binutils-gdb/bfd/elf32-i386.c
Alan Modra 1e2f5b6e6b * elflink.h (elf_gc_mark): Pass in the section whose relocs we are
examining to gc_mark_hook, rather than the bfd.
	(elf_gc_sections): Adjust.
	* elf-bfd.h (struct elf_backend_data <gc_mark_hook>): Likewise.
	* elf-m10300.c (mn10300_elf_gc_mark_hook): Likewise.
	* elf32-arm.h (elf32_arm_gc_mark_hook): Likewise.
	* elf32-avr.c (elf32_avr_gc_mark_hook): Likewise.
	* elf32-cris.c (cris_elf_gc_mark_hook): Likewise.
	* elf32-d10v.c (elf32_d10v_gc_mark_hook): Likewise.
	* elf32-fr30.c (fr30_elf_gc_mark_hook): Likewise.
	* elf32-hppa.c (elf32_hppa_gc_mark_hook): Likewise.
	* elf32-i386.c (elf_i386_gc_mark_hook): Likewise.
	* elf32-m32r.c (m32r_elf_gc_mark_hook): Likewise.
	* elf32-m68k.c (elf_m68k_gc_mark_hook): Likewise.
	* elf32-mcore.c (mcore_elf_gc_mark_hook): Likewise.
	* elf32-openrisc.c (openrisc_elf_gc_mark_hook): Likewise.
	* elf32-ppc.c (ppc_elf_gc_mark_hook): Likewise.
	* elf32-s390.c (elf_s390_gc_mark_hook): Likewise.
	* elf32-sh.c (sh_elf_gc_mark_hook): Likewise.
	* elf32-sparc.c (elf32_sparc_gc_mark_hook): Likewise.
	* elf32-v850.c (v850_elf_gc_mark_hook): Likewise.
	* elf32-vax.c (elf_vax_gc_mark_hook): Likewise.
	* elf32-xstormy16.c (xstormy16_elf_gc_mark_hook): Likewise.
	* elf64-mmix.c (mmix_elf_gc_mark_hook): Likewise.
	* elf64-ppc.c (ppc64_elf_gc_mark_hook): Likewise.
	* elf64-s390.c (elf_s390_gc_mark_hook): Likewise.
	* elf64-sh64.c (sh_elf64_gc_mark_hook): Likewise.
	* elfxx-mips.c (_bfd_mips_elf_gc_mark_hook): Likewise.
	* elfxx-mips.h (_bfd_mips_elf_gc_mark_hook): Likewise.
	* elf64-x86-64.c (elf64_x86_64_gc_mark_hook): Likewise.
	* elf32-frv.c (elf32_frv_gc_mark_hook): Likewise.  Also remove
	redundant local sym tests.
	* elf64-ppc.c (struct ppc_link_hash_entry): Add is_entry.
	(link_hash_newfunc): Init is_entry.
	(ppc64_elf_copy_indirect_symbol): Copy is_entry.
	(ppc64_elf_link_hash_table_create): Init all_local_syms.
	(create_linkage_sections): Use bfd_make_section_anyway rather than
	bfd_make_section.
	(ppc64_elf_mark_entry_syms): New function.
	(ppc64_elf_check_relocs): Don't bother testing elf_bad_symtab.  Set
	up opd entry to function section map.
	(ppc64_elf_gc_mark_hook): Special case opd section relocs, and
	relocs that reference the opd section.
	(edit_opd): New function.
	(ppc64_elf_size_dynamic_sections): Call get_local_syms and edit_opd.
	(ppc64_elf_setup_section_lists): Don't calculate htab->bfd_count here.
	(get_local_syms): Do so here.  Exit if we already have local syms.
	Remove bogus comment imported from elf32-hppa.c.  Don't attempt to
	read local syms on non-ELF input.
	(ppc64_elf_size_stubs): Call _bfd_elf64_link_read_relocs rather
	than duplicating it's function here.  Adjust free of internal
	relocs to suit.
	(ppc64_elf_relocate_section): Adjust local syms in opd section.
	* elf64-ppc.h (ppc64_elf_mark_entry_syms): Declare.
	* elf32-hppa.c (elf32_hppa_size_stubs): Call
	_bfd_elf32_link_read_relocs rather than duplicating it's function
	here.  Adjust free of internal relocs to suit.
2002-07-01 08:06:47 +00:00

3150 lines
92 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Intel 80386/80486-specific support for 32-bit ELF
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
static reloc_howto_type *elf_i386_reloc_type_lookup
PARAMS ((bfd *, bfd_reloc_code_real_type));
static void elf_i386_info_to_howto
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
static void elf_i386_info_to_howto_rel
PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
static boolean elf_i386_is_local_label_name
PARAMS ((bfd *, const char *));
static boolean elf_i386_grok_prstatus
PARAMS ((bfd *abfd, Elf_Internal_Note *note));
static boolean elf_i386_grok_psinfo
PARAMS ((bfd *abfd, Elf_Internal_Note *note));
static struct bfd_hash_entry *link_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static struct bfd_link_hash_table *elf_i386_link_hash_table_create
PARAMS ((bfd *));
static boolean create_got_section
PARAMS((bfd *, struct bfd_link_info *));
static boolean elf_i386_create_dynamic_sections
PARAMS((bfd *, struct bfd_link_info *));
static void elf_i386_copy_indirect_symbol
PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
static int elf_i386_tls_transition
PARAMS ((struct bfd_link_info *, int, int));
static boolean elf_i386_mkobject
PARAMS((bfd *));
static boolean elf_i386_object_p
PARAMS((bfd *));
static boolean elf_i386_check_relocs
PARAMS ((bfd *, struct bfd_link_info *, asection *,
const Elf_Internal_Rela *));
static asection *elf_i386_gc_mark_hook
PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
struct elf_link_hash_entry *, Elf_Internal_Sym *));
static boolean elf_i386_gc_sweep_hook
PARAMS ((bfd *, struct bfd_link_info *, asection *,
const Elf_Internal_Rela *));
static boolean elf_i386_adjust_dynamic_symbol
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean allocate_dynrelocs
PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean readonly_dynrelocs
PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_i386_fake_sections
PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
static boolean elf_i386_size_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static bfd_vma dtpoff_base
PARAMS ((struct bfd_link_info *));
static bfd_vma tpoff
PARAMS ((struct bfd_link_info *, bfd_vma));
static boolean elf_i386_relocate_section
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
static boolean elf_i386_finish_dynamic_symbol
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
Elf_Internal_Sym *));
static enum elf_reloc_type_class elf_i386_reloc_type_class
PARAMS ((const Elf_Internal_Rela *));
static boolean elf_i386_finish_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
#define USE_REL 1 /* 386 uses REL relocations instead of RELA */
#include "elf/i386.h"
static reloc_howto_type elf_howto_table[]=
{
HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_NONE",
true, 0x00000000, 0x00000000, false),
HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_PC32",
true, 0xffffffff, 0xffffffff, true),
HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_GOT32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_PLT32",
true, 0xffffffff, 0xffffffff, true),
HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_COPY",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_GLOB_DAT",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_RELATIVE",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_GOTOFF",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_GOTPC",
true, 0xffffffff, 0xffffffff, true),
/* We have a gap in the reloc numbers here.
