e9277ae8d4
(handle_exception): Return E01 instead of P01 when 'P' command fails.
1750 lines
46 KiB
C
1750 lines
46 KiB
C
/****************************************************************************
|
|
|
|
THIS SOFTWARE IS NOT COPYRIGHTED
|
|
|
|
HP offers the following for use in the public domain. HP makes no
|
|
warranty with regard to the software or it's performance and the
|
|
user accepts the software "AS IS" with all faults.
|
|
|
|
HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
|
|
TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
|
|
*
|
|
* Module name: remcom.c $
|
|
* Revision: 1.34 $
|
|
* Date: 91/03/09 12:29:49 $
|
|
* Contributor: Lake Stevens Instrument Division$
|
|
*
|
|
* Description: low level support for gdb debugger. $
|
|
*
|
|
* Considerations: only works on target hardware $
|
|
*
|
|
* Written by: Glenn Engel $
|
|
* ModuleState: Experimental $
|
|
*
|
|
* NOTES: See Below $
|
|
*
|
|
* Modified for M32R by Michael Snyder, Cygnus Support.
|
|
*
|
|
* To enable debugger support, two things need to happen. One, a
|
|
* call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
* or error conditions to be properly intercepted and reported to gdb.
|
|
* Two, a breakpoint needs to be generated to begin communication. This
|
|
* is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
* simulates a breakpoint by executing a trap #1.
|
|
*
|
|
* The external function exceptionHandler() is
|
|
* used to attach a specific handler to a specific M32R vector number.
|
|
* It should use the same privilege level it runs at. It should
|
|
* install it as an interrupt gate so that interrupts are masked
|
|
* while the handler runs.
|
|
*
|
|
* Because gdb will sometimes write to the stack area to execute function
|
|
* calls, this program cannot rely on using the supervisor stack so it
|
|
* uses it's own stack area reserved in the int array remcomStack.
|
|
*
|
|
*************
|
|
*
|
|
* The following gdb commands are supported:
|
|
*
|
|
* command function Return value
|
|
*
|
|
* g return the value of the CPU registers hex data or ENN
|
|
* G set the value of the CPU registers OK or ENN
|
|
*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
* XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
|
|
* AA..AA
|
|
*
|
|
* c Resume at current address SNN ( signal NN)
|
|
* cAA..AA Continue at address AA..AA SNN
|
|
*
|
|
* s Step one instruction SNN
|
|
* sAA..AA Step one instruction from AA..AA SNN
|
|
*
|
|
* k kill
|
|
*
|
|
* ? What was the last sigval ? SNN (signal NN)
|
|
*
|
|
* All commands and responses are sent with a packet which includes a
|
|
* checksum. A packet consists of
|
|
*
|
|
* $<packet info>#<checksum>.
|
|
*
|
|
* where
|
|
* <packet info> :: <characters representing the command or response>
|
|
* <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
*
|
|
* When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
* '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
*
|
|
* Example:
|
|
*
|
|
* Host: Reply:
|
|
* $m0,10#2a +$00010203040506070809101112131415#42
|
|
*
|
|
****************************************************************************/
|
|
|
|
|
|
/************************************************************************
|
|
*
|
|
* external low-level support routines
|
|
*/
|
|
extern void putDebugChar(); /* write a single character */
|
|
extern int getDebugChar(); /* read and return a single char */
|
|
extern void exceptionHandler(); /* assign an exception handler */
|
|
|
|
/*****************************************************************************
|
|
* BUFMAX defines the maximum number of characters in inbound/outbound buffers
|
|
* at least NUMREGBYTES*2 are needed for register packets
|
|
*/
|
|
#define BUFMAX 400
|
|
|
|
static char initialized; /* boolean flag. != 0 means we've been initialized */
|
|
|
|
int remote_debug;
|
|
/* debug > 0 prints ill-formed commands in valid packets & checksum errors */
|
|
|
|
static const unsigned char hexchars[]="0123456789abcdef";
|
|
|
|
#define NUMREGS 24
|
|
|
|
/* Number of bytes of registers. */
|
|
#define NUMREGBYTES (NUMREGS * 4)
|
|
enum regnames { R0, R1, R2, R3, R4, R5, R6, R7,
|
|
R8, R9, R10, R11, R12, R13, R14, R15,
|
|
PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH };
|
|
|
|
enum SYS_calls {
|
|
SYS_null,
|
|
SYS_exit,
|
|
SYS_open,
|
|
SYS_close,
|
|
SYS_read,
|
|
SYS_write,
|
|
SYS_lseek,
|
|
SYS_unlink,
|
|
SYS_getpid,
|
|
SYS_kill,
|
|
SYS_fstat,
|
|
SYS_sbrk,
|
|
SYS_fork,
|
|
SYS_execve,
|
|
SYS_wait4,
|
|
SYS_link,
|
|
SYS_chdir,
|
|
SYS_stat,
|
|
SYS_utime,
|
|
SYS_chown,
|
|
SYS_chmod,
|
|
SYS_time,
|
|
SYS_pipe };
|
|
|
|
static int registers[NUMREGS];
|
|
|
|
#define STACKSIZE 8096
|
|
static unsigned char remcomInBuffer[BUFMAX];
|
|
static unsigned char remcomOutBuffer[BUFMAX];
|
|
static int remcomStack[STACKSIZE/sizeof(int)];
|
|
static int* stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
|
|
|
|
static unsigned int save_vectors[18]; /* previous exception vectors */
|
|
|
|
/* Indicate to caller of mem2hex or hex2mem that there has been an error. */
|
|
static volatile int mem_err = 0;
|
|
|
|
/* Store the vector number here (since GDB only gets the signal
|
|
number through the usual means, and that's not very specific). */
|
|
int gdb_m32r_vector = -1;
|
|
|
|
#if 0
|
|
#include "syscall.h" /* for SYS_exit, SYS_write etc. */
|
|
#endif
|
|
|
|
/* Global entry points:
|
|
*/
|
|
|
|
extern void handle_exception(int);
|
|
extern void set_debug_traps(void);
|
|
extern void breakpoint(void);
|
|
|
|
/* Local functions:
|
|
*/
|
|
|
|
static int computeSignal(int);
|
|
static void putpacket(unsigned char *);
|
|
static unsigned char *getpacket(void);
|
|
|
|
static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int);
|
|
static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int);
|
|
static int hexToInt(unsigned char **, int *);
|
|
static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int);
|
|
static void stash_registers(void);
|
|
static void restore_registers(void);
|
|
static int prepare_to_step(int);
|
|
static int finish_from_step(void);
|
|
static unsigned long crc32 (unsigned char *, int, unsigned long);
|
|
|
|
static void gdb_error(char *, char *);
|
|
static int gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int);
|
|
|
|
static unsigned char *strcpy (unsigned char *, const unsigned char *);
|
|
static int strlen (const unsigned char *);
|
|
|
|
/*
|
|
* This function does all command procesing for interfacing to gdb.
