass);
current_vbase_list = NULL;
virtual_base_list_aux (dclass);
for (i = 0, tmp_vbase = current_vbase_list;
tmp_vbase != NULL;
tmp_vbase = tmp_vbase->next)
{
if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
continue;
i++;
}
return i;
}
/* Return the index (position) of type BASE, which is a virtual base
class of DCLASS, in the latter's virtual base list. A return of -1
indicates "not found" or a problem. */
int
virtual_base_index (struct type *base, struct type *dclass)
{
struct type *vbase, **vbase_list;
int i;
if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS)
|| (TYPE_CODE (base) != TYPE_CODE_CLASS))
return -1;
vbase_list = virtual_base_list (dclass);
for (i = 0, vbase = vbase_list[0];
vbase != NULL;
vbase = vbase_list[++i])
if (vbase == base)
break;
xfree (vbase_list);
return vbase ? i : -1;
}
/* Return the index (position) of type BASE, which is a virtual base
class of DCLASS, in the latter's virtual base list. Skip over all
bases that may appear in the virtual base list of the primary base
class of DCLASS (recursively). A return of -1 indicates "not
found" or a problem. */
int
virtual_base_index_skip_primaries (struct type *base,
struct type *dclass)
{
struct type *vbase, **vbase_list;
int i, j;
struct type *primary;
if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS)
|| (TYPE_CODE (base) != TYPE_CODE_CLASS))
return -1;
primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
vbase_list = virtual_base_list (dclass);
for (i = 0, j = -1, vbase = vbase_list[0];
vbase != NULL;
vbase = vbase_list[++i])
{
if (!primary
|| (virtual_base_index_skip_primaries (vbase, primary) < 0))
j++;
if (vbase == base)
break;
}
xfree (vbase_list);
return vbase ? j : -1;
}
/* Return position of a derived class DCLASS in the list of primary
bases starting with the remotest ancestor. Position returned is
0-based. */
int
class_index_in_primary_list (struct type *dclass)
{
struct type *pbc; /* primary base class */
/* Simply recurse on primary base */
pbc = TYPE_PRIMARY_BASE (dclass);
if (pbc)
return 1 + class_index_in_primary_list (pbc);
else
return 0;
}
/* Return a count of the number of virtual functions a type has. This
includes all the virtual functions it inherits from its base
classes too. */
/* pai: FIXME This doesn't do the right thing: count redefined virtual
functions only once (latest redefinition). */
int
count_virtual_fns (struct type *dclass)
{
int fn, oi; /* function and overloaded instance indices */
int vfuncs; /* count to return */
/* recurse on bases that can share virtual table */
struct type *pbc = primary_base_class (dclass);
if (pbc)
vfuncs = count_virtual_fns (pbc);
else
vfuncs = 0;
for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
vfuncs++;
return vfuncs;
}
/* Functions for overload resolution begin here */
/* Compare two badness vectors A and B and return the result.
0 => A and B are identical
1 => A and B are incomparable
2 => A is better than B
3 => A is worse than B */
int
compare_badness (struct badness_vector *a, struct badness_vector *b)
{
int i;
int tmp;
short found_pos = 0; /* any positives in c? */
short found_neg = 0; /* any negatives in c? */
/* differing lengths => incomparable */
if (a->length != b->length)
return 1;
/* Subtract b from a */
for (i = 0; i < a->length; i++)
{
tmp = a->rank[i] - b->rank[i];
if (tmp > 0)
found_pos = 1;
else if (tmp < 0)
found_neg = 1;
}
if (found_pos)
{
if (found_neg)
return 1; /* incomparable */
else
return 3; /* A > B */
}
else
/* no positives */
{
if (found_neg)
return 2; /* A < B */
else
return 0; /* A == B */
}
}
/* Rank a function by comparing its parameter types (PARMS, length
NPARMS), to the types of an argument list (ARGS, length NARGS).
Return a pointer to a badness vector. This has NARGS + 1
entries. */
struct badness_vector *
rank_function (struct type **parms, int nparms,
struct type **args, int nargs)
{
int i;
struct badness_vector *bv;
int min_len = nparms < nargs ? nparms : nargs;
bv = xmalloc (sizeof (struct badness_vector));
bv->length = nargs + 1; /* add 1 for the length-match rank */
bv->rank = xmalloc ((nargs + 1) * sizeof (int));
/* First compare the lengths of the supplied lists.