R_386_standard counts the number up to this point, and
R_386_ext_offset is the value to subtract from a reloc type of
R_386_16 thru R_386_PC8 to form an index into this table. */
#define R_386_standard ((unsigned int) R_386_GOTPC + 1)
#define R_386_ext_offset ((unsigned int) R_386_TLS_LE - R_386_standard)
/* The remaining relocs are a GNU extension. */
HOWTO(R_386_TLS_LE, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_LE",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_GD, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_GD",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_LDM, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_LDM",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_16",
true, 0xffff, 0xffff, false),
HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_PC16",
true, 0xffff, 0xffff, true),
HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_8",
true, 0xff, 0xff, false),
HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_386_PC8",
true, 0xff, 0xff, true),
#define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
#define R_386_tls_offset ((unsigned int) R_386_TLS_LDO_32 - R_386_ext)
/* These are common with Solaris TLS implementation. */
HOWTO(R_386_TLS_LDO_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_IE_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_IE_32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_LE_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_LE_32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
true, 0xffffffff, 0xffffffff, false),
HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
true, 0xffffffff, 0xffffffff, false),
/* Another gap. */
#define R_386_tls ((unsigned int) R_386_TLS_TPOFF32 + 1 - R_386_tls_offset)
#define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_tls)
/* GNU extension to record C++ vtable hierarchy. */
HOWTO (R_386_GNU_VTINHERIT, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_386_GNU_VTINHERIT", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* GNU extension to record C++ vtable member usage. */
HOWTO (R_386_GNU_VTENTRY, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
"R_386_GNU_VTENTRY", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false) /* pcrel_offset */
#define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
};
#ifdef DEBUG_GEN_RELOC
#define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
#else
#define TRACE(str)
#endif
static reloc_howto_type *
elf_i386_reloc_type_lookup (abfd, code)
bfd *abfd ATTRIBUTE_UNUSED;
bfd_reloc_code_real_type code;
{
switch (code)
{
case BFD_RELOC_NONE:
TRACE ("BFD_RELOC_NONE");
return &elf_howto_table[(unsigned int) R_386_NONE ];
case BFD_RELOC_32:
TRACE ("BFD_RELOC_32");
return &elf_howto_table[(unsigned int) R_386_32 ];
case BFD_RELOC_CTOR:
TRACE ("BFD_RELOC_CTOR");
return &elf_howto_table[(unsigned int) R_386_32 ];
case BFD_RELOC_32_PCREL:
TRACE ("BFD_RELOC_PC32");
return &elf_howto_table[(unsigned int) R_386_PC32 ];
case BFD_RELOC_386_GOT32:
TRACE ("BFD_RELOC_386_GOT32");
return &elf_howto_table[(unsigned int) R_386_GOT32 ];
case BFD_RELOC_386_PLT32:
TRACE ("BFD_RELOC_386_PLT32");
return &elf_howto_table[(unsigned int) R_386_PLT32 ];
case BFD_RELOC_386_COPY:
TRACE ("BFD_RELOC_386_COPY");
return &elf_howto_table[(unsigned int) R_386_COPY ];
case BFD_RELOC_386_GLOB_DAT:
TRACE ("BFD_RELOC_386_GLOB_DAT");
return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
case BFD_RELOC_386_JUMP_SLOT:
TRACE ("BFD_RELOC_386_JUMP_SLOT");
return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
case BFD_RELOC_386_RELATIVE:
TRACE ("BFD_RELOC_386_RELATIVE");
return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
case BFD_RELOC_386_GOTOFF:
TRACE ("BFD_RELOC_386_GOTOFF");
return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
case BFD_RELOC_386_GOTPC:
TRACE ("BFD_RELOC_386_GOTPC");
return &elf_howto_table[(unsigned int) R_386_GOTPC ];
/* The remaining relocs are a GNU extension. */
case BFD_RELOC_386_TLS_LE:
TRACE ("BFD_RELOC_386_TLS_LE");
return &elf_howto_table[(unsigned int) R_386_TLS_LE - R_386_ext_offset];
case BFD_RELOC_386_TLS_GD:
TRACE ("BFD_RELOC_386_TLS_GD");
return &elf_howto_table[(unsigned int) R_386_TLS_GD - R_386_ext_offset];
case BFD_RELOC_386_TLS_LDM:
TRACE ("BFD_RELOC_386_TLS_LDM");
return &elf_howto_table[(unsigned int) R_386_TLS_LDM - R_386_ext_offset];
case BFD_RELOC_16:
TRACE ("BFD_RELOC_16");
return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
case BFD_RELOC_16_PCREL:
TRACE ("BFD_RELOC_16_PCREL");
return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
case BFD_RELOC_8:
TRACE ("BFD_RELOC_8");
return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
case BFD_RELOC_8_PCREL:
TRACE ("BFD_RELOC_8_PCREL");
return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
/* Common with Sun TLS implementation. */
case BFD_RELOC_386_TLS_LDO_32:
TRACE ("BFD_RELOC_386_TLS_LDO_32");
return &elf_howto_table[(unsigned int) R_386_TLS_LDO_32 - R_386_tls_offset];
case BFD_RELOC_386_TLS_IE_32:
TRACE ("BFD_RELOC_386_TLS_IE_32");
return &elf_howto_table[(unsigned int) R_386_TLS_IE_32 - R_386_tls_offset];
case BFD_RELOC_386_TLS_LE_32:
TRACE ("BFD_RELOC_386_TLS_LE_32");
return &elf_howto_table[(unsigned int) R_386_TLS_LE_32 - R_386_tls_offset];
case BFD_RELOC_386_TLS_DTPMOD32:
TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
return &elf_howto_table[(unsigned int) R_386_TLS_DTPMOD32 - R_386_tls_offset];
case BFD_RELOC_386_TLS_DTPOFF32:
TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
return &elf_howto_table[(unsigned int) R_386_TLS_DTPOFF32 - R_386_tls_offset];
case BFD_RELOC_386_TLS_TPOFF32:
TRACE ("BFD_RELOC_386_TLS_TPOFF32");
return &elf_howto_table[(unsigned int) R_386_TLS_TPOFF32 - R_386_tls_offset];
case BFD_RELOC_VTABLE_INHERIT:
TRACE ("BFD_RELOC_VTABLE_INHERIT");
return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
- R_386_vt_offset];
case BFD_RELOC_VTABLE_ENTRY:
TRACE ("BFD_RELOC_VTABLE_ENTRY");
return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
- R_386_vt_offset];
default:
break;
}
TRACE ("Unknown");
return 0;
}
static void
elf_i386_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *cache_ptr ATTRIBUTE_UNUSED;
Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
{
abort ();
}
static void
elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *cache_ptr;
Elf32_Internal_Rel *dst;
{
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
unsigned int indx;
if ((indx = r_type) >= R_386_standard
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
>= R_386_ext - R_386_standard)
&& ((indx = r_type - R_386_tls_offset) - R_386_ext
>= R_386_tls - R_386_ext)
&& ((indx = r_type - R_386_vt_offset) - R_386_tls
>= R_386_vt - R_386_tls))
{
(*_bfd_error_handler) (_("%s: invalid relocation type %d"),
bfd_archive_filename (abfd), (int) r_type);
indx = (unsigned int) R_386_NONE;
}
cache_ptr->howto = &elf_howto_table[indx];
}
/* Return whether a symbol name implies a local label. The UnixWare
2.1 cc generates temporary symbols that start with .X, so we
recognize them here. FIXME: do other SVR4 compilers also use .X?.
If so, we should move the .X recognition into
_bfd_elf_is_local_label_name. */
static boolean
elf_i386_is_local_label_name (abfd, name)
bfd *abfd;
const char *name;
{
if (name[0] == '.' && name[1] == 'X')
return true;
return _bfd_elf_is_local_label_name (abfd, name);
}
/* Support for core dump NOTE sections. */
static boolean
elf_i386_grok_prstatus (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
int offset;
size_t raw_size;
switch (note->descsz)
{
default:
return false;
case 144: /* Linux/i386 */
/* pr_cursig */
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
/* pr_reg */
offset = 72;
raw_size = 68;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
raw_size, note->descpos + offset);
}
static boolean
elf_i386_grok_psinfo (abfd, note)
bfd *abfd;
Elf_Internal_Note *note;
{
switch (note->descsz)
{
default:
return false;
case 124: /* Linux/i386 elf_prpsinfo */
elf_tdata (abfd)->core_program
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core_command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return true;
}
/* Functions for the i386 ELF linker.
In order to gain some understanding of code in this file without
knowing all the intricate details of the linker, note the
following:
Functions named elf_i386_* are called by external routines, other
functions are only called locally. elf_i386_* functions appear
in this file more or less in the order in which they are called
from external routines. eg. elf_i386_check_relocs is called
early in the link process, elf_i386_finish_dynamic_sections is
one of the last functions. */
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
/* The size in bytes of an entry in the procedure linkage table. */
#define PLT_ENTRY_SIZE 16
/* The first entry in an absolute procedure linkage table looks like
this. See the SVR4 ABI i386 supplement to see how this works. */
static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
{
0xff, 0x35, /* pushl contents of address */
0, 0, 0, 0, /* replaced with address of .got + 4. */
0xff, 0x25, /* jmp indirect */
0, 0, 0, 0, /* replaced with address of .got + 8. */
0, 0, 0, 0 /* pad out to 16 bytes. */
};
/* Subsequent entries in an absolute procedure linkage table look like
this. */
static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
{
0xff, 0x25, /* jmp indirect */
0, 0, 0, 0, /* replaced with address of this symbol in .got. */
0x68, /* pushl immediate */
0, 0, 0, 0, /* replaced with offset into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt. */
};
/* The first entry in a PIC procedure linkage table look like this. */
static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
{
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
0, 0, 0, 0 /* pad out to 16 bytes. */
};
/* Subsequent entries in a PIC procedure linkage table look like this. */
static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
{
0xff, 0xa3, /* jmp *offset(%ebx) */
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
0x68, /* pushl immediate */
0, 0, 0, 0, /* replaced with offset into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt. */
};
/* The i386 linker needs to keep track of the number of relocs that it
decides to copy as dynamic relocs in check_relocs for each symbol.
