binutils-gdb/bfd/archures.c
Nick Clifton e407c74b5b * archures.c: Add support for MIPS r5900
* bfd-in2.h: Add support for MIPS r5900
	* config.bfd: Add support for Sony Playstation 2
	* cpu-mips.c: Add support for MIPS r5900
	* elfxx-mips.c: Add support for MIPS r5900 (extension of r4000)

	* config/tc-mips.c: Add support for MIPS r5900
	Add M_LQ_AB and M_SQ_AB to support large values for instructions lq and sq.
	* config/tc-mips.c (can_swap_branch_p, get_append_method): Detect some conditional short loops to fix a bug on the r5900 by NOP in the branch delay slot.
	* config/tc-mips.c (M_MUL): Support 3 operands in multu on r5900.
	* config/tc-mips.c (M_TRUNCWS): Support trunc.w.s on r5900 in MIPS ISA I.
	* config/tc-mips.c (s_mipsset): Force 32 bit floating point on r5900.
	* configure.in: Detect CPU type when target string contains r5900 (e.g. mips64r5900el-linux-gnu).

	* config/tc-mips.c (mips_ip): Check parameter range of instructions mfps and mtps on r5900.

	* elf/mips.h: Add MIPS machine variant number for r5900 which is compatible with old Playstation 2 software.
	* opcode/mips.h: Add support for r5900 instructions including lq and sq.

	* configure.tgt: Support ELF files for Sony Playstation 2 (for ps2dev and ps2sdk).
	* emulparams/elf32lr5900n32.sh: Create linker script for Sony Playstation 2 ELF files using MIPS ABI n32.
	* emulparams/elf32lr5900.sh: Create linker script for Sony Playstation 2 ELF files using MIPS ABI o32.
	* Makefile.am: Add linker scripts for Sony Playstation 2 ELF files.

	* opcodes/mips-dis.c: Add names for CP0 registers of r5900.
	* opcodes/mips-opc.c: Add M_SQ_AB and M_LQ_AB to support larger range for instructions sq and lq.

	* opcodes/mips-opc.c: Add support for MIPS r5900 CPU.
	Add support for 128 bit MMI (Multimedia Instructions).
	Add support for EE instructions (Emotion Engine).
	Disable unsupported floating point instructions (64 bit and undefined compare operations).
	Enable instructions of MIPS ISA IV which are supported by r5900.
	Disable 64 bit co processor instructions.
	Disable 64 bit multiplication and division instructions.
	Disable instructions for co-processor 2 and 3, because these are not supported (preparation for later VU0 support (Vector Unit)).
	Disable cvt.w.s because this behaves like trunc.w.s and the correct execution can't be ensured on r5900.
	Add trunc.w.s using the opcode encoding of cvt.w.s on r5900. This will confuse less developers and compilers.
2013-01-04 17:22:53 +00:00

1367 lines
38 KiB
C

/* BFD library support routines for architectures.
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013 Free Software Foundation, Inc.
Hacked by John Gilmore and Steve Chamberlain of Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "safe-ctype.h"
/*
SECTION
Architectures
BFD keeps one atom in a BFD describing the
architecture of the data attached to the BFD: a pointer to a
<<bfd_arch_info_type>>.
Pointers to structures can be requested independently of a BFD
so that an architecture's information can be interrogated
without access to an open BFD.
The architecture information is provided by each architecture package.
The set of default architectures is selected by the macro
<<SELECT_ARCHITECTURES>>. This is normally set up in the
@file{config/@var{target}.mt} file of your choice. If the name is not
defined, then all the architectures supported are included.
When BFD starts up, all the architectures are called with an
initialize method. It is up to the architecture back end to
insert as many items into the list of architectures as it wants to;
generally this would be one for each machine and one for the
default case (an item with a machine field of 0).
BFD's idea of an architecture is implemented in @file{archures.c}.
*/
/*
SUBSECTION
bfd_architecture
DESCRIPTION
This enum gives the object file's CPU architecture, in a
global sense---i.e., what processor family does it belong to?
Another field indicates which processor within
the family is in use. The machine gives a number which
distinguishes different versions of the architecture,
containing, for example, 2 and 3 for Intel i960 KA and i960 KB,
and 68020 and 68030 for Motorola 68020 and 68030.
.enum bfd_architecture
.{
. bfd_arch_unknown, {* File arch not known. *}
. bfd_arch_obscure, {* Arch known, not one of these. *}
. bfd_arch_m68k, {* Motorola 68xxx *}
.#define bfd_mach_m68000 1
.#define bfd_mach_m68008 2
.#define bfd_mach_m68010 3
.#define bfd_mach_m68020 4
.#define bfd_mach_m68030 5
.#define bfd_mach_m68040 6
.#define bfd_mach_m68060 7
.#define bfd_mach_cpu32 8
.#define bfd_mach_fido 9
.#define bfd_mach_mcf_isa_a_nodiv 10
.#define bfd_mach_mcf_isa_a 11
.#define bfd_mach_mcf_isa_a_mac 12
.#define bfd_mach_mcf_isa_a_emac 13
.#define bfd_mach_mcf_isa_aplus 14
.#define bfd_mach_mcf_isa_aplus_mac 15
.#define bfd_mach_mcf_isa_aplus_emac 16
.#define bfd_mach_mcf_isa_b_nousp 17
.#define bfd_mach_mcf_isa_b_nousp_mac 18
.#define bfd_mach_mcf_isa_b_nousp_emac 19
.#define bfd_mach_mcf_isa_b 20
.#define bfd_mach_mcf_isa_b_mac 21
.#define bfd_mach_mcf_isa_b_emac 22
.#define bfd_mach_mcf_isa_b_float 23
.#define bfd_mach_mcf_isa_b_float_mac 24
.#define bfd_mach_mcf_isa_b_float_emac 25
.#define bfd_mach_mcf_isa_c 26
.#define bfd_mach_mcf_isa_c_mac 27
.#define bfd_mach_mcf_isa_c_emac 28
.#define bfd_mach_mcf_isa_c_nodiv 29
.#define bfd_mach_mcf_isa_c_nodiv_mac 30
.#define bfd_mach_mcf_isa_c_nodiv_emac 31
. bfd_arch_vax, {* DEC Vax *}
. bfd_arch_i960, {* Intel 960 *}
. {* The order of the following is important.