If there is a mismatch, set it to a high value. */
/* pai/1997-06-03 FIXME: when we have debug info about default
arguments and ellipsis parameter lists, we should consider those
and rank the length-match more finely. */
LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
/* Now rank all the parameters of the candidate function */
for (i = 1; i <= min_len; i++)
bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
/* If more arguments than parameters, add dummy entries */
for (i = min_len + 1; i <= nargs; i++)
bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
return bv;
}
/* Compare the names of two integer types, assuming that any sign
qualifiers have been checked already. We do it this way because
there may be an "int" in the name of one of the types. */
static int
integer_types_same_name_p (const char *first, const char *second)
{
int first_p, second_p;
/* If both are shorts, return 1; if neither is a short, keep
checking. */
first_p = (strstr (first, "short") != NULL);
second_p = (strstr (second, "short") != NULL);
if (first_p && second_p)
return 1;
if (first_p || second_p)
return 0;
/* Likewise for long. */
first_p = (strstr (first, "long") != NULL);
second_p = (strstr (second, "long") != NULL);
if (first_p && second_p)
return 1;
if (first_p || second_p)
return 0;
/* Likewise for char. */
first_p = (strstr (first, "char") != NULL);
second_p = (strstr (second, "char") != NULL);
if (first_p && second_p)
return 1;
if (first_p || second_p)
return 0;
/* They must both be ints. */
return 1;
}
/* Compare one type (PARM) for compatibility with another (ARG).
* PARM is intended to be the parameter type of a function; and
* ARG is the supplied argument's type. This function tests if
* the latter can be converted to the former.
*
* Return 0 if they are identical types;
* Otherwise, return an integer which corresponds to how compatible
* PARM is to ARG. The higher the return value, the worse the match.
* Generally the "bad" conversions are all uniformly assigned a 100. */
int
rank_one_type (struct type *parm, struct type *arg)
{
/* Identical type pointers. */
/* However, this still doesn't catch all cases of same type for arg
and param. The reason is that builtin types are different from
the same ones constructed from the object. */
if (parm == arg)
return 0;
/* Resolve typedefs */
if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
parm = check_typedef (parm);
if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
arg = check_typedef (arg);
/*
Well, damnit, if the names are exactly the same, I'll say they
are exactly the same. This happens when we generate method
stubs. The types won't point to the same address, but they
really are the same.
*/
if (TYPE_NAME (parm) && TYPE_NAME (arg)
&& !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
return 0;
/* Check if identical after resolving typedefs. */
if (parm == arg)
return 0;
/* See through references, since we can almost make non-references
references. */
if (TYPE_CODE (arg) == TYPE_CODE_REF)
return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
+ REFERENCE_CONVERSION_BADNESS);
if (TYPE_CODE (parm) == TYPE_CODE_REF)
return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
+ REFERENCE_CONVERSION_BADNESS);
if (overload_debug)
/* Debugging only. */
fprintf_filtered (gdb_stderr,
"------ Arg is %s [%d], parm is %s [%d]\n",
TYPE_NAME (arg), TYPE_CODE (arg),
TYPE_NAME (parm), TYPE_CODE (parm));
/* x -> y means arg of type x being supplied for parameter of type y */
switch (TYPE_CODE (parm))
{
case TYPE_CODE_PTR:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR:
if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
return VOID_PTR_CONVERSION_BADNESS;
else
return rank_one_type (TYPE_TARGET_TYPE (parm),
TYPE_TARGET_TYPE (arg));
case TYPE_CODE_ARRAY:
return rank_one_type (TYPE_TARGET_TYPE (parm),
TYPE_TARGET_TYPE (arg));
case TYPE_CODE_FUNC:
return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
case TYPE_CODE_INT:
case TYPE_CODE_ENUM:
case TYPE_CODE_FLAGS:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
return POINTER_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
case TYPE_CODE_ARRAY:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR:
case TYPE_CODE_ARRAY:
return rank_one_type (TYPE_TARGET_TYPE (parm),
TYPE_TARGET_TYPE (arg));
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
case TYPE_CODE_FUNC:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_PTR: /* funcptr -> func */
return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
case TYPE_CODE_INT:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
{
/* Deal with signed, unsigned, and plain chars and
signed and unsigned ints. */
if (TYPE_NOSIGN (parm))
{
/* This case only for character types */
if (TYPE_NOSIGN (arg))
return 0; /* plain char -> plain char */
else /* signed/unsigned char -> plain char */
return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_UNSIGNED (parm))
{