This is so that it can later discard them if they are found to be
unnecessary. We store the information in a field extending the
regular ELF linker hash table. */
struct elf_i386_dyn_relocs
{
struct elf_i386_dyn_relocs *next;
/* The input section of the reloc. */
asection *sec;
/* Total number of relocs copied for the input section. */
bfd_size_type count;
/* Number of pc-relative relocs copied for the input section. */
bfd_size_type pc_count;
};
/* i386 ELF linker hash entry. */
struct elf_i386_link_hash_entry
{
struct elf_link_hash_entry elf;
/* Track dynamic relocs copied for this symbol. */
struct elf_i386_dyn_relocs *dyn_relocs;
enum {
GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
} tls_type;
};
#define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
struct elf_i386_obj_tdata
{
struct elf_obj_tdata root;
/* tls_type for each local got entry. */
char *local_got_tls_type;
};
#define elf_i386_tdata(abfd) \
((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
#define elf_i386_local_got_tls_type(abfd) \
(elf_i386_tdata (abfd)->local_got_tls_type)
static boolean
elf_i386_mkobject (abfd)
bfd *abfd;
{
bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
abfd->tdata.any = bfd_zalloc (abfd, amt);
if (abfd->tdata.any == NULL)
return false;
return true;
}
static boolean
elf_i386_object_p (abfd)
bfd *abfd;
{
/* Allocate our special target data. */
struct elf_i386_obj_tdata *new_tdata;
bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
new_tdata = bfd_zalloc (abfd, amt);
if (new_tdata == NULL)
return false;
new_tdata->root = *abfd->tdata.elf_obj_data;
abfd->tdata.any = new_tdata;
return true;
}
/* i386 ELF linker hash table. */
struct elf_i386_link_hash_table
{
struct elf_link_hash_table elf;
/* Short-cuts to get to dynamic linker sections. */
asection *sgot;
asection *sgotplt;
asection *srelgot;
asection *splt;
asection *srelplt;
asection *sdynbss;
asection *srelbss;
union {
bfd_signed_vma refcount;
bfd_vma offset;
} tls_ldm_got;
/* Small local sym to section mapping cache. */
struct sym_sec_cache sym_sec;
};
/* Get the i386 ELF linker hash table from a link_info structure. */
#define elf_i386_hash_table(p) \
((struct elf_i386_link_hash_table *) ((p)->hash))
/* Create an entry in an i386 ELF linker hash table. */
static struct bfd_hash_entry *
link_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf_i386_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf_i386_link_hash_entry *eh;
eh = (struct elf_i386_link_hash_entry *) entry;
eh->dyn_relocs = NULL;
eh->tls_type = GOT_UNKNOWN;
}
return entry;
}
/* Create an i386 ELF linker hash table. */
static struct bfd_link_hash_table *
elf_i386_link_hash_table_create (abfd)
bfd *abfd;
{
struct elf_i386_link_hash_table *ret;
bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
ret = (struct elf_i386_link_hash_table *) bfd_malloc (amt);
if (ret == NULL)
return NULL;
if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
{
free (ret);
return NULL;
}
ret->sgot = NULL;
ret->sgotplt = NULL;
ret->srelgot = NULL;
ret->splt = NULL;
ret->srelplt = NULL;
ret->sdynbss = NULL;
ret->srelbss = NULL;
ret->sym_sec.abfd = NULL;
return &ret->elf.root;
}
/* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
shortcuts to them in our hash table. */
static boolean
create_got_section (dynobj, info)
bfd *dynobj;
struct bfd_link_info *info;
{
struct elf_i386_link_hash_table *htab;
if (! _bfd_elf_create_got_section (dynobj, info))
return false;
htab = elf_i386_hash_table (info);
htab->sgot = bfd_get_section_by_name (dynobj, ".got");
htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
if (!htab->sgot || !htab->sgotplt)
abort ();
htab->srelgot = bfd_make_section (dynobj, ".rel.got");
if (htab->srelgot == NULL
|| ! bfd_set_section_flags (dynobj, htab->srelgot,
(SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED
| SEC_READONLY))
|| ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
return false;
return true;
}
/* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
.rel.bss sections in DYNOBJ, and set up shortcuts to them in our
hash table. */
static boolean
elf_i386_create_dynamic_sections (dynobj, info)
bfd *dynobj;
struct bfd_link_info *info;
{
struct elf_i386_link_hash_table *htab;
htab = elf_i386_hash_table (info);
if (!htab->sgot && !create_got_section (dynobj, info))
return false;
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
return false;
htab->splt = bfd_get_section_by_name (dynobj, ".plt");
htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
if (!info->shared)
htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
if (!htab->splt || !htab->srelplt || !htab->sdynbss
|| (!info->shared && !htab->srelbss))
abort ();
return true;
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
elf_i386_copy_indirect_symbol (dir, ind)
struct elf_link_hash_entry *dir, *ind;
{
struct elf_i386_link_hash_entry *edir, *eind;
edir = (struct elf_i386_link_hash_entry *) dir;
eind = (struct elf_i386_link_hash_entry *) ind;
if (eind->dyn_relocs != NULL)
{
if (edir->dyn_relocs != NULL)
{
struct elf_i386_dyn_relocs **pp;
struct elf_i386_dyn_relocs *p;
if (ind->root.type == bfd_link_hash_indirect)
abort ();
/* Add reloc counts against the weak sym to the strong sym
list. Merge any entries against the same section. */
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
{
struct elf_i386_dyn_relocs *q;
for (q = edir->dyn_relocs; q != NULL; q = q->next)
if (q->sec == p->sec)
{
q->pc_count += p->pc_count;
q->count += p->count;
*pp = p->next;
break;
}
if (q == NULL)
pp = &p->next;
}
*pp = edir->dyn_relocs;
}
edir->dyn_relocs = eind->dyn_relocs;
eind->dyn_relocs = NULL;
}
_bfd_elf_link_hash_copy_indirect (dir, ind);
}
static int
elf_i386_tls_transition (info, r_type, is_local)
struct bfd_link_info *info;
int r_type;
int is_local;
{
if (info->shared)
return r_type;
switch (r_type)
{
case R_386_TLS_GD:
case R_386_TLS_IE_32:
if (is_local)
return R_386_TLS_LE_32;
return R_386_TLS_IE_32;
case R_386_TLS_LDM:
return R_386_TLS_LE_32;
}
return r_type;
}
/* Look through the relocs for a section during the first phase, and
calculate needed space in the global offset table, procedure linkage
table, and dynamic reloc sections. */
static boolean
elf_i386_check_relocs (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
struct elf_i386_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
if (info->relocateable)
return true;
htab = elf_i386_hash_table (info);
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned int r_type;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
r_symndx = ELF32_R_SYM (rel->r_info);
r_type = ELF32_R_TYPE (rel->r_info);
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
{
(*_bfd_error_handler) (_("%s: bad symbol index: %d"),
bfd_archive_filename (abfd),
r_symndx);
return false;
}
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
r_type = elf_i386_tls_transition (info, r_type, h == NULL);
switch (r_type)
{
case R_386_TLS_IE_32:
if (info->shared)
info->flags |= DF_STATIC_TLS;
/* FALLTHROUGH */
case R_386_GOT32:
case R_386_TLS_GD:
/* This symbol requires a global offset table entry. */
{
int tls_type, old_tls_type;
switch (r_type)
{
default:
case R_386_GOT32: tls_type = GOT_NORMAL; break;
case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
case R_386_TLS_IE_32: tls_type = GOT_TLS_IE; break;
}
if (h != NULL)
{
h->got.refcount += 1;
old_tls_type = elf_i386_hash_entry(h)->tls_type;
}
else
{
bfd_signed_vma *local_got_refcounts;
/* This is a global offset table entry for a local symbol. */
local_got_refcounts = elf_local_got_refcounts (abfd);
if (local_got_refcounts == NULL)
{
bfd_size_type size;
size = symtab_hdr->sh_info;
size *= (sizeof (bfd_signed_vma) + sizeof(char));
local_got_refcounts = ((bfd_signed_vma *)
bfd_zalloc (abfd, size));
if (local_got_refcounts == NULL)
return false;
elf_local_got_refcounts (abfd) = local_got_refcounts;
elf_i386_local_got_tls_type (abfd)
= (char *) (local_got_refcounts + symtab_hdr->sh_info);
}
local_got_refcounts[r_symndx] += 1;
old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
}
/* If a TLS symbol is accessed using IE at least once,
there is no point to use dynamic model for it. */
if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
&& (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
{
if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
tls_type = GOT_TLS_IE;
else
{
(*_bfd_error_handler)
(_("%s: `%s' accessed both as normal and thread local symbol"),
bfd_archive_filename (abfd), h->root.root.string);
return false;
}
}
if (old_tls_type != tls_type)
{
if (h != NULL)
elf_i386_hash_entry (h)->tls_type = tls_type;
else
elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
}
}
/* Fall through */
case R_386_GOTOFF:
case R_386_GOTPC:
create_got:
if (htab->sgot == NULL)
{
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!create_got_section (htab->elf.dynobj, info))
return false;
}
break;
case R_386_TLS_LDM:
htab->tls_ldm_got.refcount += 1;
goto create_got;
case R_386_PLT32:
/* This symbol requires a procedure linkage table entry. We
actually build the entry in adjust_dynamic_symbol,
because this might be a case of linking PIC code which is
never referenced by a dynamic object, in which case we
don't need to generate a procedure linkage table entry
after all. */
/* If this is a local symbol, we resolve it directly without
creating a procedure linkage table entry. */
if (h == NULL)
continue;
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
h->plt.refcount += 1;
break;
case R_386_32:
case R_386_PC32:
if (h != NULL && !info->shared)
{
/* If this reloc is in a read-only section, we might
need a copy reloc. We can't check reliably at this
stage whether the section is read-only, as input
sections have not yet been mapped to output sections.