. lower number indicates a machine type that
. only accepts a subset of the instructions
. available to machines with higher numbers.
. The exception is the "ca", which is
. incompatible with all other machines except
. "core". *}
.
.#define bfd_mach_i960_core 1
.#define bfd_mach_i960_ka_sa 2
.#define bfd_mach_i960_kb_sb 3
.#define bfd_mach_i960_mc 4
.#define bfd_mach_i960_xa 5
.#define bfd_mach_i960_ca 6
.#define bfd_mach_i960_jx 7
.#define bfd_mach_i960_hx 8
.
. bfd_arch_or32, {* OpenRISC 32 *}
.
. bfd_arch_sparc, {* SPARC *}
.#define bfd_mach_sparc 1
.{* The difference between v8plus and v9 is that v9 is a true 64 bit env. *}
.#define bfd_mach_sparc_sparclet 2
.#define bfd_mach_sparc_sparclite 3
.#define bfd_mach_sparc_v8plus 4
.#define bfd_mach_sparc_v8plusa 5 {* with ultrasparc add'ns. *}
.#define bfd_mach_sparc_sparclite_le 6
.#define bfd_mach_sparc_v9 7
.#define bfd_mach_sparc_v9a 8 {* with ultrasparc add'ns. *}
.#define bfd_mach_sparc_v8plusb 9 {* with cheetah add'ns. *}
.#define bfd_mach_sparc_v9b 10 {* with cheetah add'ns. *}
.{* Nonzero if MACH has the v9 instruction set. *}
.#define bfd_mach_sparc_v9_p(mach) \
. ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
. && (mach) != bfd_mach_sparc_sparclite_le)
.{* Nonzero if MACH is a 64 bit sparc architecture. *}
.#define bfd_mach_sparc_64bit_p(mach) \
. ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
. bfd_arch_spu, {* PowerPC SPU *}
.#define bfd_mach_spu 256
. bfd_arch_mips, {* MIPS Rxxxx *}
.#define bfd_mach_mips3000 3000
.#define bfd_mach_mips3900 3900
.#define bfd_mach_mips4000 4000
.#define bfd_mach_mips4010 4010
.#define bfd_mach_mips4100 4100
.#define bfd_mach_mips4111 4111
.#define bfd_mach_mips4120 4120
.#define bfd_mach_mips4300 4300
.#define bfd_mach_mips4400 4400
.#define bfd_mach_mips4600 4600
.#define bfd_mach_mips4650 4650
.#define bfd_mach_mips5000 5000
.#define bfd_mach_mips5400 5400
.#define bfd_mach_mips5500 5500
.#define bfd_mach_mips5900 5900
.#define bfd_mach_mips6000 6000
.#define bfd_mach_mips7000 7000
.#define bfd_mach_mips8000 8000
.#define bfd_mach_mips9000 9000
.#define bfd_mach_mips10000 10000
.#define bfd_mach_mips12000 12000
.#define bfd_mach_mips14000 14000
.#define bfd_mach_mips16000 16000
.#define bfd_mach_mips16 16
.#define bfd_mach_mips5 5
.#define bfd_mach_mips_loongson_2e 3001
.#define bfd_mach_mips_loongson_2f 3002
.#define bfd_mach_mips_loongson_3a 3003
.#define bfd_mach_mips_sb1 12310201 {* octal 'SB', 01 *}
.#define bfd_mach_mips_octeon 6501
.#define bfd_mach_mips_octeonp 6601
.#define bfd_mach_mips_octeon2 6502
.#define bfd_mach_mips_xlr 887682 {* decimal 'XLR' *}
.#define bfd_mach_mipsisa32 32
.#define bfd_mach_mipsisa32r2 33
.#define bfd_mach_mipsisa64 64
.#define bfd_mach_mipsisa64r2 65
.#define bfd_mach_mips_micromips 96
. bfd_arch_i386, {* Intel 386 *}
.#define bfd_mach_i386_intel_syntax (1 << 0)
.#define bfd_mach_i386_i8086 (1 << 1)
.#define bfd_mach_i386_i386 (1 << 2)
.#define bfd_mach_x86_64 (1 << 3)
.#define bfd_mach_x64_32 (1 << 4)
.#define bfd_mach_i386_i386_intel_syntax (bfd_mach_i386_i386 | bfd_mach_i386_intel_syntax)
.#define bfd_mach_x86_64_intel_syntax (bfd_mach_x86_64 | bfd_mach_i386_intel_syntax)
.#define bfd_mach_x64_32_intel_syntax (bfd_mach_x64_32 | bfd_mach_i386_intel_syntax)
. bfd_arch_l1om, {* Intel L1OM *}
.#define bfd_mach_l1om (1 << 5)
.#define bfd_mach_l1om_intel_syntax (bfd_mach_l1om | bfd_mach_i386_intel_syntax)
. bfd_arch_k1om, {* Intel K1OM *}
.#define bfd_mach_k1om (1 << 6)
.#define bfd_mach_k1om_intel_syntax (bfd_mach_k1om | bfd_mach_i386_intel_syntax)
. bfd_arch_we32k, {* AT&T WE32xxx *}
. bfd_arch_tahoe, {* CCI/Harris Tahoe *}
. bfd_arch_i860, {* Intel 860 *}
. bfd_arch_i370, {* IBM 360/370 Mainframes *}
. bfd_arch_romp, {* IBM ROMP PC/RT *}
. bfd_arch_convex, {* Convex *}
. bfd_arch_m88k, {* Motorola 88xxx *}
. bfd_arch_m98k, {* Motorola 98xxx *}
. bfd_arch_pyramid, {* Pyramid Technology *}
. bfd_arch_h8300, {* Renesas H8/300 (formerly Hitachi H8/300) *}
.#define bfd_mach_h8300 1
.#define bfd_mach_h8300h 2
.#define bfd_mach_h8300s 3
.#define bfd_mach_h8300hn 4
.#define bfd_mach_h8300sn 5
.#define bfd_mach_h8300sx 6
.#define bfd_mach_h8300sxn 7