|
|
*/
|
|
|
|
void
|
|
handle_exception(int exceptionVector)
|
|
{
|
|
int sigval, stepping;
|
|
int addr, length, i;
|
|
unsigned char * ptr;
|
|
unsigned char buf[16];
|
|
int binary;
|
|
|
|
if (!finish_from_step())
|
|
return; /* "false step": let the target continue */
|
|
|
|
gdb_m32r_vector = exceptionVector;
|
|
|
|
if (remote_debug)
|
|
{
|
|
mem2hex((unsigned char *) &exceptionVector, buf, 4, 0);
|
|
gdb_error("Handle exception %s, ", buf);
|
|
mem2hex((unsigned char *) ®isters[PC], buf, 4, 0);
|
|
gdb_error("PC == 0x%s\n", buf);
|
|
}
|
|
|
|
/* reply to host that an exception has occurred */
|
|
sigval = computeSignal( exceptionVector );
|
|
|
|
ptr = remcomOutBuffer;
|
|
|
|
*ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
|
|
*ptr++ = hexchars[sigval >> 4];
|
|
*ptr++ = hexchars[sigval & 0xf];
|
|
|
|
*ptr++ = hexchars[PC >> 4];
|
|
*ptr++ = hexchars[PC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((unsigned char *)®isters[PC], ptr, 4, 0); /* PC */
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[R13 >> 4];
|
|
*ptr++ = hexchars[R13 & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((unsigned char *)®isters[R13], ptr, 4, 0); /* FP */
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[R15 >> 4];
|
|
*ptr++ = hexchars[R15 & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((unsigned char *)®isters[R15], ptr, 4, 0); /* SP */
|
|
*ptr++ = ';';
|
|
*ptr++ = 0;
|
|
|
|
if (exceptionVector == 0) /* simulated SYS call stuff */
|
|
{
|
|
mem2hex((unsigned char *) ®isters[PC], buf, 4, 0);
|
|
switch (registers[R0]) {
|
|
case SYS_exit:
|
|
gdb_error("Target program has exited at %s\n", buf);
|
|
ptr = remcomOutBuffer;
|
|
*ptr++ = 'W';
|
|
sigval = registers[R1] & 0xff;
|
|
*ptr++ = hexchars[sigval >> 4];
|
|
*ptr++ = hexchars[sigval & 0xf];
|
|
*ptr++ = 0;
|
|
break;
|
|
case SYS_open:
|
|
gdb_error("Target attempts SYS_open call at %s\n", buf);
|
|
break;
|
|
case SYS_close:
|
|
gdb_error("Target attempts SYS_close call at %s\n", buf);
|
|
break;
|
|
case SYS_read:
|
|
gdb_error("Target attempts SYS_read call at %s\n", buf);
|
|
break;
|
|
case SYS_write:
|
|
if (registers[R1] == 1 || /* write to stdout */
|
|
registers[R1] == 2) /* write to stderr */
|
|
{ /* (we can do that) */
|
|
registers[R0] = gdb_write((void *) registers[R2], registers[R3]);
|
|
return;
|
|
}
|
|
else
|
|
gdb_error("Target attempts SYS_write call at %s\n", buf);
|
|
break;
|
|
case SYS_lseek:
|
|
gdb_error("Target attempts SYS_lseek call at %s\n", buf);
|
|
break;
|
|
case SYS_unlink:
|
|
gdb_error("Target attempts SYS_unlink call at %s\n", buf);
|
|
break;
|
|
case SYS_getpid:
|
|
gdb_error("Target attempts SYS_getpid call at %s\n", buf);
|
|
break;
|
|
case SYS_kill:
|
|
gdb_error("Target attempts SYS_kill call at %s\n", buf);
|
|
break;
|
|
case SYS_fstat:
|
|
gdb_error("Target attempts SYS_fstat call at %s\n", buf);
|
|
break;
|
|
default:
|
|
gdb_error("Target attempts unknown SYS call at %s\n", buf);
|
|
break;
|
|
}
|
|
}
|
|
|
|
putpacket(remcomOutBuffer);
|
|
|
|
stepping = 0;
|
|
|
|
while (1==1) {
|
|
remcomOutBuffer[0] = 0;
|
|
ptr = getpacket();
|
|
binary = 0;
|
|
switch (*ptr++) {
|
|
default: /* Unknown code. Return an empty reply message. */
|
|
break;
|
|
case 'R':
|
|
if (hexToInt (&ptr, &addr))
|
|
registers[PC] = addr;
|
|
strcpy(remcomOutBuffer, "OK");
|
|
break;
|
|
case '!':
|
|
strcpy(remcomOutBuffer, "OK");
|
|
break;
|
|
case 'X': /* XAA..AA,LLLL:<binary data>#cs */
|
|
binary = 1;
|
|
case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
|
|
/* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
|
|
{
|
|
if (hexToInt(&ptr,&addr))
|
|
if (*(ptr++) == ',')
|
|
if (hexToInt(&ptr,&length))
|
|
if (*(ptr++) == ':')
|
|
{
|
|
mem_err = 0;
|
|
if (binary)
|
|
bin2mem (ptr, (unsigned char *) addr, length, 1);
|
|
else
|
|
hex2mem(ptr, (unsigned char*) addr, length, 1);
|
|
if (mem_err) {
|
|
strcpy (remcomOutBuffer, "E03");
|
|
gdb_error ("memory fault", "");
|
|
} else {
|
|
strcpy(remcomOutBuffer,"OK");
|
|
}
|
|
ptr = 0;
|
|
}
|
|
if (ptr)
|
|
{
|
|
strcpy(remcomOutBuffer,"E02");
|
|
}
|
|
}
|
|
break;
|
|
case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
|
|
/* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
|
|
if (hexToInt(&ptr,&addr))
|
|
if (*(ptr++) == ',')
|
|
if (hexToInt(&ptr,&length))
|
|
{
|
|
ptr = 0;
|
|
mem_err = 0;
|
|
mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1);
|
|
if (mem_err) {
|
|
strcpy (remcomOutBuffer, "E03");
|
|
gdb_error ("memory fault", "");
|
|
}
|
|
}
|
|
if (ptr)
|
|
{
|
|
strcpy(remcomOutBuffer,"E01");
|
|
}
|
|
break;
|
|
case '?':
|
|
remcomOutBuffer[0] = 'S';
|
|
remcomOutBuffer[1] = hexchars[sigval >> 4];
|
|
remcomOutBuffer[2] = hexchars[sigval % 16];
|
|
remcomOutBuffer[3] = 0;
|
|
break;
|
|
case 'd':
|
|
remote_debug = !(remote_debug); /* toggle debug flag */
|
|
break;
|
|
case 'g': /* return the value of the CPU registers */
|
|
mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0);
|
|
break;
|
|
case 'P': /* set the value of a single CPU register - return OK */
|
|
{
|
|
int regno;
|
|
|
|
if (hexToInt (&ptr, ®no) && *ptr++ == '=')
|
|
if (regno >= 0 && regno < NUMREGS)
|
|
{
|
|
int stackmode;
|
|
|
|
hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0);
|
|
/*
|
|
* Since we just changed a single CPU register, let's
|
|
* make sure to keep the several stack pointers consistant.