Tentatively set the flag for now, and correct in
adjust_dynamic_symbol. */
h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
/* We may need a .plt entry if the function this reloc
refers to is in a shared lib. */
h->plt.refcount += 1;
}
/* If we are creating a shared library, and this is a reloc
against a global symbol, or a non PC relative reloc
against a local symbol, then we need to copy the reloc
into the shared library. However, if we are linking with
-Bsymbolic, we do not need to copy a reloc against a
global symbol which is defined in an object we are
including in the link (i.e., DEF_REGULAR is set). At
this point we have not seen all the input files, so it is
possible that DEF_REGULAR is not set now but will be set
later (it is never cleared). In case of a weak definition,
DEF_REGULAR may be cleared later by a strong definition in
a shared library. We account for that possibility below by
storing information in the relocs_copied field of the hash
table entry. A similar situation occurs when creating
shared libraries and symbol visibility changes render the
symbol local.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((info->shared
&& (sec->flags & SEC_ALLOC) != 0
&& (r_type != R_386_PC32
|| (h != NULL
&& (! info->symbolic
|| h->root.type == bfd_link_hash_defweak
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|| (!info->shared
&& (sec->flags & SEC_ALLOC) != 0
&& h != NULL
&& (h->root.type == bfd_link_hash_defweak
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0)))
{
struct elf_i386_dyn_relocs *p;
struct elf_i386_dyn_relocs **head;
/* We must copy these reloc types into the output file.
Create a reloc section in dynobj and make room for
this reloc. */
if (sreloc == NULL)
{
const char *name;
bfd *dynobj;
unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
if (name == NULL)
return false;
if (strncmp (name, ".rel", 4) != 0
|| strcmp (bfd_get_section_name (abfd, sec),
name + 4) != 0)
{
(*_bfd_error_handler)
(_("%s: bad relocation section name `%s\'"),
bfd_archive_filename (abfd), name);
}
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
dynobj = htab->elf.dynobj;
sreloc = bfd_get_section_by_name (dynobj, name);
if (sreloc == NULL)
{
flagword flags;
sreloc = bfd_make_section (dynobj, name);
flags = (SEC_HAS_CONTENTS | SEC_READONLY
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
if ((sec->flags & SEC_ALLOC) != 0)
flags |= SEC_ALLOC | SEC_LOAD;
if (sreloc == NULL
|| ! bfd_set_section_flags (dynobj, sreloc, flags)
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
return false;
}
elf_section_data (sec)->sreloc = sreloc;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
{
head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
}
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *s;
s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
sec, r_symndx);
if (s == NULL)
return false;
head = ((struct elf_i386_dyn_relocs **)
&elf_section_data (s)->local_dynrel);
}
p = *head;
if (p == NULL || p->sec != sec)
{
bfd_size_type amt = sizeof *p;
p = ((struct elf_i386_dyn_relocs *)
bfd_alloc (htab->elf.dynobj, amt));
if (p == NULL)
return false;
p->next = *head;
*head = p;
p->sec = sec;
p->count = 0;
p->pc_count = 0;
}
p->count += 1;
if (r_type == R_386_PC32)
p->pc_count += 1;
}
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_386_GNU_VTINHERIT:
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return false;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_386_GNU_VTENTRY:
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
return false;
break;
case R_386_TLS_LE_32:
case R_386_TLS_LE:
if (info->shared)
{
(*_bfd_error_handler) (_("%s: TLS local exec code cannot be linked into shared objects"),
bfd_archive_filename (abfd));
return false;
}
break;
default:
break;
}
}
return true;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
elf_i386_gc_mark_hook (sec, info, rel, h, sym)
asection *sec;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
Elf_Internal_Rela *rel;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
if (h != NULL)
{
switch (ELF32_R_TYPE (rel->r_info))
{
case R_386_GNU_VTINHERIT:
case R_386_GNU_VTENTRY:
break;
default:
switch (h->root.type)
{
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
return h->root.u.def.section;
case bfd_link_hash_common:
return h->root.u.c.p->section;
default:
break;
}
}
}
else
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
return NULL;
}
/* Update the got entry reference counts for the section being removed. */
static boolean
elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_signed_vma *local_got_refcounts;
const Elf_Internal_Rela *rel, *relend;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
elf_section_data (sec)->local_dynrel = NULL;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_got_refcounts = elf_local_got_refcounts (abfd);
relend = relocs + sec->reloc_count;
for (rel = relocs; rel < relend; rel++)
switch (elf_i386_tls_transition (info, ELF32_R_TYPE (rel->r_info),
ELF32_R_SYM (rel->r_info)
>= symtab_hdr->sh_info))
{
case R_386_TLS_LDM:
if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
break;
case R_386_TLS_GD:
case R_386_TLS_IE_32:
case R_386_GOT32:
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->got.refcount > 0)
h->got.refcount -= 1;
}
else if (local_got_refcounts != NULL)
{
if (local_got_refcounts[r_symndx] > 0)
local_got_refcounts[r_symndx] -= 1;
}
break;
case R_386_32:
case R_386_PC32:
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf_i386_link_hash_entry *eh;
struct elf_i386_dyn_relocs **pp;
struct elf_i386_dyn_relocs *p;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (!info->shared && h->plt.refcount > 0)
h->plt.refcount -= 1;
eh = (struct elf_i386_link_hash_entry *) h;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
if (p->sec == sec)
{
if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
p->pc_count -= 1;
p->count -= 1;
if (p->count == 0)
*pp = p->next;
break;
}
}
break;
case R_386_PLT32:
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->plt.refcount > 0)
h->plt.refcount -= 1;
}
break;
default:
break;
}
return true;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static boolean
elf_i386_adjust_dynamic_symbol (info, h)
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
{
struct elf_i386_link_hash_table *htab;
struct elf_i386_link_hash_entry * eh;
struct elf_i386_dyn_relocs *p;
asection *s;
unsigned int power_of_two;
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later,
when we know the address of the .got section. */
if (h->type == STT_FUNC
|| (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
{
if (h->plt.refcount <= 0
|| (! info->shared
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
&& h->root.type != bfd_link_hash_undefweak
&& h->root.type != bfd_link_hash_undefined))
{
/* This case can occur if we saw a PLT32 reloc in an input
file, but the symbol was never referred to by a dynamic
object, or if all references were garbage collected. In
such a case, we don't actually need to build a procedure
linkage table, and we can just do a PC32 reloc instead. */
h->plt.offset = (bfd_vma) -1;
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
}
return true;
}
else
/* It's possible that we incorrectly decided a .plt reloc was
needed for an R_386_PC32 reloc to a non-function sym in
check_relocs. We can't decide accurately between function and
non-function syms in check-relocs; Objects loaded later in
the link may change h->type. So fix it now. */
h->plt.offset = (bfd_vma) -1;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->weakdef != NULL)
{
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|| h->weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->weakdef->root.u.def.section;
h->root.u.def.value = h->weakdef->root.u.def.value;
return true;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return true;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
return true;
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
{
h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
return true;
}
eh = (struct elf_i386_link_hash_entry *) h;
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
break;
}
/* If we didn't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (p == NULL)
{
h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
return true;
}
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
htab = elf_i386_hash_table (info);
/* We must generate a R_386_COPY reloc to tell the dynamic linker to
copy the initial value out of the dynamic object and into the
runtime process image. */
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
{
htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
}
/* We need to figure out the alignment required for this symbol. I
have no idea how ELF linkers handle this. */
power_of_two = bfd_log2 (h->size);
if (power_of_two > 3)
power_of_two = 3;
/* Apply the required alignment. */
s = htab->sdynbss;
s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
{
if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
return false;
}
/* Define the symbol as being at this point in the section. */
h->root.u.def.section = s;
h->root.u.def.value = s->_raw_size;
/* Increment the section size to make room for the symbol. */
s->_raw_size += h->size;
return true;
}
/* This is the condition under which elf_i386_finish_dynamic_symbol
will be called from elflink.h. If elflink.h doesn't call our
finish_dynamic_symbol routine, we'll need to do something about
initializing any .plt and .got entries in elf_i386_relocate_section. */
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
((DYN) \
&& ((INFO)->shared \
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
&& ((H)->dynindx != -1 \
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
/* Allocate space in .plt, .got and associated reloc sections for
dynamic relocs. */
static boolean