. bfd_arch_pdp11, {* DEC PDP-11 *}
. bfd_arch_plugin,
. bfd_arch_powerpc, {* PowerPC *}
.#define bfd_mach_ppc 32
.#define bfd_mach_ppc64 64
.#define bfd_mach_ppc_403 403
.#define bfd_mach_ppc_403gc 4030
.#define bfd_mach_ppc_405 405
.#define bfd_mach_ppc_505 505
.#define bfd_mach_ppc_601 601
.#define bfd_mach_ppc_602 602
.#define bfd_mach_ppc_603 603
.#define bfd_mach_ppc_ec603e 6031
.#define bfd_mach_ppc_604 604
.#define bfd_mach_ppc_620 620
.#define bfd_mach_ppc_630 630
.#define bfd_mach_ppc_750 750
.#define bfd_mach_ppc_860 860
.#define bfd_mach_ppc_a35 35
.#define bfd_mach_ppc_rs64ii 642
.#define bfd_mach_ppc_rs64iii 643
.#define bfd_mach_ppc_7400 7400
.#define bfd_mach_ppc_e500 500
.#define bfd_mach_ppc_e500mc 5001
.#define bfd_mach_ppc_e500mc64 5005
.#define bfd_mach_ppc_e5500 5006
.#define bfd_mach_ppc_e6500 5007
.#define bfd_mach_ppc_titan 83
.#define bfd_mach_ppc_vle 84
. bfd_arch_rs6000, {* IBM RS/6000 *}
.#define bfd_mach_rs6k 6000
.#define bfd_mach_rs6k_rs1 6001
.#define bfd_mach_rs6k_rsc 6003
.#define bfd_mach_rs6k_rs2 6002
. bfd_arch_hppa, {* HP PA RISC *}
.#define bfd_mach_hppa10 10
.#define bfd_mach_hppa11 11
.#define bfd_mach_hppa20 20
.#define bfd_mach_hppa20w 25
. bfd_arch_d10v, {* Mitsubishi D10V *}
.#define bfd_mach_d10v 1
.#define bfd_mach_d10v_ts2 2
.#define bfd_mach_d10v_ts3 3
. bfd_arch_d30v, {* Mitsubishi D30V *}
. bfd_arch_dlx, {* DLX *}
. bfd_arch_m68hc11, {* Motorola 68HC11 *}
. bfd_arch_m68hc12, {* Motorola 68HC12 *}
.#define bfd_mach_m6812_default 0
.#define bfd_mach_m6812 1
.#define bfd_mach_m6812s 2
. bfd_arch_m9s12x, {* Freescale S12X *}
. bfd_arch_m9s12xg, {* Freescale XGATE *}
. bfd_arch_z8k, {* Zilog Z8000 *}
.#define bfd_mach_z8001 1
.#define bfd_mach_z8002 2
. bfd_arch_h8500, {* Renesas H8/500 (formerly Hitachi H8/500) *}
. bfd_arch_sh, {* Renesas / SuperH SH (formerly Hitachi SH) *}
.#define bfd_mach_sh 1
.#define bfd_mach_sh2 0x20
.#define bfd_mach_sh_dsp 0x2d
.#define bfd_mach_sh2a 0x2a
.#define bfd_mach_sh2a_nofpu 0x2b
.#define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
.#define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
.#define bfd_mach_sh2a_or_sh4 0x2a3
.#define bfd_mach_sh2a_or_sh3e 0x2a4
.#define bfd_mach_sh2e 0x2e
.#define bfd_mach_sh3 0x30
.#define bfd_mach_sh3_nommu 0x31
.#define bfd_mach_sh3_dsp 0x3d
.#define bfd_mach_sh3e 0x3e
.#define bfd_mach_sh4 0x40
.#define bfd_mach_sh4_nofpu 0x41
.#define bfd_mach_sh4_nommu_nofpu 0x42
.#define bfd_mach_sh4a 0x4a
.#define bfd_mach_sh4a_nofpu 0x4b
.#define bfd_mach_sh4al_dsp 0x4d
.#define bfd_mach_sh5 0x50
. bfd_arch_alpha, {* Dec Alpha *}
.#define bfd_mach_alpha_ev4 0x10
.#define bfd_mach_alpha_ev5 0x20
.#define bfd_mach_alpha_ev6 0x30
. bfd_arch_arm, {* Advanced Risc Machines ARM. *}
.#define bfd_mach_arm_unknown 0
.#define bfd_mach_arm_2 1
.#define bfd_mach_arm_2a 2
.#define bfd_mach_arm_3 3
.#define bfd_mach_arm_3M 4
.#define bfd_mach_arm_4 5
.#define bfd_mach_arm_4T 6
.#define bfd_mach_arm_5 7
.#define bfd_mach_arm_5T 8
.#define bfd_mach_arm_5TE 9
.#define bfd_mach_arm_XScale 10
.#define bfd_mach_arm_ep9312 11
.#define bfd_mach_arm_iWMMXt 12
.#define bfd_mach_arm_iWMMXt2 13
. bfd_arch_ns32k, {* National Semiconductors ns32000 *}
. bfd_arch_w65, {* WDC 65816 *}
. bfd_arch_tic30, {* Texas Instruments TMS320C30 *}
. bfd_arch_tic4x, {* Texas Instruments TMS320C3X/4X *}
.#define bfd_mach_tic3x 30
.#define bfd_mach_tic4x 40
. bfd_arch_tic54x, {* Texas Instruments TMS320C54X *}
. bfd_arch_tic6x, {* Texas Instruments TMS320C6X *}
. bfd_arch_tic80, {* TI TMS320c80 (MVP) *}
. bfd_arch_v850, {* NEC V850 *}
. bfd_arch_v850_rh850,{* NEC V850 (using RH850 ABI) *}
.#define bfd_mach_v850 1
.#define bfd_mach_v850e 'E'
.#define bfd_mach_v850e1 '1'
.#define bfd_mach_v850e2 0x4532
.#define bfd_mach_v850e2v3 0x45325633
. bfd_arch_arc, {* ARC Cores *}
.#define bfd_mach_arc_5 5
.#define bfd_mach_arc_6 6
.#define bfd_mach_arc_7 7
.#define bfd_mach_arc_8 8
. bfd_arch_m32c, {* Renesas M16C/M32C. *}
.#define bfd_mach_m16c 0x75
.#define bfd_mach_m32c 0x78
. bfd_arch_m32r, {* Renesas M32R (formerly Mitsubishi M32R/D) *}
.#define bfd_mach_m32r 1 {* For backwards compatibility. *}