|
|
*/
|
|
stackmode = registers[PSW] & 0x80;
|
|
if (regno == R15) /* stack pointer changed */
|
|
{ /* need to change SPI or SPU */
|
|
if (stackmode == 0)
|
|
registers[SPI] = registers[R15];
|
|
else
|
|
registers[SPU] = registers[R15];
|
|
}
|
|
else if (regno == SPU) /* "user" stack pointer changed */
|
|
{
|
|
if (stackmode != 0) /* stack in user mode: copy SP */
|
|
registers[R15] = registers[SPU];
|
|
}
|
|
else if (regno == SPI) /* "interrupt" stack pointer changed */
|
|
{
|
|
if (stackmode == 0) /* stack in interrupt mode: copy SP */
|
|
registers[R15] = registers[SPI];
|
|
}
|
|
else if (regno == PSW) /* stack mode may have changed! */
|
|
{ /* force SP to either SPU or SPI */
|
|
if (stackmode == 0) /* stack in user mode */
|
|
registers[R15] = registers[SPI];
|
|
else /* stack in interrupt mode */
|
|
registers[R15] = registers[SPU];
|
|
}
|
|
strcpy (remcomOutBuffer, "OK");
|
|
break;
|
|
}
|
|
strcpy (remcomOutBuffer, "E01");
|
|
break;
|
|
}
|
|
case 'G': /* set the value of the CPU registers - return OK */
|
|
hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0);
|
|
strcpy(remcomOutBuffer,"OK");
|
|
break;
|
|
case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
|
|
stepping = 1;
|
|
case 'c': /* cAA..AA Continue from address AA..AA(optional) */
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
if (hexToInt(&ptr,&addr))
|
|
registers[ PC ] = addr;
|
|
|
|
if (stepping) /* single-stepping */
|
|
{
|
|
if (!prepare_to_step(0)) /* set up for single-step */
|
|
{
|
|
/* prepare_to_step has already emulated the target insn:
|
|
Send SIGTRAP to gdb, don't resume the target at all. */
|
|
ptr = remcomOutBuffer;
|
|
*ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
|
|
*ptr++ = '0';
|
|
*ptr++ = '5';
|
|
|
|
*ptr++ = hexchars[PC >> 4]; /* send PC */
|
|
*ptr++ = hexchars[PC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((unsigned char *)®isters[PC], ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[R13 >> 4]; /* send FP */
|
|
*ptr++ = hexchars[R13 & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((unsigned char *)®isters[R13], ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = hexchars[R15 >> 4]; /* send SP */
|
|
*ptr++ = hexchars[R15 & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((unsigned char *)®isters[R15], ptr, 4, 0);
|
|
*ptr++ = ';';
|
|
*ptr++ = 0;
|
|
|
|
break;
|
|
}
|
|
}
|
|
else /* continuing, not single-stepping */
|
|
{
|
|
/* OK, about to do a "continue". First check to see if the
|
|
target pc is on an odd boundary (second instruction in the
|
|
word). If so, we must do a single-step first, because
|
|
ya can't jump or return back to an odd boundary! */
|
|
if ((registers[PC] & 2) != 0)
|
|
prepare_to_step(1);
|
|
}
|
|
|
|
return;
|
|
|
|
case 'D': /* Detach */
|
|
#if 0
|
|
/* I am interpreting this to mean, release the board from control
|
|
by the remote stub. To do this, I am restoring the original
|
|
(or at least previous) exception vectors.
|
|
*/
|
|
for (i = 0; i < 18; i++)
|
|
exceptionHandler (i, save_vectors[i]);
|
|
putpacket ("OK");
|
|
return; /* continue the inferior */
|
|
#else
|
|
strcpy(remcomOutBuffer,"OK");
|
|
break;
|
|
#endif
|
|
case 'q':
|
|
if (*ptr++ == 'C' &&
|
|
*ptr++ == 'R' &&
|
|
*ptr++ == 'C' &&
|
|
*ptr++ == ':')
|
|
{
|
|
unsigned long start, len, our_crc;
|
|
|
|
if (hexToInt (&ptr, (int *) &start) &&
|
|
*ptr++ == ',' &&
|
|
hexToInt (&ptr, (int *) &len))
|
|
{
|
|
remcomOutBuffer[0] = 'C';
|
|
our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
|
|
mem2hex ((char *) &our_crc,
|
|
&remcomOutBuffer[1],
|
|
sizeof (long),
|
|
0);
|
|
} /* else do nothing */
|
|
} /* else do nothing */
|
|
break;
|
|
|
|
case 'k': /* kill the program */
|
|
continue;
|
|
} /* switch */
|
|
|
|
/* reply to the request */
|
|
putpacket(remcomOutBuffer);
|
|
}
|
|
}
|
|
|
|
/* qCRC support */
|
|
|
|
/* Table used by the crc32 function to calcuate the checksum. */
|
|
static unsigned long crc32_table[256] = {0, 0};
|
|
|
|
static unsigned long
|
|
crc32 (buf, len, crc)
|
|
unsigned char *buf;
|
|
int len;
|
|
unsigned long crc;
|
|
{
|
|
if (! crc32_table[1])
|
|
{
|
|
/* Initialize the CRC table and the decoding table. */
|
|
int i, j;
|
|
unsigned long c;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
for (c = i << 24, j = 8; j > 0; --j)
|
|
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
|
|
crc32_table[i] = c;
|
|
}
|
|
}
|
|
|
|
while (len--)
|
|
{
|
|
crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
|
|
buf++;
|
|
}
|
|
return crc;
|
|
}
|
|
|
|
static int
|
|
hex(ch)
|
|
unsigned char ch;
|
|
{
|
|
if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10);
|
|
if ((ch >= '0') && (ch <= '9')) return (ch-'0');
|
|
if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10);
|
|
return (-1);
|
|
}
|
|
|
|
/* scan for the sequence $<data>#<checksum> */
|
|
|
|
unsigned char *
|
|
getpacket ()
|
|
{
|
|
unsigned char *buffer = &remcomInBuffer[0];
|
|
unsigned char checksum;
|
|
unsigned char xmitcsum;
|
|
int count;
|
|
char ch;
|
|
|
|
while (1)
|
|
{
|
|
/* wait around for the start character, ignore all other characters */
|
|
while ((ch = getDebugChar ()) != '$')
|
|
;
|
|
|
|
retry:
|
|
checksum = 0;
|
|
xmitcsum = -1;
|
|
count = 0;
|
|
|
|
/* now, read until a # or end of buffer is found */
|
|
while (count < BUFMAX)
|
|
{
|
|
ch = getDebugChar ();
|
|
if (ch == '$')
|
|
goto retry;
|
|
if (ch == '#')
|
|
break;
|
|
checksum = checksum + ch;
|
|
buffer[count] = ch;
|
|
count = count + 1;
|
|
}
|
|
buffer[count] = 0;
|
|
|
|
if (ch == '#')
|
|
{
|
|
ch = getDebugChar ();
|
|
xmitcsum = hex (ch) << 4;
|
|
ch = getDebugChar ();
|
|
xmitcsum += hex (ch);
|
|
|
|
if (checksum != xmitcsum)
|
|
{
|
|
if (remote_debug)
|
|
{
|
|
unsigned char buf[16];
|
|
|
|
mem2hex((unsigned char *) &checksum, buf, 4, 0);
|
|
gdb_error("Bad checksum: my count = %s, ", buf);
|
|
mem2hex((unsigned char *) &xmitcsum, buf, 4, 0);
|
|
gdb_error("sent count = %s\n", buf);
|
|
gdb_error(" -- Bad buffer: \"%s\"\n", buffer);
|
|
}
|
|
putDebugChar ('-'); /* failed checksum */
|
|
}
|
|
else
|
|
{
|
|
putDebugChar ('+'); /* successful transfer */
|
|
|
|
/* if a sequence char is present, reply the sequence ID */
|
|
if (buffer[2] == ':')
|
|
{
|
|
putDebugChar (buffer[0]);
|
|
putDebugChar (buffer[1]);
|
|
|
|
return &buffer[3];
|
|
}
|
|
|
|
return &buffer[0];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* send the packet in buffer. */
|
|
|
|
static void
|
|
putpacket(buffer)
|
|
unsigned char *buffer;
|
|
{
|
|
unsigned char checksum;
|
|
int count;
|
|
char ch;
|
|
|
|
/* $<packet info>#<checksum>. */
|
|
do {
|
|
putDebugChar('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while (ch=buffer[count]) {
|
|
putDebugChar(ch);
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
putDebugChar('#');
|
|
putDebugChar(hexchars[checksum >> 4]);
|
|
putDebugChar(hexchars[checksum % 16]);
|
|
} while (getDebugChar() != '+');
|
|
}
|
|
|
|
/* Address of a routine to RTE to if we get a memory fault. */
|
|
|
|
static void (*volatile mem_fault_routine)() = 0;
|
|
|
|
static void
|
|
set_mem_err ()
|
|
{
|
|
mem_err = 1;
|
|
}
|
|
|
|
/* Check the address for safe access ranges. As currently defined,
|
|
this routine will reject the "expansion bus" address range(s).