allocate_dynrelocs (h, inf)
struct elf_link_hash_entry *h;
PTR inf;
{
struct bfd_link_info *info;
struct elf_i386_link_hash_table *htab;
struct elf_i386_link_hash_entry *eh;
struct elf_i386_dyn_relocs *p;
if (h->root.type == bfd_link_hash_indirect)
return true;
if (h->root.type == bfd_link_hash_warning)
/* When warning symbols are created, they **replace** the "real"
entry in the hash table, thus we never get to see the real
symbol in a hash traversal. So look at it now. */
h = (struct elf_link_hash_entry *) h->root.u.i.link;
info = (struct bfd_link_info *) inf;
htab = elf_i386_hash_table (info);
if (htab->elf.dynamic_sections_created
&& h->plt.refcount > 0)
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
{
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
}
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
{
asection *s = htab->splt;
/* If this is the first .plt entry, make room for the special
first entry. */
if (s->_raw_size == 0)
s->_raw_size += PLT_ENTRY_SIZE;
h->plt.offset = s->_raw_size;
/* If this symbol is not defined in a regular file, and we are
not generating a shared library, then set the symbol to this
location in the .plt. This is required to make function
pointers compare as equal between the normal executable and
the shared library. */
if (! info->shared
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
{
h->root.u.def.section = s;
h->root.u.def.value = h->plt.offset;
}
/* Make room for this entry. */
s->_raw_size += PLT_ENTRY_SIZE;
/* We also need to make an entry in the .got.plt section, which
will be placed in the .got section by the linker script. */
htab->sgotplt->_raw_size += 4;
/* We also need to make an entry in the .rel.plt section. */
htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
}
else
{
h->plt.offset = (bfd_vma) -1;
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
}
}
else
{
h->plt.offset = (bfd_vma) -1;
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
}
/* If R_386_TLS_IE_32 symbol is now local to the binary,
make it a R_386_TLS_LE_32 requiring no TLS entry. */
if (h->got.refcount > 0
&& !info->shared
&& h->dynindx == -1
&& elf_i386_hash_entry(h)->tls_type == GOT_TLS_IE)
h->got.offset = (bfd_vma) -1;
else if (h->got.refcount > 0)
{
asection *s;
boolean dyn;
int tls_type = elf_i386_hash_entry(h)->tls_type;
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
{
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
}
s = htab->sgot;
h->got.offset = s->_raw_size;
s->_raw_size += 4;
/* R_386_TLS_GD needs 2 consecutive GOT slots. */
if (tls_type == GOT_TLS_GD)
s->_raw_size += 4;
dyn = htab->elf.dynamic_sections_created;
/* R_386_TLS_IE_32 needs one dynamic relocation,
R_386_TLS_GD needs one if local symbol and two if global. */
if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
|| tls_type == GOT_TLS_IE)
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
else if (tls_type == GOT_TLS_GD)
htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel);
else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
}
else
h->got.offset = (bfd_vma) -1;
eh = (struct elf_i386_link_hash_entry *) h;
if (eh->dyn_relocs == NULL)
return true;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for pc-relative relocs that have become local due to symbol
visibility changes. */
if (info->shared)
{
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
&& ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
|| info->symbolic))
{
struct elf_i386_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
}
else
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
&& (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|| (htab->elf.dynamic_sections_created
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))))
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
{
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
}
/* If that succeeded, we know we'll be keeping all the
relocs. */
if (h->dynindx != -1)
goto keep;
}
eh->dyn_relocs = NULL;
keep: ;
}
/* Finally, allocate space. */
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *sreloc = elf_section_data (p->sec)->sreloc;
sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
}
return true;
}
/* Find any dynamic relocs that apply to read-only sections. */
static boolean
readonly_dynrelocs (h, inf)
struct elf_link_hash_entry *h;
PTR inf;
{
struct elf_i386_link_hash_entry *eh;
struct elf_i386_dyn_relocs *p;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
eh = (struct elf_i386_link_hash_entry *) h;
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
{
struct bfd_link_info *info = (struct bfd_link_info *) inf;
info->flags |= DF_TEXTREL;
/* Not an error, just cut short the traversal. */
return false;
}
}
return true;
}
/* Set the sizes of the dynamic sections. */
static boolean
elf_i386_size_dynamic_sections (output_bfd, info)
bfd *output_bfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
{
struct elf_i386_link_hash_table *htab;
bfd *dynobj;
asection *s;
boolean relocs;
bfd *ibfd;
htab = elf_i386_hash_table (info);
dynobj = htab->elf.dynobj;
if (dynobj == NULL)
abort ();
if (htab->elf.dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (! info->shared)
{
s = bfd_get_section_by_name (dynobj, ".interp");
if (s == NULL)
abort ();
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
char *local_tls_type;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct elf_i386_dyn_relocs *p;
for (p = *((struct elf_i386_dyn_relocs **)
&elf_section_data (s)->local_dynrel);
p != NULL;
p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (p->count != 0)
{
srel = elf_section_data (p->sec)->sreloc;
srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
info->flags |= DF_TEXTREL;
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_tls_type = elf_i386_local_got_tls_type (ibfd);
s = htab->sgot;
srel = htab->srelgot;
for (; local_got < end_local_got; ++local_got, ++local_tls_type)
{
if (*local_got > 0)
{
*local_got = s->_raw_size;
s->_raw_size += 4;
if (*local_tls_type == GOT_TLS_GD)
s->_raw_size += 4;
if (info->shared
|| *local_tls_type == GOT_TLS_GD
|| *local_tls_type == GOT_TLS_IE)
srel->_raw_size += sizeof (Elf32_External_Rel);
}
else
*local_got = (bfd_vma) -1;
}
}
if (htab->tls_ldm_got.refcount > 0)
{
/* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
relocs. */
htab->tls_ldm_got.offset = htab->sgot->_raw_size;
htab->sgot->_raw_size += 8;
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
}
else
htab->tls_ldm_got.offset = -1;
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
/* We now have determined the sizes of the various dynamic sections.
Allocate memory for them. */
relocs = false;
for (s = dynobj->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->splt
|| s == htab->sgot
|| s == htab->sgotplt)
{
/* Strip this section if we don't need it; see the
comment below. */
}
else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
{
if (s->_raw_size != 0 && s != htab->srelplt)
relocs = true;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (s->_raw_size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rel.bss and
.rel.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
_bfd_strip_section_from_output (info, s);
continue;
}
/* Allocate memory for the section contents. We use bfd_zalloc
here in case unused entries are not reclaimed before the
section's contents are written out. This should not happen,
but this way if it does, we get a R_386_NONE reloc instead
of garbage. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
if (s->contents == NULL)
return false;
}
if (htab->elf.dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in elf_i386_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
if (! info->shared)
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return false;
}
if (htab->splt->_raw_size != 0)
{
if (!add_dynamic_entry (DT_PLTGOT, 0)
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_REL)
|| !add_dynamic_entry (DT_JMPREL, 0))
return false;
}
if (relocs)
{
if (!add_dynamic_entry (DT_REL, 0)
|| !add_dynamic_entry (DT_RELSZ, 0)
|| !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
return false;
/* If any dynamic relocs apply to a read-only section,
then we need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) == 0)
elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
(PTR) info);
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return false;
}
}
}
#undef add_dynamic_entry
return true;
}
/* Set the correct type for an x86 ELF section. We do this by the
section name, which is a hack, but ought to work. */
static boolean
elf_i386_fake_sections (abfd, hdr, sec)
bfd *abfd ATTRIBUTE_UNUSED;
Elf32_Internal_Shdr *hdr;
asection *sec;
{
register const char *name;
name = bfd_get_section_name (abfd, sec);
/* This is an ugly, but unfortunately necessary hack that is
needed when producing EFI binaries on x86. It tells
elf.c:elf_fake_sections() not to consider ".reloc" as a section
containing ELF relocation info. We need this hack in order to
be able to generate ELF binaries that can be translated into
EFI applications (which are essentially COFF objects). Those
files contain a COFF ".reloc" section inside an ELFNN object,
which would normally cause BFD to segfault because it would
attempt to interpret this section as containing relocation
entries for section "oc". With this hack enabled, ".reloc"
will be treated as a normal data section, which will avoid the
segfault. However, you won't be able to create an ELFNN binary
with a section named "oc" that needs relocations, but that's
the kind of ugly side-effects you get when detecting section
types based on their names... In practice, this limitation is
unlikely to bite. */
if (strcmp (name, ".reloc") == 0)
hdr->sh_type = SHT_PROGBITS;
return true;
}
/* Return the base VMA address which should be subtracted from real addresses
when resolving @dtpoff relocation.