.#define bfd_mach_m32rx 'x'
.#define bfd_mach_m32r2 '2'
. bfd_arch_mn10200, {* Matsushita MN10200 *}
. bfd_arch_mn10300, {* Matsushita MN10300 *}
.#define bfd_mach_mn10300 300
.#define bfd_mach_am33 330
.#define bfd_mach_am33_2 332
. bfd_arch_fr30,
.#define bfd_mach_fr30 0x46523330
. bfd_arch_frv,
.#define bfd_mach_frv 1
.#define bfd_mach_frvsimple 2
.#define bfd_mach_fr300 300
.#define bfd_mach_fr400 400
.#define bfd_mach_fr450 450
.#define bfd_mach_frvtomcat 499 {* fr500 prototype *}
.#define bfd_mach_fr500 500
.#define bfd_mach_fr550 550
. bfd_arch_moxie, {* The moxie processor *}
.#define bfd_mach_moxie 1
. bfd_arch_mcore,
. bfd_arch_mep,
.#define bfd_mach_mep 1
.#define bfd_mach_mep_h1 0x6831
.#define bfd_mach_mep_c5 0x6335
. bfd_arch_ia64, {* HP/Intel ia64 *}
.#define bfd_mach_ia64_elf64 64
.#define bfd_mach_ia64_elf32 32
. bfd_arch_ip2k, {* Ubicom IP2K microcontrollers. *}
.#define bfd_mach_ip2022 1
.#define bfd_mach_ip2022ext 2
. bfd_arch_iq2000, {* Vitesse IQ2000. *}
.#define bfd_mach_iq2000 1
.#define bfd_mach_iq10 2
. bfd_arch_epiphany, {* Adapteva EPIPHANY *}
.#define bfd_mach_epiphany16 1
.#define bfd_mach_epiphany32 2
. bfd_arch_mt,
.#define bfd_mach_ms1 1
.#define bfd_mach_mrisc2 2
.#define bfd_mach_ms2 3
. bfd_arch_pj,
. bfd_arch_avr, {* Atmel AVR microcontrollers. *}
.#define bfd_mach_avr1 1
.#define bfd_mach_avr2 2
.#define bfd_mach_avr25 25
.#define bfd_mach_avr3 3
.#define bfd_mach_avr31 31
.#define bfd_mach_avr35 35
.#define bfd_mach_avr4 4
.#define bfd_mach_avr5 5
.#define bfd_mach_avr51 51
.#define bfd_mach_avr6 6
.#define bfd_mach_avrxmega1 101
.#define bfd_mach_avrxmega2 102
.#define bfd_mach_avrxmega3 103
.#define bfd_mach_avrxmega4 104
.#define bfd_mach_avrxmega5 105
.#define bfd_mach_avrxmega6 106
.#define bfd_mach_avrxmega7 107
. bfd_arch_bfin, {* ADI Blackfin *}
.#define bfd_mach_bfin 1
. bfd_arch_cr16, {* National Semiconductor CompactRISC (ie CR16). *}
.#define bfd_mach_cr16 1
. bfd_arch_cr16c, {* National Semiconductor CompactRISC. *}
.#define bfd_mach_cr16c 1
. bfd_arch_crx, {* National Semiconductor CRX. *}
.#define bfd_mach_crx 1
. bfd_arch_cris, {* Axis CRIS *}
.#define bfd_mach_cris_v0_v10 255
.#define bfd_mach_cris_v32 32
.#define bfd_mach_cris_v10_v32 1032
. bfd_arch_rl78,
.#define bfd_mach_rl78 0x75
. bfd_arch_rx, {* Renesas RX. *}
.#define bfd_mach_rx 0x75
. bfd_arch_s390, {* IBM s390 *}
.#define bfd_mach_s390_31 31
.#define bfd_mach_s390_64 64
. bfd_arch_score, {* Sunplus score *}
.#define bfd_mach_score3 3
.#define bfd_mach_score7 7
. bfd_arch_openrisc, {* OpenRISC *}
. bfd_arch_mmix, {* Donald Knuth's educational processor. *}
. bfd_arch_xstormy16,
.#define bfd_mach_xstormy16 1
. bfd_arch_msp430, {* Texas Instruments MSP430 architecture. *}
.#define bfd_mach_msp11 11
.#define bfd_mach_msp110 110
.#define bfd_mach_msp12 12
.#define bfd_mach_msp13 13
.#define bfd_mach_msp14 14
.#define bfd_mach_msp15 15
.#define bfd_mach_msp16 16
.#define bfd_mach_msp21 21
.#define bfd_mach_msp31 31
.#define bfd_mach_msp32 32
.#define bfd_mach_msp33 33
.#define bfd_mach_msp41 41
.#define bfd_mach_msp42 42
.#define bfd_mach_msp43 43
.#define bfd_mach_msp44 44
. bfd_arch_xc16x, {* Infineon's XC16X Series. *}
.#define bfd_mach_xc16x 1
.#define bfd_mach_xc16xl 2
.#define bfd_mach_xc16xs 3
. bfd_arch_xgate, {* Freescale XGATE *}
.#define bfd_mach_xgate 1
. bfd_arch_xtensa, {* Tensilica's Xtensa cores. *}
.#define bfd_mach_xtensa 1
. bfd_arch_z80,
.#define bfd_mach_z80strict 1 {* No undocumented opcodes. *}
.#define bfd_mach_z80 3 {* With ixl, ixh, iyl, and iyh. *}
.#define bfd_mach_z80full 7 {* All undocumented instructions. *}
.#define bfd_mach_r800 11 {* R800: successor with multiplication. *}
. bfd_arch_lm32, {* Lattice Mico32 *}
.#define bfd_mach_lm32 1
. bfd_arch_microblaze,{* Xilinx MicroBlaze. *}
. bfd_arch_tilepro, {* Tilera TILEPro *}
. bfd_arch_tilegx, {* Tilera TILE-Gx *}
.#define bfd_mach_tilepro 1
.#define bfd_mach_tilegx 1
.#define bfd_mach_tilegx32 2
. bfd_arch_aarch64, {* AArch64 *}
.#define bfd_mach_aarch64 0
. bfd_arch_last
. };
*/
/*
SUBSECTION
bfd_arch_info
DESCRIPTION
This structure contains information on architectures for use
within BFD.
.