if (TYPE_UNSIGNED (arg))
{
/* unsigned int -> unsigned int, or
unsigned long -> unsigned long */
if (integer_types_same_name_p (TYPE_NAME (parm),
TYPE_NAME (arg)))
return 0;
else if (integer_types_same_name_p (TYPE_NAME (arg),
"int")
&& integer_types_same_name_p (TYPE_NAME (parm),
"long"))
return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
else
return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
}
else
{
if (integer_types_same_name_p (TYPE_NAME (arg),
"long")
&& integer_types_same_name_p (TYPE_NAME (parm),
"int"))
return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
else
return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
}
}
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
{
if (integer_types_same_name_p (TYPE_NAME (parm),
TYPE_NAME (arg)))
return 0;
else if (integer_types_same_name_p (TYPE_NAME (arg),
"int")
&& integer_types_same_name_p (TYPE_NAME (parm),
"long"))
return INTEGER_PROMOTION_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
}
else
return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
return INTEGER_PROMOTION_BADNESS;
else
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_ENUM:
case TYPE_CODE_FLAGS:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
return INTEGER_PROMOTION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
case TYPE_CODE_PTR:
return NS_POINTER_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_ENUM:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_CHAR:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
case TYPE_CODE_INT:
if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
return INTEGER_CONVERSION_BADNESS;
else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
return INTEGER_PROMOTION_BADNESS;
/* >>> !! else fall through !! <<< */
case TYPE_CODE_CHAR:
/* Deal with signed, unsigned, and plain chars for C++ and
with int cases falling through from previous case. */
if (TYPE_NOSIGN (parm))
{
if (TYPE_NOSIGN (arg))
return 0;
else
return INTEGER_CONVERSION_BADNESS;
}
else if (TYPE_UNSIGNED (parm))
{
if (TYPE_UNSIGNED (arg))
return 0;
else
return INTEGER_PROMOTION_BADNESS;
}
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
return 0;
else
return INTEGER_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_RANGE:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
return INTEGER_CONVERSION_BADNESS;
case TYPE_CODE_FLT:
return INT_FLOAT_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_BOOL:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_RANGE:
case TYPE_CODE_ENUM:
case TYPE_CODE_FLT:
case TYPE_CODE_PTR:
return BOOLEAN_CONVERSION_BADNESS;
case TYPE_CODE_BOOL:
return 0;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_FLT:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_FLT:
if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
return FLOAT_PROMOTION_BADNESS;
else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
return 0;
else
return FLOAT_CONVERSION_BADNESS;
case TYPE_CODE_INT:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
case TYPE_CODE_RANGE:
case TYPE_CODE_CHAR:
return INT_FLOAT_CONVERSION_BADNESS;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_COMPLEX:
switch (TYPE_CODE (arg))
{ /* Strictly not needed for C++, but... */
case TYPE_CODE_FLT:
return FLOAT_PROMOTION_BADNESS;
case TYPE_CODE_COMPLEX:
return 0;
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_STRUCT:
/* currently same as TYPE_CODE_CLASS */
switch (TYPE_CODE (arg))
{
case TYPE_CODE_STRUCT:
/* Check for derivation */
if (is_ancestor (parm, arg))
return BASE_CONVERSION_BADNESS;
/* else fall through */
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_UNION:
switch (TYPE_CODE (arg))
{
case TYPE_CODE_UNION:
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_MEMBERPTR:
switch (TYPE_CODE (arg))
{
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_METHOD:
switch (TYPE_CODE (arg))
{
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_REF:
switch (TYPE_CODE (arg))
{
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_SET:
switch (TYPE_CODE (arg))
{
/* Not in C++ */
case TYPE_CODE_SET:
return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
TYPE_FIELD_TYPE (arg, 0));
default:
return INCOMPATIBLE_TYPE_BADNESS;
}
break;
case TYPE_CODE_VOID:
default:
return INCOMPATIBLE_TYPE_BADNESS;
} /* switch (TYPE_CODE (arg)) */
}
/* End of functions for overload resolution */
static void
print_bit_vector (B_TYPE *bits, int nbits)
{
int bitno;
for (bitno = 0; bitno < nbits; bitno++)
{
if ((bitno % 8) == 0)
{
puts_filtered (" ");
}
if (B_TST (bits, bitno))
printf_filtered (("1"));
else
printf_filtered (("0"));
}
}
/* Note the first arg should be the "this" pointer, we may not want to
include it since we may get into a infinitely recursive
situation. */
static void
print_arg_types (struct field *args, int nargs, int spaces)
{
if (args != NULL)
{
int i;
for (i = 0; i < nargs; i++)
recursive_dump_type (args[i].type, spaces + 2);
}
}