This is PT_TLS segment p_vaddr. */
static bfd_vma
dtpoff_base (info)
struct bfd_link_info *info;
{
BFD_ASSERT (elf_hash_table (info)->tls_segment != NULL);
return elf_hash_table (info)->tls_segment->start;
}
/* Return the relocation value for @tpoff relocation
if STT_TLS virtual address is ADDRESS. */
static bfd_vma
tpoff (info, address)
struct bfd_link_info *info;
bfd_vma address;
{
struct elf_link_tls_segment *tls_segment
= elf_hash_table (info)->tls_segment;
BFD_ASSERT (tls_segment != NULL);
return (align_power (tls_segment->size, tls_segment->align)
+ tls_segment->start - address);
}
/* Relocate an i386 ELF section. */
static boolean
elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections)
bfd *output_bfd;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
Elf_Internal_Rela *relocs;
Elf_Internal_Sym *local_syms;
asection **local_sections;
{
struct elf_i386_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
htab = elf_i386_hash_table (info);
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
unsigned int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma off;
bfd_vma relocation;
boolean unresolved_reloc;
bfd_reloc_status_type r;
unsigned int indx;
int tls_type;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == (int) R_386_GNU_VTINHERIT
|| r_type == (int) R_386_GNU_VTENTRY)
continue;
if ((indx = (unsigned) r_type) >= R_386_standard
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
>= R_386_ext - R_386_standard)
&& ((indx = r_type - R_386_tls_offset) - R_386_ext
>= R_386_tls - R_386_ext))
{
bfd_set_error (bfd_error_bad_value);
return false;
}
howto = elf_howto_table + indx;
r_symndx = ELF32_R_SYM (rel->r_info);
if (info->relocateable)
{
bfd_vma val;
bfd_byte *where;
/* This is a relocatable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx >= symtab_hdr->sh_info)
continue;
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
continue;
sec = local_sections[r_symndx];
val = sec->output_offset;
if (val == 0)
continue;
where = contents + rel->r_offset;
switch (howto->size)
{
/* FIXME: overflow checks. */
case 0:
val += bfd_get_8 (input_bfd, where);
bfd_put_8 (input_bfd, val, where);
break;
case 1:
val += bfd_get_16 (input_bfd, where);
bfd_put_16 (input_bfd, val, where);
break;
case 2:
val += bfd_get_32 (input_bfd, where);
bfd_put_32 (input_bfd, val, where);
break;
default:
abort ();
}
continue;
}
/* This is a final link. */
h = NULL;
sym = NULL;
sec = NULL;
unresolved_reloc = false;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
if ((sec->flags & SEC_MERGE)
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
asection *msec;
bfd_vma addend;
bfd_byte *where = contents + rel->r_offset;
switch (howto->size)
{
case 0:
addend = bfd_get_8 (input_bfd, where);
if (howto->pc_relative)
{
addend = (addend ^ 0x80) - 0x80;
addend += 1;
}
break;
case 1:
addend = bfd_get_16 (input_bfd, where);
if (howto->pc_relative)
{
addend = (addend ^ 0x8000) - 0x8000;
addend += 2;
}
break;
case 2:
addend = bfd_get_32 (input_bfd, where);
if (howto->pc_relative)
{
addend = (addend ^ 0x80000000) - 0x80000000;
addend += 4;
}
break;
default:
abort ();
}
msec = sec;
addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend);
addend -= relocation;
addend += msec->output_section->vma + msec->output_offset;
switch (howto->size)
{
case 0:
/* FIXME: overflow checks. */
if (howto->pc_relative)
addend -= 1;
bfd_put_8 (input_bfd, addend, where);
break;
case 1:
if (howto->pc_relative)
addend -= 2;
bfd_put_16 (input_bfd, addend, where);
break;
case 2:
if (howto->pc_relative)
addend -= 4;
bfd_put_32 (input_bfd, addend, where);
break;
}
}
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
relocation = 0;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sec = h->root.u.def.section;
if (sec->output_section == NULL)
/* Set a flag that will be cleared later if we find a
relocation value for this symbol. output_section
is typically NULL for symbols satisfied by a shared
library. */
unresolved_reloc = true;
else
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_undefweak)
;
else if (info->shared
&& (!info->symbolic || info->allow_shlib_undefined)
&& !info->no_undefined
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
;
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset,
(!info->shared || info->no_undefined
|| ELF_ST_VISIBILITY (h->other)))))
return false;
}
}
switch (r_type)
{
case R_386_GOT32:
/* Relocation is to the entry for this symbol in the global
offset table. */
if (htab->sgot == NULL)
abort ();
if (h != NULL)
{
boolean dyn;
off = h->got.offset;
dyn = htab->elf.dynamic_sections_created;
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
|| (info->shared
&& (info->symbolic
|| h->dynindx == -1
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
{
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file. We must initialize
this entry in the global offset table. Since the
offset must always be a multiple of 4, we use the
least significant bit to record whether we have
initialized it already.
When doing a dynamic link, we create a .rel.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_32 (output_bfd, relocation,
htab->sgot->contents + off);
h->got.offset |= 1;
}
}
else
unresolved_reloc = false;
}
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 4. We use
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_32 (output_bfd, relocation,
htab->sgot->contents + off);
if (info->shared)
{
asection *srelgot;
Elf_Internal_Rel outrel;
Elf32_External_Rel *loc;
srelgot = htab->srelgot;
if (srelgot == NULL)
abort ();
outrel.r_offset = (htab->sgot->output_section->vma
+ htab->sgot->output_offset
+ off);
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
loc = (Elf32_External_Rel *) srelgot->contents;
loc += srelgot->reloc_count++;
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
}
local_got_offsets[r_symndx] |= 1;
}
}
if (off >= (bfd_vma) -2)
abort ();
relocation = htab->sgot->output_offset + off;
break;
case R_386_GOTOFF:
/* Relocation is relative to the start of the global offset
table. */
/* Note that sgot->output_offset is not involved in this
calculation. We always want the start of .got. If we
defined _GLOBAL_OFFSET_TABLE in a different way, as is
permitted by the ABI, we might have to change this
calculation. */
relocation -= htab->sgot->output_section->vma;
break;
case R_386_GOTPC:
/* Use global offset table as symbol value. */
relocation = htab->sgot->output_section->vma;
unresolved_reloc = false;
break;
case R_386_PLT32:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
/* Resolve a PLT32 reloc against a local symbol directly,
without using the procedure linkage table. */
if (h == NULL)
break;
if (h->plt.offset == (bfd_vma) -1
|| htab->splt == NULL)
{
/* We didn't make a PLT entry for this symbol. This
happens when statically linking PIC code, or when
using -Bsymbolic. */
break;
}
relocation = (htab->splt->output_section->vma
+ htab->splt->output_offset
+ h->plt.offset);
unresolved_reloc = false;
break;
case R_386_32:
case R_386_PC32:
/* r_symndx will be zero only for relocs against symbols
from removed linkonce sections, or sections discarded by
a linker script. */
if (r_symndx == 0
|| (input_section->flags & SEC_ALLOC) == 0)
break;
if ((info->shared
&& (r_type != R_386_PC32
|| (h != NULL
&& h->dynindx != -1
&& (! info->symbolic
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|| (!info->shared
&& h != NULL
&& h->dynindx != -1
&& (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
&& (((h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0)
|| h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined)))
{
Elf_Internal_Rel outrel;
boolean skip, relocate;
asection *sreloc;
Elf32_External_Rel *loc;
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
skip = false;
relocate = false;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1)
skip = true;
else if (outrel.r_offset == (bfd_vma) -2)
skip = true, relocate = true;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (skip)
memset (&outrel, 0, sizeof outrel);
else if (h != NULL
&& h->dynindx != -1
&& (r_type == R_386_PC32
|| !info->shared
|| !info->symbolic
|| (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR) == 0))