.typedef struct bfd_arch_info
.{
. int bits_per_word;
. int bits_per_address;
. int bits_per_byte;
. enum bfd_architecture arch;
. unsigned long mach;
. const char *arch_name;
. const char *printable_name;
. unsigned int section_align_power;
. {* TRUE if this is the default machine for the architecture.
. The default arch should be the first entry for an arch so that
. all the entries for that arch can be accessed via <<next>>. *}
. bfd_boolean the_default;
. const struct bfd_arch_info * (*compatible)
. (const struct bfd_arch_info *a, const struct bfd_arch_info *b);
.
. bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);
.
. {* Allocate via bfd_malloc and return a fill buffer of size COUNT. If
. IS_BIGENDIAN is TRUE, the order of bytes is big endian. If CODE is
. TRUE, the buffer contains code. *}
. void *(*fill) (bfd_size_type count, bfd_boolean is_bigendian,
. bfd_boolean code);
.
. const struct bfd_arch_info *next;
.}
.bfd_arch_info_type;
.
*/
extern const bfd_arch_info_type bfd_aarch64_arch;
extern const bfd_arch_info_type bfd_alpha_arch;
extern const bfd_arch_info_type bfd_arc_arch;
extern const bfd_arch_info_type bfd_arm_arch;
extern const bfd_arch_info_type bfd_avr_arch;
extern const bfd_arch_info_type bfd_bfin_arch;
extern const bfd_arch_info_type bfd_cr16_arch;
extern const bfd_arch_info_type bfd_cr16c_arch;
extern const bfd_arch_info_type bfd_cris_arch;
extern const bfd_arch_info_type bfd_crx_arch;
extern const bfd_arch_info_type bfd_d10v_arch;
extern const bfd_arch_info_type bfd_d30v_arch;
extern const bfd_arch_info_type bfd_dlx_arch;
extern const bfd_arch_info_type bfd_epiphany_arch;
extern const bfd_arch_info_type bfd_fr30_arch;
extern const bfd_arch_info_type bfd_frv_arch;
extern const bfd_arch_info_type bfd_h8300_arch;
extern const bfd_arch_info_type bfd_h8500_arch;
extern const bfd_arch_info_type bfd_hppa_arch;
extern const bfd_arch_info_type bfd_i370_arch;
extern const bfd_arch_info_type bfd_i386_arch;
extern const bfd_arch_info_type bfd_i860_arch;
extern const bfd_arch_info_type bfd_i960_arch;
extern const bfd_arch_info_type bfd_ia64_arch;
extern const bfd_arch_info_type bfd_ip2k_arch;
extern const bfd_arch_info_type bfd_iq2000_arch;
extern const bfd_arch_info_type bfd_k1om_arch;
extern const bfd_arch_info_type bfd_l1om_arch;
extern const bfd_arch_info_type bfd_lm32_arch;
extern const bfd_arch_info_type bfd_m32c_arch;
extern const bfd_arch_info_type bfd_m32r_arch;
extern const bfd_arch_info_type bfd_m68hc11_arch;
extern const bfd_arch_info_type bfd_m68hc12_arch;
extern const bfd_arch_info_type bfd_m9s12x_arch;
extern const bfd_arch_info_type bfd_m9s12xg_arch;
extern const bfd_arch_info_type bfd_m68k_arch;
extern const bfd_arch_info_type bfd_m88k_arch;
extern const bfd_arch_info_type bfd_mcore_arch;
extern const bfd_arch_info_type bfd_mep_arch;
extern const bfd_arch_info_type bfd_mips_arch;
extern const bfd_arch_info_type bfd_microblaze_arch;
extern const bfd_arch_info_type bfd_mmix_arch;
extern const bfd_arch_info_type bfd_mn10200_arch;
extern const bfd_arch_info_type bfd_mn10300_arch;
extern const bfd_arch_info_type bfd_moxie_arch;
extern const bfd_arch_info_type bfd_msp430_arch;
extern const bfd_arch_info_type bfd_mt_arch;
extern const bfd_arch_info_type bfd_ns32k_arch;
extern const bfd_arch_info_type bfd_openrisc_arch;
extern const bfd_arch_info_type bfd_or32_arch;
extern const bfd_arch_info_type bfd_pdp11_arch;
extern const bfd_arch_info_type bfd_pj_arch;
extern const bfd_arch_info_type bfd_plugin_arch;
extern const bfd_arch_info_type bfd_powerpc_archs[];
#define bfd_powerpc_arch bfd_powerpc_archs[0]
extern const bfd_arch_info_type bfd_rs6000_arch;
extern const bfd_arch_info_type bfd_rl78_arch;
extern const bfd_arch_info_type bfd_rx_arch;
extern const bfd_arch_info_type bfd_s390_arch;
extern const bfd_arch_info_type bfd_score_arch;
extern const bfd_arch_info_type bfd_sh_arch;
extern const bfd_arch_info_type bfd_sparc_arch;
extern const bfd_arch_info_type bfd_spu_arch;
extern const bfd_arch_info_type bfd_tic30_arch;
extern const bfd_arch_info_type bfd_tic4x_arch;
extern const bfd_arch_info_type bfd_tic54x_arch;
extern const bfd_arch_info_type bfd_tic6x_arch;
extern const bfd_arch_info_type bfd_tic80_arch;
extern const bfd_arch_info_type bfd_tilegx_arch;
extern const bfd_arch_info_type bfd_tilepro_arch;
extern const bfd_arch_info_type bfd_v850_arch;
extern const bfd_arch_info_type bfd_v850_rh850_arch;
extern const bfd_arch_info_type bfd_vax_arch;
extern const bfd_arch_info_type bfd_w65_arch;
extern const bfd_arch_info_type bfd_we32k_arch;
extern const bfd_arch_info_type bfd_xstormy16_arch;
extern const bfd_arch_info_type bfd_xtensa_arch;
extern const bfd_arch_info_type bfd_xc16x_arch;
extern const bfd_arch_info_type bfd_xgate_arch;
extern const bfd_arch_info_type bfd_z80_arch;
extern const bfd_arch_info_type bfd_z8k_arch;
static const bfd_arch_info_type * const bfd_archures_list[] =