static void
dump_fn_fieldlists (struct type *type, int spaces)
{
int method_idx;
int overload_idx;
struct fn_field *f;
printfi_filtered (spaces, "fn_fieldlists ");
gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
printf_filtered ("\n");
for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
{
f = TYPE_FN_FIELDLIST1 (type, method_idx);
printfi_filtered (spaces + 2, "[%d] name '%s' (",
method_idx,
TYPE_FN_FIELDLIST_NAME (type, method_idx));
gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
gdb_stdout);
printf_filtered (_(") length %d\n"),
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
for (overload_idx = 0;
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
overload_idx++)
{
printfi_filtered (spaces + 4, "[%d] physname '%s' (",
overload_idx,
TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces + 8, "type ");
gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
gdb_stdout);
printf_filtered ("\n");
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
spaces + 8 + 2);
printfi_filtered (spaces + 8, "args ");
gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
gdb_stdout);
printf_filtered ("\n");
print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
overload_idx)),
spaces);
printfi_filtered (spaces + 8, "fcontext ");
gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces + 8, "is_const %d\n",
TYPE_FN_FIELD_CONST (f, overload_idx));
printfi_filtered (spaces + 8, "is_volatile %d\n",
TYPE_FN_FIELD_VOLATILE (f, overload_idx));
printfi_filtered (spaces + 8, "is_private %d\n",
TYPE_FN_FIELD_PRIVATE (f, overload_idx));
printfi_filtered (spaces + 8, "is_protected %d\n",
TYPE_FN_FIELD_PROTECTED (f, overload_idx));
printfi_filtered (spaces + 8, "is_stub %d\n",
TYPE_FN_FIELD_STUB (f, overload_idx));
printfi_filtered (spaces + 8, "voffset %u\n",
TYPE_FN_FIELD_VOFFSET (f, overload_idx));
}
}
}
static void
print_cplus_stuff (struct type *type, int spaces)
{
printfi_filtered (spaces, "n_baseclasses %d\n",
TYPE_N_BASECLASSES (type));
printfi_filtered (spaces, "nfn_fields %d\n",
TYPE_NFN_FIELDS (type));
printfi_filtered (spaces, "nfn_fields_total %d\n",
TYPE_NFN_FIELDS_TOTAL (type));
if (TYPE_N_BASECLASSES (type) > 0)
{
printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
TYPE_N_BASECLASSES (type));
gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
TYPE_N_BASECLASSES (type));
puts_filtered ("\n");
}
if (TYPE_NFIELDS (type) > 0)
{
if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
{
printfi_filtered (spaces,
"private_field_bits (%d bits at *",
TYPE_NFIELDS (type));
gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
TYPE_NFIELDS (type));
puts_filtered ("\n");
}
if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
{
printfi_filtered (spaces,
"protected_field_bits (%d bits at *",
TYPE_NFIELDS (type));
gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
gdb_stdout);
printf_filtered (")");
print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
TYPE_NFIELDS (type));
puts_filtered ("\n");
}
}
if (TYPE_NFN_FIELDS (type) > 0)
{
dump_fn_fieldlists (type, spaces);
}
}
static void
print_bound_type (int bt)
{
switch (bt)
{
case BOUND_CANNOT_BE_DETERMINED:
printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
break;
case BOUND_BY_REF_ON_STACK:
printf_filtered ("(BOUND_BY_REF_ON_STACK)");
break;
case BOUND_BY_VALUE_ON_STACK:
printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
break;
case BOUND_BY_REF_IN_REG:
printf_filtered ("(BOUND_BY_REF_IN_REG)");
break;
case BOUND_BY_VALUE_IN_REG:
printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
break;
case BOUND_SIMPLE:
printf_filtered ("(BOUND_SIMPLE)");
break;
default:
printf_filtered (_("(unknown bound type)"));
break;
}
}
static struct obstack dont_print_type_obstack;
void
recursive_dump_type (struct type *type, int spaces)
{
int idx;
if (spaces == 0)
obstack_begin (&dont_print_type_obstack, 0);
if (TYPE_NFIELDS (type) > 0
|| (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
{
struct type **first_dont_print
= (struct type **) obstack_base (&dont_print_type_obstack);
int i = (struct type **)
obstack_next_free (&dont_print_type_obstack) - first_dont_print;
while (--i >= 0)
{
if (type == first_dont_print[i])
{
printfi_filtered (spaces, "type node ");
gdb_print_host_address (type, gdb_stdout);
printf_filtered (_(" <same as already seen type>\n"));
return;
}
}
obstack_ptr_grow (&dont_print_type_obstack, type);
}
printfi_filtered (spaces, "type node ");
gdb_print_host_address (type, gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "name '%s' (",
TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces, "tagname '%s' (",
TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
printf_filtered (")\n");
printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
switch (TYPE_CODE (type))
{
case TYPE_CODE_UNDEF:
printf_filtered ("(TYPE_CODE_UNDEF)");
break;
case TYPE_CODE_PTR:
printf_filtered ("(TYPE_CODE_PTR)");
break;
case TYPE_CODE_ARRAY:
printf_filtered ("(TYPE_CODE_ARRAY)");
break;
case TYPE_CODE_STRUCT:
printf_filtered ("(TYPE_CODE_STRUCT)");
break;
case TYPE_CODE_UNION:
printf_filtered ("(TYPE_CODE_UNION)");
break;
case TYPE_CODE_ENUM:
printf_filtered ("(TYPE_CODE_ENUM)");
break;
case TYPE_CODE_FLAGS:
printf_filtered ("(TYPE_CODE_FLAGS)");
break;
case TYPE_CODE_FUNC:
printf_filtered ("(TYPE_CODE_FUNC)");
break;
case TYPE_CODE_INT:
printf_filtered ("(TYPE_CODE_INT)");
break;
case TYPE_CODE_FLT:
printf_filtered ("(TYPE_CODE_FLT)");
break;
case TYPE_CODE_VOID:
printf_filtered ("(TYPE_CODE_VOID)");
break;
case TYPE_CODE_SET:
printf_filtered ("(TYPE_CODE_SET)");
break;
case TYPE_CODE_RANGE:
printf_filtered ("(TYPE_CODE_RANGE)");
break;
case TYPE_CODE_STRING:
printf_filtered ("(TYPE_CODE_STRING)");
break;
case TYPE_CODE_BITSTRING:
printf_filtered ("(TYPE_CODE_BITSTRING)");
break;
case TYPE_CODE_ERROR:
printf_filtered ("(TYPE_CODE_ERROR)");
break;
case TYPE_CODE_MEMBERPTR:
printf_filtered ("(TYPE_CODE_MEMBERPTR)");
break;
case TYPE_CODE_METHODPTR:
printf_filtered ("(TYPE_CODE_METHODPTR)");
break;
case TYPE_CODE_METHOD:
printf_filtered ("(TYPE_CODE_METHOD)");
break;
case TYPE_CODE_REF:
printf_filtered ("(TYPE_CODE_REF)");
break;
case TYPE_CODE_CHAR:
printf_filtered ("(TYPE_CODE_CHAR)");
break;
case TYPE_CODE_BOOL:
printf_filtered ("(TYPE_CODE_BOOL)");
break;
case TYPE_CODE_COMPLEX:
printf_filtered ("(TYPE_CODE_COMPLEX)");
break;
case TYPE_CODE_TYPEDEF:
printf_filtered ("(TYPE_CODE_TYPEDEF)");
break;
case TYPE_CODE_TEMPLATE:
printf_filtered ("(TYPE_CODE_TEMPLATE)");
break;
case TYPE_CODE_TEMPLATE_ARG:
printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
break;
case TYPE_CODE_NAMESPACE:
printf_filtered ("(TYPE_CODE_NAMESPACE)");
break;
default:
printf_filtered ("(UNKNOWN TYPE CODE)");
break;
}
puts_filtered ("\n");
printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
printfi_filtered (spaces, "upper_bound_type 0x%x ",
TYPE_ARRAY_UPPER_BOUND_TYPE (type));
print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
puts_filtered ("\n");
printfi_filtered (spaces, "lower_bound_type 0x%x ",
TYPE_ARRAY_LOWER_BOUND_TYPE (type));
print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
puts_filtered ("\n");
printfi_filtered (spaces, "objfile ");
gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "target_type ");
gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
printf_filtered ("\n");
if (TYPE_TARGET_TYPE (type) != NULL)
{
recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
}
printfi_filtered (spaces, "pointer_type ");
gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "reference_type ");
gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "type_chain ");
gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
printf_filtered ("\n");
printfi_filtered (spaces, "instance_flags 0x%x",
TYPE_INSTANCE_FLAGS (type));
if (TYPE_CONST (type))
{
puts_filtered (" TYPE_FLAG_CONST");
}
if (TYPE_VOLATILE (type))
{
puts_filtered (" TYPE_FLAG_VOLATILE");
}
if (TYPE_CODE_SPACE (type))
{
puts_filtered (" TYPE_FLAG_CODE_SPACE");
}
if (TYPE_DATA_SPACE (type))
{
puts_filtered (" TYPE_FLAG_DATA_SPACE");
}
if (TYPE_ADDRESS_CLASS_1 (type))
{
puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
}
if (TYPE_ADDRESS_CLASS_2 (type))
{
puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
}
puts_filtered ("\n");
printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
if (TYPE_UNSIGNED (type))
{
puts_filtered (" TYPE_FLAG_UNSIGNED");
}
if (TYPE_NOSIGN (type))
{
puts_filtered (" TYPE_FLAG_NOSIGN");
}
if (TYPE_STUB (type))
{
puts_filtered (" TYPE_FLAG_STUB");
}
if (TYPE_TARGET_STUB (type))
{
puts_filtered (" TYPE_FLAG_TARGET_STUB");
}
if (TYPE_STATIC (type))
{
puts_filtered (" TYPE_FLAG_STATIC");
}
if (TYPE_PROTOTYPED (type))
{
puts_filtered (" TYPE_FLAG_PROTOTYPED");
}
if (TYPE_INCOMPLETE (type))
{
puts_filtered (" TYPE_FLAG_INCOMPLETE");
}
if (TYPE_VARARGS (type))
{
puts_filtered (" TYPE_FLAG_VARARGS");
}
/* This is used for things like AltiVec registers on ppc. Gcc emits
an attribute for the array type, which tells whether or not we
have a vector, instead of a regular array. */
if (TYPE_VECTOR (type))
{
puts_filtered (" TYPE_FLAG_VECTOR");
}
puts_filtered ("\n");
printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
puts_filtered ("\n");
for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
{
printfi_filtered (spaces + 2,
"[%d] bitpos %d bitsize %d type ",
idx, TYPE_FIELD_BITPOS (type, idx),
TYPE_FIELD_BITSIZE (type, idx));
gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
printf_filtered (" name '%s' (",
TYPE_FIELD_NAME (type, idx) != NULL
? TYPE_FIELD_NAME (type, idx)
: "<NULL>");
gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
printf_filtered (")\n");
if (TYPE_FIELD_TYPE (type, idx) != NULL)
{
recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
}
}
printfi_filtered (spaces, "vptr_basetype ");
gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