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
else
{
/* This symbol is local, or marked to become local. */
relocate = true;
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
}
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL)
abort ();
loc = (Elf32_External_Rel *) sreloc->contents;
loc += sreloc->reloc_count++;
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
/* If this reloc is against an external symbol, we do
not want to fiddle with the addend. Otherwise, we
need to include the symbol value so that it becomes
an addend for the dynamic reloc. */
if (! relocate)
continue;
}
break;
case R_386_TLS_GD:
case R_386_TLS_IE_32:
r_type = elf_i386_tls_transition (info, r_type, h == NULL);
tls_type = GOT_UNKNOWN;
if (h == NULL && local_got_offsets)
tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
else if (h != NULL)
{
tls_type = elf_i386_hash_entry(h)->tls_type;
if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
r_type = R_386_TLS_LE_32;
}
if (r_type == R_386_TLS_GD && tls_type == GOT_TLS_IE)
r_type = R_386_TLS_IE_32;
if (r_type == R_386_TLS_LE_32)
{
BFD_ASSERT (! unresolved_reloc);
if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
{
unsigned int val, type;
bfd_vma roff;
/* GD->LE transition. */
BFD_ASSERT (rel->r_offset >= 2);
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
BFD_ASSERT (type == 0x8d || type == 0x04);
BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
BFD_ASSERT (bfd_get_8 (input_bfd,
contents + rel->r_offset + 4)
== 0xe8);
BFD_ASSERT (rel + 1 < relend);
BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
roff = rel->r_offset + 5;
val = bfd_get_8 (input_bfd,
contents + rel->r_offset - 1);
if (type == 0x04)
{
/* leal foo(,%reg,1), %eax; call ___tls_get_addr
Change it into:
movl %gs:0, %eax; subl $foo@tpoff, %eax
(6 byte form of subl). */
BFD_ASSERT (rel->r_offset >= 3);
BFD_ASSERT (bfd_get_8 (input_bfd,
contents + rel->r_offset - 3)
== 0x8d);
BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
memcpy (contents + rel->r_offset - 3,
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
}
else
{
BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
if (rel->r_offset + 10 <= input_section->_raw_size
&& bfd_get_8 (input_bfd,
contents + rel->r_offset + 9) == 0x90)
{
/* leal foo(%reg), %eax; call ___tls_get_addr; nop
Change it into:
movl %gs:0, %eax; subl $foo@tpoff, %eax
(6 byte form of subl). */
memcpy (contents + rel->r_offset - 2,
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
roff = rel->r_offset + 6;
}
else
{
/* leal foo(%reg), %eax; call ___tls_get_addr
Change it into:
movl %gs:0, %eax; subl $foo@tpoff, %eax
(5 byte form of subl). */
memcpy (contents + rel->r_offset - 2,
"\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
}
}
bfd_put_32 (output_bfd, tpoff (info, relocation),
contents + roff);
/* Skip R_386_PLT32. */
rel++;
continue;
}
else
{
unsigned int val, type;
/* IE->LE transition:
Originally it can be either:
subl foo(%reg1), %reg2
or
movl foo(%reg1), %reg2
We change it into:
subl $foo, %reg2
or
movl $foo, %reg2 (6 byte form) */
BFD_ASSERT (rel->r_offset >= 2);
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
if (type == 0x8b)
{
/* movl */
BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
bfd_put_8 (output_bfd, 0xc7,
contents + rel->r_offset - 2);
bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
contents + rel->r_offset - 1);
}
else if (type == 0x2b)
{
/* subl */
BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
bfd_put_8 (output_bfd, 0x81,
contents + rel->r_offset - 2);
bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
contents + rel->r_offset - 1);
}
else
BFD_FAIL ();
bfd_put_32 (output_bfd, tpoff (info, relocation),
contents + rel->r_offset);
continue;
}
}
if (htab->sgot == NULL)
abort ();
if (h != NULL)
off = h->got.offset;
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
}
if ((off & 1) != 0)
off &= ~1;
else
{
Elf_Internal_Rel outrel;
Elf32_External_Rel *loc;
int dr_type, indx;
if (htab->srelgot == NULL)
abort ();
outrel.r_offset = (htab->sgot->output_section->vma
+ htab->sgot->output_offset + off);
bfd_put_32 (output_bfd, 0,
htab->sgot->contents + off);
indx = h && h->dynindx != -1 ? h->dynindx : 0;
if (r_type == R_386_TLS_GD)
dr_type = R_386_TLS_DTPMOD32;
else
dr_type = R_386_TLS_TPOFF32;
outrel.r_info = ELF32_R_INFO (indx, dr_type);
loc = (Elf32_External_Rel *) htab->srelgot->contents;
loc += htab->srelgot->reloc_count++;
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
if (r_type == R_386_TLS_GD)
{
if (indx == 0)
{
BFD_ASSERT (! unresolved_reloc);
bfd_put_32 (output_bfd,
relocation - dtpoff_base (info),
htab->sgot->contents + off + 4);
}
else
{
bfd_put_32 (output_bfd, 0,
htab->sgot->contents + off + 4);
outrel.r_info = ELF32_R_INFO (indx,
R_386_TLS_DTPOFF32);
outrel.r_offset += 4;
htab->srelgot->reloc_count++;
loc++;
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
loc);
}
}
if (h != NULL)
h->got.offset |= 1;
else
local_got_offsets[r_symndx] |= 1;
}
if (off >= (bfd_vma) -2)
abort ();
if (r_type == ELF32_R_TYPE (rel->r_info))
{
relocation = htab->sgot->output_offset + off;
unresolved_reloc = false;
}
else
{
unsigned int val, type;
bfd_vma roff;
/* GD->IE transition. */
BFD_ASSERT (rel->r_offset >= 2);
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
BFD_ASSERT (type == 0x8d || type == 0x04);
BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
== 0xe8);
BFD_ASSERT (rel + 1 < relend);
BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
roff = rel->r_offset - 3;
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
if (type == 0x04)
{
/* leal foo(,%reg,1), %eax; call ___tls_get_addr
Change it into:
movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
BFD_ASSERT (rel->r_offset >= 3);
BFD_ASSERT (bfd_get_8 (input_bfd,
contents + rel->r_offset - 3)
== 0x8d);
BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
val >>= 3;
}
else
{
/* leal foo(%reg), %eax; call ___tls_get_addr; nop
Change it into:
movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
BFD_ASSERT (rel->r_offset + 10 <= input_section->_raw_size);
BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
BFD_ASSERT (bfd_get_8 (input_bfd,
contents + rel->r_offset + 9)
== 0x90);
roff = rel->r_offset - 2;
}
memcpy (contents + roff,
"\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
contents[roff + 7] = 0x80 | (val & 7);
bfd_put_32 (output_bfd, htab->sgot->output_offset + off,
contents + roff + 8);
/* Skip R_386_PLT32. */
rel++;
continue;
}
break;
case R_386_TLS_LDM:
if (! info->shared)
{
unsigned int val;
/* LD->LE transition:
Ensure it is:
leal foo(%reg), %eax; call ___tls_get_addr.
We change it into:
movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
BFD_ASSERT (rel->r_offset >= 2);
BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
== 0x8d);
val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
== 0xe8);
BFD_ASSERT (rel + 1 < relend);
BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
memcpy (contents + rel->r_offset - 2,
"\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
/* Skip R_386_PLT32. */
rel++;
continue;
}
if (htab->sgot == NULL)
abort ();
off = htab->tls_ldm_got.offset;
if (off & 1)
off &= ~1;
else
{
Elf_Internal_Rel outrel;
Elf32_External_Rel *loc;
if (htab->srelgot == NULL)
abort ();
outrel.r_offset = (htab->sgot->output_section->vma
+ htab->sgot->output_offset + off);
bfd_put_32 (output_bfd, 0,
htab->sgot->contents + off);
bfd_put_32 (output_bfd, 0,
htab->sgot->contents + off + 4);
outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
loc = (Elf32_External_Rel *) htab->srelgot->contents;
loc += htab->srelgot->reloc_count++;
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
htab->tls_ldm_got.offset |= 1;
}
relocation = htab->sgot->output_offset + off;
unresolved_reloc = false;
break;
case R_386_TLS_LDO_32:
if (info->shared)
relocation -= dtpoff_base (info);
else
/* When converting LDO to LE, we must negate. */
relocation = -tpoff (info, relocation);
break;
case R_386_TLS_LE_32:
relocation = tpoff (info, relocation);
break;
case R_386_TLS_LE:
relocation = -tpoff (info, relocation);
break;
default:
break;
}
/* FIXME: Why do we allow debugging sections to escape this error?