{
#ifdef SELECT_ARCHITECTURES
SELECT_ARCHITECTURES,
#else
&bfd_aarch64_arch,
&bfd_alpha_arch,
&bfd_arc_arch,
&bfd_arm_arch,
&bfd_avr_arch,
&bfd_bfin_arch,
&bfd_cr16_arch,
&bfd_cr16c_arch,
&bfd_cris_arch,
&bfd_crx_arch,
&bfd_d10v_arch,
&bfd_d30v_arch,
&bfd_dlx_arch,
&bfd_epiphany_arch,
&bfd_fr30_arch,
&bfd_frv_arch,
&bfd_h8300_arch,
&bfd_h8500_arch,
&bfd_hppa_arch,
&bfd_i370_arch,
&bfd_i386_arch,
&bfd_i860_arch,
&bfd_i960_arch,
&bfd_ia64_arch,
&bfd_ip2k_arch,
&bfd_iq2000_arch,
&bfd_k1om_arch,
&bfd_l1om_arch,
&bfd_lm32_arch,
&bfd_m32c_arch,
&bfd_m32r_arch,
&bfd_m68hc11_arch,
&bfd_m68hc12_arch,
&bfd_m9s12x_arch,
&bfd_m9s12xg_arch,
&bfd_m68k_arch,
&bfd_m88k_arch,
&bfd_mcore_arch,
&bfd_mep_arch,
&bfd_microblaze_arch,
&bfd_mips_arch,
&bfd_mmix_arch,
&bfd_mn10200_arch,
&bfd_mn10300_arch,
&bfd_moxie_arch,
&bfd_msp430_arch,
&bfd_mt_arch,
&bfd_ns32k_arch,
&bfd_openrisc_arch,
&bfd_or32_arch,
&bfd_pdp11_arch,
&bfd_powerpc_arch,
&bfd_rs6000_arch,
&bfd_rl78_arch,
&bfd_rx_arch,
&bfd_s390_arch,
&bfd_score_arch,
&bfd_sh_arch,
&bfd_sparc_arch,
&bfd_spu_arch,
&bfd_tic30_arch,
&bfd_tic4x_arch,
&bfd_tic54x_arch,
&bfd_tic6x_arch,
&bfd_tic80_arch,
&bfd_tilegx_arch,
&bfd_tilepro_arch,
&bfd_v850_arch,
&bfd_v850_rh850_arch,
&bfd_vax_arch,
&bfd_w65_arch,
&bfd_we32k_arch,
&bfd_xstormy16_arch,
&bfd_xtensa_arch,
&bfd_xc16x_arch,
&bfd_xgate_arch,
&bfd_z80_arch,
&bfd_z8k_arch,
#endif
0
};
/*
FUNCTION
bfd_printable_name
SYNOPSIS
const char *bfd_printable_name (bfd *abfd);
DESCRIPTION
Return a printable string representing the architecture and machine
from the pointer to the architecture info structure.
*/
const char *
bfd_printable_name (bfd *abfd)
{
return abfd->arch_info->printable_name;
}
/*
FUNCTION
bfd_scan_arch
SYNOPSIS
const bfd_arch_info_type *bfd_scan_arch (const char *string);
DESCRIPTION
Figure out if BFD supports any cpu which could be described with
the name @var{string}. Return a pointer to an <<arch_info>>
structure if a machine is found, otherwise NULL.
*/
const bfd_arch_info_type *
bfd_scan_arch (const char *string)
{
const bfd_arch_info_type * const *app, *ap;
/* Look through all the installed architectures. */
for (app = bfd_archures_list; *app != NULL; app++)
{
for (ap = *app; ap != NULL; ap = ap->next)
{
if (ap->scan (ap, string))
return ap;
}
}
return NULL;
}
/*
FUNCTION
bfd_arch_list
SYNOPSIS
const char **bfd_arch_list (void);
DESCRIPTION
Return a freshly malloced NULL-terminated vector of the names
of all the valid BFD architectures. Do not modify the names.
*/
const char **
bfd_arch_list (void)
{
int vec_length = 0;
const char **name_ptr;
const char **name_list;
const bfd_arch_info_type * const *app;
bfd_size_type amt;
/* Determine the number of architectures. */
vec_length = 0;
for (app = bfd_archures_list; *app != NULL; app++)
{
const bfd_arch_info_type *ap;
for (ap = *app; ap != NULL; ap = ap->next)
{
vec_length++;
}
}
amt = (vec_length + 1) * sizeof (char **);
name_list = (const char **) bfd_malloc (amt);
if (name_list == NULL)
return NULL;
/* Point the list at each of the names. */
name_ptr = name_list;
for (app = bfd_archures_list; *app != NULL; app++)
{
const bfd_arch_info_type *ap;
for (ap = *app; ap != NULL; ap = ap->next)
{
*name_ptr = ap->printable_name;
name_ptr++;
}
}
*name_ptr = NULL;
return name_list;
}
/*
FUNCTION
bfd_arch_get_compatible
SYNOPSIS
const bfd_arch_info_type *bfd_arch_get_compatible
(const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
DESCRIPTION
Determine whether two BFDs' architectures and machine types
are compatible. Calculates the lowest common denominator
between the two architectures and machine types implied by
the BFDs and returns a pointer to an <<arch_info>> structure
describing the compatible machine.
*/
const bfd_arch_info_type *
bfd_arch_get_compatible (const bfd *abfd,
const bfd *bbfd,
bfd_boolean accept_unknowns)
{
const bfd *ubfd, *kbfd;
/* Look for an unknown architecture. */
if (abfd->arch_info->arch == bfd_arch_unknown)
ubfd = abfd, kbfd = bbfd;
else if (bbfd->arch_info->arch == bfd_arch_unknown)
ubfd = bbfd, kbfd = abfd;
else
/* Otherwise architecture-specific code has to decide. */
return abfd->arch_info->compatible (abfd->arch_info, bbfd->arch_info);
/* We can allow an unknown architecture if accept_unknowns
is true, or if the target is the "binary" format, which
has an unknown architecture. Since the binary format can
only be set by explicit request from the user, it is safe
to assume that they know what they are doing. */
if (accept_unknowns
|| strcmp (bfd_get_target (ubfd), "binary") == 0)
return kbfd->arch_info;
return NULL;
}
/*
INTERNAL_DEFINITION
bfd_default_arch_struct
DESCRIPTION
The <<bfd_default_arch_struct>> is an item of
<<bfd_arch_info_type>> which has been initialized to a fairly
generic state. A BFD starts life by pointing to this
structure, until the correct back end has determined the real
architecture of the file.
