3a7d1c27ef
* hppa-linux-tdep.c (hppa_linux_init_abi): sizeof(long double) == 8 on hppa-linux.
515 lines
15 KiB
C
515 lines
15 KiB
C
/* Target-dependent code for Linux running on PA-RISC, for GDB.
|
|
|
|
Copyright 2004 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "osabi.h"
|
|
#include "target.h"
|
|
#include "objfiles.h"
|
|
#include "solib-svr4.h"
|
|
#include "glibc-tdep.h"
|
|
#include "frame-unwind.h"
|
|
#include "trad-frame.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "hppa-tdep.h"
|
|
|
|
#if 0
|
|
/* Convert DWARF register number REG to the appropriate register
|
|
number used by GDB. */
|
|
static int
|
|
hppa_dwarf_reg_to_regnum (int reg)
|
|
{
|
|
/* registers 0 - 31 are the same in both sets */
|
|
if (reg < 32)
|
|
return reg;
|
|
|
|
/* dwarf regs 32 to 85 are fpregs 4 - 31 */
|
|
if (reg >= 32 && reg <= 85)
|
|
return HPPA_FP4_REGNUM + (reg - 32);
|
|
|
|
warning ("Unmapped DWARF Register #%d encountered\n", reg);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
hppa_linux_target_write_pc (CORE_ADDR v, ptid_t ptid)
|
|
{
|
|
/* Probably this should be done by the kernel, but it isn't. */
|
|
write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v | 0x3, ptid);
|
|
write_register_pid (HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3, ptid);
|
|
}
|
|
|
|
/* An instruction to match. */
|
|
struct insn_pattern
|
|
{
|
|
unsigned int data; /* See if it matches this.... */
|
|
unsigned int mask; /* ... with this mask. */
|
|
};
|
|
|
|
/* See bfd/elf32-hppa.c */
|
|
static struct insn_pattern hppa_long_branch_stub[] = {
|
|
/* ldil LR'xxx,%r1 */
|
|
{ 0x20200000, 0xffe00000 },
|
|
/* be,n RR'xxx(%sr4,%r1) */
|
|
{ 0xe0202002, 0xffe02002 },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct insn_pattern hppa_long_branch_pic_stub[] = {
|
|
/* b,l .+8, %r1 */
|
|
{ 0xe8200000, 0xffe00000 },
|
|
/* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
|
|
{ 0x28200000, 0xffe00000 },
|
|
/* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
|
|
{ 0xe0202002, 0xffe02002 },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct insn_pattern hppa_import_stub[] = {
|
|
/* addil LR'xxx, %dp */
|
|
{ 0x2b600000, 0xffe00000 },
|
|
/* ldw RR'xxx(%r1), %r21 */
|
|
{ 0x48350000, 0xffffb000 },
|
|
/* bv %r0(%r21) */
|
|
{ 0xeaa0c000, 0xffffffff },
|
|
/* ldw RR'xxx+4(%r1), %r19 */
|
|
{ 0x48330000, 0xffffb000 },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct insn_pattern hppa_import_pic_stub[] = {
|
|
/* addil LR'xxx,%r19 */
|
|
{ 0x2a600000, 0xffe00000 },
|
|
/* ldw RR'xxx(%r1),%r21 */
|
|
{ 0x48350000, 0xffffb000 },
|
|
/* bv %r0(%r21) */
|
|
{ 0xeaa0c000, 0xffffffff },
|
|
/* ldw RR'xxx+4(%r1),%r19 */
|
|
{ 0x48330000, 0xffffb000 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static struct insn_pattern hppa_plt_stub[] = {
|
|
/* b,l 1b, %r20 - 1b is 3 insns before here */
|
|
{ 0xea9f1fdd, 0xffffffff },
|
|
/* depi 0,31,2,%r20 */
|
|
{ 0xd6801c1e, 0xffffffff },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct insn_pattern hppa_sigtramp[] = {
|
|
/* ldi 0, %r25 or ldi 1, %r25 */
|
|
{ 0x34190000, 0xfffffffd },
|
|
/* ldi __NR_rt_sigreturn, %r20 */
|
|
{ 0x3414015a, 0xffffffff },
|
|
/* be,l 0x100(%sr2, %r0), %sr0, %r31 */
|
|
{ 0xe4008200, 0xffffffff },
|
|
/* nop */
|
|
{ 0x08000240, 0xffffffff },
|
|
{ 0, 0 }
|
|
};
|
|
|
|
#define HPPA_MAX_INSN_PATTERN_LEN (4)
|
|
|
|
/* Return non-zero if the instructions at PC match the series
|
|
described in PATTERN, or zero otherwise. PATTERN is an array of
|
|
'struct insn_pattern' objects, terminated by an entry whose mask is
|
|
zero.