puts_filtered ("\n");
if (TYPE_VPTR_BASETYPE (type) != NULL)
{
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
}
printfi_filtered (spaces, "vptr_fieldno %d\n",
TYPE_VPTR_FIELDNO (type));
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
printfi_filtered (spaces, "cplus_stuff ");
gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
gdb_stdout);
puts_filtered ("\n");
print_cplus_stuff (type, spaces);
break;
case TYPE_CODE_FLT:
printfi_filtered (spaces, "floatformat ");
if (TYPE_FLOATFORMAT (type) == NULL)
puts_filtered ("(null)");
else
{
puts_filtered ("{ ");
if (TYPE_FLOATFORMAT (type)[0] == NULL
|| TYPE_FLOATFORMAT (type)[0]->name == NULL)
puts_filtered ("(null)");
else
puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
puts_filtered (", ");
if (TYPE_FLOATFORMAT (type)[1] == NULL
|| TYPE_FLOATFORMAT (type)[1]->name == NULL)
puts_filtered ("(null)");
else
puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
puts_filtered (" }");
}
puts_filtered ("\n");
break;
default:
/* We have to pick one of the union types to be able print and
test the value. Pick cplus_struct_type, even though we know
it isn't any particular one. */
printfi_filtered (spaces, "type_specific ");
gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
if (TYPE_CPLUS_SPECIFIC (type) != NULL)
{
printf_filtered (_(" (unknown data form)"));
}
printf_filtered ("\n");
break;
}
if (spaces == 0)
obstack_free (&dont_print_type_obstack, NULL);
}
/* Trivial helpers for the libiberty hash table, for mapping one
type to another. */
struct type_pair
{
struct type *old, *new;
};
static hashval_t
type_pair_hash (const void *item)
{
const struct type_pair *pair = item;
return htab_hash_pointer (pair->old);
}
static int
type_pair_eq (const void *item_lhs, const void *item_rhs)
{
const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
return lhs->old == rhs->old;
}
/* Allocate the hash table used by copy_type_recursive to walk
types without duplicates. We use OBJFILE's obstack, because
OBJFILE is about to be deleted. */
htab_t
create_copied_types_hash (struct objfile *objfile)
{
return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
NULL, &objfile->objfile_obstack,
hashtab_obstack_allocate,
dummy_obstack_deallocate);
}
/* Recursively copy (deep copy) TYPE, if it is associated with
OBJFILE. Return a new type allocated using malloc, a saved type if
we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
not associated with OBJFILE. */
struct type *
copy_type_recursive (struct objfile *objfile,
struct type *type,
htab_t copied_types)
{
struct type_pair *stored, pair;
void **slot;
struct type *new_type;
if (TYPE_OBJFILE (type) == NULL)
return type;
/* This type shouldn't be pointing to any types in other objfiles;
if it did, the type might disappear unexpectedly. */
gdb_assert (TYPE_OBJFILE (type) == objfile);
pair.old = type;
slot = htab_find_slot (copied_types, &pair, INSERT);
if (*slot != NULL)
return ((struct type_pair *) *slot)->new;
new_type = alloc_type (NULL);
/* We must add the new type to the hash table immediately, in case
we encounter this type again during a recursive call below. */
stored = xmalloc (sizeof (struct type_pair));
stored->old = type;
stored->new = new_type;
*slot = stored;
/* Copy the common fields of types. */
TYPE_CODE (new_type) = TYPE_CODE (type);
TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
TYPE_ARRAY_UPPER_BOUND_TYPE (type);
TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
TYPE_ARRAY_LOWER_BOUND_TYPE (type);
if (TYPE_NAME (type))
TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
if (TYPE_TAG_NAME (type))
TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
/* Copy the fields. */
TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
if (TYPE_NFIELDS (type))
{
int i, nfields;
nfields = TYPE_NFIELDS (type);
TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
for (i = 0; i < nfields; i++)
{
TYPE_FIELD_ARTIFICIAL (new_type, i) =
TYPE_FIELD_ARTIFICIAL (type, i);
TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
if (TYPE_FIELD_TYPE (type, i))
TYPE_FIELD_TYPE (new_type, i)
= copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
copied_types);
if (TYPE_FIELD_NAME (type, i))
TYPE_FIELD_NAME (new_type, i) =
xstrdup (TYPE_FIELD_NAME (type, i));
if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
TYPE_FIELD_STATIC_PHYSADDR (type, i));
else if (TYPE_FIELD_STATIC (type, i))
SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
i)));
else
{
TYPE_FIELD_BITPOS (new_type, i) =
TYPE_FIELD_BITPOS (type, i);
TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
}
}
}
/* Copy pointers to other types. */
if (TYPE_TARGET_TYPE (type))
TYPE_TARGET_TYPE (new_type) =
copy_type_recursive (objfile,
TYPE_TARGET_TYPE (type),
copied_types);
if (TYPE_VPTR_BASETYPE (type))
TYPE_VPTR_BASETYPE (new_type) =
copy_type_recursive (objfile,
TYPE_VPTR_BASETYPE (type),
copied_types);
/* Maybe copy the type_specific bits.