|
|
To make those ranges useable, someone must implement code to detect
|
|
whether there's anything connected to the expansion bus. */
|
|
|
|
static int
|
|
mem_safe (addr)
|
|
unsigned char *addr;
|
|
{
|
|
#define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
|
|
#define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
|
|
#define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
|
|
#define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
|
|
|
|
if (addr < BAD_RANGE_ONE_START) return 1; /* safe */
|
|
if (addr < BAD_RANGE_ONE_END) return 0; /* unsafe */
|
|
if (addr < BAD_RANGE_TWO_START) return 1; /* safe */
|
|
if (addr < BAD_RANGE_TWO_END) return 0; /* unsafe */
|
|
}
|
|
|
|
/* These are separate functions so that they are so short and sweet
|
|
that the compiler won't save any registers (if there is a fault
|
|
to mem_fault, they won't get restored, so there better not be any
|
|
saved). */
|
|
static int
|
|
get_char (addr)
|
|
unsigned char *addr;
|
|
{
|
|
#if 1
|
|
if (mem_fault_routine && !mem_safe(addr))
|
|
{
|
|
mem_fault_routine ();
|
|
return 0;
|
|
}
|
|
#endif
|
|
return *addr;
|
|
}
|
|
|
|
static void
|
|
set_char (addr, val)
|
|
unsigned char *addr;
|
|
unsigned char val;
|
|
{
|
|
#if 1
|
|
if (mem_fault_routine && !mem_safe (addr))
|
|
{
|
|
mem_fault_routine ();
|
|
return;
|
|
}
|
|
#endif
|
|
*addr = val;
|
|
}
|
|
|
|
/* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
Return a pointer to the last char put in buf (null).
|
|
If MAY_FAULT is non-zero, then we should set mem_err in response to
|
|
a fault; if zero treat a fault like any other fault in the stub. */
|
|
|
|
static unsigned char *
|
|
mem2hex(mem, buf, count, may_fault)
|
|
unsigned char* mem;
|
|
unsigned char* buf;
|
|
int count;
|
|
int may_fault;
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
if (may_fault)
|
|
mem_fault_routine = set_mem_err;
|
|
for (i=0;i<count;i++) {
|
|
ch = get_char (mem++);
|
|
if (may_fault && mem_err)
|
|
return (buf);
|
|
*buf++ = hexchars[ch >> 4];
|
|
*buf++ = hexchars[ch % 16];
|
|
}
|
|
*buf = 0;
|
|
if (may_fault)
|
|
mem_fault_routine = 0;
|
|
return(buf);
|
|
}
|
|
|
|
/* Convert the hex array pointed to by buf into binary to be placed in mem.
|
|
Return a pointer to the character AFTER the last byte written. */
|
|
|
|
static unsigned char*
|
|
hex2mem(buf, mem, count, may_fault)
|
|
unsigned char* buf;
|
|
unsigned char* mem;
|
|
int count;
|
|
int may_fault;
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
if (may_fault)
|
|
mem_fault_routine = set_mem_err;
|
|
for (i=0;i<count;i++) {
|
|
ch = hex(*buf++) << 4;
|
|
ch = ch + hex(*buf++);
|
|
set_char (mem++, ch);
|
|
if (may_fault && mem_err)
|
|
return (mem);
|
|
}
|
|
if (may_fault)
|
|
mem_fault_routine = 0;
|
|
return(mem);
|
|
}
|
|
|
|
/* Convert the binary stream in BUF to memory.
|
|
|
|
Gdb will escape $, #, and the escape char (0x7d).