More importantly, why do we not emit dynamic relocs for
R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
If we had emitted the dynamic reloc, we could remove the
fudge here. */
if (unresolved_reloc
&& !(info->shared
&& (input_section->flags & SEC_DEBUGGING) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
(*_bfd_error_handler)
(_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
bfd_archive_filename (input_bfd),
bfd_get_section_name (input_bfd, input_section),
(long) rel->r_offset,
h->root.root.string);
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, (bfd_vma) 0);
if (r != bfd_reloc_ok)
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
return false;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (r == bfd_reloc_overflow)
{
if (! ((*info->callbacks->reloc_overflow)
(info, name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return false;
}
else
{
(*_bfd_error_handler)
(_("%s(%s+0x%lx): reloc against `%s': error %d"),
bfd_archive_filename (input_bfd),
bfd_get_section_name (input_bfd, input_section),
(long) rel->r_offset, name, (int) r);
return false;
}
}
}
return true;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static boolean
elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
bfd *output_bfd;
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
struct elf_i386_link_hash_table *htab;
htab = elf_i386_hash_table (info);
if (h->plt.offset != (bfd_vma) -1)
{
bfd_vma plt_index;
bfd_vma got_offset;
Elf_Internal_Rel rel;
Elf32_External_Rel *loc;
/* This symbol has an entry in the procedure linkage table. Set
it up. */
if (h->dynindx == -1
|| htab->splt == NULL
|| htab->sgotplt == NULL
|| htab->srelplt == NULL)
abort ();
/* Get the index in the procedure linkage table which
corresponds to this symbol. This is the index of this symbol
in all the symbols for which we are making plt entries. The
first entry in the procedure linkage table is reserved. */
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
/* Get the offset into the .got table of the entry that
corresponds to this function. Each .got entry is 4 bytes.
The first three are reserved. */
got_offset = (plt_index + 3) * 4;
/* Fill in the entry in the procedure linkage table. */
if (! info->shared)
{
memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd,
(htab->sgotplt->output_section->vma
+ htab->sgotplt->output_offset
+ got_offset),
htab->splt->contents + h->plt.offset + 2);
}
else
{
memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd, got_offset,
htab->splt->contents + h->plt.offset + 2);
}
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
htab->splt->contents + h->plt.offset + 7);
bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
htab->splt->contents + h->plt.offset + 12);
/* Fill in the entry in the global offset table. */
bfd_put_32 (output_bfd,
(htab->splt->output_section->vma
+ htab->splt->output_offset
+ h->plt.offset
+ 6),
htab->sgotplt->contents + got_offset);
/* Fill in the entry in the .rel.plt section. */
rel.r_offset = (htab->sgotplt->output_section->vma
+ htab->sgotplt->output_offset
+ got_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. This is a clue
for the dynamic linker, to make function pointer
comparisons work between an application and shared
library. */
sym->st_shndx = SHN_UNDEF;
}
}
if (h->got.offset != (bfd_vma) -1
&& elf_i386_hash_entry(h)->tls_type != GOT_TLS_GD
&& elf_i386_hash_entry(h)->tls_type != GOT_TLS_IE)
{
Elf_Internal_Rel rel;
Elf32_External_Rel *loc;
/* This symbol has an entry in the global offset table. Set it
up. */
if (htab->sgot == NULL || htab->srelgot == NULL)
abort ();
rel.r_offset = (htab->sgot->output_section->vma
+ htab->sgot->output_offset
+ (h->got.offset & ~(bfd_vma) 1));
/* If this is a static link, or it is a -Bsymbolic link and the
symbol is defined locally or was forced to be local because
of a version file, we just want to emit a RELATIVE reloc.
The entry in the global offset table will already have been
initialized in the relocate_section function. */
if (info->shared
&& (info->symbolic
|| h->dynindx == -1
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
{
BFD_ASSERT((h->got.offset & 1) != 0);
rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
}
else
{
BFD_ASSERT((h->got.offset & 1) == 0);
bfd_put_32 (output_bfd, (bfd_vma) 0,
htab->sgot->contents + h->got.offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
}
loc = (Elf32_External_Rel *) htab->srelgot->contents;
loc += htab->srelgot->reloc_count++;
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
}
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
{
Elf_Internal_Rel rel;
Elf32_External_Rel *loc;
/* This symbol needs a copy reloc. Set it up. */
if (h->dynindx == -1
|| (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
|| htab->srelbss == NULL)
abort ();
rel.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
loc = (Elf32_External_Rel *) htab->srelbss->contents;
loc += htab->srelbss->reloc_count++;
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
}
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
sym->st_shndx = SHN_ABS;
return true;
}
/* Used to decide how to sort relocs in an optimal manner for the
dynamic linker, before writing them out. */
static enum elf_reloc_type_class
elf_i386_reloc_type_class (rela)
const Elf_Internal_Rela *rela;
{
switch ((int) ELF32_R_TYPE (rela->r_info))
{
case R_386_RELATIVE:
return reloc_class_relative;
case R_386_JUMP_SLOT:
return reloc_class_plt;
case R_386_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
/* Finish up the dynamic sections. */
static boolean
elf_i386_finish_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
struct elf_i386_link_hash_table *htab;
bfd *dynobj;
asection *sdyn;
htab = elf_i386_hash_table (info);
dynobj = htab->elf.dynobj;
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
if (htab->elf.dynamic_sections_created)
{
Elf32_External_Dyn *dyncon, *dynconend;
if (sdyn == NULL || htab->sgot == NULL)
abort ();
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
continue;
case DT_PLTGOT:
dyn.d_un.d_ptr = htab->sgot->output_section->vma;
break;
case DT_JMPREL:
dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
break;
case DT_PLTRELSZ:
s = htab->srelplt->output_section;
if (s->_cooked_size != 0)
dyn.d_un.d_val = s->_cooked_size;
else
dyn.d_un.d_val = s->_raw_size;
break;
case DT_RELSZ:
/* My reading of the SVR4 ABI indicates that the
procedure linkage table relocs (DT_JMPREL) should be
included in the overall relocs (DT_REL). This is
what Solaris does. However, UnixWare can not handle
that case. Therefore, we override the DT_RELSZ entry
here to make it not include the JMPREL relocs. Since
the linker script arranges for .rel.plt to follow all
other relocation sections, we don't have to worry
about changing the DT_REL entry. */
if (htab->srelplt != NULL)
{
s = htab->srelplt->output_section;
if (s->_cooked_size != 0)
dyn.d_un.d_val -= s->_cooked_size;
else
dyn.d_un.d_val -= s->_raw_size;
}
break;
}
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
}
/* Fill in the first entry in the procedure linkage table. */
if (htab->splt && htab->splt->_raw_size > 0)
{
if (info->shared)
memcpy (htab->splt->contents,
elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
else
{
memcpy (htab->splt->contents,
elf_i386_plt0_entry, PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd,
(htab->sgotplt->output_section->vma
+ htab->sgotplt->output_offset
+ 4),
htab->splt->contents + 2);
bfd_put_32 (output_bfd,
(htab->sgotplt->output_section->vma
+ htab->sgotplt->output_offset
+ 8),
htab->splt->contents + 8);
}
/* UnixWare sets the entsize of .plt to 4, although that doesn't
really seem like the right value. */
elf_section_data (htab->splt->output_section)
->this_hdr.sh_entsize = 4;
}
}
if (htab->sgotplt)
{
/* Fill in the first three entries in the global offset table. */
if (htab->sgotplt->_raw_size > 0)
{
bfd_put_32 (output_bfd,
(sdyn == NULL ? (bfd_vma) 0
: sdyn->output_section->vma + sdyn->output_offset),
htab->sgotplt->contents);
bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
}
elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
}
return true;
}
#define TARGET_LITTLE_SYM bfd_elf32_i386_vec
#define TARGET_LITTLE_NAME "elf32-i386"
#define ELF_ARCH bfd_arch_i386
#define ELF_MACHINE_CODE EM_386
#define ELF_MAXPAGESIZE 0x1000
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_want_got_plt 1
#define elf_backend_plt_readonly 1
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size 12
#define elf_backend_plt_header_size PLT_ENTRY_SIZE
#define elf_info_to_howto elf_i386_info_to_howto
#define elf_info_to_howto_rel elf_i386_info_to_howto_rel
#define bfd_elf32_mkobject elf_i386_mkobject
#define elf_backend_object_p elf_i386_object_p
#define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
#define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
#define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
#define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
#define elf_backend_check_relocs elf_i386_check_relocs
#define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
#define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
#define elf_backend_fake_sections elf_i386_fake_sections
#define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
#define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
#define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
#define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
#define elf_backend_grok_prstatus elf_i386_grok_prstatus
#define elf_backend_grok_psinfo elf_i386_grok_psinfo
#define elf_backend_reloc_type_class elf_i386_reloc_type_class
#define elf_backend_relocate_section elf_i386_relocate_section
#define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
#ifndef ELF32_I386_C_INCLUDED
#include "elf32-target.h"
#endif