NOTE drow/2005-12-09: We do not copy the C++-specific bits like
base classes and methods. There's no fundamental reason why we
can't, but at the moment it is not needed. */
if (TYPE_CODE (type) == TYPE_CODE_FLT)
TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_TEMPLATE
|| TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
INIT_CPLUS_SPECIFIC (new_type);
return new_type;
}
static struct type *
build_flt (int bit, char *name, const struct floatformat **floatformats)
{
struct type *t;
if (bit == -1)
{
gdb_assert (floatformats != NULL);
gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
bit = floatformats[0]->totalsize;
}
gdb_assert (bit >= 0);
t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
TYPE_FLOATFORMAT (t) = floatformats;
return t;
}
static struct gdbarch_data *gdbtypes_data;
const struct builtin_type *
builtin_type (struct gdbarch *gdbarch)
{
return gdbarch_data (gdbarch, gdbtypes_data);
}
static struct type *
build_complex (int bit, char *name, struct type *target_type)
{
struct type *t;
if (bit <= 0 || target_type == builtin_type_error)
{
gdb_assert (builtin_type_error != NULL);
return builtin_type_error;
}
t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
0, name, (struct objfile *) NULL);
TYPE_TARGET_TYPE (t) = target_type;
return t;
}
static void *
gdbtypes_post_init (struct gdbarch *gdbarch)
{
struct builtin_type *builtin_type
= GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
builtin_type->builtin_void =
init_type (TYPE_CODE_VOID, 1,
0,
"void", (struct objfile *) NULL);
builtin_type->builtin_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
(TYPE_FLAG_NOSIGN
| (gdbarch_char_signed (current_gdbarch) ?
0 : TYPE_FLAG_UNSIGNED)),
"char", (struct objfile *) NULL);
builtin_type->builtin_true_char =
init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"true character", (struct objfile *) NULL);
builtin_type->builtin_true_unsigned_char =
init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED,
"true character", (struct objfile *) NULL);
builtin_type->builtin_signed_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"signed char", (struct objfile *) NULL);
builtin_type->builtin_unsigned_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED,
"unsigned char", (struct objfile *) NULL);
builtin_type->builtin_short =
init_type (TYPE_CODE_INT,
gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
0, "short", (struct objfile *) NULL);
builtin_type->builtin_unsigned_short =
init_type (TYPE_CODE_INT,
gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned short",
(struct objfile *) NULL);
builtin_type->builtin_int =
init_type (TYPE_CODE_INT,
gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
0, "int", (struct objfile *) NULL);
builtin_type->builtin_unsigned_int =
init_type (TYPE_CODE_INT,
gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned int",
(struct objfile *) NULL);
builtin_type->builtin_long =
init_type (TYPE_CODE_INT,
gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
0, "long", (struct objfile *) NULL);
builtin_type->builtin_unsigned_long =
init_type (TYPE_CODE_INT,
gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned long",
(struct objfile *) NULL);
builtin_type->builtin_long_long =
init_type (TYPE_CODE_INT,
gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
0, "long long", (struct objfile *) NULL);
builtin_type->builtin_unsigned_long_long =
init_type (TYPE_CODE_INT,
gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
TYPE_FLAG_UNSIGNED, "unsigned long long",
(struct objfile *) NULL);
builtin_type->builtin_float
= build_flt (gdbarch_float_bit (gdbarch), "float",
gdbarch_float_format (gdbarch));
builtin_type->builtin_double
= build_flt (gdbarch_double_bit (gdbarch), "double",
gdbarch_double_format (gdbarch));
builtin_type->builtin_long_double
= build_flt (gdbarch_long_double_bit (gdbarch), "long double",
gdbarch_long_double_format (gdbarch));
builtin_type->builtin_complex
= build_complex (gdbarch_float_bit (gdbarch), "complex",
builtin_type->builtin_float);
builtin_type->builtin_double_complex
= build_complex (gdbarch_double_bit (gdbarch), "double complex",
builtin_type->builtin_double);
builtin_type->builtin_string =
init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"string", (struct objfile *) NULL);
builtin_type->builtin_bool =
init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
0,
"bool", (struct objfile *) NULL);
/* Pointer/Address types. */
/* NOTE: on some targets, addresses and pointers are not necessarily
the same --- for example, on the D10V, pointers are 16 bits long,
but addresses are 32 bits long. See doc/gdbint.texinfo,
``Pointers Are Not Always Addresses''.