|
|
|
|
When the match is successful, fill INSN[i] with what PATTERN[i]
|
|
matched. */
|
|
static int
|
|
insns_match_pattern (CORE_ADDR pc,
|
|
struct insn_pattern *pattern,
|
|
unsigned int *insn)
|
|
{
|
|
int i;
|
|
CORE_ADDR npc = pc;
|
|
|
|
for (i = 0; pattern[i].mask; i++)
|
|
{
|
|
char buf[4];
|
|
|
|
read_memory_nobpt (npc, buf, 4);
|
|
insn[i] = extract_unsigned_integer (buf, 4);
|
|
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
|
npc += 4;
|
|
else
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
hppa_linux_in_dyncall (CORE_ADDR pc)
|
|
{
|
|
static CORE_ADDR dyncall = 0;
|
|
|
|
/* FIXME: if we switch exec files, dyncall should be reinitialized */
|
|
if (!dyncall)
|
|
{
|
|
struct minimal_symbol *minsym;
|
|
|
|
minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
|
if (minsym)
|
|
dyncall = SYMBOL_VALUE_ADDRESS (minsym);
|
|
else
|
|
dyncall = -1;
|
|
}
|
|
|
|
return pc == dyncall;
|
|
}
|
|
|
|
/* There are several kinds of "trampolines" that we need to deal with:
|
|
- long branch stubs: these are inserted by the linker when a branch
|
|
target is too far away for a branch insn to reach
|
|
- plt stubs: these should go into the .plt section, so are easy to find
|
|
- import stubs: used to call from object to shared lib or shared lib to
|
|
shared lib; these go in regular text sections. In fact the linker tries
|
|
to put them throughout the code because branches have limited reachability.
|
|
We use the same mechanism as ppc64 to recognize the stub insn patterns.
|
|
- $$dyncall: similar to hpux, hppa-linux uses $$dyncall for indirect function
|
|
calls. $$dyncall is exported by libgcc.a */
|
|
static int
|
|
hppa_linux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
|
{
|
|
unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
|
|
int r;
|
|
|
|
r = in_plt_section (pc, name)
|
|
|| hppa_linux_in_dyncall (pc)
|
|
|| insns_match_pattern (pc, hppa_import_stub, insn)
|
|
|| insns_match_pattern (pc, hppa_import_pic_stub, insn)
|
|
|| insns_match_pattern (pc, hppa_long_branch_stub, insn)
|
|
|| insns_match_pattern (pc, hppa_long_branch_pic_stub, insn);
|
|
|
|
return r;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
hppa_linux_skip_trampoline_code (CORE_ADDR pc)
|
|
{
|
|
unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
|
|
int dp_rel, pic_rel;
|
|
|
|
/* dyncall handles both PLABELs and direct addresses */
|
|
if (hppa_linux_in_dyncall (pc))
|
|
{
|
|
pc = (CORE_ADDR) read_register (22);
|
|
|
|
/* PLABELs have bit 30 set; if it's a PLABEL, then dereference it */
|
|
if (pc & 0x2)
|
|
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
|
|
|
return pc;
|
|
}
|
|
|
|
dp_rel = pic_rel = 0;
|
|
if ((dp_rel = insns_match_pattern (pc, hppa_import_stub, insn))
|
|
|| (pic_rel = insns_match_pattern (pc, hppa_import_pic_stub, insn)))
|
|
{
|
|
/* Extract the target address from the addil/ldw sequence. */
|
|
pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
|
|
|
|
if (dp_rel)
|
|
pc += (CORE_ADDR) read_register (27);
|
|
else
|
|
pc += (CORE_ADDR) read_register (19);
|
|
|
|
/* fallthrough */
|
|
}
|
|
|
|
if (in_plt_section (pc, NULL))
|
|
{
|
|
pc = (CORE_ADDR) read_memory_integer (pc, TARGET_PTR_BIT / 8);
|
|
|
|
/* if the plt slot has not yet been resolved, the target will
|
|
be the plt stub */
|
|
if (in_plt_section (pc, NULL))
|
|
{
|
|
/* Sanity check: are we pointing to the plt stub? */
|
|
if (insns_match_pattern (pc, hppa_plt_stub, insn))
|
|
{
|
|
/* this should point to the fixup routine */
|
|
pc = (CORE_ADDR) read_memory_integer (pc + 8, TARGET_PTR_BIT / 8);
|
|
}
|
|
else
|
|
{
|
|
error ("Cannot resolve plt stub at 0x%s\n",
|
|
paddr_nz (pc));
|
|
pc = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Signal frames. */
|
|
|
|
/* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
|
|
|
|
Unfortunately, because of various bugs and changes to the kernel,
|
|
we have several cases to deal with.