.extern const bfd_arch_info_type bfd_default_arch_struct;
*/
const bfd_arch_info_type bfd_default_arch_struct = {
32, 32, 8, bfd_arch_unknown, 0, "unknown", "unknown", 2, TRUE,
bfd_default_compatible,
bfd_default_scan,
bfd_arch_default_fill,
0,
};
/*
FUNCTION
bfd_set_arch_info
SYNOPSIS
void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
DESCRIPTION
Set the architecture info of @var{abfd} to @var{arg}.
*/
void
bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg)
{
abfd->arch_info = arg;
}
/*
INTERNAL_FUNCTION
bfd_default_set_arch_mach
SYNOPSIS
bfd_boolean bfd_default_set_arch_mach
(bfd *abfd, enum bfd_architecture arch, unsigned long mach);
DESCRIPTION
Set the architecture and machine type in BFD @var{abfd}
to @var{arch} and @var{mach}. Find the correct
pointer to a structure and insert it into the <<arch_info>>
pointer.
*/
bfd_boolean
bfd_default_set_arch_mach (bfd *abfd,
enum bfd_architecture arch,
unsigned long mach)
{
abfd->arch_info = bfd_lookup_arch (arch, mach);
if (abfd->arch_info != NULL)
return TRUE;
abfd->arch_info = &bfd_default_arch_struct;
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
/*
FUNCTION
bfd_get_arch
SYNOPSIS
enum bfd_architecture bfd_get_arch (bfd *abfd);
DESCRIPTION
Return the enumerated type which describes the BFD @var{abfd}'s
architecture.
*/
enum bfd_architecture
bfd_get_arch (bfd *abfd)
{
return abfd->arch_info->arch;
}
/*
FUNCTION
bfd_get_mach
SYNOPSIS
unsigned long bfd_get_mach (bfd *abfd);
DESCRIPTION
Return the long type which describes the BFD @var{abfd}'s
machine.
*/
unsigned long
bfd_get_mach (bfd *abfd)
{
return abfd->arch_info->mach;
}
/*
FUNCTION
bfd_arch_bits_per_byte
SYNOPSIS
unsigned int bfd_arch_bits_per_byte (bfd *abfd);
DESCRIPTION
Return the number of bits in one of the BFD @var{abfd}'s
architecture's bytes.
*/
unsigned int
bfd_arch_bits_per_byte (bfd *abfd)
{
return abfd->arch_info->bits_per_byte;
}
/*
FUNCTION
bfd_arch_bits_per_address
SYNOPSIS
unsigned int bfd_arch_bits_per_address (bfd *abfd);
DESCRIPTION
Return the number of bits in one of the BFD @var{abfd}'s
architecture's addresses.
*/
unsigned int
bfd_arch_bits_per_address (bfd *abfd)
{
return abfd->arch_info->bits_per_address;
}
/*
INTERNAL_FUNCTION
bfd_default_compatible
SYNOPSIS
const bfd_arch_info_type *bfd_default_compatible
(const bfd_arch_info_type *a, const bfd_arch_info_type *b);
DESCRIPTION
The default function for testing for compatibility.
*/
const bfd_arch_info_type *
bfd_default_compatible (const bfd_arch_info_type *a,
const bfd_arch_info_type *b)
{
if (a->arch != b->arch)
return NULL;
if (a->bits_per_word != b->bits_per_word)
return NULL;
if (a->mach > b->mach)
return a;
if (b->mach > a->mach)
return b;
return a;
}
/*
INTERNAL_FUNCTION
bfd_default_scan
SYNOPSIS
bfd_boolean bfd_default_scan
(const struct bfd_arch_info *info, const char *string);
DESCRIPTION
The default function for working out whether this is an
architecture hit and a machine hit.
*/
bfd_boolean
bfd_default_scan (const bfd_arch_info_type *info, const char *string)
{
const char *ptr_src;
const char *ptr_tst;
unsigned long number;
enum bfd_architecture arch;
const char *printable_name_colon;
/* Exact match of the architecture name (ARCH_NAME) and also the
default architecture? */
if (strcasecmp (string, info->arch_name) == 0
&& info->the_default)
return TRUE;
/* Exact match of the machine name (PRINTABLE_NAME)? */
if (strcasecmp (string, info->printable_name) == 0)
return TRUE;
/* Given that printable_name contains no colon, attempt to match:
ARCH_NAME [ ":" ] PRINTABLE_NAME? */
printable_name_colon = strchr (info->printable_name, ':');
if (printable_name_colon == NULL)
{
size_t strlen_arch_name = strlen (info->arch_name);
if (strncasecmp (string, info->arch_name, strlen_arch_name) == 0)
{
if (string[strlen_arch_name] == ':')
{
if (strcasecmp (string + strlen_arch_name + 1,
info->printable_name) == 0)
return TRUE;
}
else
{
if (strcasecmp (string + strlen_arch_name,
info->printable_name) == 0)
return TRUE;
}
}
}
/* Given that PRINTABLE_NAME has the form: <arch> ":" <mach>;
Attempt to match: <arch> <mach>? */
if (printable_name_colon != NULL)
{
size_t colon_index = printable_name_colon - info->printable_name;
if (strncasecmp (string, info->printable_name, colon_index) == 0
&& strcasecmp (string + colon_index,
info->printable_name + colon_index + 1) == 0)
return TRUE;
}
/* Given that PRINTABLE_NAME has the form: <arch> ":" <mach>; Do not
attempt to match just <mach>, it could be ambiguous. This test
is left until later. */
/* NOTE: The below is retained for compatibility only. Please do
not add to this code. */
/* See how much of the supplied string matches with the
architecture, eg the string m68k:68020 would match the 68k entry
up to the :, then we get left with the machine number. */
for (ptr_src = string, ptr_tst = info->arch_name;
*ptr_src && *ptr_tst;
ptr_src++, ptr_tst++)
{
if (*ptr_src != *ptr_tst)
break;
}
/* Chewed up as much of the architecture as will match, skip any
colons. */
if (*ptr_src == ':')
ptr_src++;
if (*ptr_src == 0)
{
/* Nothing more, then only keep this one if it is the default
machine for this architecture. */
return info->the_default;
}
number = 0;
while (ISDIGIT (*ptr_src))
{
number = number * 10 + *ptr_src - '0';
ptr_src++;
}
/* NOTE: The below is retained for compatibility only.