The upshot is:
- gdb's `struct type' always describes the target's
representation.
- gdb's `struct value' objects should always hold values in
target form.
- gdb's CORE_ADDR values are addresses in the unified virtual
address space that the assembler and linker work with. Thus,
since target_read_memory takes a CORE_ADDR as an argument, it
can access any memory on the target, even if the processor has
separate code and data address spaces.
So, for example:
- If v is a value holding a D10V code pointer, its contents are
in target form: a big-endian address left-shifted two bits.
- If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
sizeof (void *) == 2 on the target.
In this context, builtin_type->CORE_ADDR is a bit odd: it's a
target type for a value the target will never see. It's only
used to hold the values of (typeless) linker symbols, which are
indeed in the unified virtual address space. */
builtin_type->builtin_data_ptr =
make_pointer_type (builtin_type->builtin_void, NULL);
builtin_type->builtin_func_ptr =
lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
builtin_type->builtin_core_addr =
init_type (TYPE_CODE_INT,
gdbarch_addr_bit (current_gdbarch) / 8,
TYPE_FLAG_UNSIGNED,
"__CORE_ADDR", (struct objfile *) NULL);
/* The following set of types is used for symbols with no
debug information. */
builtin_type->nodebug_text_symbol =
init_type (TYPE_CODE_FUNC, 1, 0,
"<text variable, no debug info>", NULL);
TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
builtin_type->builtin_int;
builtin_type->nodebug_data_symbol =
init_type (TYPE_CODE_INT,
gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
"<data variable, no debug info>", NULL);
builtin_type->nodebug_unknown_symbol =
init_type (TYPE_CODE_INT, 1, 0,
"<variable (not text or data), no debug info>", NULL);
builtin_type->nodebug_tls_symbol =
init_type (TYPE_CODE_INT,
gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
"<thread local variable, no debug info>", NULL);
return builtin_type;
}
extern void _initialize_gdbtypes (void);
void
_initialize_gdbtypes (void)
{
gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
/* FIXME: The following types are architecture-neutral. However,
they contain pointer_type and reference_type fields potentially
caching pointer or reference types that *are* architecture
dependent. */
builtin_type_int0 =
init_type (TYPE_CODE_INT, 0 / 8,
0,
"int0_t", (struct objfile *) NULL);
builtin_type_int8 =
init_type (TYPE_CODE_INT, 8 / 8,
TYPE_FLAG_NOTTEXT,
"int8_t", (struct objfile *) NULL);
builtin_type_uint8 =
init_type (TYPE_CODE_INT, 8 / 8,
TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
"uint8_t", (struct objfile *) NULL);
builtin_type_int16 =
init_type (TYPE_CODE_INT, 16 / 8,
0,
"int16_t", (struct objfile *) NULL);
builtin_type_uint16 =
init_type (TYPE_CODE_INT, 16 / 8,
TYPE_FLAG_UNSIGNED,
"uint16_t", (struct objfile *) NULL);
builtin_type_int32 =
init_type (TYPE_CODE_INT, 32 / 8,
0,
"int32_t", (struct objfile *) NULL);
builtin_type_uint32 =
init_type (TYPE_CODE_INT, 32 / 8,
TYPE_FLAG_UNSIGNED,
"uint32_t", (struct objfile *) NULL);
builtin_type_int64 =
init_type (TYPE_CODE_INT, 64 / 8,
0,
"int64_t", (struct objfile *) NULL);
builtin_type_uint64 =
init_type (TYPE_CODE_INT, 64 / 8,
TYPE_FLAG_UNSIGNED,
"uint64_t", (struct objfile *) NULL);
builtin_type_int128 =
init_type (TYPE_CODE_INT, 128 / 8,
0,
"int128_t", (struct objfile *) NULL);
builtin_type_uint128 =
init_type (TYPE_CODE_INT, 128 / 8,
TYPE_FLAG_UNSIGNED,
"uint128_t", (struct objfile *) NULL);
builtin_type_ieee_single =
build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
builtin_type_ieee_double =
build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
builtin_type_i387_ext =
build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
builtin_type_m68881_ext =
build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
builtin_type_arm_ext =
build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
builtin_type_ia64_spill =
build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
builtin_type_ia64_quad =
build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
Set debugging of C++ overloading."), _("\
Show debugging of C++ overloading."), _("\
When enabled, ranking of the functions is displayed."),
NULL,
show_overload_debug,
&setdebuglist, &showdebuglist);
/* Add user knob for controlling resolution of opaque types. */
add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
&opaque_type_resolution, _("\
Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
NULL,
show_opaque_type_resolution,
&setlist, &showlist);
}