|
|
COUNT is the total number of bytes to write into
|
|
memory. */
|
|
static unsigned char *
|
|
bin2mem (buf, mem, count, may_fault)
|
|
unsigned char *buf;
|
|
unsigned char *mem;
|
|
int count;
|
|
int may_fault;
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
if (may_fault)
|
|
mem_fault_routine = set_mem_err;
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
/* Check for any escaped characters. Be paranoid and
|
|
only unescape chars that should be escaped. */
|
|
if (*buf == 0x7d)
|
|
{
|
|
switch (*(buf+1))
|
|
{
|
|
case 0x3: /* # */
|
|
case 0x4: /* $ */
|
|
case 0x5d: /* escape char */
|
|
buf++;
|
|
*buf |= 0x20;
|
|
break;
|
|
default:
|
|
/* nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
set_char (mem++, *buf++);
|
|
|
|
if (may_fault && mem_err)
|
|
return mem;
|
|
}
|
|
|
|
if (may_fault)
|
|
mem_fault_routine = 0;
|
|
return mem;
|
|
}
|
|
|
|
/* this function takes the m32r exception vector and attempts to
|
|
translate this number into a unix compatible signal value */
|
|
|
|
static int
|
|
computeSignal(exceptionVector)
|
|
int exceptionVector;
|
|
{
|
|
int sigval;
|
|
switch (exceptionVector) {
|
|
case 0 : sigval = 23; break; /* I/O trap */
|
|
case 1 : sigval = 5; break; /* breakpoint */
|
|
case 2 : sigval = 5; break; /* breakpoint */
|
|
case 3 : sigval = 5; break; /* breakpoint */
|
|
case 4 : sigval = 5; break; /* breakpoint */
|
|
case 5 : sigval = 5; break; /* breakpoint */
|
|
case 6 : sigval = 5; break; /* breakpoint */
|
|
case 7 : sigval = 5; break; /* breakpoint */
|
|
case 8 : sigval = 5; break; /* breakpoint */
|
|
case 9 : sigval = 5; break; /* breakpoint */
|
|
case 10 : sigval = 5; break; /* breakpoint */
|
|
case 11 : sigval = 5; break; /* breakpoint */
|
|
case 12 : sigval = 5; break; /* breakpoint */
|
|
case 13 : sigval = 5; break; /* breakpoint */
|
|
case 14 : sigval = 5; break; /* breakpoint */
|
|
case 15 : sigval = 5; break; /* breakpoint */
|
|
case 16 : sigval = 10; break; /* BUS ERROR (alignment) */
|
|
case 17 : sigval = 2; break; /* INTerrupt */
|
|
default : sigval = 7; break; /* "software generated" */
|
|
}
|
|
return (sigval);
|
|
}
|
|
|
|
/**********************************************/
|
|
/* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
|
|
/* RETURN NUMBER OF CHARS PROCESSED */
|
|
/**********************************************/
|
|
static int
|
|
hexToInt(ptr, intValue)
|
|
unsigned char **ptr;
|
|
int *intValue;
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*intValue = 0;
|
|
while (**ptr)
|
|
{
|
|
hexValue = hex(**ptr);
|
|
if (hexValue >=0)
|
|
{
|
|
*intValue = (*intValue <<4) | hexValue;
|
|
numChars ++;
|
|
}
|
|
else
|
|
break;
|
|
(*ptr)++;
|
|
}
|
|
return (numChars);
|
|
}
|
|
|
|
/*
|
|
Table of branch instructions:
|
|
|
|
10B6 RTE return from trap or exception
|
|
1FCr JMP jump
|
|
1ECr JL jump and link
|
|
7Fxx BRA branch
|
|
FFxxxxxx BRA branch (long)
|
|
B09rxxxx BNEZ branch not-equal-zero
|
|
Br1rxxxx BNE branch not-equal
|
|
7Dxx BNC branch not-condition
|
|
FDxxxxxx BNC branch not-condition (long)
|
|
B0Arxxxx BLTZ branch less-than-zero
|
|
B0Crxxxx BLEZ branch less-equal-zero
|
|
7Exx BL branch and link
|
|
FExxxxxx BL branch and link (long)
|
|
B0Drxxxx BGTZ branch greater-than-zero
|
|
B0Brxxxx BGEZ branch greater-equal-zero
|
|
B08rxxxx BEQZ branch equal-zero
|
|
Br0rxxxx BEQ branch equal
|
|
7Cxx BC branch condition
|
|
FCxxxxxx BC branch condition (long)
|
|
*/
|
|
|
|
static int
|
|
isShortBranch(instr)
|
|
unsigned char *instr;
|
|
{
|
|
unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
|
|
|
|
if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
|
|
return 1; /* return from trap or exception */
|
|
|
|
if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
|
|
if ((instr[1] & 0xF0) == 0xC0)
|
|
return 2; /* jump thru a register */
|
|
|
|
if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
|
|
instr0 == 0x7E || instr0 == 0x7F)
|
|
return 3; /* eight bit PC offset */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
isLongBranch(instr)
|
|
unsigned char *instr;
|
|
{
|
|
if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
|
|
instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
|
|
return 4;
|
|
if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
|
|
{
|
|
if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
|
|
(instr[1] & 0xF0) == 0x10)
|
|
return 5;
|
|
if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
|
|
if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
|
|
(instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
|
|
(instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
|
|
return 6;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
|
|
then it's a 2-byte instruction, else it's a 4-byte instruction. */
|
|
|
|
#define INSTRUCTION_SIZE(addr) \
|
|
((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
|
|
|
|
static int
|
|
isBranch(instr)
|
|
unsigned char *instr;
|
|
{
|
|
if (INSTRUCTION_SIZE(instr) == 2)
|
|
return isShortBranch(instr);
|
|
else
|
|
return isLongBranch(instr);
|
|
}
|
|
|
|
static int
|
|
willBranch(instr, branchCode)
|
|
unsigned char *instr;
|
|
{
|
|
switch (branchCode)
|
|
{
|
|
case 0: return 0; /* not a branch */
|
|
case 1: return 1; /* RTE */
|
|
case 2: return 1; /* JL or JMP */
|
|
case 3: /* BC, BNC, BL, BRA (short) */
|
|
case 4: /* BC, BNC, BL, BRA (long) */
|
|
switch (instr[0] & 0x0F)
|
|
{
|
|
case 0xC: /* Branch if Condition Register */
|
|
return (registers[CBR] != 0);
|
|
case 0xD: /* Branch if NOT Condition Register */
|
|
return (registers[CBR] == 0);
|
|
case 0xE: /* Branch and Link */
|
|
case 0xF: /* Branch (unconditional) */
|
|
return 1;
|
|
default: /* oops? */
|
|
return 0;
|
|
}
|
|
case 5: /* BNE, BEQ */
|
|
switch (instr[1] & 0xF0)
|
|
{
|
|
case 0x00: /* Branch if r1 equal to r2 */
|
|
return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
|
|
case 0x10: /* Branch if r1 NOT equal to r2 */
|
|
return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
|
|
default: /* oops? */
|
|
return 0;
|
|
}
|
|
case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
|
|
switch (instr[1] & 0xF0)
|
|
{
|
|
case 0x80: /* Branch if reg equal to zero */
|
|
return (registers[instr[1] & 0x0F] == 0);
|
|
case 0x90: /* Branch if reg NOT equal to zero */
|
|
return (registers[instr[1] & 0x0F] != 0);
|
|
case 0xA0: /* Branch if reg less than zero */
|
|
return (registers[instr[1] & 0x0F] < 0);
|
|
case 0xB0: /* Branch if reg greater or equal to zero */
|
|
return (registers[instr[1] & 0x0F] >= 0);
|
|
case 0xC0: /* Branch if reg less than or equal to zero */
|
|
return (registers[instr[1] & 0x0F] <= 0);
|
|
case 0xD0: /* Branch if reg greater than zero */
|
|
return (registers[instr[1] & 0x0F] > 0);
|
|
default: /* oops? */
|
|
return 0;
|
|
}
|
|
default: /* oops? */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
branchDestination(instr, branchCode)
|
|
unsigned char *instr;
|
|
{
|
|
switch (branchCode) {
|
|
default:
|
|
case 0: /* not a branch */
|
|
return 0;
|
|
case 1: /* RTE */
|
|
return registers[BPC] & ~3; /* pop BPC into PC */
|
|
case 2: /* JL or JMP */
|
|
return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
|
|
case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
|
|
return (((int) instr) & ~3) + ((char) instr[1] << 2);
|
|
case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
|
|
return ((int) instr +
|
|
((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2));
|
|
case 5: /* BNE, BEQ (16-bit relative offset) */
|
|
case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
|
|
return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
|
|
}
|
|
|
|
/* An explanatory note: in the last three return expressions, I have
|
|
cast the most-significant byte of the return offset to char.