PLEASE DO NOT ADD TO THIS CODE. */
switch (number)
{
/* FIXME: These are needed to parse IEEE objects. */
/* The following seven case's are here only for compatibility with
older binutils (at least IEEE objects from binutils 2.9.1 require
them). */
case bfd_mach_m68000:
case bfd_mach_m68010:
case bfd_mach_m68020:
case bfd_mach_m68030:
case bfd_mach_m68040:
case bfd_mach_m68060:
case bfd_mach_cpu32:
arch = bfd_arch_m68k;
break;
case 68000:
arch = bfd_arch_m68k;
number = bfd_mach_m68000;
break;
case 68010:
arch = bfd_arch_m68k;
number = bfd_mach_m68010;
break;
case 68020:
arch = bfd_arch_m68k;
number = bfd_mach_m68020;
break;
case 68030:
arch = bfd_arch_m68k;
number = bfd_mach_m68030;
break;
case 68040:
arch = bfd_arch_m68k;
number = bfd_mach_m68040;
break;
case 68060:
arch = bfd_arch_m68k;
number = bfd_mach_m68060;
break;
case 68332:
arch = bfd_arch_m68k;
number = bfd_mach_cpu32;
break;
case 5200:
arch = bfd_arch_m68k;
number = bfd_mach_mcf_isa_a_nodiv;
break;
case 5206:
arch = bfd_arch_m68k;
number = bfd_mach_mcf_isa_a_mac;
break;
case 5307:
arch = bfd_arch_m68k;
number = bfd_mach_mcf_isa_a_mac;
break;
case 5407:
arch = bfd_arch_m68k;
number = bfd_mach_mcf_isa_b_nousp_mac;
break;
case 5282:
arch = bfd_arch_m68k;
number = bfd_mach_mcf_isa_aplus_emac;
break;
case 32000:
arch = bfd_arch_we32k;
break;
case 3000:
arch = bfd_arch_mips;
number = bfd_mach_mips3000;
break;
case 4000:
arch = bfd_arch_mips;
number = bfd_mach_mips4000;
break;
case 6000:
arch = bfd_arch_rs6000;
break;
case 7410:
arch = bfd_arch_sh;
number = bfd_mach_sh_dsp;
break;
case 7708:
arch = bfd_arch_sh;
number = bfd_mach_sh3;
break;
case 7729:
arch = bfd_arch_sh;
number = bfd_mach_sh3_dsp;
break;
case 7750:
arch = bfd_arch_sh;
number = bfd_mach_sh4;
break;
default:
return FALSE;
}
if (arch != info->arch)
return FALSE;
if (number != info->mach)
return FALSE;
return TRUE;
}
/*
FUNCTION
bfd_get_arch_info
SYNOPSIS
const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
DESCRIPTION
Return the architecture info struct in @var{abfd}.
*/
const bfd_arch_info_type *
bfd_get_arch_info (bfd *abfd)
{
return abfd->arch_info;
}
/*
FUNCTION
bfd_lookup_arch
SYNOPSIS
const bfd_arch_info_type *bfd_lookup_arch
(enum bfd_architecture arch, unsigned long machine);
DESCRIPTION
Look for the architecture info structure which matches the
arguments @var{arch} and @var{machine}. A machine of 0 matches the
machine/architecture structure which marks itself as the
default.
*/
const bfd_arch_info_type *
bfd_lookup_arch (enum bfd_architecture arch, unsigned long machine)
{
const bfd_arch_info_type * const *app, *ap;
for (app = bfd_archures_list; *app != NULL; app++)
{
for (ap = *app; ap != NULL; ap = ap->next)
{
if (ap->arch == arch
&& (ap->mach == machine
|| (machine == 0 && ap->the_default)))
return ap;
}
}
return NULL;
}
/*
FUNCTION
bfd_printable_arch_mach
SYNOPSIS
const char *bfd_printable_arch_mach
(enum bfd_architecture arch, unsigned long machine);
DESCRIPTION
Return a printable string representing the architecture and
machine type.
This routine is depreciated.
*/
const char *
bfd_printable_arch_mach (enum bfd_architecture arch, unsigned long machine)
{
const bfd_arch_info_type *ap = bfd_lookup_arch (arch, machine);
if (ap)
return ap->printable_name;
return "UNKNOWN!";
}
/*
FUNCTION
bfd_octets_per_byte
SYNOPSIS
unsigned int bfd_octets_per_byte (bfd *abfd);
DESCRIPTION
Return the number of octets (8-bit quantities) per target byte
(minimum addressable unit). In most cases, this will be one, but some
DSP targets have 16, 32, or even 48 bits per byte.
*/
unsigned int
bfd_octets_per_byte (bfd *abfd)
{
return bfd_arch_mach_octets_per_byte (bfd_get_arch (abfd),
bfd_get_mach (abfd));
}
/*
FUNCTION
bfd_arch_mach_octets_per_byte
SYNOPSIS
unsigned int bfd_arch_mach_octets_per_byte
(enum bfd_architecture arch, unsigned long machine);
DESCRIPTION
See bfd_octets_per_byte.
This routine is provided for those cases where a bfd * is not
available
*/
unsigned int
bfd_arch_mach_octets_per_byte (enum bfd_architecture arch,
unsigned long mach)
{
const bfd_arch_info_type *ap = bfd_lookup_arch (arch, mach);
if (ap)
return ap->bits_per_byte / 8;
return 1;
}
/*
INTERNAL_FUNCTION
bfd_arch_default_fill
SYNOPSIS
void *bfd_arch_default_fill (bfd_size_type count,
bfd_boolean is_bigendian,
bfd_boolean code);
DESCRIPTION
Allocate via bfd_malloc and return a fill buffer of size COUNT.
If IS_BIGENDIAN is TRUE, the order of bytes is big endian. If
CODE is TRUE, the buffer contains code.
*/
void *
bfd_arch_default_fill (bfd_size_type count,
bfd_boolean is_bigendian ATTRIBUTE_UNUSED,
bfd_boolean code ATTRIBUTE_UNUSED)
{
void *fill = bfd_malloc (count);
if (fill != NULL)
memset (fill, 0, count);
return fill;
}