|
|
|
|
In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
|
|
the beginning of the trampoline and struct rt_sigframe.
|
|
|
|
In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
|
|
the 4th word in the trampoline structure. This is wrong, it should point
|
|
at the 5th word. This is fixed in 2.6.5-rc2-pa4.
|
|
|
|
To detect these cases, we first take pc, align it to 64-bytes
|
|
to get the beginning of the signal frame, and then check offsets 0, 4
|
|
and 5 to see if we found the beginning of the trampoline. This will
|
|
tell us how to locate the sigcontext structure.
|
|
|
|
Note that with a 2.4 64-bit kernel, the signal context is not properly
|
|
passed back to userspace so the unwind will not work correctly. */
|
|
static CORE_ADDR
|
|
hppa_linux_sigtramp_find_sigcontext (CORE_ADDR pc)
|
|
{
|
|
unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
|
|
int offs = 0;
|
|
int try;
|
|
/* offsets to try to find the trampoline */
|
|
static int pcoffs[] = { 0, 4*4, 5*4 };
|
|
/* offsets to the rt_sigframe structure */
|
|
static int sfoffs[] = { 4*4, 10*4, 10*4 };
|
|
CORE_ADDR sp;
|
|
|
|
/* Most of the time, this will be correct. The one case when this will
|
|
fail is if the user defined an alternate stack, in which case the
|
|
beginning of the stack will not be align_down (pc, 64). */
|
|
sp = align_down (pc, 64);
|
|
|
|
/* rt_sigreturn trampoline:
|
|
3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
|
|
3414015a ldi __NR_rt_sigreturn, %r20
|
|
e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
|
|
08000240 nop */
|
|
|
|
for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
|
|
{
|
|
if (insns_match_pattern (sp + pcoffs[try], hppa_sigtramp, dummy))
|
|
{
|
|
offs = sfoffs[try];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (offs == 0)
|
|
{
|
|
if (insns_match_pattern (pc, hppa_sigtramp, dummy))
|
|
{
|
|
/* sigaltstack case: we have no way of knowing which offset to
|
|
use in this case; default to new kernel handling. If this is
|
|
wrong the unwinding will fail. */
|
|
try = 2;
|
|
sp = pc - pcoffs[try];
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* sp + sfoffs[try] points to a struct rt_sigframe, which contains
|
|
a struct siginfo and a struct ucontext. struct ucontext contains
|
|
a struct sigcontext. Return an offset to this sigcontext here. Too
|
|
bad we cannot include system specific headers :-(.