|
|
What this accomplishes is sign extension. If the other
|
|
less-significant bytes were signed as well, they would get sign
|
|
extended too and, if negative, their leading bits would clobber
|
|
the bits of the more-significant bytes ahead of them. There are
|
|
other ways I could have done this, but sign extension from
|
|
odd-sized integers is always a pain. */
|
|
}
|
|
|
|
static void
|
|
branchSideEffects(instr, branchCode)
|
|
unsigned char *instr;
|
|
int branchCode;
|
|
{
|
|
switch (branchCode)
|
|
{
|
|
case 1: /* RTE */
|
|
return; /* I <THINK> this is already handled... */
|
|
case 2: /* JL (or JMP) */
|
|
case 3: /* BL (or BC, BNC, BRA) */
|
|
case 4:
|
|
if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
|
|
registers[R14] = (registers[PC] & ~3) + 4;
|
|
return;
|
|
default: /* any other branch has no side effects */
|
|
return;
|
|
}
|
|
}
|
|
|
|
static struct STEPPING_CONTEXT {
|
|
int stepping; /* true when we've started a single-step */
|
|
unsigned long target_addr; /* the instr we're trying to execute */
|
|
unsigned long target_size; /* the size of the target instr */
|
|
unsigned long noop_addr; /* where we've inserted a no-op, if any */
|
|
unsigned long trap1_addr; /* the trap following the target instr */
|
|
unsigned long trap2_addr; /* the trap at a branch destination, if any */
|
|
unsigned short noop_save; /* instruction overwritten by our no-op */
|
|
unsigned short trap1_save; /* instruction overwritten by trap1 */
|
|
unsigned short trap2_save; /* instruction overwritten by trap2 */
|
|
unsigned short continue_p; /* true if NOT returning to gdb after step */
|
|
} stepping;
|
|
|
|
/* Function: prepare_to_step
|
|
Called from handle_exception to prepare the user program to single-step.
|
|
Places a trap instruction after the target instruction, with special
|
|
extra handling for branch instructions and for instructions in the
|
|
second half-word of a word.
|
|
|
|
Returns: True if we should actually execute the instruction;
|
|
False if we are going to emulate executing the instruction,
|
|
in which case we simply report to GDB that the instruction
|
|
has already been executed. */
|
|
|
|
#define TRAP1 0x10f1; /* trap #1 instruction */
|
|
#define NOOP 0x7000; /* noop instruction */
|
|
|
|
static unsigned short trap1 = TRAP1;
|
|
static unsigned short noop = NOOP;
|
|
|
|
static int
|
|
prepare_to_step(continue_p)
|
|
int continue_p; /* if this isn't REALLY a single-step (see below) */
|
|
{
|
|
unsigned long pc = registers[PC];
|
|
int branchCode = isBranch((unsigned char *) pc);
|
|
unsigned char *p;
|
|
|
|
/* zero out the stepping context
|
|
(paranoia -- it should already be zeroed) */
|
|
for (p = (unsigned char *) &stepping;
|
|
p < ((unsigned char *) &stepping) + sizeof(stepping);
|
|
p++)
|
|
*p = 0;
|
|
|
|
if (branchCode != 0) /* next instruction is a branch */
|
|
{
|
|
branchSideEffects((unsigned char *) pc, branchCode);
|
|
if (willBranch((unsigned char *)pc, branchCode))
|
|
registers[PC] = branchDestination((unsigned char *) pc, branchCode);
|
|
else
|
|
registers[PC] = pc + INSTRUCTION_SIZE(pc);
|
|
return 0; /* branch "executed" -- just notify GDB */
|
|
}
|
|
else if (((int) pc & 2) != 0) /* "second-slot" instruction */
|
|
{
|
|
/* insert no-op before pc */
|
|
stepping.noop_addr = pc - 2;
|
|
stepping.noop_save = *(unsigned short *) stepping.noop_addr;
|
|
*(unsigned short *) stepping.noop_addr = noop;
|
|
/* insert trap after pc */
|
|
stepping.trap1_addr = pc + 2;
|
|
stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
|
|
*(unsigned short *) stepping.trap1_addr = trap1;
|
|
}
|
|
else /* "first-slot" instruction */
|
|
{
|
|
/* insert trap after pc */
|
|
stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc);
|
|
stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
|
|
*(unsigned short *) stepping.trap1_addr = trap1;
|
|
}
|
|
/* "continue_p" means that we are actually doing a continue, and not
|
|
being requested to single-step by GDB. Sometimes we have to do
|
|
one single-step before continuing, because the PC is on a half-word
|
|
boundary. There's no way to simply resume at such an address. */
|
|
stepping.continue_p = continue_p;
|
|
stepping.stepping = 1; /* starting a single-step */
|
|
return 1;
|
|
}
|
|
|
|
/* Function: finish_from_step
|
|
Called from handle_exception to finish up when the user program
|
|
returns from a single-step. Replaces the instructions that had
|
|
been overwritten by traps or no-ops,
|
|
|
|
Returns: True if we should notify GDB that the target stopped.
|
|
False if we only single-stepped because we had to before we
|
|
could continue (ie. we were trying to continue at a
|
|
half-word boundary). In that case don't notify GDB:
|
|
just "continue continuing". */
|
|
|
|
static int
|
|
finish_from_step()
|
|
{
|
|
if (stepping.stepping) /* anything to do? */
|
|
{
|
|
int continue_p = stepping.continue_p;
|
|
unsigned char *p;
|
|
|
|
if (stepping.noop_addr) /* replace instr "under" our no-op */
|
|
*(unsigned short *) stepping.noop_addr = stepping.noop_save;
|
|
if (stepping.trap1_addr) /* replace instr "under" our trap */
|
|
*(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
|
|
if (stepping.trap2_addr) /* ditto our other trap, if any */
|
|
*(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
|
|
|
|
for (p = (unsigned char *) &stepping; /* zero out the stepping context */
|
|
p < ((unsigned char *) &stepping) + sizeof(stepping);
|
|
p++)
|
|
*p = 0;
|
|
|
|
return !(continue_p);
|
|
}
|
|
else /* we didn't single-step, therefore this must be a legitimate stop */
|
|
return 1;
|
|
}
|
|
|
|
struct PSWreg { /* separate out the bit flags in the PSW register */
|
|
int pad1 : 16;
|
|
int bsm : 1;
|
|
int bie : 1;
|
|
int pad2 : 5;
|
|
int bc : 1;
|
|
int sm : 1;
|
|
int ie : 1;
|
|
int pad3 : 5;
|
|
int c : 1;
|
|
} *psw;
|
|
|
|
/* Upon entry the value for LR to save has been pushed.
|
|
We unpush that so that the value for the stack pointer saved is correct.
|
|
Upon entry, all other registers are assumed to have not been modified
|
|
since the interrupt/trap occured. */
|
|
|
|
asm ("
|
|
stash_registers:
|
|
push r0
|
|
push r1
|
|
seth r1, #shigh(registers)
|
|
add3 r1, r1, #low(registers)
|
|
pop r0 ; r1
|
|
st r0, @(4,r1)
|
|
pop r0 ; r0
|
|
st r0, @r1
|
|
addi r1, #4 ; only add 4 as subsequent saves are `pre inc'
|
|
st r2, @+r1
|
|
st r3, @+r1
|
|
st r4, @+r1
|
|
st r5, @+r1
|
|
st r6, @+r1
|
|
st r7, @+r1
|
|
st r8, @+r1
|
|
st r9, @+r1
|
|
st r10, @+r1
|
|
st r11, @+r1
|
|
st r12, @+r1
|
|
st r13, @+r1 ; fp
|
|
pop r0 ; lr (r14)
|
|
st r0, @+r1
|
|
st sp, @+r1 ; sp contains right value at this point
|
|
mvfc r0, cr0
|
|
st r0, @+r1 ; cr0 == PSW
|
|
mvfc r0, cr1
|
|
st r0, @+r1 ; cr1 == CBR
|
|
mvfc r0, cr2
|
|
st r0, @+r1 ; cr2 == SPI
|
|
mvfc r0, cr3
|
|
st r0, @+r1 ; cr3 == SPU
|
|
mvfc r0, cr6
|
|
st r0, @+r1 ; cr6 == BPC
|
|
st r0, @+r1 ; PC == BPC
|
|
mvfaclo r0
|
|
st r0, @+r1 ; ACCL
|
|
mvfachi r0
|
|
st r0, @+r1 ; ACCH
|
|
jmp lr");
|
|
|
|
/* C routine to clean up what stash_registers did.
|
|
It is called after calling stash_registers.
|
|
This is separate from stash_registers as we want to do this in C
|
|
but doing stash_registers in C isn't straightforward. */
|
|
|
|
static void
|
|
cleanup_stash ()
|
|
{
|
|
psw = (struct PSWreg *) ®isters[PSW]; /* fields of PSW register */
|
|
psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
|
|
psw->ie = psw->bie;
|
|
psw->c = psw->bc;
|
|
registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
|
|
|
|
#if 0 /* FIXME: Was in previous version. Necessary?
|
|
(Remember that we use the "rte" insn to return from the
|
|
trap/interrupt so the values of bsm, bie, bc are important. */
|
|
psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
|
|
#endif
|
|
|
|
/* FIXME: Copied from previous version. This can probably be deleted
|
|
since methinks stash_registers has already done this. */
|
|
registers[PC] = registers[BPC]; /* pre-trap PC */
|
|
|
|
/* FIXME: Copied from previous version. Necessary? */
|
|
if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
|
|
registers[SPU] = registers[R15];
|
|
else
|
|
registers[SPI] = registers[R15];
|
|
}
|
|
|
|
asm ("
|
|
restore_and_return:
|
|
seth r0, #shigh(registers+8)
|
|
add3 r0, r0, #low(registers+8)
|
|
ld r2, @r0+ ; restore r2
|
|
ld r3, @r0+ ; restore r3
|
|
ld r4, @r0+ ; restore r4
|
|
ld r5, @r0+ ; restore r5
|
|
ld r6, @r0+ ; restore r6
|
|
ld r7, @r0+ ; restore r7
|
|
ld r8, @r0+ ; restore r8
|
|
ld r9, @r0+ ; restore r9
|
|
ld r10, @r0+ ; restore r10
|
|
ld r11, @r0+ ; restore r11
|
|
ld r12, @r0+ ; restore r12
|
|
ld r13, @r0+ ; restore r13
|
|
ld r14, @r0+ ; restore r14
|
|
ld r15, @r0+ ; restore r15
|
|
ld r1, @r0+ ; restore cr0 == PSW
|
|
mvtc r1, cr0
|
|
ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)
|
|
mvtc r1, cr1
|
|
ld r1, @r0+ ; restore cr2 == SPI
|
|
mvtc r1, cr2
|
|
ld r1, @r0+ ; restore cr3 == SPU
|
|
mvtc r1, cr3
|
|
addi r0, #4 ; skip BPC
|
|
ld r1, @r0+ ; restore cr6 (BPC) == PC
|
|
mvtc r1, cr6
|
|
ld r1, @r0+ ; restore ACCL
|
|
mvtaclo r1
|
|
ld r1, @r0+ ; restore ACCH
|
|
mvtachi r1
|
|
seth r0, #shigh(registers)
|
|
add3 r0, r0, #low(registers)
|
|
ld r1, @(4,r0) ; restore r1
|
|
ld r0, @r0 ; restore r0
|
|
rte");
|
|
|
|
/* General trap handler, called after the registers have been stashed.
|
|
NUM is the trap/exception number. */
|
|
|
|
static void
|
|
process_exception (num)
|
|
int num;
|
|
{
|
|
cleanup_stash ();
|
|
asm volatile ("
|
|
seth r1, #shigh(stackPtr)
|
|
add3 r1, r1, #low(stackPtr)
|
|
ld r15, @r1 ; setup local stack (protect user stack)
|
|
mv r0, %0
|
|
bl handle_exception
|
|
bl restore_and_return"
|
|
: : "r" (num) : "r0", "r1");
|
|
}
|
|
|
|
void _catchException0 ();
|
|
|
|
asm ("
|
|
_catchException0:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #0
|
|
bl process_exception");
|
|
|
|
void _catchException1 ();
|
|
|
|
asm ("
|
|
_catchException1:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
bl cleanup_stash
|
|
seth r1, #shigh(stackPtr)
|
|
add3 r1, r1, #low(stackPtr)
|
|
ld r15, @r1 ; setup local stack (protect user stack)
|
|
seth r1, #shigh(registers + 21*4) ; PC
|
|
add3 r1, r1, #low(registers + 21*4)
|
|
ld r0, @r1
|
|
addi r0, #-4 ; back up PC for breakpoint trap.
|
|
st r0, @r1 ; FIXME: what about bp in right slot?