|
|
sizeof(struct siginfo) == 128
|
|
offsetof(struct ucontext, uc_mcontext) == 24. */
|
|
return sp + sfoffs[try] + 128 + 24;
|
|
}
|
|
|
|
struct hppa_linux_sigtramp_unwind_cache
|
|
{
|
|
CORE_ADDR base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct hppa_linux_sigtramp_unwind_cache *
|
|
hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
struct hppa_linux_sigtramp_unwind_cache *info;
|
|
CORE_ADDR pc, scptr;
|
|
int i;
|
|
|
|
if (*this_cache)
|
|
return *this_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
|
|
*this_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
pc = frame_pc_unwind (next_frame);
|
|
scptr = hppa_linux_sigtramp_find_sigcontext (pc);
|
|
|
|
/* structure of struct sigcontext:
|
|
|
|
struct sigcontext {
|
|
unsigned long sc_flags;
|
|
unsigned long sc_gr[32];
|
|
unsigned long long sc_fr[32];
|
|
unsigned long sc_iasq[2];
|
|
unsigned long sc_iaoq[2];
|
|
unsigned long sc_sar; */
|
|
|
|
/* Skip sc_flags. */
|
|
scptr += 4;
|
|
|
|
/* GR[0] is the psw, we don't restore that. */
|
|
scptr += 4;
|
|
|
|
/* General registers. */
|
|
for (i = 1; i < 32; i++)
|
|
{
|
|
info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
|
|
scptr += 4;
|
|
}
|
|
|
|
/* Pad. */
|
|
scptr += 4;
|
|
|
|
/* FP regs; FP0-3 are not restored. */
|
|
scptr += (8 * 4);
|
|
|
|
for (i = 4; i < 32; i++)
|
|
{
|
|
info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
|
|
scptr += 4;
|
|
info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
|
|
scptr += 4;
|
|
}
|
|
|
|
/* IASQ/IAOQ. */
|
|
info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
|
|
scptr += 4;
|
|
info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
|
|
scptr += 4;
|
|
|
|
info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
|
|
scptr += 4;
|
|
info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
|
|
scptr += 4;
|
|
|
|
info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
hppa_linux_sigtramp_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct hppa_linux_sigtramp_unwind_cache *info
|
|
= hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
*this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
static void
|
|
hppa_linux_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp,
|
|
CORE_ADDR *addrp,
|
|
int *realnump, void *valuep)
|
|
{
|
|
struct hppa_linux_sigtramp_unwind_cache *info
|
|
= hppa_linux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
|
}
|
|
|
|
static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
|
|
SIGTRAMP_FRAME,
|
|
hppa_linux_sigtramp_frame_this_id,
|
|
hppa_linux_sigtramp_frame_prev_register
|
|
};
|
|
|
|
/* hppa-linux always uses "new-style" rt-signals. The signal handler's return
|
|
address should point to a signal trampoline on the stack. The signal
|
|
trampoline is embedded in a rt_sigframe structure that is aligned on
|
|
the stack. We take advantage of the fact that sp must be 64-byte aligned,
|
|
and the trampoline is small, so by rounding down the trampoline address
|
|
we can find the beginning of the struct rt_sigframe. */
|
|
static const struct frame_unwind *
|
|
hppa_linux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
|
|
{
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
|
|
|
if (hppa_linux_sigtramp_find_sigcontext (pc))
|
|
return &hppa_linux_sigtramp_frame_unwind;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Forward declarations. */
|
|
extern initialize_file_ftype _initialize_hppa_linux_tdep;
|
|
|
|
static void
|
|
hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* Linux is always ELF. */
|
|
tdep->is_elf = 1;
|
|
|
|
set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
|
|
|
|
frame_unwind_append_sniffer (gdbarch, hppa_linux_sigtramp_unwind_sniffer);
|
|
|
|
/* GNU/Linux uses SVR4-style shared libraries. */
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
|
|
set_gdbarch_in_solib_call_trampoline
|
|
(gdbarch, hppa_linux_in_solib_call_trampoline);
|
|
set_gdbarch_skip_trampoline_code
|
|
(gdbarch, hppa_linux_skip_trampoline_code);
|
|
|
|
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
|
|
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
|
|
|
/* On hppa-linux, currently, sizeof(long double) == 8. There has been
|
|
some discussions to support 128-bit long double, but it requires some
|
|
more work in gcc and glibc first. */
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
|
|
#if 0
|
|
/* Dwarf-2 unwinding support. Not yet working. */
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_initialize_hppa_linux_tdep (void)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
|
|
}
|