|
|
ldi r0, #1
|
|
bl handle_exception
|
|
bl restore_and_return");
|
|
|
|
void _catchException2 ();
|
|
|
|
asm ("
|
|
_catchException2:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #2
|
|
bl process_exception");
|
|
|
|
void _catchException3 ();
|
|
|
|
asm ("
|
|
_catchException3:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #3
|
|
bl process_exception");
|
|
|
|
void _catchException4 ();
|
|
|
|
asm ("
|
|
_catchException4:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #4
|
|
bl process_exception");
|
|
|
|
void _catchException5 ();
|
|
|
|
asm ("
|
|
_catchException5:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #5
|
|
bl process_exception");
|
|
|
|
void _catchException6 ();
|
|
|
|
asm ("
|
|
_catchException6:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #6
|
|
bl process_exception");
|
|
|
|
void _catchException7 ();
|
|
|
|
asm ("
|
|
_catchException7:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #7
|
|
bl process_exception");
|
|
|
|
void _catchException8 ();
|
|
|
|
asm ("
|
|
_catchException8:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #8
|
|
bl process_exception");
|
|
|
|
void _catchException9 ();
|
|
|
|
asm ("
|
|
_catchException9:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #9
|
|
bl process_exception");
|
|
|
|
void _catchException10 ();
|
|
|
|
asm ("
|
|
_catchException10:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #10
|
|
bl process_exception");
|
|
|
|
void _catchException11 ();
|
|
|
|
asm ("
|
|
_catchException11:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #11
|
|
bl process_exception");
|
|
|
|
void _catchException12 ();
|
|
|
|
asm ("
|
|
_catchException12:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #12
|
|
bl process_exception");
|
|
|
|
void _catchException13 ();
|
|
|
|
asm ("
|
|
_catchException13:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #13
|
|
bl process_exception");
|
|
|
|
void _catchException14 ();
|
|
|
|
asm ("
|
|
_catchException14:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #14
|
|
bl process_exception");
|
|
|
|
void _catchException15 ();
|
|
|
|
asm ("
|
|
_catchException15:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #15
|
|
bl process_exception");
|
|
|
|
void _catchException16 ();
|
|
|
|
asm ("
|
|
_catchException16:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #16
|
|
bl process_exception");
|
|
|
|
void _catchException17 ();
|
|
|
|
asm ("
|
|
_catchException17:
|
|
push lr
|
|
bl stash_registers
|
|
; Note that at this point the pushed value of `lr' has been popped
|
|
ldi r0, #17
|
|
bl process_exception");
|
|
|
|
|
|
/* this function is used to set up exception handlers for tracing and
|
|
breakpoints */
|
|
void
|
|
set_debug_traps()
|
|
{
|
|
/* extern void remcomHandler(); */
|
|
int i;
|
|
|
|
for (i = 0; i < 18; i++) /* keep a copy of old vectors */
|
|
if (save_vectors[i] == 0) /* only copy them the first time */
|
|
save_vectors[i] = getExceptionHandler (i);
|
|
|
|
stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
|
|
|
|
exceptionHandler (0, _catchException0);
|
|
exceptionHandler (1, _catchException1);
|
|
exceptionHandler (2, _catchException2);
|
|
exceptionHandler (3, _catchException3);
|
|
exceptionHandler (4, _catchException4);
|
|
exceptionHandler (5, _catchException5);
|
|
exceptionHandler (6, _catchException6);
|
|
exceptionHandler (7, _catchException7);
|
|
exceptionHandler (8, _catchException8);
|
|
exceptionHandler (9, _catchException9);
|
|
exceptionHandler (10, _catchException10);
|
|
exceptionHandler (11, _catchException11);
|
|
exceptionHandler (12, _catchException12);
|
|
exceptionHandler (13, _catchException13);
|
|
exceptionHandler (14, _catchException14);
|
|
exceptionHandler (15, _catchException15);
|
|
exceptionHandler (16, _catchException16);
|
|
/* exceptionHandler (17, _catchException17); */
|
|
|
|
initialized = 1;
|
|
}
|
|
|
|
/* This function will generate a breakpoint exception. It is used at the
|
|
beginning of a program to sync up with a debugger and can be used
|
|
otherwise as a quick means to stop program execution and "break" into
|
|
the debugger. */
|
|
|
|
#define BREAKPOINT() asm volatile (" trap #2");
|
|
|
|
void
|
|
breakpoint()
|
|
{
|
|
if (initialized)
|
|
BREAKPOINT();
|
|
}
|
|
|
|
/* STDOUT section:
|
|
Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
|
|
Functions: gdb_putchar(char ch)
|
|
gdb_puts(char *str)
|
|
gdb_write(char *str, int len)
|
|
gdb_error(char *format, char *parm)
|
|
*/
|
|
|
|
/* Function: gdb_putchar(int)
|
|
Make gdb write a char to stdout.
|
|
Returns: the char */
|
|
|
|
static int
|
|
gdb_putchar(ch)
|
|
int ch;
|
|
{
|
|
char buf[4];
|
|
|
|
buf[0] = 'O';
|
|
buf[1] = hexchars[ch >> 4];
|
|
buf[2] = hexchars[ch & 0x0F];
|
|
buf[3] = 0;
|
|
putpacket(buf);
|
|
return ch;
|
|
}
|
|
|
|
/* Function: gdb_write(char *, int)
|
|
Make gdb write n bytes to stdout (not assumed to be null-terminated).
|
|
Returns: number of bytes written */
|
|
|
|
static int
|
|
gdb_write(data, len)
|
|
char *data;
|
|
int len;
|
|
{
|
|
char *buf, *cpy;
|
|
int i;
|
|
|
|
buf = remcomOutBuffer;
|
|
buf[0] = 'O';
|
|
i = 0;
|
|
while (i < len)
|
|
{
|
|
for (cpy = buf+1;
|
|
i < len && cpy < buf + sizeof(remcomOutBuffer) - 3;
|
|
i++)
|
|
{
|
|
*cpy++ = hexchars[data[i] >> 4];
|
|
*cpy++ = hexchars[data[i] & 0x0F];
|
|
}
|
|
*cpy = 0;
|
|
putpacket(buf);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* Function: gdb_puts(char *)
|
|
Make gdb write a null-terminated string to stdout.
|
|
Returns: the length of the string */
|
|
|
|
static int
|
|
gdb_puts(str)
|
|
char *str;
|
|
{
|
|
return gdb_write(str, strlen(str));
|
|
}
|
|
|
|
/* Function: gdb_error(char *, char *)
|
|
Send an error message to gdb's stdout.
|
|
First string may have 1 (one) optional "%s" in it, which
|
|
will cause the optional second string to be inserted. */
|
|
|
|
static void
|
|
gdb_error(format, parm)
|
|
char * format;
|
|
char * parm;
|
|
{
|
|
char buf[400], *cpy;
|
|
int len;
|
|
|
|
if (remote_debug)
|
|
{
|
|
if (format && *format)
|
|
len = strlen(format);
|
|
else
|
|
return; /* empty input */
|
|
|
|
if (parm && *parm)
|
|
len += strlen(parm);
|
|
|
|
for (cpy = buf; *format; )
|
|
{
|
|
if (format[0] == '%' && format[1] == 's') /* include second string */
|
|
{
|
|
format += 2; /* advance two chars instead of just one */
|
|
while (parm && *parm)
|
|
*cpy++ = *parm++;
|
|
}
|
|
else
|
|
*cpy++ = *format++;
|
|
}
|
|
*cpy = '\0';
|
|
gdb_puts(buf);
|
|
}
|
|
}
|
|
|
|
static unsigned char *
|
|
strcpy (unsigned char *dest, const unsigned char *src)
|
|
{
|
|
unsigned char *ret = dest;
|
|
|
|
if (dest && src)
|
|
{
|
|
while (*src)
|
|
*dest++ = *src++;
|
|
*dest = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
strlen (const unsigned char *src)
|
|
{
|
|
int ret;
|
|
|
|
for (ret = 0; *src; src++)
|
|
ret++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if 0
|
|
void exit (code)
|
|
int code;
|
|
{
|
|
_exit (code);
|
|
}
|
|
|
|
int atexit (void *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void abort (void)
|
|
{
|
|
_exit (1);
|
|
}
|
|
#endif
|